JP4889066B1 - Wing opening and closing windmill - Google Patents
Wing opening and closing windmill Download PDFInfo
- Publication number
- JP4889066B1 JP4889066B1 JP2011022321A JP2011022321A JP4889066B1 JP 4889066 B1 JP4889066 B1 JP 4889066B1 JP 2011022321 A JP2011022321 A JP 2011022321A JP 2011022321 A JP2011022321 A JP 2011022321A JP 4889066 B1 JP4889066 B1 JP 4889066B1
- Authority
- JP
- Japan
- Prior art keywords
- opening
- blade
- closing
- wind
- blades
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010248 power generation Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920001875 Ebonite Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910001234 light alloy Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/30—Wind power
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Landscapes
- Wind Motors (AREA)
Abstract
【課題】従来例では、風流方向を風向板によって検出し、カム機構により翼を水平軸で回転させて、風に向かう時は翼を水平にして抵抗最小にし、風を受ける時は翼を垂直にして抗力最大にする構造にしているが、カムリンク機構が複雑でコスト高になり、水平軸の回転抵抗損失が発生する欠点がある。
【解決手段】翼を翼フレーム3と開閉翼軸5と開閉翼4で構成し、開閉翼4を翼フレーム3の外端に設けた開閉翼軸5に取付け、開閉翼4は翼フレーム3と平行な閉鎖位置と、翼フレーム3から略直角方向に回転した開放位置の間で開閉可能な構造とし、風に向かう時は翼を開いて抵抗を少なくし、風を受ける時は翼を閉じて抗力を最大にする構造とし、風向板やカムリンク機構を廃止してコスト低減させると共に、開閉翼4の開閉は風力によって行なわせ、開閉抵抗損失を省く構造とした。
【選択図】図1In a conventional example, a wind direction is detected by a wind direction plate, a wing is rotated by a cam mechanism on a horizontal axis, the wing is leveled when heading to the wind to minimize resistance, and the wing is vertical when receiving wind However, there is a drawback that the cam link mechanism is complicated and expensive, and the rotation resistance loss of the horizontal axis occurs.
A wing is composed of a wing frame, an opening and closing blade shaft, and an opening and closing blade. The opening and closing blade is attached to an opening and closing blade shaft provided at an outer end of the blade frame. A structure that can be opened and closed between a parallel closed position and an open position rotated in a substantially right angle direction from the wing frame 3, opens the wing to reduce the resistance when facing the wind, and closes the wing when receiving the wind. The structure is such that the drag is maximized, the wind direction plate and the cam link mechanism are eliminated, the cost is reduced, and the opening and closing blades 4 are opened and closed by wind force, so that the opening and closing resistance loss is eliminated.
[Selection] Figure 1
Description
この発明は、風力を利用して風車を廻し、その回転力で発電機やポンプを駆動する動力を獲得するための風車構造に関するものである。 The present invention relates to a windmill structure for rotating a windmill using wind power and obtaining power for driving a generator and a pump by the rotational force.
従来の垂直軸型風車の動力装置は、下記の特許文献に示す様な風向板を用いて、カム機構により、翼を風に向かう時は水平にして抵抗損失を少なくし、風に押される時は垂直にして抗力最大にする発明事例が見られるが、構造が複雑で製造コストが高く、維持管理が困難な欠点が有った。 A conventional vertical shaft type windmill power unit uses a wind direction plate as shown in the following patent document, and when the cam mechanism is pushed by the wind, the wings are leveled when heading to the wind to reduce resistance loss. There are examples of inventions where the drag is vertical and the drag is maximized, but there are disadvantages that the structure is complicated, the manufacturing cost is high, and the maintenance is difficult.
本発明は上記事情に鑑みてなされたもので、垂直軸型風車装置の利点を生かし、風向板を用いずに、構造を簡単にして、製造コストや維持管理コストを最少にする発明で、開閉翼を回転自在の開閉翼軸に取付けて開閉可能とし、風に向かう時は翼を開いて抵抗損失を最小にし、風に押される時は開閉翼を閉じて抗力最大にすることを特徴とする翼開閉式風車を提供しようとするものである。 The present invention has been made in view of the above circumstances, and makes use of the advantages of the vertical axis type wind turbine device, simplifies the structure without using a wind direction plate, and minimizes manufacturing costs and maintenance costs. The wing is attached to a rotatable opening and closing blade shaft so that it can be opened and closed. When going to the wind, the wing is opened to minimize resistance loss, and when pressed by the wind, the opening and closing blade is closed to maximize drag. A wing opening and closing wind turbine is to be provided.
引例の風車は、風流方向を風向板によって検出し、カム機構により翼を水平軸で回転させて、風に向かう時は翼を水平にして抵抗最小にし、風を受ける時は翼を垂直にして抗力最大にする構造にしているが、カムリンク機構が複雑でコスト高になり、水平軸の回転抵抗損失が発生する欠点がある。 In the reference windmill, the wind direction is detected by the wind direction plate, the wings are rotated on the horizontal axis by the cam mechanism, the wings are horizontal when heading to the wind, the resistance is minimized, and the wings are vertical when receiving the wind. Although it has a structure that maximizes the drag force, the cam link mechanism is complicated and expensive, and there is a drawback in that a rotation resistance loss of the horizontal axis occurs.
翼を翼フレームと開閉翼軸と開閉翼で構成し、開閉翼を翼フレームの外端に設けた開閉翼軸に取付け、開閉翼は翼フレームと平行な閉鎖位置と、翼フレームから略直角方向に回転させた開放位置の間で開閉可能な構造とし、風に向かう時は翼を開いて抵抗を少なくし、風を受ける時は翼を閉じて抗力最大にする構造とし、風向板やカムリンク機構を廃止してコスト低減させると共に、開閉翼の開閉を遠心力や風力によって行なわせ、開閉抵抗損失を省く構造とする。 The wing is composed of a wing frame, an opening and closing blade shaft, and an opening and closing blade. The opening and closing blade is attached to the opening and closing blade shaft provided at the outer end of the blade frame. The opening and closing blade is in a closed position parallel to the blade frame and substantially perpendicular to the blade frame. It is structured to be able to open and close between the open positions rotated in the direction of the wind, open the wings to reduce resistance when heading to the wind, and close the wings to maximize the drag when receiving the wind. The mechanism will be abolished and the cost will be reduced, and the opening and closing blades will be opened and closed by centrifugal force and wind force to eliminate the opening and closing resistance loss.
前記解決手段により、従来品に比べ、下記の点が大幅に改善される。
(1)風向板無しで、全ての風向きに対応し、効率よく風力を回転力に変換可能。
(2)構造を簡素化し、強度を確保して、製造コストの低減、維持管理の容易化。
(3)翼フレームと開閉翼の閉鎖位置および開放位置の当接間に軟質緩衝材のストッパーを設け、開閉翼の回転停止音を吸収して静粛性を確保する。
(4)風車特性は低速回転・高トルク型で強風にも安全に作動する。
By the above solution, the following points are greatly improved as compared with the conventional product.
(1) Without wind direction plates, it can handle all wind directions and efficiently convert wind power into rotational force.
(2) Simplify the structure, ensure strength, reduce manufacturing costs, and facilitate maintenance.
(3) A soft cushioning stopper is provided between the closed position of the blade frame and the open / close blade and the open position to absorb the rotation stop sound of the open / close blade to ensure quietness.
(4) The wind turbine characteristics are low-speed rotation and high-torque type, and operate safely even in strong winds.
以下に図1から図4を参照して本案の構造と作動を説明する。
図1から図3は本案第一実施例の2枚翼構造を示し、図4は本案第二実施例の3枚翼構造の上面図を示す。
先ず本案第一実施例を説明する。4隅に11フレームポールを立て、10a上フレームプレートと10b下フレームプレートを取付ける。1垂直軸は前記10a上フレームプレートと10b下フレームプレートの中心に8垂直軸ベアリングを用いて回転自在に取付ける。2翼は3翼フレームと5開閉翼軸と4開閉翼で構成され、3翼フレームは1垂直軸に固定される3a上板と3b下板と側面の3c内板と3d外板で箱枠状に構成し、4開閉翼は前記3a上板と3b下板の回転外端側の間に9開閉翼ベアリングを用いて回転自在に設けた5開閉翼軸に取付ける。複数の4開閉翼は図2で見られる様に5開閉翼軸から1垂直軸の方向に向かって3a上板及び3b下板の幅方向右側に伸び、略L字型に曲げて上板及び3b下板と平行に1垂直軸の方向に伸びる。
図2の場合は2翼に風を受けて時計方向に回転するが、4開閉翼を5開閉翼軸から1垂直軸の方向に向かって幅方向左側に伸び、略L字型に曲げて上板及び3b下板と平行に伸ばすと2翼は風を受けて反時計方向に回転することになる。
従って、複数の4開閉翼の取付け形状は前記の同一方向にすることが必要です。
次に6閉鎖ストッパーは4開閉翼の回転外端と3c内板の当接部間で3c内板に複数取付けているが、4開閉翼の回転外端と3c内板のいずれか一方に取付けても良い。また、4開閉翼の側面を伸ばして3a上板及び3b下板の当接部間に設けても良い。
また、7開放ストッパーは4開閉翼を開放位置にした時、3d外板の内側と4開閉翼外面の当接間で3d外板に複数取付けているが、いずれか一方に設けても良い。尚、いずれのストッパーの材質も当接衝撃振動を吸収するためゴム等の軟質緩衝材料を用いることが好ましい。また、別の方法として4開閉翼の材質を硬質ゴム等の緩衝部材で作って、ストッパーの別付けを省略しても良い。
また、3翼フレームと4開閉翼及び5開閉翼軸は風車の回転部材であり、材質はアルミ合金等の軽合金か樹脂材料で構成し軽量化することが好ましい。
1垂直軸の下端は8軸受ベアリングで軸支され、その下に12大型歯車を取付け、13小型歯車と噛合って増速され、13小型歯車の軸に直結された15発電機を回転させる。勿論この回転負荷はポンプや他の動力源として使用しても良い。
次に本案第一実施例の4開閉翼の挙動を図3によって説明する。
回転円の外端に示した360/0から時計回りに45度ピッチで1回転にわたり、2翼が回転すると共に4開閉翼の挙動と回転トルク発生状態を追跡解説する。
360/0度位置では4開閉翼は閉鎖状態であるが風を受けず回転トルクゼロ。45度位置では4開閉翼は閉鎖状態で斜面に風受けて回転トルクは約50%発生する。90度位置では4開閉翼は閉鎖状態で風を直角に受け回転トルク100%になる。135度位置では4開閉翼は閉鎖状態で斜面に風を受けて回転トルクは約50%発生する。
180度位置では4開閉翼は閉鎖状態で風力を受けず回転トルクゼロ。
しかし、風力を受けないと4開閉翼の重心は5開閉翼軸より手前(図3では下側)にあるため1垂直軸の回転遠心力で振られ、4開閉翼が閉鎖状態から開放状態に開転し、再び風を受け始める。225度位置では4開閉翼は開放状態で斜面に風を受けて回転トルクは約25%発生する。270度位置では4開閉翼は開放状態で風を受けず回転トルクは発生せず、微小のトルク損失。315度位置では4開閉翼は開放状態で風を受けず回転トルクは発生せず、微小のトルク損失。そして360度位置に戻る。
以上の結果から2枚翼構造では180度ピッチ対象位置の合計回転トルクが風車稼動トルクになり、360/0度位置以外は常に回転トルクが発生していることになり、微風でも回転し、風力エネルギーの変換効率の高さが理解される。
尚、3枚翼構造の場合は、製造コストは高くなるが、風力エネルギーの変換効率は更に高くなり垂直軸風車して理想的な効率が得られる。
The structure and operation of the present plan will be described below with reference to FIGS.
1 to 3 show a two-blade structure of the first embodiment of the present invention, and FIG. 4 shows a top view of the three-blade structure of the second embodiment of the present invention.
First, the first embodiment of the present plan will be described. Set up 11 frame poles at 4 corners, and install 10a upper frame plate and 10b lower frame plate. One vertical shaft is rotatably attached to the center of the 10a upper frame plate and the 10b lower frame plate using 8 vertical shaft bearings. 2 wings are composed of 3 wing frames, 5 open / close wing shafts, and 4 open / close wings, and the 3 wing frame is a box frame with 3a upper plate, 3b lower plate, side 3c inner plate and 3d outer plate fixed to one vertical shaft. 4 open / close blades are attached to 5 open / close blade shafts rotatably provided by using 9 open / close blade bearings between the rotating outer end sides of the 3a upper plate and the 3b lower plate. As shown in FIG. 2, the plurality of four open / close blades extend from the 5 open / close blade shaft to the right side in the width direction of the 3a upper plate and the 3b lower plate in the direction of the vertical axis, and are bent into a substantially L shape to 3b Extends in the direction of one vertical axis parallel to the lower plate.
In the case of FIG. 2, the two blades receive wind and rotate in the clockwise direction, but the four open / close blades extend from the five open / close blade shafts to the left side in the width direction toward the vertical axis and bend in a substantially L shape. When stretched parallel to the plate and 3b lower plate, the two wings receive wind and rotate counterclockwise.
Therefore, the mounting shape of multiple 4 open / close blades must be in the same direction as described above.
Next, 6 closure stoppers are attached to the 3c inner plate between the rotating outer end of the 4 open / close blade and the contact portion of the 3c inner plate, but are attached to either the rotating outer end of the 4 open / close blade or the 3c inner plate. May be. Further, the side surfaces of the four opening / closing blades may be extended and provided between the contact portions of the 3a upper plate and the 3b lower plate.
Further, a plurality of 7 opening stoppers are attached to the 3d outer plate between the inside of the 3d outer plate and the outer surface of the 4 opening and closing blades when the 4 opening and closing blades are in the open position, but they may be provided on either one. It should be noted that any stopper material is preferably a soft buffer material such as rubber in order to absorb the contact shock vibration. As another method, the material of the four open / close blades may be made of a buffer member such as hard rubber, and the stopper may be omitted.
Further, the 3-blade frame, the 4 opening / closing blades, and the 5 opening / closing blade shafts are rotating members of the wind turbine, and the material is preferably made of a light alloy such as an aluminum alloy or a resin material to reduce the weight.
The lower end of one vertical shaft is supported by an 8-bearing bearing, 12 large gears are attached below it, 13 meshed with small gears, increased speed, and 15 generators directly connected to the shafts of 13 small gears are rotated. Of course, this rotational load may be used as a pump or other power source.
Next, the behavior of the four open / close blades of the first embodiment of the present invention will be described with reference to FIG.
From 360/0 shown on the outer edge of the rotating circle, follow the explanation of the behavior of the four open / close blades and the state of rotational torque as the two blades rotate over 45 ° clockwise.
At the 360/0 degree position, the 4 open / close blades are closed, but they are not subjected to wind and have zero rotational torque. At 45 degrees, the four open / close blades are closed and winded on the slope, generating about 50% of rotational torque. At the 90 degree position, the 4 open / close blades receive the wind at right angles in the closed state and the rotational torque becomes 100%. At the 135 ° position, the 4 open / close blades are closed and receive wind on the slope, generating about 50% rotational torque.
At the 180 degree position, the 4 open / close blades are closed and do not receive wind force and have zero rotational torque.
However, since the center of gravity of the 4 open / close blades is in front of the 5 open / close blade shaft (lower side in FIG. 3) without receiving wind force, the 4 open / close blades are swung from the closed state to the open state. Turns around and begins to receive wind again. At the 225 degree position, the 4 open / close blades are open and receive wind on the slope, and a rotational torque of about 25% is generated. At the 270 degree position, the 4 open / close blades are open and do not receive wind and no rotational torque is generated, resulting in a slight torque loss. At the 315 degree position, the 4 open / close blades are open and do not receive wind and no rotational torque is generated, resulting in a slight torque loss. And it returns to a 360 degree position.
From the above results, in the two-blade structure, the total rotational torque at the 180 ° pitch target position becomes the windmill operating torque, and rotational torque is always generated except for the 360/0 ° position. The high energy conversion efficiency is understood.
In the case of the three-blade structure, the manufacturing cost is high, but the conversion efficiency of wind energy is further increased, and an ideal efficiency can be obtained by using a vertical axis wind turbine.
次に本案第二実施例の3枚翼構造を図4を用いて説明する。
作動原理は第一実施例と同様であるが、図4に示す様に2翼は120度ピッチで3方向に設置され、2枚翼構造の360/0度位置での合計発生トルクはゼロ位置問題が解消され、微風時の回転開始が容易になると共に回転機としての重心バランスが平均化され回転振動も少なくなる。
Next, the three-blade structure of the present second embodiment will be described with reference to FIG.
The operating principle is the same as in the first embodiment, but as shown in FIG. 4, the two blades are installed in three directions at a pitch of 120 degrees, and the total generated torque at the 360/0 degree position of the two blade structure is zero position. The problem is solved, the start of rotation at the time of light wind is facilitated, the balance of the center of gravity as a rotating machine is averaged, and rotational vibration is reduced.
現状では、水平軸にプロペラ翼を装着した大型風車が先行的に採用されている。
その理由は、水平軸ペロペラ風車の発電効率が良く、大型発電に適しているからである。一方、家庭用では、太陽光発電が主に設置されているが、その理由は、設置場所が狭くプロペラ風車は設置が困難になるからである。
しかし、太陽光発電は昼間のみで、好天気に恵まれる必要条件が有り、曇天時や夜間でも風があれば発電できる風力発電は魅力的である。
従って、今後の発電量増大策は、太陽光発電と風車発電のハイブリット化が有力視されているが、急がねばならないのは家庭で設置できる小型風力発電機である。小型化を進めるには垂直軸で風力エネルギーの変換効率の良い発電装置の開発が必要です。本案はその目的を達する為に開発した物で、垂直軸のジャイロミル型風車の回転力変換効率を更に上げる為に、風向板を使用せず、風を受ける時は開閉翼を閉じ、風に向かう側の開閉翼を開き回転抵抗損失を減らす事で効率改善を達成しようとするものです。
本案では、それを可能な限り簡単な構造で、製造費を安く、維持管理費の安い安全設計を達成させたものです。
At present, large wind turbines equipped with propeller blades on the horizontal axis have been adopted in advance.
The reason for this is that the power generation efficiency of the horizontal axis wind turbine is good and suitable for large-scale power generation. On the other hand, for home use, photovoltaic power generation is mainly installed, because the installation place is small and it is difficult to install a propeller windmill.
However, solar power generation is only necessary during the daytime, and there is a requirement to be blessed with good weather, and wind power generation that can generate electricity when there is wind even during cloudy weather or at night is attractive.
Therefore, a future plan to increase the amount of power generation is considered to be a hybrid of solar power generation and wind turbine power generation, but what is urgent is a small wind power generator that can be installed at home. In order to proceed with downsizing, it is necessary to develop a power generator with a vertical axis and good wind energy conversion efficiency. This plan was developed to achieve its purpose.To further increase the rotational force conversion efficiency of the vertical axis gyromill type wind turbine, the wind direction plate is not used, and when the wind is received, the opening and closing blades are closed and the wind It is intended to improve efficiency by opening the opening and closing blades on the opposite side and reducing rotational resistance loss.
In this proposal, we have achieved a safe design with the simplest possible structure, low manufacturing costs and low maintenance costs.
1垂直軸、2翼、3翼フレーム、3a上板、3b下板、3c内板、3d外板、4開閉翼、5開閉翼軸、6閉鎖ストッパー、7開放ストッパー、8垂直軸ベアリング、9開閉翼軸ベアリング、10a上フレームプレート、10b下フレームプレート、11フレームポール、12大径歯車、13小径歯車、14ギヤケース、15発電機、
1 vertical shaft, 2 blades, 3 blade frames, 3a upper plate, 3b lower plate, 3c inner plate, 3d outer plate, 4 open / close blade, 5 open / close blade shaft, 6 open stopper, 7 open stopper, 8 vertical shaft bearing, 9 Open / close blade shaft bearing, 10a upper frame plate, 10b lower frame plate, 11 frame pole, 12 large diameter gear, 13 small diameter gear, 14 gear case, 15 generator,
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011022321A JP4889066B1 (en) | 2011-02-04 | 2011-02-04 | Wing opening and closing windmill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011022321A JP4889066B1 (en) | 2011-02-04 | 2011-02-04 | Wing opening and closing windmill |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4889066B1 true JP4889066B1 (en) | 2012-02-29 |
JP2012163006A JP2012163006A (en) | 2012-08-30 |
Family
ID=45851324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011022321A Expired - Fee Related JP4889066B1 (en) | 2011-02-04 | 2011-02-04 | Wing opening and closing windmill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4889066B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111749851A (en) * | 2020-07-29 | 2020-10-09 | 陕西嘉阳电力股份有限公司 | Wind power generation device capable of adjusting wind area of fan blade |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015034096A1 (en) * | 2013-09-09 | 2015-03-12 | 株式会社New Act | Blade structure and power generation system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS511632U (en) * | 1974-06-20 | 1976-01-08 | ||
JPS52110349A (en) * | 1976-03-12 | 1977-09-16 | Chiyousei Zukeran | Vertical shaft type wind force prime mover |
JP2002155849A (en) * | 2000-11-24 | 2002-05-31 | Mitsubishi Electric Corp | Rotary power generating equipment |
JP2009150241A (en) * | 2007-12-19 | 2009-07-09 | Masahiro Kuroda | Wind turbine and wind power generator |
-
2011
- 2011-02-04 JP JP2011022321A patent/JP4889066B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS511632U (en) * | 1974-06-20 | 1976-01-08 | ||
JPS52110349A (en) * | 1976-03-12 | 1977-09-16 | Chiyousei Zukeran | Vertical shaft type wind force prime mover |
JP2002155849A (en) * | 2000-11-24 | 2002-05-31 | Mitsubishi Electric Corp | Rotary power generating equipment |
JP2009150241A (en) * | 2007-12-19 | 2009-07-09 | Masahiro Kuroda | Wind turbine and wind power generator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111749851A (en) * | 2020-07-29 | 2020-10-09 | 陕西嘉阳电力股份有限公司 | Wind power generation device capable of adjusting wind area of fan blade |
Also Published As
Publication number | Publication date |
---|---|
JP2012163006A (en) | 2012-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8177481B2 (en) | Vertical axis wind turbine | |
CA2780030C (en) | Wind turbine with torque balancing mechanism | |
US9011096B2 (en) | Vertical axis wind turbine blade | |
CN110985268B (en) | Horizontal shaft ocean current power generation device for underwater vehicle | |
JP2013519025A (en) | Large-scale vertical axis wind power generator, wind power generator, and wind receiver blade structure | |
CN203050995U (en) | High-efficiency stator and rotor planetary gear counter-rotating generator | |
US8979494B1 (en) | Vertical axis hinged sail wind energy machine | |
CN105781891A (en) | Offshore wind turbine of V-shaped wind wheel structure | |
JP4889066B1 (en) | Wing opening and closing windmill | |
US8604635B2 (en) | Vertical axis wind turbine for energy storage | |
CN202132178U (en) | Vertical wind driven generator with multi-level wind wheel | |
KR20120139154A (en) | Vertical axis type wind power generator fused lift and drag | |
CN201065812Y (en) | Tornado type wind power machine | |
CN201972846U (en) | Spiral type turbine blade and vertical axle spiral type turbine blade wind motor | |
WO2013109133A1 (en) | A wind turbine | |
JP4826932B1 (en) | Windmill power unit | |
JP3182162U (en) | Wind power generator | |
CN205779464U (en) | A kind of resistance-type automatic open-close type wind blade device | |
CN217769674U (en) | Wind driven generator with good weather resistance and compression resistance | |
RU217788U1 (en) | WIND SOLAR POWER PLANT | |
WO2024185722A1 (en) | Lightweight vertical axis wind turbine, and lightweight wind-powered electricity generating apparatus | |
CN202468157U (en) | Vertical axis fan blade closing and opening windmill | |
CN202900532U (en) | Frame type automatic direct adjusting fan blade of wind power generator | |
CN102787980B (en) | Flying saucer type antipole double speed direct-driven wind driven generator | |
CN201502485U (en) | Vertical-shaft wind driven generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111210 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141222 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |