JP4887963B2 - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine Download PDF

Info

Publication number
JP4887963B2
JP4887963B2 JP2006210857A JP2006210857A JP4887963B2 JP 4887963 B2 JP4887963 B2 JP 4887963B2 JP 2006210857 A JP2006210857 A JP 2006210857A JP 2006210857 A JP2006210857 A JP 2006210857A JP 4887963 B2 JP4887963 B2 JP 4887963B2
Authority
JP
Japan
Prior art keywords
intake
wall surface
intake valve
intake port
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006210857A
Other languages
Japanese (ja)
Other versions
JP2008038654A (en
Inventor
倫行 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006210857A priority Critical patent/JP4887963B2/en
Publication of JP2008038654A publication Critical patent/JP2008038654A/en
Application granted granted Critical
Publication of JP4887963B2 publication Critical patent/JP4887963B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は内燃機関の吸気装置に関する。   The present invention relates to an intake device for an internal combustion engine.

燃焼室の周縁部に対して接線状に延びる第1の吸気ポートと第1の吸気ポートに並列配置された第2の吸気ポートとを具備し、これら第1の吸気ポートおよび第2の吸気ポートが燃焼室に向けて次第に下降するように傾斜していると共に、第1の吸気ポートの傾斜角に比べて第2の吸気ポートの傾斜角が大きくされている内燃機関が公知である(特許文献1を参照)。この内燃機関では第1の吸気ポートから燃焼室の周辺部に接線状に流入する吸入空気流によって燃焼室内にスワールが発生せしめられる。   A first intake port extending tangentially to the peripheral edge of the combustion chamber and a second intake port arranged in parallel with the first intake port, the first intake port and the second intake port An internal combustion engine in which the engine is inclined so as to gradually descend toward the combustion chamber and the inclination angle of the second intake port is larger than the inclination angle of the first intake port is known (Patent Document). 1). In this internal combustion engine, a swirl is generated in the combustion chamber by the intake air flow that flows tangentially from the first intake port to the periphery of the combustion chamber.

一方、吸気弁の軸線回りに形成された渦巻部と、渦巻部から接線状に延びる吸入空気流入通路部とにより構成され、吸入空気流入通路部が渦巻部の周壁面に接線状に接続される第1の側壁面と、吸気弁の弁軸に向けて渦巻部の周壁面まで延びる第2の側壁面とを有するヘリカル型吸気ポートにおいて、吸入空気流入通路部の上壁面が上述の第1の側壁面側に位置しかつ渦巻部の上壁面に滑らかに接続する第1の上壁面と、上述の第2の側壁面側に位置しかつ第1の上壁面よりも高さの低い第2の上壁面からなり、この第2の上壁面の高さ位置を境にして吸入空気流入通路部の底壁面に沿って流れる下層流と第1の上壁面に沿って流れる上層流とが発生し、この上層流によって燃焼室内にスワールが発生せしめられるヘリカル型吸気ポートが公知である(特許文献2を参照)。   On the other hand, it is constituted by a spiral portion formed around the axis of the intake valve and an intake air inflow passage portion extending tangentially from the spiral portion, and the intake air inflow passage portion is tangentially connected to the peripheral wall surface of the spiral portion. In a helical intake port having a first side wall surface and a second side wall surface extending to the peripheral wall surface of the spiral portion toward the valve shaft of the intake valve, the upper wall surface of the intake air inflow passage portion is the above-described first wall surface. A first upper wall surface located on the side wall surface side and smoothly connected to the upper wall surface of the spiral portion; and a second upper wall surface located on the second side wall surface side and lower in height than the first upper wall surface. A lower flow that flows along the bottom wall surface of the intake air inflow passage section and an upper flow that flows along the first upper wall surface are generated from the upper wall surface, with the height position of the second upper wall surface as a boundary, A helical intake port that allows swirl to be generated in the combustion chamber by this upper layer flow is public. It (see Patent Document 2).

このヘリカル型吸気ポートでは吸入空気量が多いときに渦巻部内での上層流の旋回作用が下層流によって弱められ、それにより機関高回転域において過剰なスワールが発生するのが阻止される。
特開平5−106450号公報 実開平2−147830号公報
In this helical type intake port, when the intake air amount is large, the swirling action of the upper layer flow in the spiral portion is weakened by the lower layer flow, thereby preventing the occurrence of excessive swirl in the high engine speed region.
JP-A-5-106450 Japanese Utility Model Publication No. 2-147830

ところで特許文献1に記載された内燃機関におけるように全吸入空気を吸気ポートから燃焼室の周辺部に接線状に流入させると燃焼室内に強力なスワールを発生させることができる。しかしながらこの場合、吸気ポート内を流れる全吸入空気は流れ方向前方に位置する吸気弁の開口部のみから燃焼室内に流入することになる。このことは実質的に吸気弁開口部の流路面積が小さくなっていることと同じであり、従って吸入空気量が制限されるために高い充填効率は得られず、その結果最大負荷運転時の出力が低下することになる。   By the way, if all the intake air is made to flow tangentially from the intake port to the periphery of the combustion chamber as in the internal combustion engine described in Patent Document 1, a strong swirl can be generated in the combustion chamber. However, in this case, all the intake air flowing in the intake port flows into the combustion chamber only from the opening of the intake valve located forward in the flow direction. This is substantially the same as the flow passage area of the intake valve opening being reduced, and therefore high intake efficiency is not obtained because the intake air amount is limited, and as a result, at the time of maximum load operation. The output will decrease.

一方、特許文献2に記載されているヘリカル型吸気ポートでは従来のヘリカル型吸気ポートと同様に吸入空気を渦巻部内で旋回させることにより燃焼室内にスワールを発生させるようにしている。この場合、スワールを強めるためには渦巻部内での旋回作用を強めなければならない。しかしながら渦巻部内での旋回作用を強めると吸入抵抗が増大するために充填効率が低下し、その結果この場合も最大負荷運転時の出力が低下することになる。   On the other hand, in the helical intake port described in Patent Document 2, swirl is generated in the combustion chamber by swirling the intake air in the spiral portion as in the conventional helical intake port. In this case, in order to strengthen the swirl, the swirling action in the spiral portion must be strengthened. However, if the swirling action in the spiral portion is increased, the suction resistance increases, so that the charging efficiency is lowered. As a result, the output at the maximum load operation is also lowered in this case.

