JP4889097B2 - Polycycloolefin functional polysiloxane - Google Patents

Polycycloolefin functional polysiloxane Download PDF

Info

Publication number
JP4889097B2
JP4889097B2 JP2006106071A JP2006106071A JP4889097B2 JP 4889097 B2 JP4889097 B2 JP 4889097B2 JP 2006106071 A JP2006106071 A JP 2006106071A JP 2006106071 A JP2006106071 A JP 2006106071A JP 4889097 B2 JP4889097 B2 JP 4889097B2
Authority
JP
Japan
Prior art keywords
polycycloolefin
polysiloxane
group
mol
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006106071A
Other languages
Japanese (ja)
Other versions
JP2007070337A (en
Inventor
正俊 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006106071A priority Critical patent/JP4889097B2/en
Publication of JP2007070337A publication Critical patent/JP2007070337A/en
Application granted granted Critical
Publication of JP4889097B2 publication Critical patent/JP4889097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ポリシクロオレフィン官能性ポリシロキサンに関する。斯かるシクロポリオレフィン構造とポリシロキサン構造を備えた化合物から得られる樹脂は、双方の構造の特性を併せ持つ、機能性ポリマーとして期待される。   The present invention relates to polycycloolefin functional polysiloxanes. A resin obtained from a compound having such a cyclopolyolefin structure and a polysiloxane structure is expected as a functional polymer having characteristics of both structures.

近年、ポリシクロオレフィンは優れた透明性、耐熱性、強度および良好なフィルム特性等から光学用途の機能性プラスチックスとして注目されている。一方、オルガノポリシロキサンは耐熱性、耐水性、耐薬品性に優れた機能性ポリマーとして広い分野で実用化されている。斯かるポリシクロオレフィン構造とポリシロキサン構造を備えた樹脂は、双方の樹脂の特性を併せ持つ、機能性ポリマーとなり得る。   In recent years, polycycloolefins have attracted attention as functional plastics for optical applications because of their excellent transparency, heat resistance, strength, and good film properties. On the other hand, organopolysiloxane has been put to practical use in a wide range of fields as a functional polymer having excellent heat resistance, water resistance and chemical resistance. A resin having such a polycycloolefin structure and a polysiloxane structure can be a functional polymer having the characteristics of both resins.

斯かるポリマーの調製に使用できるモノマーとして、ノルボルネン官能性シロキサンがある。該シロキサンとしては、例えば下記に示す、2,5−ノルボルナジエンとテトラメチルジシロキサンを白金触媒存在下で付加反応させて得られる、1,3−ビス−ビシクロ[2.2.1]ヘプト−5−エン−2−イル−1,1,3,3−テトラメチルジシロキサンが知られている(特許文献1、実施例1)。 Monomers that can be used to prepare such polymers include norbornene functional siloxanes. Examples of the siloxane include 1,3-bis-bicyclo [2.2.1] hept-5 obtained by addition reaction of 2,5-norbornadiene and tetramethyldisiloxane in the presence of a platinum catalyst as shown below. -En-2-yl-1,1,3,3-tetramethyldisiloxane is known (Patent Document 1, Example 1).

Figure 0004889097
Figure 0004889097

同様のノルボルネン官能性シロキサンとして、ノルボルナジエンと相当するSiH官能性シロキサンを付加反応させて合成される下記のものが知られている(非特許文献1)。   As a similar norbornene functional siloxane, the following is synthesized by addition reaction of norbornadiene and a corresponding SiH functional siloxane (Non-patent Document 1).

Figure 0004889097
Figure 0004889097

また、シクロペンタジエンとビニルシラン類をDiels−Alder反応に付して得られる下記化合物が知られている(非特許文献2)。   Further, the following compounds obtained by subjecting cyclopentadiene and vinylsilanes to Diels-Alder reaction are known (Non-patent Document 2).

Figure 0004889097
Figure 0004889097
WO02/062859号公報WO02 / 062859 特開2003−252881号公報JP 2003-252881 A Pierre M.Chevalier等、”Ring−Opening Olefin Materials Polymerisation (ROMP) as a Potential Cross−Linking Mechanism for Siloxane Polymers”、Journal of Inorganic and Organometallic polymers (1999),9(3),151頁Pierre M.M. Chevalier et al., “Ring-Opening Material Materials Polymerization (ROMP) as a Potential Cross-Linking Mechanical for Siloxane Polymers 15 (Journal of Inorganic 9”). Robert F.Cunico等、”The Diels−Alder Reaction of α,β−Unsaturated Trihalosilanes with Cyclopentadiene”、J.Org.Chem.、Vol36,No.7,1971Robert F. Cunico et al., “The Diels-Alder Reaction of α, β-Unactivated Trihalosilanes with Cyclopentadiene”, J. Am. Org. Chem. , Vol 36, No. 7, 1971

上で述べたポリシロキサンはいずれも2環性、即ち下記式(1)においてk=0、に過ぎない。ポリシクロオレフィンの優れた光学的透明性、耐熱性、強度および良好なフィルム特性等を利用するためには、より多環性基を有するポリシロキサンが望まれるが、そのようなポリシロキサンは未だ知られていない。そこで、本発明は、2環性基よりも多いシクロ環を有するポリシロキサンを提供することを目的とする。
また、上で述べたポリシロキサンは、いずれもケイ素が2官能性以下、即ち、該ケイ素が結合している有機基が2つ以上、である。そこで、本発明は、3官能性のケイ素を有するポリシロキサンを提供することをも目的とする。
All the polysiloxanes mentioned above are bicyclic, that is, only k = 0 in the following formula (1). In order to utilize the excellent optical transparency, heat resistance, strength, and good film properties of polycycloolefin, polysiloxanes having more polycyclic groups are desired, but such polysiloxanes are still unknown. It is not done. Accordingly, an object of the present invention is to provide a polysiloxane having more cyclo rings than bicyclic groups.
In any of the polysiloxanes described above, silicon is difunctional or less, that is, two or more organic groups are bonded to the silicon. Therefore, an object of the present invention is also to provide a polysiloxane having trifunctional silicon.

即ち、本発明は、下記平均組成式(1)で示される、ポリシクロオレフィン官能性ポリシロキサンである。   That is, the present invention is a polycycloolefin functional polysiloxane represented by the following average composition formula (1).

Figure 0004889097
(式中R1は互いに異なっていてよい、不飽和結合を有さず、フッ素原子で置換されていてもよい、炭素原子数1〜10の一価炭化水素基であり、kは0より大きい数であり、nは0.01以上4未満の数であり、mは0又は4未満の正の数であり、但しm+n<4である)
また、本発明は、下記構造式(2)で示されるポリシクロオレフィン官能性ポリシロキサンである。
Figure 0004889097
(Wherein R 1 may be different from each other, without being have a unsaturated bond, a fluorine atom may be substituted, a monovalent hydrocarbon group having 1 to 10 carbon atoms, k is greater than 0 And n is a number from 0.01 to less than 4, and m is a positive number less than 0 or less than 4, provided that m + n <4)
Moreover, this invention is polycycloolefin functional polysiloxane shown by following Structural formula (2).

Figure 0004889097
(式中Rは、互いに独立に、炭素数1〜12の、フッ素原子で置換されていてよいアルキル基であり、jは0〜2の整数である)
Figure 0004889097
(Wherein R 2, independently of one another, from 1 to 12 carbon atoms or an alkyl group which may be substituted with a fluorine atom, j is an integer of 0 to 2)

上記ポリシクロオレフィン官能性ポリシロキサンは、Metathesis重合性を有し、ポリシクロオレフィン構造に基く、強度、硬度、透明度、屈折率、低透湿性、接着性が改良された熱硬化性シリコーン樹脂の原料として、期待される。   The above polycycloolefin functional polysiloxane is a material for thermosetting silicone resins having metathesis polymerizability and improved strength, hardness, transparency, refractive index, low moisture permeability, and adhesion based on the polycycloolefin structure. As expected.

上記式(1)は組成式であり、2種類以上のポリシクロオレフィン官能性ポリシロキサンの混合物をも含み、それらの構造をその量に応じて平均したものを表す。例えば、式(1)でk=1.1のものは、kが1のものが90モル%と、kが2のもの10モル%との混合物(1.1=1×0.9+2×0.1)である。kが1以上のものが含まれてさえいればよく、従ってkは0超の数であり、好ましくは1以上の数である。該組成の確認は、本発明の実施例に示すように、ガスクロ分析と元素分析により行なうことができる。各ポリシロキサンの分子量が小さく且つそれらの沸点間に十分な差がある場合は、蒸留により単離が可能である。   The above formula (1) is a composition formula, which includes a mixture of two or more types of polycycloolefin functional polysiloxanes and represents an average of their structures according to their amounts. For example, in the formula (1), k = 1.1 is a mixture (1.1 = 1 × 0.9 + 2 × 0.1) of 90 mol% for k = 1 and 10 mol% for k = 2. . It is only necessary to include those having k of 1 or more, and therefore k is a number greater than 0, preferably a number of 1 or more. The composition can be confirmed by gas chromatography analysis and elemental analysis as shown in the examples of the present invention. If the molecular weight of each polysiloxane is small and there is a sufficient difference between their boiling points, it can be isolated by distillation.

式(1)中、R1は互いに異なっていてよい、不飽和結合を有しない1価の有機基である。好ましくはR1は炭素原子数1〜10の一価炭化水素基であり、例えばメチル基、エチル基、n−プロピル基、ブチル基、ペンチル基等のアルキル基、フェニル基、トリル基、キシリル基等のアリール基であり、これらはフッ素原子等の置換基を有していてよい。これらの中で、メチル基、フェニル基、及びトリフロロプロピル基が好ましい。 In Formula (1), R 1 is a monovalent organic group having no unsaturated bond, which may be different from each other. Preferably, R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, for example, an alkyl group such as methyl group, ethyl group, n-propyl group, butyl group, pentyl group, phenyl group, tolyl group, xylyl group. And these may have a substituent such as a fluorine atom. Among these, a methyl group, a phenyl group, and a trifluoropropyl group are preferable.

式(2)は構造式である。同式において、   Formula (2) is a structural formula. In the same formula

Figure 0004889097
は、互いに独立に、炭素数1〜12の、置換されていてよいアルキル基であり、R1について例示したものと同様の基が例示される。好ましくは、メチル基、フェニル基及びトリフロロプロピル基である。jは0〜2の整数である。後述する調製法により、通常、異なるjを有する複数の化合物の混合物が得られる。これを、分離、例えば精密蒸留、することによって、一のjに相当する単一化合物を得ることができる。式(1)において、k=0のいくつかのものは、上述したように公知であるが、式(2)においてj=0のものは知られていない。
Figure 0004889097
R 2 is independently an alkyl group having 1 to 12 carbon atoms which may be substituted, and examples thereof are the same as those exemplified for R 1 . Preferably, they are a methyl group, a phenyl group and a trifluoropropyl group. j is an integer of 0-2. A mixture of a plurality of compounds having different j is usually obtained by the preparation method described later. By separating this, for example, by precision distillation, a single compound corresponding to one j can be obtained. In Equation (1), some of k = 0 are known as described above, but in Equation (2), j = 0 is not known.

上記式(1)のポリシクロオレフィン官能性ポリシロキサンは、例えば、式(3)で表されるビニル基含有ポリシロキサンとシクロペンタジエンから得られる。   The polycycloolefin functional polysiloxane of the above formula (1) is obtained from, for example, a vinyl group-containing polysiloxane represented by the formula (3) and cyclopentadiene.

Figure 0004889097
該不飽和基含有ポリシロキサンとして、下記のものが包含される。
Figure 0004889097
Examples of the unsaturated group-containing polysiloxane include the following.

Figure 0004889097
Figure 0004889097

Figure 0004889097
Figure 0004889097

式中、R1は式(1)について述べたとおりである。また、Rはビニル基である。 In the formula, R 1 is as described for formula (1). R 3 is a vinyl group.

a、bは0または1であり、x、y、z、p、qは0または1以上の整数、但しx、y、zが0の時はaは1であり、a、x、pが0の場合はbは1である。好ましくは0≦x≦50、0≦y≦100、0≦z≦20、0≦p≦50、0≦q≦100であり、0≦x+y+z≦100、0≦p+q≦100である。また、sは1以上の整数であり、tは0または1以上の整数、3≦s+t≦8である。   a and b are 0 or 1, and x, y, z, p and q are 0 or an integer of 1 or more, provided that when x, y and z are 0, a is 1, and a, x and p are In the case of 0, b is 1. Preferably, 0 ≦ x ≦ 50, 0 ≦ y ≦ 100, 0 ≦ z ≦ 20, 0 ≦ p ≦ 50, 0 ≦ q ≦ 100, 0 ≦ x + y + z ≦ 100, and 0 ≦ p + q ≦ 100. Further, s is an integer of 1 or more, and t is 0 or an integer of 1 or more, and 3 ≦ s + t ≦ 8.

好ましい不飽和基含有ポリシロキサンとして、ViMeSiOSiMeVi、ViMeSiOSiMeOSiMeVi、ViMeSi(OSiMe10Vi、(ViMeSiO) ViMeSiOSiViMeOSiMeVi、ViMeSi(OSiMe150(OSiMeVi)OSiMe2Vi、MeSiO(MeViSiO)(CFCHCHSiMeO)15(MeSiO)15SiMe等が挙げられる(但し、Meはメチル基、Viはビニル基を示す)。 Preferred as the unsaturated group-containing polysiloxane, ViMe 2 SiOSiMe 2 Vi, ViMe 2 SiOSiMe 2 OSiMe 2 Vi, ViMe 2 Si (OSiMe 2) 10 Vi, (ViMeSiO) 4 ViMe 2 SiOSiViMeOSiMe 2 Vi, ViMe 2 Si (OSiMe 2) 150 (OSiMeVi) 3 OSiMe2Vi, Me 3 SiO (MeViSiO) 5 (CF 3 CH 2 CH 2 SiMeO) 15 (Me 2 SiO) 15 SiMe 3 and the like (where Me represents a methyl group and Vi represents a vinyl group) ).

ジシクロペンタジエンは、熱分解して2モルのシクロペンタジエンを与える(Organic Syntheses Collect,Vol.IV,p238)。

Figure 0004889097
Dicyclopentadiene is pyrolyzed to give 2 moles of cyclopentadiene (Organic Syntheses Collect, Vol. IV, p238).
Figure 0004889097

熱分解は150℃前後で効率的に起こる。生成したシクロペンタジエンは不安定で、室温下容易にジシクロペンタジエンにもどるので、本発明では生成したシクロペンタジエンを「in−situ」で、直ちにビストリメチルシロキシメチルビニルシランと反応させる。生成した1モルのジシクロペンタジエンは、2モルのビニルシロキサンと反応して、下記式(5)で示すように、2モルのポリシロキサンAを与える。   Pyrolysis occurs efficiently around 150 ° C. Since the produced cyclopentadiene is unstable and easily returns to dicyclopentadiene at room temperature, the produced cyclopentadiene is immediately reacted with bistrimethylsiloxymethyl vinyl silane “in-situ”. The 1 mol of dicyclopentadiene produced reacts with 2 mol of vinylsiloxane to give 2 mol of polysiloxane A as shown in the following formula (5).

Figure 0004889097
Figure 0004889097

過剰のジシクロペンタジエンはポリシロキサンAと反応し、下記式(6)で示すように、ポリシロキサンBを与える。

Figure 0004889097
Excess dicyclopentadiene reacts with polysiloxane A to give polysiloxane B as shown by the following formula (6).
Figure 0004889097

さらに過剰のジシクロペンタジエンは更にポリシロキサンBと反応し、下記式(7)で示すように、ポリシロキサンCをあたえる。

Figure 0004889097
Further excess dicyclopentadiene further reacts with polysiloxane B to give polysiloxane C as shown by the following formula (7).
Figure 0004889097

上記式(5)において、ビストリメチルシロキシメチルビニルシランに代えて、トリストリメチルシロキシメチルビニルシランを反応させることによって、式(8)に示すように、式(2)の3官能性シリコンを有するポリシロキサンを得ることができる。さらに、式(6)、(7)と同様に、該ポリシロキサンにシクロペンタジエンが付加された構造のものが得られる。

Figure 0004889097
In the above formula (5), by reacting tristrimethylsiloxymethylvinylsilane instead of bistrimethylsiloxymethylvinylsilane, as shown in formula (8), polysiloxane having trifunctional silicon of formula (2) Obtainable. Further, as in the formulas (6) and (7), a structure in which cyclopentadiene is added to the polysiloxane is obtained.
Figure 0004889097

以上のようにして、ポリシロキサン骨格とポリシクロオレフィン骨格を有するポリシクロオレフィン官能性ポリシロキサンが合成でき、例えば、下記のものが例示できる。   As described above, a polycycloolefin-functional polysiloxane having a polysiloxane skeleton and a polycycloolefin skeleton can be synthesized. Examples thereof include the following.

Figure 0004889097
Figure 0004889097

Figure 0004889097
上式でpは 2〜1,000 である。
Figure 0004889097
In the above formula, p is 2 to 1,000.

Figure 0004889097
Figure 0004889097

Figure 0004889097
Figure 0004889097

上記反応は大気圧下、好ましくは窒素気流下、で100〜250℃に加熱することによって進行する。好ましくは140℃〜200℃に加熱する。140℃以下では反応が極めて遅く製造に時間がかかり、200℃以上では熱分解等の副反応がおこり、目的物の純度が低下する場合がある。
実施例
The above reaction proceeds by heating to 100 to 250 ° C. under atmospheric pressure, preferably under a nitrogen stream. Preferably it heats to 140 to 200 degreeC. At 140 ° C. or lower, the reaction is extremely slow and takes time to produce, and at 200 ° C. or higher, side reactions such as thermal decomposition may occur and the purity of the target product may be reduced.
Example

以下、実施例を参照して、本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, this invention is not limited to these Examples.

[実施例1]
ジシクロペンタジエン13g(0.10モル)とビストリメチルシロキシメチルビニルシラン50g(0.20モル)を100mlの反応器に仕込み、窒素気流下160−175℃で4時間反応させた。反応液を減圧蒸留したところ、沸点が97−102℃/9mmHgの留分が37g得られた。該留分は、屈折率(n 25)が1.444であった。H-NMR分析(測定装置 JEOL社製LAMBDA LA−300W)(図1)及び赤外分光分析(測定装置 Perkin Elmer社製FT−IR Spectrometer Spectrum One)で構造を確認し(図2)、ガスクロマトグラフィー分析(島津製作所製 GC−14B)のピーク面積比等から、この留分は下記構造式で表される化合物89モル%と、

Figure 0004889097
下記構造式で表される化合物が11モル%
Figure 0004889097
の混合物であることが確認された。 [Example 1]
13 g (0.10 mol) of dicyclopentadiene and 50 g (0.20 mol) of bistrimethylsiloxymethylvinylsilane were charged into a 100 ml reactor and reacted at 160-175 ° C. for 4 hours under a nitrogen stream. When the reaction solution was distilled under reduced pressure, 37 g of a fraction having a boiling point of 97-102 ° C./9 mmHg was obtained. The fraction had a refractive index (n D 25 ) of 1.444. The structure was confirmed by 1 H-NMR analysis (measurement device LAMBDA LA-300W manufactured by JEOL) (FIG. 1) and infrared spectroscopic analysis (measurement device Perkin Elmer FT-IR Spectrometer Spectrum One) (FIG. 2). From the peak area ratio of chromatographic analysis (GC-14B, manufactured by Shimadzu Corporation) and the like, this fraction contains 89 mol% of a compound represented by the following structural formula,
Figure 0004889097
11 mol% of compounds represented by the following structural formula
Figure 0004889097
It was confirmed to be a mixture of

[実施例2]
ジシクロペンタジエン50g(0.38モル)とビストリメチルシロキシメチルビニルシラン50g(0.20モル)を200mlの反応器に仕込み、窒素気流下160−175℃で4時間反応させた。反応液を減圧蒸留したところ、沸点が104−110℃/5mmHgの留分が42g得られた。該留分の屈折率(n 25)は1.470であった。実施例1と同様にガスクロマトグラフィー分析、NMR分析(図3)及び赤外分光分析したところ(図4)、この留分は、下記式の化合物が93モル%、

Figure 0004889097
下記化合物が7モル%の混合物であり、下記平均組成式
Figure 0004889097
で表されるものであった。 [Example 2]
Dicyclopentadiene 50 g (0.38 mol) and bistrimethylsiloxymethylvinylsilane 50 g (0.20 mol) were charged into a 200 ml reactor and reacted at 160-175 ° C. for 4 hours under a nitrogen stream. When the reaction solution was distilled under reduced pressure, 42 g of a fraction having a boiling point of 104-110 ° C./5 mmHg was obtained. The refractive index (n D 25 ) of the fraction was 1.470. When gas chromatographic analysis, NMR analysis (FIG. 3) and infrared spectroscopic analysis (FIG. 4) were conducted in the same manner as in Example 1, this fraction was found to contain 93 mol% of the compound of the following formula:
Figure 0004889097
The following compound is a mixture of 7 mol%, and the following average composition formula
Figure 0004889097
It was represented by.

[実施例3]
ジシクロペンタジエン76.3g(0.58モル)とメチルビニルテトラシロキサン100g(ビニル価:0.29モル/100g)を200mlの反応器に仕込み、窒素気流下160−175℃で6時間反応させた。5mmHgの減圧下140℃に加熱し低沸点成分を取り除くと、室温で淡黄色粘稠な液体が160g得られた。該液体は、屈折率(n 25)が1.501であった。実施例1と同様にガスクロマトグラフィー分析、NMR分析及び赤外分光分析したところ(図5)、この留分は、下記式の化合物、88モル%と、

Figure 0004889097
下記式の化合物12モル%、
Figure 0004889097
の混合物であり、下記平均組成式
Figure 0004889097
で表されるものであった。収率は91%であった。 [Example 3]
76.3 g (0.58 mol) of dicyclopentadiene and 100 g of methylvinyltetrasiloxane (vinyl number: 0.29 mol / 100 g) were charged into a 200 ml reactor and reacted at 160-175 ° C. for 6 hours under a nitrogen stream. . When the low boiling point component was removed by heating to 140 ° C. under a reduced pressure of 5 mmHg, 160 g of a light yellow viscous liquid was obtained at room temperature. The liquid had a refractive index (n D 25 ) of 1.501. When gas chromatographic analysis, NMR analysis and infrared spectroscopic analysis were performed in the same manner as in Example 1 (FIG. 5), this fraction was composed of a compound of the following formula, 88 mol%,
Figure 0004889097
12 mol% of a compound of the formula
Figure 0004889097
The following average composition formula
Figure 0004889097
It was represented by. The yield was 91%.

[実施例4]
ジシクロペンタジエン141g(1.07モル)と1,3−ジビニルテトラメチルジシロキサン100g(0.54モル)を500mlの反応器に仕込み、窒素気流下160−175℃で6時間反応させた。5mmHgの減圧下140℃に加熱し低沸点成分を取り除くと、室温で淡黄色粘稠な液体が230g得られた。該液体の屈折率(n 25)は1.515であった。赤外分光分析結果(図6)及び組成分析(表1)で構造を確認したところ、この液体は下記平均組成式で表される構造を有していた。

Figure 0004889097
[表1]
Figure 0004889097
[Example 4]
141 g (1.07 mol) of dicyclopentadiene and 100 g (0.54 mol) of 1,3-divinyltetramethyldisiloxane were charged into a 500 ml reactor and reacted at 160 to 175 ° C. for 6 hours in a nitrogen stream. When the low boiling point component was removed by heating to 140 ° C. under a reduced pressure of 5 mmHg, 230 g of a pale yellow viscous liquid was obtained at room temperature. The refractive index (n D 25 ) of the liquid was 1.515. When the structure was confirmed by the result of infrared spectroscopic analysis (FIG. 6) and composition analysis (Table 1), this liquid had a structure represented by the following average composition formula.
Figure 0004889097
[Table 1]
Figure 0004889097

[実施例5]
ジシクロペンタジエン153g(1.15モル)とメチルビニルシクロテトラシロキサン100g(ビニル価:1.16モル/100g)を500mlの反応器に仕込み、窒素気流下160−175℃で6時間反応させた。5mmHgの減圧下140℃に加熱し低沸点成分を取り除くと、室温で淡黄色粘稠な液体が240g得られた。該液体の屈折率(n 25)は1.5230であった。赤外分光分析結果(図7)及び組成分析で構造を確認したところ、この液体は下記平均組成式で表される構造を有していた。

Figure 0004889097
[表2]
Figure 0004889097
[Example 5]
153 g (1.15 mol) of dicyclopentadiene and 100 g of methylvinylcyclotetrasiloxane (vinyl number: 1.16 mol / 100 g) were charged into a 500 ml reactor and reacted at 160-175 ° C. for 6 hours under a nitrogen stream. When the low boiling point component was removed by heating to 140 ° C. under a reduced pressure of 5 mmHg, 240 g of a pale yellow viscous liquid was obtained at room temperature. The refractive index (n D 25 ) of the liquid was 1.5230. When the structure was confirmed by the result of infrared spectroscopic analysis (FIG. 7) and composition analysis, this liquid had a structure represented by the following average composition formula.
Figure 0004889097
[Table 2]
Figure 0004889097

[実施例6]
ジシクロペンタジエン132g(1.00モル)とトリストリメチルシロキシビニルシラン322g(1.00モル)を500mlの反応器に仕込み、窒素シール下160−175℃で4時間反応させた。反応液を減圧蒸留したところ、沸点が118−120℃/5mmHgの留分が220g得られた。H-NMR分析(測定装置 JEOL社製LAMBDA LA−300W)及び赤外分光分析(測定装置 Perkin Elmer社製FT−IR Spectrometer Spectrum One)で構造を確認し、ガスクロマトグラフィー分析(島津製作所製 GC−14B)のピーク面積比等から、下記構造式で表される化合物が95%と、

Figure 0004889097
下記構造式で表される化合物が5%の混合物であることが確認された。
Figure 0004889097
[Example 6]
132 g (1.00 mol) of dicyclopentadiene and 322 g (1.00 mol) of tristrimethylsiloxyvinylsilane were charged into a 500 ml reactor and reacted at 160-175 ° C. for 4 hours under a nitrogen seal. When the reaction solution was distilled under reduced pressure, 220 g of a fraction having a boiling point of 118-120 ° C./5 mmHg was obtained. The structure was confirmed by H-NMR analysis (measurement device LAMBDA LA-300W manufactured by JEOL) and infrared spectroscopic analysis (measurement device FT-IR Spectrometer Spectrum One manufactured by Perkin Elmer), and gas chromatography analysis (GC-manufactured by Shimadzu Corporation) From the peak area ratio of 14B), the compound represented by the following structural formula is 95%,
Figure 0004889097
It was confirmed that the compound represented by the following structural formula was a 5% mixture.
Figure 0004889097

[実施例7]
ジシクロペンタジエン132g(1.00モル)とトリストリメチルシロキシビニルシラン322g(1.00モル)を500mlの反応器に仕込み、窒素シール下160−175℃で4時間反応させた。反応液を精密蒸留したところ、沸点が118℃/5mmHgの留分が200g得られた。該留分は、屈折率(nD 25)が1.4311であり、ガスクロマトグラフィー分析(島津製作所製 GC−14B)の結果、純度が99%であった。1H-NMR分析(測定装置 JEOL社製LAMBDA LA−300W)(図8)及び赤外分光分析(測定装置 Perkin Elmer社製FT−IR Spectrometer Spectrum One)で構造を確認し(図9)、下記構造式で表される化合物であることが確認された。

Figure 0004889097
[Example 7]
132 g (1.00 mol) of dicyclopentadiene and 322 g (1.00 mol) of tristrimethylsiloxyvinylsilane were charged into a 500 ml reactor and reacted at 160-175 ° C. for 4 hours under a nitrogen seal. When the reaction solution was precision distilled, 200 g of a fraction having a boiling point of 118 ° C./5 mmHg was obtained. The fraction had a refractive index (n D 25 ) of 1.4311 and a purity of 99% as a result of gas chromatography analysis (GC-14B, manufactured by Shimadzu Corporation). The structure was confirmed by 1 H-NMR analysis (measuring device LAMBDA LA-300W manufactured by JEOL) (FIG. 8) and infrared spectroscopic analysis (measurement device Perkin Elmer FT-IR Spectrometer Spectrum One) (FIG. 9). It was confirmed that the compound was represented by the structural formula.
Figure 0004889097

本発明のポリシクロオレフィン官能性ポリシロキサンは、熱硬化性シリコーン樹脂の原料として、また、ポリオレフィン樹脂の改質剤としての利用が期待される。3官能性シリコンを有するポリシクロオレフィン官能性ポリシロキサンは、特に、高酸素透過性のフィルムへの利用が期待される。   The polycycloolefin functional polysiloxane of the present invention is expected to be used as a raw material for thermosetting silicone resins and as a modifier for polyolefin resins. The polycycloolefin functional polysiloxane having trifunctional silicon is expected to be used particularly for a film having high oxygen permeability.

実施例1で合成したポリシロキサンのNMRスペクトルである。2 is an NMR spectrum of the polysiloxane synthesized in Example 1. 実施例1で合成したポリシロキサンのIRスペクトルである。2 is an IR spectrum of the polysiloxane synthesized in Example 1. 実施例2で合成したポリシロキサンのNMRスペクトルである。3 is an NMR spectrum of the polysiloxane synthesized in Example 2. 実施例2で合成したポリシロキサンのIRスペクトルである。3 is an IR spectrum of the polysiloxane synthesized in Example 2. 実施例3で合成したポリシロキサンのIRスペクトルである。3 is an IR spectrum of the polysiloxane synthesized in Example 3. 実施例4で合成したポリシロキサンのIRスペクトルである。4 is an IR spectrum of the polysiloxane synthesized in Example 4. 実施例5で合成したポリシロキサンのIRスペクトルである。6 is an IR spectrum of the polysiloxane synthesized in Example 5. 実施例7で合成したポリシロキサンのNMRスペクトルである。3 is an NMR spectrum of the polysiloxane synthesized in Example 7. 実施例7で合成したポリシロキサンのIRスペクトルである。4 is an IR spectrum of the polysiloxane synthesized in Example 7.

Claims (4)

下記平均組成式(1)で示される、ポリシクロオレフィン官能性ポリシロキサン
Figure 0004889097
(式中R1は互いに異なっていてよい、不飽和結合を有さず、フッ素原子で置換されていてもよい、炭素原子数1〜10の一価炭化水素基であり、kは0より大きい数であり、nは0.01以上4未満の数であり、mは0又は4未満の正の数であり、但しm+n<4である)。
A polycycloolefin functional polysiloxane represented by the following average composition formula (1)
Figure 0004889097
(Wherein R 1 may be different from each other, without being have a unsaturated bond, a fluorine atom may be substituted, a monovalent hydrocarbon group having 1 to 10 carbon atoms, k is greater than 0 And n is a number not less than 0.01 and less than 4, and m is a positive number less than 0 or less than 4, provided that m + n <4).
kが1〜2であり、nが1/4〜1であり、R1がメチル基、フェニル基、又はトリフロロプロピル基である、請求項1記載のポリシクロオレフィン官能性ポリシロキサン。 The polycycloolefin functional polysiloxane according to claim 1, wherein k is 1 to 2, n is 1/4 to 1, and R 1 is a methyl group, a phenyl group, or a trifluoropropyl group. 下記構造式(2)で示されるポリシクロオレフィン官能性ポリシロキサン
Figure 0004889097
(式中Rは、互いに独立に、炭素数1〜12の、フッ素原子で置換されていてよいアルキル基であり、jは0〜2の整数である)。
Polycycloolefin functional polysiloxane represented by the following structural formula (2)
Figure 0004889097
(Wherein R 2, independently of one another, from 1 to 12 carbon atoms or an alkyl group which may be substituted with a fluorine atom, j is an integer of 0 to 2).
がメチル基であり、jが0である、請求項3記載のポリシクロオレフィン官能性ポリシロキサン。 R 2 is methyl group, j is 0, polycycloolefin-functional polysiloxane according to claim 3, wherein.
JP2006106071A 2005-08-11 2006-04-07 Polycycloolefin functional polysiloxane Active JP4889097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006106071A JP4889097B2 (en) 2005-08-11 2006-04-07 Polycycloolefin functional polysiloxane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005233409 2005-08-11
JP2005233409 2005-08-11
JP2006106071A JP4889097B2 (en) 2005-08-11 2006-04-07 Polycycloolefin functional polysiloxane

Publications (2)

Publication Number Publication Date
JP2007070337A JP2007070337A (en) 2007-03-22
JP4889097B2 true JP4889097B2 (en) 2012-02-29

Family

ID=37932096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006106071A Active JP4889097B2 (en) 2005-08-11 2006-04-07 Polycycloolefin functional polysiloxane

Country Status (1)

Country Link
JP (1) JP4889097B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077252A (en) * 2005-09-13 2007-03-29 Shin Etsu Chem Co Ltd Curable silicone composition
JP4242403B2 (en) * 2006-07-13 2009-03-25 信越化学工業株式会社 Oxygen-enriched film and composition for forming the film
JP4645858B2 (en) * 2008-01-28 2011-03-09 信越化学工業株式会社 Cyclic olefin addition copolymer and method for producing the same, composition for crosslinking, crosslinked material and method for producing the same
JP5353043B2 (en) * 2008-04-11 2013-11-27 信越化学工業株式会社 Cyclic olefin addition polymer and process for producing the same
JP2010174099A (en) * 2009-01-28 2010-08-12 Shin-Etsu Chemical Co Ltd Cycloolefin addition polymer and method for producing the same
JP5155255B2 (en) * 2009-06-30 2013-03-06 信越化学工業株式会社 Asymmetric membrane of siloxane functional cyclic olefin (co) polymer and process for producing the same
JP2011084681A (en) * 2009-10-19 2011-04-28 Shin-Etsu Chemical Co Ltd Highly gas-permeable cyclic olefin addition polymer and method for producing the same
JP5212659B2 (en) 2010-07-30 2013-06-19 信越化学工業株式会社 Method for producing highly gas permeable cyclic olefin addition polymer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813823B2 (en) * 1988-05-20 1996-02-14 株式会社日立製作所 Dimethanooctahydronaphthalene derivative having organic silyl group
US5147945A (en) * 1990-12-31 1992-09-15 Hercules Incorporated Organosilicon polymers and prepolymers comprising a coupling monomer
JP4877443B2 (en) * 2001-09-27 2012-02-15 Jsr株式会社 Cyclic olefins having reactive silyl groups
JP2003252881A (en) * 2001-12-28 2003-09-10 Mitsui Chemicals Inc Silylnorbornene, silyltetracyclodecene, method for producing them and use of them
JP2004175784A (en) * 2002-09-30 2004-06-24 Mitsubishi Chemicals Corp Method for producing norbornene derivative having organosilyl group
EP1679314A4 (en) * 2003-10-15 2008-12-24 Jsr Corp Silane compound, polysiloxane and radiation-sensitive resin composition
JP4374999B2 (en) * 2003-12-01 2009-12-02 Jsr株式会社 Cyclic olefin compound, method for producing the same, and radiation-sensitive resin composition
JP2007045782A (en) * 2005-08-11 2007-02-22 Shin Etsu Chem Co Ltd Method for producing polycycloolefin functional polysiloxane
JP2007077252A (en) * 2005-09-13 2007-03-29 Shin Etsu Chem Co Ltd Curable silicone composition

Also Published As

Publication number Publication date
JP2007070337A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4889097B2 (en) Polycycloolefin functional polysiloxane
US6911518B2 (en) Polyhedral oligomeric -silsesquioxanes, -silicates and -siloxanes bearing ring-strained olefinic functionalities
JP5369629B2 (en) Crosslinkable silicon compound, method for producing the same, crosslinkable composition, siloxane polymer, silicone film, silicon compound as a raw material for the crosslinkable silicon compound, and method for producing the same
JP7030974B2 (en) Method for producing siloxane having oxamid ester group
TW201116557A (en) Terminal vinyl polysiloxane containing isocyanuric ring
US20140046084A1 (en) Siloxane Compound and Cured Product Thereof
Grunlan et al. Synthesis of 1, 9-bis [glycidyloxypropyl] penta (1′ H, 1′ H, 2′ H, 2′ H-perfluoroalkylmethylsiloxane) s and copolymerization with piperazine
JPH01207294A (en) Fluorine-containing organo-silicic compound
JP2007077252A (en) Curable silicone composition
JP2007045782A (en) Method for producing polycycloolefin functional polysiloxane
JPH04348127A (en) Alkenyl-containing siloxane copolymer, its manufacture, its composition, and manufacture of covering for preventing tacky substance from fixing
US7388065B2 (en) Process for preparing siloxane compounds
JP6893338B2 (en) Method for Producing Polysiloxane Structure-Containing Compound and Polymer Composition
Shen et al. Preparation and thermal properties of asymmetrically substituted poly (silylenemethylene) s
JP2008274184A (en) Organosilicon compound containing polycyclic hydrocarbon group having hydrogen atom combined with silicon atom, and method for manufacturing the same
JP5224260B2 (en) Silicon-containing adamantane compounds
JP7336509B2 (en) Crosslinkable organosiloxane composition
JPH0377892A (en) Fluorine-containing organic silicon compound and its preparation
WO2017047652A1 (en) Method for producing periodic polysiloxane by polycondensation of symmetric oligosiloxanes
WO2017043294A1 (en) Novel vinyl silane compound
Shamaev et al. Synthesis and some properties of silanes and siloxanes with 5, 5, 6, 6, 7, 7, 7-heptafluoro-4, 4-bis (trifluoromethyl) heptyl substituents
EP0843683B1 (en) Fluorosilicon compounds and preparation method
JP7203196B2 (en) Crosslinkable organosiloxane composition
JP6225888B2 (en) Organopolysiloxane compound and method for producing the same
JPH06157550A (en) Alpha, omega-phenylethynylsiloxane monomer or oligomer and its polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4889097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3