JP2007231916A - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine Download PDF

Info

Publication number
JP2007231916A
JP2007231916A JP2006058090A JP2006058090A JP2007231916A JP 2007231916 A JP2007231916 A JP 2007231916A JP 2006058090 A JP2006058090 A JP 2006058090A JP 2006058090 A JP2006058090 A JP 2006058090A JP 2007231916 A JP2007231916 A JP 2007231916A
Authority
JP
Japan
Prior art keywords
intake
wall surface
combustion chamber
intake valve
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006058090A
Other languages
Japanese (ja)
Inventor
Hisanori Itou
寿記 伊藤
Yasuo Sato
康夫 佐藤
Osamu Horikoshi
修 堀越
Tomoyuki Takada
倫行 高田
Hirokazu Ito
弘和 伊藤
Genshiro Endo
元志郎 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006058090A priority Critical patent/JP2007231916A/en
Publication of JP2007231916A publication Critical patent/JP2007231916A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To secure high filling efficiency without generating swirl. <P>SOLUTION: An intake device has a pair of intake ports 4, 5 having shapes symmetrical with each other with respect to a flat surface including a cylinder axis. An upper wall face 14 of an intake air inlet passage part 8 of each of the intake ports 4, 5 is constituted of a first upper wall face 14a and a second upper wall face 14b lower than the first upper wall face 14a, and a lower-laminar flow passage X and an upper-laminar flow passage Y are formed so that a height position of the second upper wall face 14b is a border between the passages X, Y. The lower-laminar flow flowing in the lower-laminar flow passage X flows in a peripheral direction of a combustion chamber 3 through an intake valve opening part area Z when an intake valve 6 is opened. The upper-laminar flow flowing in the upper-laminar flow passage Y flows into the combustion chamber 3 through a swirl part 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は内燃機関の吸気装置に関する。   The present invention relates to an intake device for an internal combustion engine.

吸気弁の軸線回りに形成された渦巻部と、渦巻部から接線状に延びる吸入空気流入通路部とにより構成され、吸入空気流入通路部が渦巻部の周壁面に接線状に接続される第1の側壁面と、吸気弁の弁軸に向けて渦巻部の周壁面まで延びる第2の側壁面とを有するヘリカル型吸気ポートにおいて、吸入空気流入通路部の上壁面が上述の第1の側壁面側に位置しかつ渦巻部の上壁面に滑らかに接続する第1の上壁面と、上述の第2の側壁面側に位置しかつ第1の上壁面よりも高さの低い第2の上壁面からなり、この第2の上壁面の高さ位置を境にして吸入空気流入通路部の底壁面に沿って流れる下層流と第1の上壁面に沿って流れる上層流とが発生し、この上層流によって燃焼室内にスワールが発生せしめられるヘリカル型吸気ポートが公知である(特許文献1を参照)。   A first portion is formed by a spiral portion formed around the axis of the intake valve and an intake air inflow passage portion extending tangentially from the spiral portion, and the intake air inflow passage portion is tangentially connected to the peripheral wall surface of the spiral portion. And a second side wall surface extending to the circumferential wall surface of the spiral portion toward the valve shaft of the intake valve, the upper wall surface of the intake air inflow passage portion is the first side wall surface described above. A first upper wall surface located on the side and smoothly connected to the upper wall surface of the spiral portion, and a second upper wall surface located on the second side wall surface side and having a height lower than that of the first upper wall surface A lower flow that flows along the bottom wall surface of the intake air inflow passage portion and an upper flow that flows along the first upper wall surface at the height position of the second upper wall surface. A helical intake port is known in which swirl is generated in the combustion chamber by the flow. (See Patent Document 1).

このヘリカル型吸気ポートでは吸入空気量が多いときに渦巻部内での上層流の旋回作用が下層流によって弱められ、それにより機関高回転域において過剰なスワールが発生するのが阻止される。
実開平2−147830号公報
In this helical type intake port, when the intake air amount is large, the swirling action of the upper layer flow in the spiral portion is weakened by the lower layer flow, thereby preventing the occurrence of excessive swirl in the high engine speed region.
Japanese Utility Model Publication No. 2-147830

ところでこのヘリカル型吸気ポートでは従来のヘリカル型吸気ポートと同様に吸入空気を渦巻部内で旋回させることにより燃焼室内にスワールを発生させるようにしている。この場合、スワールを強めるためには渦巻部内での旋回作用を強めなければならない。しかしながら渦巻部内での旋回作用を強めると吸入抵抗が増大するために充填効率が低下し、その結果最大負荷運転時の出力が低下することになる。   By the way, in this helical type intake port, swirl is generated in the combustion chamber by swirling the intake air in the spiral portion as in the conventional helical type intake port. In this case, in order to strengthen the swirl, the swirling action in the spiral portion must be strengthened. However, if the swirling action in the spiral portion is increased, the suction resistance increases, so that the charging efficiency is lowered, and as a result, the output during the maximum load operation is lowered.

このように渦巻部内における旋回作用を強めることによってスワールを強めるようにしている限り、強力なスワールと高い充填効率を同時に確保することは困難であり、強力なスワールと高い充填効率を同時に確保するには発想の転換が必要である。
本発明者はこれまで長い期間に亘って吸入空気の流れ方について研究し、終いに強力なスワールと高い充填効率を同時に確保することのできる吸気ポートを見い出したのである。
As long as the swirl is strengthened by strengthening the swirling action in the spiral part, it is difficult to ensure a strong swirl and high filling efficiency at the same time. To ensure a strong swirl and high filling efficiency at the same time Needs a change of mindset.
The inventor has studied the flow of intake air over a long period of time, and finally found an intake port that can simultaneously ensure a strong swirl and high filling efficiency.

本発明の第1の目的は、強力なスワールと高い充填効率を同時に確保しうる吸気ポートと用いてスワールを発生させることなく高い充填効率の得られる吸気装置を提供することにあり、第2の目的は、強力なスワールと高い充填効率を同時に確保しうる吸気ポートを用いてスワールの強さを制御することができかつ必要に応じてスワールを発生させることなく高い充填効率の得られる吸気装置を提供することにある。   A first object of the present invention is to provide an intake device that can obtain a high filling efficiency without generating a swirl by using a powerful swirl and an intake port that can ensure a high filling efficiency at the same time. The purpose is to provide an intake device that can control the strength of the swirl using an intake port that can simultaneously ensure a strong swirl and high filling efficiency, and that can obtain high filling efficiency without generating a swirl if necessary. It is to provide.

上記第1の目的を達成するために1番目の発明では、シリンダ軸線を含む対称平面に関して対称的な形状を有する一対の吸気ポートを具備した内燃機関の吸気装置において、各吸気ポートが夫々吸気弁の軸線回りに形成された渦巻部と、渦巻部から接線状に延びる吸入空気流入通路部とにより構成されており、渦巻部が吸気弁の軸線回りを延びる周壁面と、上壁面と、吸気弁により開閉される下端出口部とにより画定されており、吸入空気流入通路部が渦巻部の周壁面に接線状に接続される第1の側壁面と、吸気弁の弁軸に向けて渦巻部の周壁面まで延びる第2の側壁面と、上壁面と、底壁面とにより画定されており、渦巻部の下端出口部が燃焼室頂面の周縁部に配置されると共に、第1の側壁面が燃焼室の周縁部に対して接線状に延びるように吸入空気流入通路部が配置されており、吸気弁全開時に吸気弁と吸気弁の弁座間に形成される環状の吸気弁開口部のうちで、シリンダ軸線と吸気弁弁体の中心部とを含む基準平面に対し吸入空気流入通路部と反対側に形成される吸気弁開口部領域が存在しており、吸入空気流入通路部内に吸入空気流入通路部の下方を流れる下層流と吸入空気流入通路部の上方を流れる上層流が発生せしめられ、下層流は吸気弁開弁時に吸気弁開口部領域に向け流れた後に吸気弁開口部領域から燃焼室内に燃焼室の周辺方向に向け流入し、上層流は吸気弁開弁時渦巻部内で旋回した後に吸気弁開口部全体から分散して燃焼室内に流入するようにしている。   In order to achieve the first object, according to a first aspect of the present invention, there is provided an intake device for an internal combustion engine including a pair of intake ports having a symmetrical shape with respect to a plane of symmetry including a cylinder axis. And the intake air inflow passage portion extending tangentially from the spiral portion, the peripheral wall surface extending around the axis of the intake valve, the upper wall surface, and the intake valve A first side wall surface in which the intake air inflow passage portion is tangentially connected to the peripheral wall surface of the spiral portion, and the spiral portion toward the valve shaft of the intake valve. The second side wall surface extending to the peripheral wall surface, the upper wall surface, and the bottom wall surface are demarcated. The lower end outlet of the spiral portion is disposed at the peripheral edge of the combustion chamber top surface, and the first side wall surface is It extends tangentially to the periphery of the combustion chamber The intake air inflow passage portion is disposed between the cylinder axis and the center portion of the intake valve valve body in the annular intake valve opening formed between the intake valve and the valve seat of the intake valve when the intake valve is fully opened. An intake valve opening region formed on the opposite side to the intake air inflow passage portion with respect to the reference plane including the lower plane flow and the intake air inflow passage flowing below the intake air inflow passage portion in the intake air inflow passage portion An upper layer flow that flows above the upper part is generated, and the lower layer flow flows toward the intake valve opening region when the intake valve is opened and then flows into the combustion chamber from the intake valve opening region toward the periphery of the combustion chamber. The flow swirls in the spiral portion when the intake valve is opened, and then is dispersed from the entire intake valve opening and flows into the combustion chamber.

また、上記第2の目的を達成するために上述の1番目の発明において、一対の吸気ポートのうちの一方の吸気ポートの吸入空気流入通路部内に流量制御弁が配置されており、流量制御弁が全開しているときには一方の吸気ポートの吸気弁開口部領域から燃焼室の周辺方向に向け流入する下層流の強さと、他方の吸気ポートの吸気弁開口部領域から燃焼室の周辺方向に向け流入する下層流の強さとが同じになるために燃焼室内にスワールが発生せず、流量制御弁が閉弁せしめられたときには一方の吸気ポートの吸気弁開口部領域から燃焼室の周辺方向に向け流入する下層流に比べて、他方の吸気ポートの吸気弁開口部領域から燃焼室の周辺方向に向け流入する下層流が強くなるために燃焼室内にスワールが発生せしめられる。   In order to achieve the second object, in the first invention described above, a flow control valve is disposed in the intake air inflow passage portion of one intake port of the pair of intake ports. Is fully open, the strength of the lower flow that flows from the intake valve opening region of one intake port toward the periphery of the combustion chamber, and the intake valve opening region of the other intake port toward the periphery of the combustion chamber When the inflow of the lower flow is the same, no swirl is generated in the combustion chamber, and when the flow control valve is closed, the intake valve opening region of one intake port is directed toward the periphery of the combustion chamber. Compared to the inflowing lower layer flow, the lower layer flow that flows in from the intake valve opening region of the other intake port toward the periphery of the combustion chamber becomes stronger, so that a swirl is generated in the combustion chamber.

各吸気ポートとして、下層流路内を流れる下層流によってスワールが発生せしめられ、上層流路内を流れる上層流によって高い充填効率が確保される吸気ポートを用いることにより、スワールを発生させることなく高い充填効率を確保することもできるし、また高い充填効率を確保しつつスワールを制御することもできる。   As each intake port, swirl is generated by the lower layer flow flowing in the lower layer flow path, and high intake efficiency is ensured by the upper layer flow flowing in the upper layer flow path, so that it is high without generating swirl Filling efficiency can be ensured, and swirl can be controlled while ensuring high filling efficiency.

図1から図3を参照すると、1はシリンダブロック、2はシリンダヘッド、3は燃焼室を夫々示し、シリンダヘッド2内には一対の吸気ポート4,5が形成されている。図1に示されるようにこれらの吸気ポート4,5はシリンダ軸線を含む対称平面K1に関して対称的な形状を有する。従って以下、吸気ポート4のみの形状について説明し、吸気ポート5の形状に関する説明は省略する。   1 to 3, reference numeral 1 denotes a cylinder block, 2 denotes a cylinder head, 3 denotes a combustion chamber, and a pair of intake ports 4 and 5 are formed in the cylinder head 2. As shown in FIG. 1, these intake ports 4 and 5 have a symmetrical shape with respect to a symmetry plane K1 including the cylinder axis. Therefore, hereinafter, only the shape of the intake port 4 will be described, and description regarding the shape of the intake port 5 will be omitted.

図1から図3を参照すると、吸気ポート4は吸気弁6の軸線回りに形成された渦巻部7と、この渦巻部7から接線状に延びる吸入空気流入通路部8とにより構成される。図1、図2および図3(C)に示されるように渦巻部7は吸気弁6の軸線回りを延びる周壁面9と、上壁面10と、吸気弁6により開閉される下端出口部11とにより画定されており、図1および図2に示されるように吸入空気流入通路部8は渦巻部7の周壁面9に接線状に接続される第1の側壁面12と、吸気弁6の弁軸6aに向けて渦巻部7の周壁面9まで延びる第2の側壁面13と、上壁面14と、底壁面15とにより画定されている。   Referring to FIGS. 1 to 3, the intake port 4 is constituted by a spiral portion 7 formed around the axis of the intake valve 6 and an intake air inflow passage portion 8 extending tangentially from the spiral portion 7. As shown in FIGS. 1, 2, and 3 (C), the spiral portion 7 includes a peripheral wall surface 9 that extends around the axis of the intake valve 6, an upper wall surface 10, and a lower end outlet portion 11 that is opened and closed by the intake valve 6. 1 and 2, the intake air inflow passage portion 8 includes a first side wall surface 12 tangentially connected to the peripheral wall surface 9 of the spiral portion 7, and a valve of the intake valve 6. It is demarcated by the 2nd side wall surface 13 extended to the surrounding wall surface 9 of the spiral part 7 toward the axis | shaft 6a, the upper wall surface 14, and the bottom wall surface 15. FIG.

図1からわかるように渦巻部7の下端出口部11は燃焼室3の頂面16(図2)の周縁部に配置され、第1の側壁面12が燃焼室3の周縁部に対して接線状に延びるように吸入空気流入通路部8が配置されている。即ち、図1に示されるように吸入空気流入通路部8の下流側は燃焼室3の周縁部に対して接線状に延びており、吸入空気流入通路部8の上流側はレイアウト上の理由から吸入空気流入通路部8の下流側に対して燃焼室3から離れる方向に若干折曲せしめられている。   As can be seen from FIG. 1, the lower end outlet portion 11 of the spiral portion 7 is disposed at the peripheral portion of the top surface 16 (FIG. 2) of the combustion chamber 3, and the first side wall surface 12 is tangent to the peripheral portion of the combustion chamber 3. An intake air inflow passage portion 8 is arranged so as to extend in a shape. That is, as shown in FIG. 1, the downstream side of the intake air inflow passage portion 8 extends tangentially to the peripheral edge of the combustion chamber 3, and the upstream side of the intake air inflow passage portion 8 is for layout reasons. It is slightly bent in the direction away from the combustion chamber 3 with respect to the downstream side of the intake air inflow passage portion 8.

図5は吸気ポート4を図解的に表した斜視図を示している。なお、この図5では吸気ポート4の形状を理解しやすくするために吸気ポート5を一点鎖線で表している。図1から図3および図5を参照すると吸入空気流入通路部8の上壁面14は吸入空気流入通路部8の少くとも下流側において、第1の側壁面12側に位置しかつ渦巻部7の上壁面10に滑らかに接続する第1の上壁面14aと、第2の側壁面13側に位置しかつ第1の上壁面14aよりも底壁面15側に位置する第2の上壁面14bとにより構成される。第1の上壁面14aに対して低い位置に第2の上壁面14bが形成されている吸入空気流入通路部8部分の断面形状が図5においてハッチングで示されている。   FIG. 5 is a perspective view schematically showing the intake port 4. In FIG. 5, the intake port 5 is indicated by a one-dot chain line for easy understanding of the shape of the intake port 4. Referring to FIGS. 1 to 3 and FIG. 5, the upper wall surface 14 of the intake air inflow passage portion 8 is located on the first side wall surface 12 side at least downstream of the intake air inflow passage portion 8 and A first upper wall surface 14a that smoothly connects to the upper wall surface 10 and a second upper wall surface 14b that is located on the second side wall surface 13 side and located on the bottom wall surface 15 side with respect to the first upper wall surface 14a. Composed. The cross-sectional shape of the intake air inflow passage portion 8 where the second upper wall surface 14b is formed at a lower position than the first upper wall surface 14a is shown by hatching in FIG.

図3(A)〜(C)および図5からわかるように第1の上壁面14aは渦巻部7に向けて次第に横巾が狹ばまりつつ下降し、次いで上述した如く渦巻部7の上壁面10に滑らかに接続される。この渦巻部7の上壁面10は渦巻部7の周縁部に沿って徐々に下降しつつ渦巻部7の全周のほぼ3/4に亘って延びる。一方、第2の上壁面14bの巾は吸入空気流入通路部8の下流側では底壁面15の巾のほぼ1/3程度であって一定であり、吸入空気流入通路部8の上流側では上流に向かうに従って次第に狹くなる。   As can be seen from FIGS. 3A to 3C and FIG. 5, the first upper wall surface 14a descends gradually toward the spiral portion 7 while the lateral width gradually decreases, and then the upper wall surface of the spiral portion 7 as described above. 10 is connected smoothly. The upper wall surface 10 of this spiral part 7 extends over almost ¾ of the entire circumference of the spiral part 7 while gradually descending along the peripheral part of the spiral part 7. On the other hand, the width of the second upper wall surface 14 b is approximately 1/3 of the width of the bottom wall surface 15 on the downstream side of the intake air inflow passage portion 8 and is constant, and on the upstream side of the intake air inflow passage portion 8. It gradually becomes ugly as you go to.

一方、図3(A)〜(C)および図5に示されるように第1の上壁面14aおよび第2の上壁面14bは吸入空気流入通路部8の横断面内においてはほぼ水平方向に延びており、これら第1の上壁面14aと第2の上壁面14bとの間に位置する壁面17は下向きの傾斜面からなる。この傾斜面17の巾は渦巻部7に向けて次第に広くなる。一方、図2に示されるように第2の上壁面14bも渦巻部7に向けて下降しており、この場合第2の上壁面14bの傾斜角は第1の上壁面14aの傾斜角よりも大きい。   On the other hand, as shown in FIGS. 3A to 3C and FIG. 5, the first upper wall surface 14 a and the second upper wall surface 14 b extend in a substantially horizontal direction within the cross section of the intake air inflow passage portion 8. The wall surface 17 located between the first upper wall surface 14a and the second upper wall surface 14b is a downward inclined surface. The width of the inclined surface 17 gradually increases toward the spiral portion 7. On the other hand, as shown in FIG. 2, the second upper wall surface 14b is also lowered toward the spiral portion 7. In this case, the inclination angle of the second upper wall surface 14b is larger than the inclination angle of the first upper wall surface 14a. large.

このように第1の上壁面14aと第2の上壁面14bとを階段状に形成すると吸入空気流入通路部8内には図5においてハッチングXで示される如く第1の側壁面12の下方部、第2の側壁面13、第2の上壁面14bおよび底壁面15によって画定された下層流路と、ハッチングYで示される如く下層流路の上方であって下層流路と第1の上壁面14a間に位置する上層流路とが形成される。即ち、吸入空気流入通路部8内には下層流路X内を流れる下層流と上層流路Y内を流れる上層流との2つの流れが発生する。図6(A)に図5の下層流路Xに関連する部分のみを取出した場合を示し、図6(B)に図5の上層流路Yに関連する部分のみを取出した場合を示す。   When the first upper wall surface 14a and the second upper wall surface 14b are formed stepwise in this way, the lower portion of the first side wall surface 12 is shown in the intake air inflow passage portion 8 as indicated by hatching X in FIG. A lower channel defined by the second side wall surface 13, the second upper wall surface 14b, and the bottom wall surface 15, and a lower channel and the first upper wall surface above the lower channel as indicated by hatching Y. The upper flow path located between 14a is formed. That is, in the intake air inflow passage portion 8, two flows are generated: a lower layer flow flowing in the lower layer flow path X and an upper layer flow flowing in the upper layer flow path Y. FIG. 6A shows a case where only a portion related to the lower layer flow path X of FIG. 5 is taken out, and FIG. 6B shows a case where only a portion related to the upper layer flow path Y of FIG. 5 is taken out.

図4は図1の拡大図を示す。図2および図3(C)に示されるように吸気弁6が開弁すると吸気弁6と吸気弁6の弁座18間には環状の吸気弁開口部19が形成される。この場合、吸気弁6全開時に吸気弁6と吸気弁6の弁座18間に形成される環状の吸気弁開口部19のうちで、図4においてシリンダ軸線Oと吸気弁6の弁体の中心部とを含む基準平面K2に対し吸入空気流入通路部8と反対側に形成される吸気弁開口部領域が存在する。   FIG. 4 shows an enlarged view of FIG. When the intake valve 6 is opened as shown in FIGS. 2 and 3C, an annular intake valve opening 19 is formed between the intake valve 6 and the valve seat 18 of the intake valve 6. In this case, in the annular intake valve opening 19 formed between the intake valve 6 and the valve seat 18 of the intake valve 6 when the intake valve 6 is fully opened, the cylinder axis O and the center of the valve body of the intake valve 6 in FIG. There is an intake valve opening region formed on the opposite side of the intake air inflow passage portion 8 with respect to the reference plane K2 including the portion.

この吸気弁開口部領域が図4、図5および図6(A)においてZで示されている。
この吸気弁開口部領域Zは図4において基準平面K2と燃焼室3周縁部側の吸気弁開口部19との交差部から渦巻部7内における吸入空気流の旋回方向にほぼ90度の範囲Mである。本発明では図5および図6(A)からわかるように第1の側壁面12の下方部、第2の側壁面13、第2の上壁面14bおよび底壁面15は下層流路Xが吸気弁開口部領域Zに向けてまっすぐに延びるように構成されている。
This intake valve opening region is indicated by Z in FIGS. 4, 5 and 6A.
This intake valve opening region Z is a range M of approximately 90 degrees in the swirling direction of the intake air flow in the spiral portion 7 from the intersection of the reference plane K2 and the intake valve opening 19 on the peripheral edge side of the combustion chamber 3 in FIG. It is. In the present invention, as can be seen from FIG. 5 and FIG. 6A, the lower portion of the first side wall surface 12, the second side wall surface 13, the second upper wall surface 14b and the bottom wall surface 15 are provided by the lower flow path X. It is configured to extend straight toward the opening region Z.

このように下層流路Xが吸気弁開口部領域Zに向けてまっすぐに延びるように第2の上壁面10は図2に示される如く基準平面K2に対し第2の上壁面10と反対側に位置する吸気弁開口部19の上端縁に向けて延びている。このように下層流路Xを形成すると下層流路X内を流れる下層流は吸気弁6の開弁時に、下層流路X内をまっすぐに進んだ後、図4において矢印S1で示すように吸気弁開口部領域Zから燃焼室3内に燃焼室3の周辺方向に向けて流入する。同様に吸気ポート5についても吸気ポート5の下層流路X内を流れる下層流は吸気弁6の開弁時に、下層流路X内をまっすぐに進んだ後、図4において矢印S2で示すように吸気弁開口部領域Zから燃焼室3内に燃焼室3の周辺方向に向けて流入する。   Thus, the second upper wall surface 10 is opposite to the second upper wall surface 10 with respect to the reference plane K2, as shown in FIG. 2, so that the lower layer flow path X extends straight toward the intake valve opening region Z. It extends toward the upper edge of the intake valve opening 19 located. When the lower layer flow path X is formed in this way, the lower layer flow flowing in the lower layer flow path X advances straight in the lower layer flow path X when the intake valve 6 is opened, and then as shown by the arrow S1 in FIG. It flows from the valve opening region Z into the combustion chamber 3 toward the periphery of the combustion chamber 3. Similarly, as for the intake port 5, the lower flow flowing in the lower flow path X of the intake port 5 travels straight through the lower flow path X when the intake valve 6 is opened, as indicated by an arrow S <b> 2 in FIG. 4. It flows from the intake valve opening region Z into the combustion chamber 3 toward the periphery of the combustion chamber 3.

一方、上層流路Y内を流れる上層流は吸気弁6の開弁時に上層流路Y内を進んだ後、渦巻部7内で旋回し、図4において矢印T1で示されるように吸気弁開口部19の全体から分散して燃焼室3内に流入する。また、吸気ポート5の上層流路Y内を流れる上層流も吸気弁6の開弁時に上層流路Y内を進んだ後、渦巻部7内で旋回し、図4において矢印T2で示されるように吸気弁開口部19の全体から分散して燃焼室3内に流入する。このように吸入空気が吸気弁開口部19の全体から流入させることによって吸入空気量を増大させることができる。即ち、上層流を旋回させないで燃焼室3内に流入させようとすると大部分の上層流は吸入空気流入通路部8とは反対側の吸気弁開口部のみから燃焼室3内に流入することになる。このことは実質的に吸気弁開口部の流路面積が小さくなっていることと同じであり、従って吸入空気量の増大は期待できない。   On the other hand, the upper layer flow flowing in the upper layer flow path Y advances in the upper layer flow path Y when the intake valve 6 is opened, and then swirls in the spiral portion 7 to open the intake valve opening as shown by an arrow T1 in FIG. Dispersed from the entire portion 19 and flows into the combustion chamber 3. Further, the upper layer flow flowing in the upper layer flow path Y of the intake port 5 also advances in the upper layer flow path Y when the intake valve 6 is opened, and then swirls in the spiral portion 7, as indicated by an arrow T2 in FIG. Then, it is dispersed from the whole intake valve opening 19 and flows into the combustion chamber 3. Thus, the amount of intake air can be increased by allowing the intake air to flow from the entire intake valve opening 19. That is, if the upper layer flow is caused to flow into the combustion chamber 3 without swirling, most of the upper layer flow flows into the combustion chamber 3 only from the intake valve opening on the side opposite to the intake air inflow passage portion 8. Become. This is substantially the same as the flow passage area of the intake valve opening being reduced, and therefore an increase in the intake air amount cannot be expected.

これに対して上層流に渦巻部7内で旋回流を与えると上層流は上述したように吸気弁開口部19の全体から分散して燃焼室3内に流入する。このことは吸気弁開口部19の流路面積が大きくなったことと同じであり、従って吸入空気量が増大するために充填効率が向上することになる。このように本発明において渦巻部7内で旋回流を生じさせるのは充填効率の向上のためであり、従来のようにスワールの発生のためではない。   On the other hand, when a swirl flow is given to the upper layer flow in the spiral portion 7, the upper layer flow is dispersed from the entire intake valve opening 19 and flows into the combustion chamber 3 as described above. This is the same as the flow passage area of the intake valve opening 19 is increased, and therefore the intake air amount is increased, so that the charging efficiency is improved. In this way, in the present invention, the swirl flow is generated in the spiral portion 7 for the purpose of improving the filling efficiency and not for the generation of swirl as in the prior art.

一方、吸入空気を渦巻部7内で旋回させつつ燃焼室3内に流入させると旋回している吸入空気流全体がそのままスワール流に移行していくかのように思える。しかしながらスワールの発生に寄与するのは旋回する吸入空気流のうちの燃焼室3の周辺方向に向かう一部の吸入空気流であり、従って吸入空気を旋回しつつ燃焼室3内に流入させても実際には吸入空気の一部しかスワールの発生に寄与しない。即ち、スワールを発生させるためには図4においてS1およびS2で示されるような燃焼室3の周辺方向に向かう強力な吸入空気流を発生させることが最も効果的である。   On the other hand, when the intake air is swirled in the spiral portion 7 and flows into the combustion chamber 3, it seems as if the swirled intake air flow is shifted to the swirl flow as it is. However, it is a part of the swirling intake air flow that is directed toward the periphery of the combustion chamber 3 that contributes to the generation of swirl. Therefore, even if the intake air is swirled and flows into the combustion chamber 3 Actually, only a part of the intake air contributes to the generation of the swirl. That is, in order to generate a swirl, it is most effective to generate a strong intake air flow toward the periphery of the combustion chamber 3 as indicated by S1 and S2 in FIG.

さて、図4に示す例では一対の吸入空気流S1およびS2が吸気弁6と反対側の、即ち排気弁20側の燃焼室3の周辺部において互いに正面衝突し、しかもこれら吸入空気流S1およびS2の強さは同じであるのでこれら吸入空気流S1およびS2によってスワールが生成せしめられることはない。また、上述したように渦巻部7から流入する吸入空気流のうちでスワールの発生に寄与する吸入空気流、即ち燃焼室3の周辺方向に向かう吸入空気流も互いに正面衝突するのでこの吸入空気流によってもスワールが生成せしめられることがない。従って図4に示す例ではスワールが生成しない。   Now, in the example shown in FIG. 4, the pair of intake air flows S1 and S2 collide with each other at the periphery of the combustion chamber 3 on the side opposite to the intake valve 6, that is, on the exhaust valve 20 side. Since the strength of S2 is the same, no swirl is generated by these intake air flows S1 and S2. Further, as described above, the intake air flow that contributes to the generation of swirl out of the intake air flow that flows in from the spiral portion 7, that is, the intake air flow toward the periphery of the combustion chamber 3 collides with each other. Will not generate a swirl. Therefore, the swirl is not generated in the example shown in FIG.

一方、前述したように下層流路Xは吸気弁開口部領域Zに向けてまっすぐに延びているので下層流は慣性でもって燃焼室3内に流入する。このように吸入空気流が慣性でもって燃焼室3内に供給されると、いわゆる慣性過給効果によって高い充填効率が得られる。   On the other hand, since the lower layer flow path X extends straight toward the intake valve opening region Z as described above, the lower layer flow flows into the combustion chamber 3 with inertia. Thus, when the intake air flow is supplied into the combustion chamber 3 with inertia, a high charging efficiency can be obtained by a so-called inertia supercharging effect.

図7および図8に別の実施例を示す。この実施例では一対の吸気ポート4,5のうちの片方の吸気ポート4の吸入空気流入通路部8の入口部に流量制御弁21が配置される。この実施例では流量制御弁21が全開しているときには図1から図6に示される実施例と同じであって一方の吸気ポート4の吸気弁開口部領域Zから燃焼室3の周辺方向に向け流入する下層流の強さと、他方の吸気ポート5の吸気弁開口部領域Zから燃焼室の周辺方向に向け流入する下層流の強さとが同じになるために燃焼室3内にはスワールが発生しない。   7 and 8 show another embodiment. In this embodiment, a flow control valve 21 is disposed at the inlet of the intake air inflow passage 8 of one of the pair of intake ports 4 and 5. In this embodiment, when the flow rate control valve 21 is fully opened, it is the same as the embodiment shown in FIGS. 1 to 6 and is directed from the intake valve opening region Z of one intake port 4 toward the periphery of the combustion chamber 3. Since the strength of the inflowing lower flow and the strength of the lower flow flowing in from the intake valve opening region Z of the other intake port 5 toward the periphery of the combustion chamber are the same, swirl is generated in the combustion chamber 3 do not do.

一方、流量制御弁21が閉弁せしめられたときには一方の吸気ポート4の吸気弁開口部領域Zから燃焼室3の周辺方向に向け流入する下層流に比べて、他方の吸気ポート5の吸気弁開口部領域Zから燃焼室3の周辺方向に向け流入する下層流が強くなるために燃焼室3内にスワールが発生せしめられる。   On the other hand, when the flow control valve 21 is closed, the intake valve of the other intake port 5 is compared with the lower flow that flows from the intake valve opening region Z of one intake port 4 toward the periphery of the combustion chamber 3. Since the lower layer flow flowing from the opening region Z toward the periphery of the combustion chamber 3 becomes stronger, a swirl is generated in the combustion chamber 3.

また、流量制御弁21が全閉したときには吸気ポート5のみから吸入空気が燃焼室3内に供給される。このときには吸気ポート4内から燃焼室3内に燃焼室3の周辺方向に向けてまっすぐに流入する下層流によって燃焼室3内に強力なスワールが発生せしめられ、渦巻部7内で旋回した後に燃焼室3内に流入する上層流によって吸入空気量が増大せしめられる。斯くしてこのときでも高い充填効率を図りつつ強力なスワールが発生する。   In addition, when the flow control valve 21 is fully closed, intake air is supplied into the combustion chamber 3 only from the intake port 5. At this time, a strong swirl is generated in the combustion chamber 3 by the lower flow that flows straight from the intake port 4 into the combustion chamber 3 toward the periphery of the combustion chamber 3, and the combustion is performed after swirling in the spiral portion 7. The amount of intake air is increased by the upper layer flow flowing into the chamber 3. Thus, even at this time, a strong swirl is generated while achieving high filling efficiency.

図9および図10は、図7および図8において流量制御弁21が閉弁、特に全閉したときの充填効率を高めるようにした実施例を示している。即ち、この実施例では図9および図10に示されるように流量制御弁22が下層流の流量を制御するために下層流の流れる下層流路X内に配置されている。   9 and 10 show an embodiment in which the charging efficiency is improved when the flow rate control valve 21 is closed in FIG. 7 and FIG. That is, in this embodiment, as shown in FIGS. 9 and 10, the flow control valve 22 is disposed in the lower layer flow path X in which the lower layer flow flows in order to control the flow rate of the lower layer flow.

図4においてS1で示される吸入空気流の強さは吸気ポート4の下層流路X内を流れる下層流の流量に支配されるので図9および図10に示されるように流量制御弁22によって下層流の流量を制御することによりスワールの強さを制御することができる。また、この実施例では充填効率に寄与する上層流が常時流通しているので充填効率が高められる。   In FIG. 4, the strength of the intake air flow indicated by S <b> 1 is governed by the flow rate of the lower flow flowing in the lower flow channel X of the intake port 4, so that the lower flow rate control valve 22 causes the lower flow rate as shown in FIGS. 9 and 10. By controlling the flow rate of the flow, the strength of the swirl can be controlled. Further, in this embodiment, since the upper layer flow that contributes to the filling efficiency is constantly flowing, the filling efficiency is increased.

次に本発明を直列配置された少くとも4気筒以上の偶数気筒を具備する内燃機関に適用した場合について説明する。図11に一例として各気筒が図7および図8に示される一対の吸気ポート4,5を具えている直列4気筒内燃機関30を示す。なお、図11において31は吸気マニホルド、32は吸気マニホルド31の中央部に位置する吸入空気入口部、33は排気マニホルド、34は排気マニホルド33内に排出された排気ガスを吸入空気入口部32内に再循環するための排気ガス再循環(以下、EGRと称す)通路、35はEGR制御弁を夫々示す。また、1番から4番気筒を#1から#4で示す。   Next, the case where the present invention is applied to an internal combustion engine having at least four or more even-numbered cylinders arranged in series will be described. FIG. 11 shows an in-line four-cylinder internal combustion engine 30 in which each cylinder has a pair of intake ports 4 and 5 shown in FIGS. 7 and 8 as an example. In FIG. 11, 31 is an intake manifold, 32 is an intake air inlet portion located at the center of the intake manifold 31, 33 is an exhaust manifold, and 34 is exhaust gas discharged into the exhaust manifold 33 in the intake air inlet portion 32. The exhaust gas recirculation (hereinafter referred to as EGR) passages 35 for recirculation are respectively indicated by EGR control valves. The first to fourth cylinders are indicated by # 1 to # 4.

図11に示される例では各気筒が夫々右旋回スワール発生用吸気ポート4と左旋回スワール発生用吸気ポート5を具備する。前述したようにこれら吸気ポート4,5は対称的ではあるが同じ形状を有しており、従ってスワールを生成するためにはどちらの吸気ポート4,5を用いても同じである。即ち、スワールの生成という観点からみると流量制御弁21をどちらの吸気ポート4,5に配置しても同じである。従って、流量制御弁21をどちらの吸気ポート4,5に配置するかは別の観点からみて有利なように定めることができる。   In the example shown in FIG. 11, each cylinder includes a right-turn swirl generating intake port 4 and a left-turn swirl generating intake port 5. As described above, the intake ports 4 and 5 are symmetrical but have the same shape. Therefore, either intake port 4 or 5 is the same to generate a swirl. That is, from the viewpoint of swirl generation, the flow rate control valve 21 is the same regardless of which intake port 4 or 5 is disposed. Therefore, which intake port 4 or 5 the flow control valve 21 is arranged in can be determined advantageously from another viewpoint.

図11に示す例では流量制御弁21が閉弁したときに各気筒内に供給される吸入ガス量を均一にするという観点から流量制御弁21の配置が定められている。即ち、図11に示す例では吸気マニホルド31の中央部に位置する吸入空気入口部32から各吸気ポート4,5内に吸入ガスが分配供給される。この場合、例えば1番気筒#1と2番気筒#2に着目するといずれかの吸気ポート4,5を流量制御弁21によって閉鎖した場合にあらゆる組合せのうちで隣接する吸気ポート4,5内を吸入ガスが流通するようにしたとき、即ち1番気筒#1の吸気ポート4と2番気筒#2の吸気ポート5内を吸入ガスが流通するようにしたときに各気筒#1、#2に流入する吸入ガス量が均一となる。   In the example shown in FIG. 11, the arrangement of the flow control valve 21 is determined from the viewpoint of making the intake gas amount supplied into each cylinder uniform when the flow control valve 21 is closed. That is, in the example shown in FIG. 11, the intake gas is distributed and supplied into the intake ports 4 and 5 from the intake air inlet 32 located at the center of the intake manifold 31. In this case, for example, when focusing on the first cylinder # 1 and the second cylinder # 2, when any one of the intake ports 4 and 5 is closed by the flow control valve 21, the inside of the adjacent intake ports 4 and 5 among all combinations When intake gas is allowed to flow, that is, when intake gas is allowed to flow through the intake port 4 of the first cylinder # 1 and the intake port 5 of the second cylinder # 2, the cylinders # 1 and # 2 The amount of inhaled gas flowing in is uniform.

一方、3番気筒#3と4番気筒#4に着目した場合にも同じことが言える。即ち、いずれかの吸気ポート4,5を流量制御弁21によって閉鎖した場合にあらゆる組合せのうちで隣接する吸気ポート4,5内を吸入ガスが流通するようにしたとき、即ち3番気筒#3の吸気ポート4と4番気筒#4の吸気ポート5内を吸入ガスが流通するようにしたときに各気筒#3、#4に流入する吸入ガス量が均一となる。更に、このときEGR通路34から吸入空気入口部32内に供給されたEGRガスも各気筒#1、#2、#3、#4に均一に分配される。   On the other hand, the same can be said when focusing on the third cylinder # 3 and the fourth cylinder # 4. That is, when any one of the intake ports 4 and 5 is closed by the flow control valve 21, when the intake gas is allowed to flow through the adjacent intake ports 4 and 5 among all combinations, that is, the third cylinder # 3 When the intake gas flows through the intake port 4 and the intake port 5 of the fourth cylinder # 4, the amount of intake gas flowing into each cylinder # 3, # 4 becomes uniform. Further, at this time, the EGR gas supplied from the EGR passage 34 into the intake air inlet 32 is also uniformly distributed to the cylinders # 1, # 2, # 3, and # 4.

このような流量制御弁21の配置について一般的に表現すると、隣接する気筒#1、#2間では中央側に位置する気筒#2と端側に位置する気筒#1では発生するスワールの旋回方向が異なる吸気ポート4,5内に夫々流量制御弁21が配置されており、隣接する気筒#3、#4間では中央側に位置する気筒#3と端側に位置する気筒#4では発生するスワールの旋回方向が異なる吸気ポート5,4内に夫々流量制御弁21が配置されているということになる。   Generally speaking, the arrangement of the flow rate control valve 21 can be expressed by swirling direction of swirl generated in the cylinder # 2 located on the center side and the cylinder # 1 located on the end side between the adjacent cylinders # 1 and # 2. The flow rate control valve 21 is disposed in each of the intake ports 4 and 5 that are different from each other, and is generated between the adjacent cylinders # 3 and # 4 in the cylinder # 3 located on the center side and in the cylinder # 4 located on the end side. This means that the flow control valves 21 are arranged in the intake ports 5 and 4 having different swirling directions.

吸気ポートの平面図である。It is a top view of an intake port. 図1のII−II線に沿ってみた吸気ポートの断面図である。It is sectional drawing of the intake port seen along the II-II line of FIG. 図1に示される吸気ポートの断面図であって、(A),(B),(C)は夫々図1のA−A線、B−B線、C−C線に沿ってみた断面図である。FIG. 2 is a cross-sectional view of the intake port shown in FIG. 1, wherein (A), (B), and (C) are cross-sectional views taken along lines AA, BB, and CC, respectively, in FIG. It is. 図1の拡大図である。It is an enlarged view of FIG. 図解的に表した吸気ポートの斜視図である。It is a perspective view of the intake port represented graphically. 下層流路Xおよび上層流路Yを示す図である。It is a figure which shows the lower layer flow path X and the upper layer flow path Y. 吸気ポートの別の実施例を示す平面図である。It is a top view which shows another Example of an intake port. 図2と同じ位置における断面を示す図7の吸気ポートの断面図である。FIG. 8 is a cross-sectional view of the intake port of FIG. 7 showing a cross section at the same position as in FIG. 2. 吸気ポートの更に別の実施例を示す平面図である。It is a top view which shows another Example of an intake port. 図2と同じ位置における断面を示す図9の吸気ポートの断面図である。FIG. 10 is a cross-sectional view of the intake port of FIG. 9 showing a cross-section at the same position as FIG. 2. 内燃機関の平面図である。It is a top view of an internal combustion engine.

符号の説明Explanation of symbols

3 燃焼室
4,5 吸気ポート
6 吸気弁
7 渦巻部
8 吸入空気流入通路部
9 周壁面
10 上壁面
11 下端出口部
12 第1の側壁面
13 第2の側壁面
14a 第1の上壁面
14b 第2の上壁面
15 底壁面
18 弁座
19 吸気弁開口部
20 排気弁
21,22 流量制御弁
X 上層流路
Y 下層流路
Z 吸気弁開口部領域
DESCRIPTION OF SYMBOLS 3 Combustion chamber 4,5 Intake port 6 Intake valve 7 Spiral part 8 Intake air inflow passage part 9 Peripheral wall surface 10 Upper wall surface 11 Lower end outlet part 12 1st side wall surface 13 2nd side wall surface 14a 1st upper wall surface 14b 1st 2 Upper wall surface 15 Bottom wall surface 18 Valve seat 19 Intake valve opening 20 Exhaust valve 21, 22 Flow control valve X Upper layer flow path Y Lower flow path Z Intake valve opening area

Claims (8)

シリンダ軸線を含む対称平面に関して対称的な形状を有する一対の吸気ポートを具備した内燃機関の吸気装置において、各吸気ポートが夫々吸気弁の軸線回りに形成された渦巻部と、該渦巻部から接線状に延びる吸入空気流入通路部とにより構成されており、該渦巻部が吸気弁の軸線回りを延びる周壁面と、上壁面と、吸気弁により開閉される下端出口部とにより画定されており、該吸入空気流入通路部が渦巻部の周壁面に接線状に接続される第1の側壁面と、吸気弁の弁軸に向けて渦巻部の周壁面まで延びる第2の側壁面と、上壁面と、底壁面とにより画定されており、上記渦巻部の下端出口部が燃焼室頂面の周縁部に配置されると共に、上記第1の側壁面が燃焼室の周縁部に対して接線状に延びるように吸入空気流入通路部が配置されており、吸気弁全開時に吸気弁と吸気弁の弁座間に形成される環状の吸気弁開口部のうちで、シリンダ軸線と吸気弁弁体の中心部とを含む基準平面に対し吸入空気流入通路部と反対側に形成される吸気弁開口部領域が存在しており、上記吸入空気流入通路部内に吸入空気流入通路部の下方を流れる下層流と吸入空気流入通路部の上方を流れる上層流が発生せしめられ、該下層流は吸気弁開弁時に上記吸気弁開口部領域に向け流れた後に吸気弁開口部領域から燃焼室内に燃焼室の周辺方向に向け流入し、上記上層流は吸気弁開弁時渦巻部内で旋回した後に吸気弁開口部全体から分散して燃焼室内に流入する内燃機関の吸気装置。   In an intake device of an internal combustion engine having a pair of intake ports having a symmetrical shape with respect to a symmetry plane including a cylinder axis, each intake port is formed with a spiral portion formed around the axis of the intake valve, and a tangent line from the spiral portion An intake air inflow passage portion extending in a shape, and the spiral portion is defined by a peripheral wall surface extending around the axis of the intake valve, an upper wall surface, and a lower end outlet portion opened and closed by the intake valve, A first side wall surface in which the intake air inflow passage portion is tangentially connected to the peripheral wall surface of the spiral portion; a second side wall surface extending to the peripheral wall surface of the spiral portion toward the valve shaft of the intake valve; and an upper wall surface And a bottom wall surface, the lower end outlet of the spiral portion is disposed at the peripheral edge of the combustion chamber top surface, and the first side wall surface is tangential to the peripheral edge of the combustion chamber. An intake air inflow passage is arranged to extend Of the annular intake valve opening formed between the intake valve and the valve seat of the intake valve when the intake valve is fully opened, the intake air inflow passage portion with respect to a reference plane including the cylinder axis and the central portion of the intake valve valve body There is an intake valve opening region formed on the opposite side, and a lower flow that flows below the intake air inflow passage and an upper flow that flows above the intake air inflow passage are generated in the intake air inflow passage. The lower flow flows toward the intake valve opening region when the intake valve is opened, and then flows from the intake valve opening region into the combustion chamber toward the periphery of the combustion chamber. An intake device for an internal combustion engine that is dispersed from the entire intake valve opening and flows into the combustion chamber after turning in the spiral portion. 上記吸入空気流入通路部の上壁面を吸入空気流入通路部の少くとも下流側において、上記第1の側壁面側に位置しかつ渦巻部の上壁面に滑らかに接続する第1の上壁面と、上記第2の側壁面側に位置しかつ該第1の上壁面よりも上記底壁面側に位置する第2の上壁面とにより構成し、上記下層流が流れる下層流路が上記第1の側壁面の下方部、上気第2の側壁面、上記第2の上壁面および上記底壁面によって画定され、上記上層流が流れる上層流路が、下層流路の上方であって下層流路と上記第1の上壁面間に形成され、上記第1の側壁面の下方部、上記第2の側壁面、上記第2の上壁面および上記底壁面を該下層流路が上記吸気弁開口部領域に向けてまっすぐに延びるように構成した請求項1に記載の内燃機関の吸気装置。   A first upper wall surface that is located on the first side wall surface side at least downstream of the intake air inflow passage portion and smoothly connected to the upper wall surface of the spiral portion; And a second upper wall surface positioned on the second side wall surface side and positioned on the bottom wall surface side with respect to the first upper wall surface, and the lower layer flow path through which the lower layer flow flows is the first side The upper layer flow path defined by the lower portion of the wall surface, the upper air second side wall surface, the second upper wall surface, and the bottom wall surface and through which the upper layer flow flows is above the lower layer flow path and the lower flow path and the above The lower channel is formed between the first upper wall surface, the lower portion of the first side wall surface, the second side wall surface, the second upper wall surface, and the bottom wall surface in the intake valve opening region. The intake device for an internal combustion engine according to claim 1, wherein the intake device is configured to extend straight toward the vehicle. 上記第2の上壁面は上記基準平面に対し該第2の上壁面と反対側に位置する吸気弁開口部の上端縁に向けて延びている請求項2に記載の内燃機関の吸気装置。   3. The intake device for an internal combustion engine according to claim 2, wherein the second upper wall surface extends toward an upper end edge of an intake valve opening located on the opposite side of the second upper wall surface with respect to the reference plane. 上記吸気弁開口部領域は上記基準平面と燃焼室周縁部側の吸気弁開口部との交差部から渦巻部内における吸入空気流の旋回方向にほぼ90度の範囲である請求項1に記載の内燃機関の吸気装置。   2. The internal combustion engine according to claim 1, wherein the intake valve opening region is in a range of approximately 90 degrees in the swirling direction of the intake air flow in the swirl portion from the intersection of the reference plane and the intake valve opening on the peripheral side of the combustion chamber. Engine intake system. 上記一対の吸気ポートのうちの一方の吸気ポートの吸入空気流入通路部内に流量制御弁が配置されており、該流量制御弁が全開しているときには一方の吸気ポートの吸気弁開口部領域から燃焼室の周辺方向に向け流入する下層流の強さと、他方の吸気ポートの吸気弁開口部領域から燃焼室の周辺方向に向け流入する下層流の強さとが同じになるために燃焼室内にスワールが発生せず、該流量制御弁が閉弁せしめられたときには一方の吸気ポートの吸気弁開口部領域から燃焼室の周辺方向に向け流入する下層流に比べて、他方の吸気ポートの吸気弁開口部領域から燃焼室の周辺方向に向け流入する下層流が強くなるために燃焼室内にスワールが発生せしめられる請求項1に記載の内燃機関の吸気装置。   A flow rate control valve is disposed in the intake air inflow passage portion of one intake port of the pair of intake ports. When the flow rate control valve is fully open, combustion occurs from the intake valve opening region of one intake port. Since the strength of the lower flow flowing toward the periphery of the chamber is the same as the strength of the lower flow flowing from the intake valve opening region of the other intake port toward the periphery of the combustion chamber, swirl is generated in the combustion chamber. When the flow rate control valve is closed without being generated, the intake valve opening of the other intake port is compared with the lower flow that flows from the intake valve opening region of one intake port toward the periphery of the combustion chamber. 2. The intake device for an internal combustion engine according to claim 1, wherein a swirl is generated in the combustion chamber because the lower flow flowing in from the region toward the periphery of the combustion chamber becomes stronger. 上記流量制御弁は上記下層流の流量を制御するために該下層流の流れる下層流路内に配置されている請求項5に記載の内燃機関の吸気装置。   6. The intake device for an internal combustion engine according to claim 5, wherein the flow rate control valve is disposed in a lower flow path through which the lower flow flows in order to control a flow rate of the lower flow. 内燃機関が直列配置された少くとも4気筒以上の偶数気筒を具備すると共に各気筒が夫々右旋回スワール発生用吸気ポートと左旋回スワール発生用吸気ポートからなる上記一対の吸気ポートを具備しており、これら各気筒の一対の吸気ポートに対して共通の吸気マニホルドが設けられていると共に吸気マニホルドの中央部から各吸気ポート内に吸入ガスが分配供給され、上記流量制御弁が閉弁したときに各気筒内に供給される吸入ガス量が均一となるように隣接する気筒間において中央側に位置する気筒と端側に位置する気筒では発生するスワールの旋回方向が異なる吸気ポート内に夫々流量制御弁が配置されている請求項5に記載の内燃機関の吸気装置。   The internal combustion engine has at least four or more even-numbered cylinders arranged in series, and each cylinder has the pair of intake ports each including a right-turn swirl intake port and a left-turn swirl intake port. When a common intake manifold is provided for the pair of intake ports of each cylinder, and intake gas is distributed and supplied from the central portion of the intake manifold into each intake port, and the flow control valve is closed. In order to ensure that the amount of intake gas supplied into each cylinder is uniform, between the adjacent cylinders, the cylinders located on the center side and the cylinders located on the end side have different flow rates in the intake ports with different swirl turning directions. 6. The intake device for an internal combustion engine according to claim 5, wherein a control valve is arranged. 隣接する気筒間において中央側に位置する気筒では中央側の吸気ポート内に、端側に位置する気筒では端側の吸気ポート内に夫々流量制御弁が配置されている請求項7に記載の内燃機関の吸気装置。   8. The internal combustion engine according to claim 7, wherein a flow control valve is disposed in a central intake port in a cylinder located between the adjacent cylinders in a central side, and in an end intake port in a cylinder located in an end side. Engine intake system.
JP2006058090A 2006-03-03 2006-03-03 Intake device for internal combustion engine Pending JP2007231916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006058090A JP2007231916A (en) 2006-03-03 2006-03-03 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006058090A JP2007231916A (en) 2006-03-03 2006-03-03 Intake device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007231916A true JP2007231916A (en) 2007-09-13

Family

ID=38552749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058090A Pending JP2007231916A (en) 2006-03-03 2006-03-03 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007231916A (en)

Similar Documents

Publication Publication Date Title
JPH07119472A (en) Intake device for engine
JP4277857B2 (en) Intake port of internal combustion engine
US6904891B2 (en) Intake system of internal combustion engine
JP2007231916A (en) Intake device for internal combustion engine
JP2004316609A (en) Internal combustion engine having intake port for forming tumble flow
JP4887963B2 (en) Intake device for internal combustion engine
JP2007198303A (en) Intake port of internal combustion engine
JP4765819B2 (en) Intake port of internal combustion engine
JPS62159729A (en) Intake air port for internal combustion engine
JP2006299910A (en) Variable intake device
JP4375060B2 (en) Intake device for internal combustion engine
JP4650333B2 (en) Intake port of internal combustion engine
JP5489869B2 (en) Intake device for internal combustion engine
JP2008057374A (en) Intake device for internal combustion engine
JP2007297988A (en) Intake port for internal combustion engine
JPH08158873A (en) Multiple valve suction type engine
JP2007231921A (en) Intake port for internal combustion engine
JP2017133413A (en) Intake structure of internal combustion engine
JPH08170537A (en) Air intake device for engine
JP4516772B2 (en) Exhaust gas introduction device in internal combustion engine
JP4162189B2 (en) Exhaust gas recirculation system
JPH04143417A (en) Intake port for internal combustion engine
JPH0842390A (en) Suction port structure for internal combustion engine
JP2005240666A (en) Intake device for internal combustion engine
JP2007162516A (en) Intake device for internal combustion engine