即ち、特許文献1に記載されているように吸気ポートから流出する全吸入空気を燃焼室の周辺部に接線状に流入させることにより強力なスワールを得るようにしている限り、また特許文献2におけるように渦巻部内における旋回作用を強めることによってスワールを強めるようにしている限り、強力なスワールと高い充填効率を同時に確保することは困難であり、強力なスワールと高い充填効率を同時に確保するには発想の転換が必要である。
本発明者はこれまで長い期間に亘って吸入空気の流れ方について研究し、終いに強力なスワールと高い充填効率を同時に確保することのできる吸気装置を見い出したのである。
That is, as described in Patent Document 1, as long as a strong swirl is obtained by tangentially flowing all the intake air flowing out from the intake port into the peripheral portion of the combustion chamber, Patent Document 2 As long as the swirl is strengthened by strengthening the swirling action in the spiral part, it is difficult to secure a strong swirl and high filling efficiency at the same time, and to ensure a strong swirl and high filling efficiency at the same time It is necessary to change the way of thinking.
The present inventor has studied the flow of intake air over a long period of time, and finally found an intake device that can simultaneously ensure a strong swirl and high filling efficiency.

即ち、本発明によれば、第1の吸気ポートおよび第2の吸気ポートを具備しており、第1の吸気ポートが吸気弁の軸線回りに形成された渦巻部と、渦巻部から接線状に延びる吸入空気流入通路部とにより構成されており、渦巻部が吸気弁の軸線回りを延びる周壁面と、上壁面と、吸気弁により開閉される下端出口部とにより画定されており、吸入空気流入通路部が渦巻部の周壁面に接線状に接続される第1の側壁面と、吸気弁の弁軸に向けて渦巻部の周壁面まで延びる第2の側壁面と、上壁面と、底壁面とにより画定されている内燃機関において、渦巻部の下端出口部が燃焼室頂面の周縁部に配置されると共に、第1の側壁面が燃焼室の周縁部に対して接線状に延びるように吸入空気流入通路部が配置されており、吸気弁全開時に吸気弁と吸気弁の弁座間に形成される環状の吸気弁開口部のうちで、シリンダ軸線と吸気弁弁体の中心部とを含む平面に対し吸入空気流入通路部と反対側に形成される吸気弁開口部領域が存在しており、吸気弁開口部領域は上記の平面と燃焼室周縁部側の吸気弁開口部との交差部から渦巻部内における吸入空気流の旋回方向にほぼ90度の範囲であり、吸入空気流入通路部の上壁面を吸入空気流入通路部の少くとも下流側において、第1の側壁面側に位置しかつ渦巻部の上壁面に滑らかに接続する第1の上壁面と、第2の側壁面側に位置しかつ第1の上壁面よりも底壁面側に位置する第2の上壁面とにより構成し、第2の上壁面は上述の平面に対し第2の上壁面と反対側に位置する吸気弁開口部の上端縁に向けて延びており、下層流が流れる下層流路が第1の側壁面の下方部、第2の側壁面、第2の上壁面および底壁面によって画定され、上層流が流れる上層流路が、下層流路の上方であって下層流路と第1の上壁面間に形成され、第1の側壁面の下方部、第2の側壁面、第2の上壁面および底壁面を下層流路が吸気弁開口部領域に向けてまっすぐに延びるように構成し、吸入空気流入通路部内に吸入空気流入通路部の下方を流れる下層流と吸入空気流入通路部の上方を流れる上層流が発生せしめられ、下層流は吸気弁開弁時に吸気弁開口部領域に向け流れた後に吸気弁開口部領域から燃焼室内に燃焼室の周辺方向に向け流入して燃焼室内にスワールを発生させ、上層流は吸気弁開弁時渦巻部内で旋回した後に吸気弁開口部全体から分散して燃焼室内に流入し、第1の吸気ポートおよび第2の吸気ポートが燃焼室に向けて次第に下降するように傾斜していると共に、第1の吸気ポートの傾斜角に比べて第2の吸気ポートの傾斜角が大きくされている。 That is, according to the present invention, the first intake port and the second intake port are provided, and the first intake port is formed around the axis of the intake valve, and the spiral portion is tangentially formed from the spiral portion. The intake air inflow passage portion extends, and the spiral portion is defined by a peripheral wall surface extending around the axis of the intake valve, an upper wall surface, and a lower end outlet portion opened and closed by the intake valve. A first side wall surface in which the passage portion is tangentially connected to the peripheral wall surface of the spiral portion, a second side wall surface extending to the peripheral wall surface of the spiral portion toward the valve shaft of the intake valve, an upper wall surface, and a bottom wall surface The lower end outlet of the spiral is disposed at the peripheral edge of the combustion chamber top surface, and the first side wall surface extends tangentially to the peripheral edge of the combustion chamber. An intake air inflow passage is arranged, and when the intake valve is fully open, Among the annular intake valve openings formed between the valve seats of the valve, the intake valve opening formed on the opposite side of the intake air inflow passage with respect to the plane including the cylinder axis and the central portion of the intake valve valve body A region exists, the intake valve opening region is a range of approximately 90 degrees in the swirling direction of the intake air flow in the spiral portion from the intersection of the plane and the intake valve opening on the peripheral side of the combustion chamber, A first upper wall surface that is located on the first side wall surface side and is smoothly connected to the upper wall surface of the spiral portion at least downstream of the intake air inflow passage portion; The second upper wall surface is located on the side wall surface side and located on the bottom wall surface side with respect to the first upper wall surface, and the second upper wall surface is opposite to the second upper wall surface with respect to the above-described plane. extends toward the upper edge of the intake valve opening located in the lower layer flow passage through which the lower layer flow The upper layer flow path defined by the lower portion of the first side wall surface, the second side wall surface, the second upper wall surface, and the bottom wall surface and through which the upper layer flow flows is located above the lower layer flow path and the first lower flow path and the first flow path. It is formed between the upper wall surfaces, and the lower part of the first side wall surface, the second side wall surface, the second upper wall surface and the bottom wall surface are configured so that the lower layer flow path extends straight toward the intake valve opening region. The lower flow that flows below the intake air inflow passage and the upper flow that flows above the intake air inflow passage are generated in the intake air inflow passage, and the lower flow flows toward the intake valve opening area when the intake valve is opened. After flowing, the air flows into the combustion chamber from the intake valve opening region toward the periphery of the combustion chamber to generate a swirl in the combustion chamber, and the upper layer flow swirls in the spiral when the intake valve is opened and then from the entire intake valve opening. Dispersed and flows into the combustion chamber, and the first intake port and the second intake port The air port is inclined so as to gradually descend toward the combustion chamber, and the inclination angle of the second intake port is made larger than the inclination angle of the first intake port.

第1の吸気ポートの下層流路内を流れる下層流によってスワールが発生せしめられ、上層流路内を流れる上層流によって高い充填効率が確保される。一方、第2の吸気ポートから流入する吸入空気流は発生したスワールを減速させることなく充填効率を向上させる。その結果、強力なスワールと高い充填効率を同時に確保することができる。   A swirl is generated by the lower layer flow flowing in the lower flow path of the first intake port, and high filling efficiency is ensured by the upper flow flowing in the upper flow path. On the other hand, the intake air flow flowing in from the second intake port improves the charging efficiency without decelerating the generated swirl. As a result, a strong swirl and high filling efficiency can be secured at the same time.

図1および図2を参照すると、1はシリンダブロック、2はシリンダヘッド、3は燃焼室を夫々示す。シリンダヘッド2内には互いに並列配置された第1の吸気ポート4および第2の吸気ポート5が形成されており、また図1および図2には示されていないがシリンダヘッド2内には一対の排気ポートが形成されている。図2からわかるように第1の吸気ポート4および第2の吸気ポート5は燃焼室3に向けて次第に下降するように傾斜しており、更に第1の吸気ポート4の傾斜角に比べて第2の吸気ポート5の傾斜角が大きくされている。   1 and 2, reference numeral 1 denotes a cylinder block, 2 denotes a cylinder head, and 3 denotes a combustion chamber. A first intake port 4 and a second intake port 5 arranged in parallel with each other are formed in the cylinder head 2, and a pair of cylinders in the cylinder head 2 are not shown in FIGS. 1 and 2. The exhaust port is formed. As can be seen from FIG. 2, the first intake port 4 and the second intake port 5 are inclined so as to gradually descend toward the combustion chamber 3, and further compared to the inclination angle of the first intake port 4. The inclination angle of the second intake port 5 is increased.

まず初めに図1、図3および図5を参照しつつ第1の吸気ポート4について説明する。図1、図3および図4を参照すると、第1の吸気ポート4は吸気弁6の軸線回りに形成された渦巻部7と、この渦巻部7から接線状に延びる吸入空気流入通路部8とにより構成される。図1、図3および図4(C)に示されるように渦巻部7は吸気弁6の軸線回りを延びる周壁面9と、上壁面10と、吸気弁6により開閉される下端出口部11とにより画定されており、図1および図3に示されるように吸入空気流入通路部8は渦巻部7の周壁面9に接線状に接続される第1の側壁面12と、吸気弁6の弁軸6aに向けて渦巻部7の周壁面9まで延びる第2の側壁面13と、上壁面14と、底壁面15とにより画定されている。   First, the first intake port 4 will be described with reference to FIGS. 1, 3 and 5. Referring to FIGS. 1, 3, and 4, the first intake port 4 includes a spiral portion 7 formed around the axis of the intake valve 6, and an intake air inflow passage portion 8 that extends tangentially from the spiral portion 7. Consists of. As shown in FIGS. 1, 3, and 4 (C), the spiral portion 7 includes a peripheral wall surface 9 that extends around the axis of the intake valve 6, an upper wall surface 10, and a lower end outlet portion 11 that is opened and closed by the intake valve 6. 1 and 3, the intake air inflow passage portion 8 includes a first side wall surface 12 tangentially connected to the peripheral wall surface 9 of the spiral portion 7, and a valve of the intake valve 6. It is demarcated by the 2nd side wall surface 13 extended to the surrounding wall surface 9 of the spiral part 7 toward the axis | shaft 6a, the upper wall surface 14, and the bottom wall surface 15. FIG.

図1からわかるように渦巻部7の下端出口部11は燃焼室3の頂面16(図3)の周縁部に配置され、第1の側壁面12が燃焼室3の周縁部に対して接線状に延びるように吸入空気流入通路部8が配置されている。即ち、図1に示されるように吸入空気流入通路部8の下流側は燃焼室3の周縁部に対して接線状に延びており、吸入空気流入通路部8の上流側はレイアウト上の理由から吸入空気流入通路部8の下流側に対して燃焼室3から離れる方向に若干折曲せしめられている。   As can be seen from FIG. 1, the lower end outlet portion 11 of the spiral portion 7 is disposed at the peripheral portion of the top surface 16 (FIG. 3) of the combustion chamber 3, and the first side wall surface 12 is tangent to the peripheral portion of the combustion chamber 3. An intake air inflow passage portion 8 is arranged so as to extend in a shape. That is, as shown in FIG. 1, the downstream side of the intake air inflow passage portion 8 extends tangentially to the peripheral edge of the combustion chamber 3, and the upstream side of the intake air inflow passage portion 8 is for layout reasons. It is slightly bent in the direction away from the combustion chamber 3 with respect to the downstream side of the intake air inflow passage portion 8.

図5は第1の吸気ポート4および第2の吸気ポート5を図解的に表した斜視図を示している。図1および図3から図5を参照すると吸入空気流入通路部8の上壁面14は吸入空気流入通路部8の少くとも下流側において、第1の側壁面12側に位置しかつ渦巻部7の上壁面10に滑らかに接続する第1の上壁面14aと、第2の側壁面13側に位置しかつ第1の上壁面14aよりも底壁面15側に位置する第2の上壁面14bとにより構成される。第1の上壁面14aに対して低い位置に第2の上壁面14bが形成されている吸入空気流入通路部8部分の断面形状が図5においてハッチングで示されている。   FIG. 5 is a perspective view schematically showing the first intake port 4 and the second intake port 5. Referring to FIGS. 1 and 3 to 5, the upper wall surface 14 of the intake air inflow passage portion 8 is located on the first side wall surface 12 side at least downstream of the intake air inflow passage portion 8 and A first upper wall surface 14a that smoothly connects to the upper wall surface 10 and a second upper wall surface 14b that is located on the second side wall surface 13 side and located on the bottom wall surface 15 side with respect to the first upper wall surface 14a. Composed. The cross-sectional shape of the intake air inflow passage portion 8 where the second upper wall surface 14b is formed at a lower position than the first upper wall surface 14a is shown by hatching in FIG.

図4(A)〜(C)および図5からわかるように第1の上壁面14aは渦巻部7に向けて次第に横巾が狹ばまりつつ下降し、次いで上述した如く渦巻部7の上壁面10に滑らかに接続される。この渦巻部7の上壁面10は渦巻部7の周縁部に沿って徐々に下降しつつ渦巻部7の全周のほぼ3/4に亘って延びる。一方、第2の上壁面14bの巾は吸入空気流入通路部8の下流側では底壁面15の巾のほぼ1/3程度であって一定であり、吸入空気流入通路部8の上流側では上流に向かうに従って次第に狹くなる。   As can be seen from FIGS. 4A to 4C and FIG. 5, the first upper wall surface 14a descends gradually toward the spiral portion 7 while the lateral width gradually increases, and then the upper wall surface of the spiral portion 7 as described above. 10 is connected smoothly. The upper wall surface 10 of this spiral part 7 extends over almost ¾ of the entire circumference of the spiral part 7 while gradually descending along the peripheral part of the spiral part 7. On the other hand, the width of the second upper wall surface 14 b is approximately 1/3 of the width of the bottom wall surface 15 on the downstream side of the intake air inflow passage portion 8 and is constant, and on the upstream side of the intake air inflow passage portion 8. It gradually becomes ugly as you go to.

一方、図4(A)〜(C)および図5に示されるように第1の上壁面14aおよび第2の上壁面14bは吸入空気流入通路部8の横断面内においてはほぼ水平方向に延びており、これら第1の上壁面14aと第2の上壁面14bとの間に位置する壁面17は下向きの傾斜面からなる。この傾斜面17の巾は渦巻部7に向けて次第に広くなる。一方、図3に示されるように第2の上壁面14bも渦巻部7に向けて下降しており、この場合第2の上壁面14bの傾斜角は第1の上壁面14aの傾斜角よりも大きい。   On the other hand, as shown in FIGS. 4A to 4C and FIG. 5, the first upper wall surface 14 a and the second upper wall surface 14 b extend substantially in the horizontal direction in the cross section of the intake air inflow passage portion 8. The wall surface 17 located between the first upper wall surface 14a and the second upper wall surface 14b is a downward inclined surface. The width of the inclined surface 17 gradually increases toward the spiral portion 7. On the other hand, as shown in FIG. 3, the second upper wall surface 14b is also lowered toward the spiral portion 7. In this case, the inclination angle of the second upper wall surface 14b is larger than the inclination angle of the first upper wall surface 14a. large.

このように第1の上壁面14aと第2の上壁面14bとを階段状に形成すると吸入空気流入通路部8内には図5においてハッチングXで示される如く第1の側壁面12の下方部、第2の側壁面13、第2の上壁面14bおよび底壁面15によって画定された下層流路と、ハッチングYで示される如く下層流路の上方であって下層流路と第1の上壁面14a間に位置する上層流路とが形成される。即ち、吸入空気流入通路部8内には下層流路X内を流れる下層流と上層流路Y内を流れる上層流との2つの流れが発生する。図6(A)に図5の下層流路Xに関連する部分のみを取出した場合を示し、図6(B)に図5の上層流路Yに関連する部分のみを取出した場合を示す。   When the first upper wall surface 14a and the second upper wall surface 14b are formed stepwise in this way, the lower portion of the first side wall surface 12 is shown in the intake air inflow passage portion 8 as indicated by hatching X in FIG. A lower channel defined by the second side wall surface 13, the second upper wall surface 14b, and the bottom wall surface 15, and a lower channel and the first upper wall surface above the lower channel as indicated by hatching Y. The upper flow path located between 14a is formed. That is, in the intake air inflow passage portion 8, two flows are generated: a lower layer flow flowing in the lower layer flow path X and an upper layer flow flowing in the upper layer flow path Y. FIG. 6A shows a case where only a portion related to the lower layer flow path X of FIG. 5 is taken out, and FIG. 6B shows a case where only a portion related to the upper layer flow path Y of FIG. 5 is taken out.

図8は図1の拡大図を示す。図3および図4(C)に示されるように吸気弁6が開弁すると吸気弁6と吸気弁6の弁座18間には環状の吸気弁開口部19が形成される。この場合、吸気弁6全開時に吸気弁6と吸気弁6の弁座18間に形成される環状の吸気弁開口部19のうちで、図8においてシリンダ軸線Oと吸気弁6の弁体の中心部とを含む平面Kに対し吸入空気流入通路部8と反対側に形成される吸気弁開口部領域が存在する。   FIG. 8 shows an enlarged view of FIG. When the intake valve 6 is opened as shown in FIGS. 3 and 4C, an annular intake valve opening 19 is formed between the intake valve 6 and the valve seat 18 of the intake valve 6. In this case, among the annular intake valve openings 19 formed between the intake valve 6 and the valve seat 18 of the intake valve 6 when the intake valve 6 is fully opened, the cylinder axis O and the center of the valve body of the intake valve 6 in FIG. There is an intake valve opening region formed on the opposite side of the intake air inflow passage portion 8 with respect to the plane K including the portion.

この吸気弁開口部領域が図5、図6(A)および図8においてZで示されている。
この吸気弁開口部領域Zは図8において平面Kと燃焼室3周縁部側の吸気弁開口部19との交差部から渦巻部7内における吸入空気流の旋回方向にほぼ90度の範囲Mである。本発明では図5および図6(A)からわかるように第1の側壁面12の下方部、第2の側壁面13、第2の上壁面14bおよび底壁面15は下層流路Xが吸気弁開口部領域Zに向けてまっすぐに延びるように構成されている。
This intake valve opening region is indicated by Z in FIG. 5, FIG. 6 (A) and FIG.
This intake valve opening region Z is in a range M of approximately 90 degrees in the swirling direction of the intake air flow in the spiral portion 7 from the intersection of the plane K and the intake valve opening 19 on the peripheral edge side of the combustion chamber 3 in FIG. is there. In the present invention, as can be seen from FIG. 5 and FIG. 6A, the lower portion of the first side wall surface 12, the second side wall surface 13, the second upper wall surface 14b and the bottom wall surface 15 are provided by the lower flow path X. It is configured to extend straight toward the opening region Z.

このように下層流路Xが吸気弁開口部領域Zに向けてまっすぐに延びるように第2の上壁面14bは図3に示される如く平面Kに対し第2の上壁面14bと反対側に位置する吸気弁開口部19の上端縁に向けて延びている。このように下層流路Xを形成すると下層流路X内を流れる下層流は吸気弁6の開弁時に、下層流路X内をまっすぐに進んだ後、図8において矢印Sで示すように吸気弁開口部領域Zから燃焼室3内に燃焼室3の周辺方向に向けて流入し、それによって燃焼室3内にはシリンダ軸線O回りの強力なスワールが発生せしめられる。   Thus, the second upper wall surface 14b is positioned on the side opposite to the second upper wall surface 14b with respect to the plane K as shown in FIG. 3 so that the lower layer flow path X extends straight toward the intake valve opening region Z. It extends toward the upper edge of the intake valve opening 19. When the lower layer flow path X is formed in this way, the lower layer flow flowing in the lower layer flow path X proceeds straight in the lower layer flow path X when the intake valve 6 is opened, and then as shown by the arrow S in FIG. It flows into the combustion chamber 3 from the valve opening region Z toward the periphery of the combustion chamber 3, thereby generating a strong swirl around the cylinder axis O in the combustion chamber 3.

一方、上層流路Y内を流れる上層流は吸気弁6の開弁時に上層流路Y内を進んだ後、渦巻部7内で旋回し、図8において矢印Tで示されるように吸気弁開口部19の全体から分散して燃焼室3内に流入する。このように吸入空気吸気弁開口部19の全体から流入させることによって吸入空気量を増大させることができる。即ち、上層流を旋回させないで燃焼室3内に流入させようとすると大部分の上層流は吸入空気流入通路部8とは反対側の吸気弁開口部のみから燃焼室3内に流入することになる。このことは実質的に吸気弁開口部の流路面積が小さくなっていることと同じであり、従って吸入空気量の増大は期待できない。 On the other hand, the upper layer flow flowing in the upper layer flow path Y advances in the upper layer flow path Y when the intake valve 6 is opened, then turns in the spiral portion 7 and opens the intake valve as shown by an arrow T in FIG. Dispersed from the entire portion 19 and flows into the combustion chamber 3. Thus the intake air by flowing the whole of the intake valve opening 19 can be increased intake air amount. That is, if the upper layer flow is caused to flow into the combustion chamber 3 without swirling, most of the upper layer flow flows into the combustion chamber 3 only from the intake valve opening on the side opposite to the intake air inflow passage portion 8. Become. This is substantially the same as the flow passage area of the intake valve opening being reduced, and therefore an increase in the intake air amount cannot be expected.

これに対して上層流に渦巻部7内で旋回流を与えると上層流は上述したように吸気弁開口部19の全体から分散して燃焼室3内に流入する。このことは吸気弁開口部19の流路面積が大きくなったことと同じであり、従って吸入空気量が増大するために充填効率が向上することになる。このように本発明において渦巻部7内で旋回流を生じさせるのは充填効率の向上のためであり、従来のようにスワールの発生のためではない。   On the other hand, when a swirl flow is given to the upper layer flow in the spiral portion 7, the upper layer flow is dispersed from the entire intake valve opening 19 and flows into the combustion chamber 3 as described above. This is the same as the flow passage area of the intake valve opening 19 is increased, and therefore the intake air amount is increased, so that the charging efficiency is improved. In this way, in the present invention, the swirl flow is generated in the spiral portion 7 for the purpose of improving the filling efficiency and not for the generation of swirl as in the prior art.

一方、吸入空気を渦巻部7内で旋回させつつ燃焼室3内に流入させると旋回している吸入空気流全体がそのままスワール流に移行していくかのように思える。しかしながらスワールの発生に寄与するのは旋回する吸入空気流のうちの燃焼室3の周辺方向に向かう一部の吸入空気流であり、従って吸入空気を旋回しつつ燃焼室3内に流入させても実際には吸入空気の一部しかスワールの発生に寄与しない。即ち、スワールを発生させるためには本発明におけるように燃焼室3の周辺方向に向かう強力な吸入空気流を発生させることが最も効果的である。   On the other hand, when the intake air is swirled in the spiral portion 7 and flows into the combustion chamber 3, it seems as if the swirled intake air flow is shifted to the swirl flow as it is. However, it is a part of the swirling intake air flow that is directed toward the periphery of the combustion chamber 3 that contributes to the generation of swirl. Therefore, even if the intake air is swirled and flows into the combustion chamber 3 Actually, only a part of the intake air contributes to the generation of the swirl. That is, in order to generate a swirl, it is most effective to generate a strong intake air flow toward the periphery of the combustion chamber 3 as in the present invention.

このように本発明では第1の吸気ポート4内から燃焼室3内に燃焼室3の周辺方向に向けてまっすぐに流入する下層流によって燃焼室3内に強力なスワールが発生せしめられ、渦巻部7内で旋回した後に燃焼室3内に流入する上層流において吸入空気量が増大せしめられ、それにより高い充填効率を図りつつ強力なスワールを発生しうるようにしている。   Thus, in the present invention, a strong swirl is generated in the combustion chamber 3 by the lower flow that flows straight into the combustion chamber 3 from the first intake port 4 toward the periphery of the combustion chamber 3, and the spiral portion The amount of intake air is increased in the upper layer flow that flows into the combustion chamber 3 after swirling in the cylinder 7, so that a strong swirl can be generated while achieving high filling efficiency.

次に図1および図7を参照しつつ第2の吸気ポート5について説明する。図1に示されるように第2の吸気ポート5は吸気弁20の軸線回りに形成された渦巻部21と、渦巻部21から接線状に延びる吸入空気流入通路部22とを具備するヘリカル型吸気ポートからなる。図7に示されるように渦巻部21の出口部に当る燃焼室3の頂面16上には吸気弁20の弁体20aよりもわずかばかり大きな径を有する凹溝23が形成されており、この凹溝23内に吸気弁20の弁体20aが配置されている。   Next, the second intake port 5 will be described with reference to FIGS. 1 and 7. As shown in FIG. 1, the second intake port 5 is a helical intake air having a spiral portion 21 formed around the axis of the intake valve 20 and an intake air inflow passage portion 22 extending tangentially from the spiral portion 21. Consists of ports. As shown in FIG. 7, a concave groove 23 having a slightly larger diameter than the valve body 20 a of the intake valve 20 is formed on the top surface 16 of the combustion chamber 3 that hits the outlet of the spiral portion 21. A valve body 20 a of the intake valve 20 is disposed in the concave groove 23.

このように吸気弁20の弁体20aを凹溝23内に配置すると吸気弁20の弁体20a周りから燃焼室3内に流出する吸入空気流は凹溝23の周壁面23aによってシリンダ軸線方向に案内される。即ち、凹溝23の周壁面23aは吸気弁20の弁体20a周りから流出する吸入空気流をシリンダ軸線方向に指向させるためのマスク壁を形成している。   When the valve body 20a of the intake valve 20 is arranged in the concave groove 23 in this way, the intake air flow flowing out from the periphery of the valve body 20a of the intake valve 20 into the combustion chamber 3 is moved in the cylinder axial direction by the peripheral wall surface 23a of the concave groove 23. Guided. That is, the peripheral wall surface 23a of the concave groove 23 forms a mask wall for directing the intake air flow flowing out from around the valve body 20a of the intake valve 20 in the cylinder axial direction.

前述したように第1の吸気ポート4および第2の吸気ポート5は燃焼室3に向けて次第に下降するように傾斜しており、第1の吸気ポート4の傾斜角に比べて第2の吸気ポート5の傾斜角が大きくされている。即ち、図2において第1の吸気ポート4の吸入空気流路部8の中心軸線をL1とし、第2の吸気ポート5の吸入空気流路部22の中心軸線をL2とし、シリンダ軸線に垂直な基準面をS0とすると、第1の吸気ポート4の吸入空気流路部8の中心軸線L1と基準面S0とのなす角θ1に比べて第2の吸気ポート5の吸入空気流路部22の中心軸線L2と基準面S0とのなす角θ2は大きくされている。 As described above, the first intake port 4 and the second intake port 5 are inclined so as to gradually descend toward the combustion chamber 3, and the second intake air is compared with the inclination angle of the first intake port 4. The inclination angle of the port 5 is increased. That is, in FIG. 2, the central axis of the intake air flow path portion 8 of the first intake port 4 is L 1 , the central axis of the intake air flow path portion 22 of the second intake port 5 is L 2 , and the cylinder axis is Assuming that the vertical reference plane is S 0 , the suction of the second intake port 5 is larger than the angle θ 1 formed by the central axis L 1 of the intake air flow path portion 8 of the first intake port 4 and the reference plane S 0. The angle θ 2 formed by the central axis L 2 of the air flow path portion 22 and the reference plane S 0 is increased.

また、図1に示されるように第1の吸気ポート4に対し設けられている吸気弁6と第2の吸気ポート5に対し設けられている吸気弁20は燃焼室3の一側に配置されており、これら第1の吸気ポート4および第2の吸気ポート5は対応する吸気弁6,20から同一方向に延びている。更に図1からわかるように第1の吸気ポート4の渦巻部7と第2の吸気ポート5の渦巻部21は吸入空気流がこれら渦巻部7,21内で同一方向に旋回するように形成されている。   Further, as shown in FIG. 1, the intake valve 6 provided for the first intake port 4 and the intake valve 20 provided for the second intake port 5 are arranged on one side of the combustion chamber 3. The first intake port 4 and the second intake port 5 extend from the corresponding intake valves 6 and 20 in the same direction. Further, as can be seen from FIG. 1, the spiral portion 7 of the first intake port 4 and the spiral portion 21 of the second intake port 5 are formed so that the intake air flow swirls in the same direction within these spiral portions 7 and 21. ing.

図2に示されるように第2の吸気ポート5の傾斜角θ2が大きく形成されているので第2の吸気ポート5からは吸入空気が下方に向けて燃焼室3内に流入する。従って第2の吸気ポート5内から燃焼室3内に流入する吸入空気流は、第1の吸気ポート4から流入する吸入空気流によって生成されたスワール流を減速させることがなく、斯くして充填効率を高めつつ強力なスワール流を確保することができる。 As shown in FIG. 2, since the inclination angle θ 2 of the second intake port 5 is formed large, intake air flows from the second intake port 5 downward into the combustion chamber 3. Therefore, the intake air flow flowing into the combustion chamber 3 from the second intake port 5 does not decelerate the swirl flow generated by the intake air flow flowing from the first intake port 4, and is thus charged. A powerful swirl flow can be secured while increasing efficiency.

更に本発明による実施例では第2の吸気ポート5から燃焼室3内に流入する吸入空気流に対してマスク壁23aが設けられているのでこの吸入空気流は更に確実にシリンダ軸線方向に案内される。従って、第2の吸気ポート5から流入する吸入空気流とスワール流との干渉を更に回避することができる。   Furthermore, in the embodiment according to the present invention, since the mask wall 23a is provided for the intake air flow flowing into the combustion chamber 3 from the second intake port 5, this intake air flow is more reliably guided in the cylinder axial direction. The Therefore, interference between the intake air flow flowing in from the second intake port 5 and the swirl flow can be further avoided.

また、本発明による実施例では第2の吸気ポート5から燃焼室3内に流入する吸入空気は図7および図8において矢印Vで示すように第1の吸気ポート4から流入する吸入空気流の旋回方向Tと同一方向に旋回しつつ燃焼室3の下方に向かい、次いで第1の吸気ポート4からの吸入空気流により生成されたスワール流の下方において同一方向に旋回する。このように第1の吸気ポート4からの吸入空気流によって燃焼室3内の上方領域にスワール流が生成され、第2の吸気ポート5からの吸入空気流によって燃焼室3内の下方領域にもスワール流が生成されるので強力なスワールが得られることになる。   Further, in the embodiment according to the present invention, the intake air flowing into the combustion chamber 3 from the second intake port 5 is the intake air flow flowing from the first intake port 4 as shown by the arrow V in FIGS. While swirling in the same direction as the swirling direction T, it goes downward of the combustion chamber 3 and then swirls in the same direction under the swirl flow generated by the intake air flow from the first intake port 4. Thus, a swirl flow is generated in the upper region in the combustion chamber 3 by the intake air flow from the first intake port 4, and also in the lower region in the combustion chamber 3 by the intake air flow from the second intake port 5. Since a swirl flow is generated, a powerful swirl can be obtained.

吸気ポートの平面図である。It is a top view of an intake port. 図1の矢印IIに沿ってみた図解的に示す吸気ポートの側面図である。FIG. 2 is a side view of the intake port schematically shown along arrow II in FIG. 1. 図1のIII−III線に沿ってみた第1の吸気ポートの断面図である。FIG. 3 is a cross-sectional view of a first intake port taken along line III-III in FIG. 1. 図1に示される第1の吸気ポートの断面図であって、(A),(B),(C)は夫々図1のA−A線、B−B線、C−C線に沿ってみた断面図である。FIG. 2 is a cross-sectional view of the first intake port shown in FIG. 1, wherein (A), (B), and (C) are taken along lines AA, BB, and CC, respectively, in FIG. 1. FIG. 図解的に表した吸気ポートの斜視図である。It is a perspective view of the intake port represented graphically. 下層流路Xおよび上層流路Yを示す図である。It is a figure which shows the lower layer flow path X and the upper layer flow path Y. 図1のVII−VII線に沿ってみた第2の吸気ポートの断面図である。It is sectional drawing of the 2nd intake port seen along the VII-VII line of FIG. 図1の拡大図である。It is an enlarged view of FIG.

符号の説明Explanation of symbols

3 燃焼室
4 第1の吸気ポート
5 第2の吸気ポート
6,20 吸気弁
7,21 渦巻部
8,22 吸入空気流入通路部
9 周壁面
10 上壁面
11 下端出口部
12 第1の側壁面
13 第2の側壁面
14a 第1の上壁面
14b 第2の上壁面
15 底壁面
18 弁座
19 吸気弁開口部
X 上層流路
Y 下層流路
Z 吸気弁開口部領域
DESCRIPTION OF SYMBOLS 3 Combustion chamber 4 1st intake port 5 2nd intake port 6,20 Intake valve 7,21 Swirl part 8,22 Intake air inflow passage part 9 Peripheral wall surface 10 Upper wall surface 11 Lower end exit part 12 1st side wall surface 13 Second side wall surface 14a First upper wall surface 14b Second upper wall surface 15 Bottom wall surface 18 Valve seat 19 Intake valve opening X Upper layer flow path Y Lower flow path Z Intake valve opening area

Claims (5)

第1の吸気ポートおよび第2の吸気ポートを具備しており、該第1の吸気ポートが吸気弁の軸線回りに形成された渦巻部と、該渦巻部から接線状に延びる吸入空気流入通路部とにより構成されており、該渦巻部が吸気弁の軸線回りを延びる周壁面と、上壁面と、吸気弁により開閉される下端出口部とにより画定されており、該吸入空気流入通路部が渦巻部の周壁面に接線状に接続される第1の側壁面と、吸気弁の弁軸に向けて渦巻部の周壁面まで延びる第2の側壁面と、上壁面と、底壁面とにより画定されている内燃機関において、上記渦巻部の下端出口部が燃焼室頂面の周縁部に配置されると共に、上記第1の側壁面が燃焼室の周縁部に対して接線状に延びるように吸入空気流入通路部が配置されており、吸気弁全開時に吸気弁と吸気弁の弁座間に形成される環状の吸気弁開口部のうちで、シリンダ軸線と吸気弁弁体の中心部とを含む平面に対し吸入空気流入通路部と反対側に形成される吸気弁開口部領域が存在しており、該吸気弁開口部領域は上記平面と燃焼室周縁部側の吸気弁開口部との交差部から渦巻部内における吸入空気流の旋回方向にほぼ90度の範囲であり、上記吸入空気流入通路部の上壁面を吸入空気流入通路部の少くとも下流側において、上記第1の側壁面側に位置しかつ渦巻部の上壁面に滑らかに接続する第1の上壁面と、上記第2の側壁面側に位置しかつ該第1の上壁面よりも上記底壁面側に位置する第2の上壁面とにより構成し、該第2の上壁面は上記平面に対し該第2の上壁面と反対側に位置する吸気弁開口部の上端縁に向けて延びており、下層流が流れる下層流路が上記第1の側壁面の下方部、上記第2の側壁面、上記第2の上壁面および上記底壁面によって画定され、上層流が流れる上層流路が、下層流路の上方であって下層流路と上記第1の上壁面間に形成され、上記第1の側壁面の下方部、上記第2の側壁面、上記第2の上壁面および上記底壁面を該下層流路が上記吸気弁開口部領域に向けてまっすぐに延びるように構成し、該下層流は吸気弁開弁時に上記吸気弁開口部領域に向け流れた後に吸気弁開口部領域から燃焼室内に燃焼室の周辺方向に向け流入して燃焼室内にスワールを発生させ、上記上層流は吸気弁開弁時渦巻部内で旋回した後に吸気弁開口部全体から分散して燃焼室内に流入し、上記第1の吸気ポートおよび第2の吸気ポートが燃焼室に向けて次第に下降するように傾斜していると共に、第1の吸気ポートの傾斜角に比べて第2の吸気ポートの傾斜角が大きくされている内燃機関の吸気装置。 A spiral portion having a first intake port and a second intake port, wherein the first intake port is formed around the axis of the intake valve, and an intake air inflow passage portion extending tangentially from the spiral portion The swirl portion is defined by a peripheral wall surface extending around the axis of the intake valve, an upper wall surface, and a lower end outlet portion opened and closed by the intake valve, and the intake air inflow passage portion is swirled. Defined by a first side wall surface tangentially connected to the peripheral wall surface of the part, a second side wall surface extending to the peripheral wall surface of the spiral portion toward the valve shaft of the intake valve, an upper wall surface, and a bottom wall surface In the internal combustion engine, the lower end outlet portion of the spiral portion is disposed at a peripheral portion of the top surface of the combustion chamber, and the intake air is disposed such that the first side wall surface extends tangentially to the peripheral portion of the combustion chamber. An inflow passage is arranged, and when the intake valve is fully open, the intake valve and intake valve Among the annular intake valve openings formed between the seats, there is an intake valve opening region formed on the opposite side of the intake air inflow passage with respect to the plane including the cylinder axis and the center of the intake valve valve body. The intake valve opening region is in a range of approximately 90 degrees in the swirling direction of the intake air flow in the spiral portion from the intersection of the plane and the intake valve opening on the peripheral side of the combustion chamber. A first upper wall surface that is located on the first side wall surface side and is smoothly connected to the upper wall surface of the spiral portion at least downstream of the intake air inflow passage portion; And a second upper wall surface located on the bottom wall surface side of the first upper wall surface, the second upper wall surface being the second upper wall surface with respect to the plane. opposite it extends toward the upper edge of the intake valve opening located in the lower layer flow stream and The lower layer channel is defined by the lower part of the first side wall surface, the second side wall surface, the second upper wall surface and the bottom wall surface, and the upper layer channel through which the upper layer flow flows is located above the lower layer channel. The lower channel is formed between the lower channel and the first upper wall surface, and the lower portion of the first side wall surface, the second side wall surface, the second upper wall surface, and the bottom wall surface are connected to the lower channel channel. Is configured to extend straight toward the intake valve opening region, and the lower flow flows toward the intake valve opening region when the intake valve is opened and then flows from the intake valve opening region into the combustion chamber. Flowing in the peripheral direction to generate a swirl in the combustion chamber, the upper layer flow swirls in the swirl when the intake valve is opened, and then dispersed from the entire intake valve opening and flows into the combustion chamber, and the first intake air Inclined so that the port and the second intake port are gradually lowered toward the combustion chamber An intake device for an internal combustion engine in which the inclination angle of the second intake port is larger than the inclination angle of the first intake port. 燃焼室の一側に、第1の吸気ポートに対し設けられている吸気弁と第2の吸気ポートに対し設けられている吸気弁とが配置されており、第1の吸気ポートおよび第2の吸気ポートは対応する吸気弁から同一方向に延びている請求項1に記載の内燃機関の吸気装置。 An intake valve provided for the first intake port and an intake valve provided for the second intake port are disposed on one side of the combustion chamber, and the first intake port and the second intake port are provided. The intake device for an internal combustion engine according to claim 1 , wherein the intake port extends in the same direction from the corresponding intake valve . 第2の吸気ポートは吸気弁の軸線回りに形成された渦巻部と、渦巻部から接線状に延びる吸入空気流入通路部とを具備するヘリカル型吸気ポートからなり、第1の吸気ポートの渦巻部と第2の吸気ポートの渦巻部は吸入空気流がこれら渦巻部内で同一方向に旋回するように形成されている請求項1に記載の内燃機関の吸気装置。 The second intake port is a helical intake port having a spiral portion formed around the axis of the intake valve and an intake air inflow passage portion extending tangentially from the spiral portion, and the spiral portion of the first intake port 2. The intake device for an internal combustion engine according to claim 1 , wherein the vortex portions of the second intake port and the second intake port are formed so that the intake air flow swirls in the same direction in the vortex portions . 第2の吸気ポートに対し設けられている吸気弁の弁体周りには吸気弁の弁体周りから流出する吸入空気流をシリンダ軸線方向に指向させるためのマスク壁が形成されている請求項1に記載の内燃機関の吸気装置。 2. A mask wall for directing an intake air flow flowing out from the periphery of the valve body of the intake valve in a cylinder axial direction is formed around the valve body of the intake valve provided for the second intake port. An intake device for an internal combustion engine according to claim 1. 第2の吸気ポートに対し設けられている吸気弁が燃焼室の頂面上に形成された凹溝内に配置されており、該凹溝の周壁面が上記マスク壁を形成している請求項4に記載の内燃機関の吸気装置。 An intake valve provided for the second intake port is disposed in a groove formed on the top surface of the combustion chamber, and a peripheral wall surface of the groove forms the mask wall. 5. An intake device for an internal combustion engine according to 4 .
JP2006210857A 2006-08-02 2006-08-02 Intake device for internal combustion engine Expired - Fee Related JP4887963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210857A JP4887963B2 (en) 2006-08-02 2006-08-02 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210857A JP4887963B2 (en) 2006-08-02 2006-08-02 Intake device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008038654A JP2008038654A (en) 2008-02-21
JP4887963B2 true JP4887963B2 (en) 2012-02-29

Family

ID=39173988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210857A Expired - Fee Related JP4887963B2 (en) 2006-08-02 2006-08-02 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4887963B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111287863B (en) * 2020-05-13 2020-09-29 潍柴动力股份有限公司 Cylinder cover and gas engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828527A (en) * 1981-07-30 1983-02-19 Toyota Motor Corp Flow-passage controller for intake port
JPS5848973U (en) * 1981-09-30 1983-04-02 トヨタ自動車株式会社 Internal combustion engine intake system
JPH02271031A (en) * 1989-04-11 1990-11-06 Yanmar Diesel Engine Co Ltd Suction passage of internal combustion engine
JPH02147830U (en) * 1989-05-18 1990-12-14
JP3424238B2 (en) * 1991-10-15 2003-07-07 マツダ株式会社 Engine intake system
JP2891173B2 (en) * 1996-04-19 1999-05-17 トヨタ自動車株式会社 Intake device for internal combustion engine
JP3541597B2 (en) * 1997-01-16 2004-07-14 日産自動車株式会社 Engine intake port
JP4265434B2 (en) * 2004-02-10 2009-05-20 日産自動車株式会社 Combustion chamber of internal combustion engine

Also Published As

Publication number Publication date
JP2008038654A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4277857B2 (en) Intake port of internal combustion engine
EP0724072B1 (en) Combustion chamber of internal combustion engine
JP2001241331A (en) Multi-valve intake engine
CN217481411U (en) Cylinder cover and gas engine
JP4887963B2 (en) Intake device for internal combustion engine
CN113404608A (en) Cylinder cover and gas engine
JP2007198303A (en) Intake port of internal combustion engine
JP4765819B2 (en) Intake port of internal combustion engine
JP4650333B2 (en) Intake port of internal combustion engine
JP2008057374A (en) Intake device for internal combustion engine
CN113404613A (en) Cylinder head and gas engine
CN113404569B (en) Intake valve, cylinder cover and gas engine
JP2007297988A (en) Intake port for internal combustion engine
JP2007162517A (en) Intake device for internal combustion engine
JP2007231916A (en) Intake device for internal combustion engine
CN113404568B (en) Integral intake valve, cylinder head and gas engine
JP5489869B2 (en) Intake device for internal combustion engine
JP4375060B2 (en) Intake device for internal combustion engine
JP2007231921A (en) Intake port for internal combustion engine
JPS6319551Y2 (en)
CN216811941U (en) Cylinder head and gas engine
JP4850736B2 (en) Engine intake port structure
JP3566036B2 (en) Intake device for internal combustion engine
JPS603317Y2 (en) internal combustion engine intake port
JP3523545B2 (en) Engine swirl intake port

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R151 Written notification of patent or utility model registration

Ref document number: 4887963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees