JP4886473B2 - 撮像装置および撮像方法 - Google Patents

撮像装置および撮像方法 Download PDF

Info

Publication number
JP4886473B2
JP4886473B2 JP2006300344A JP2006300344A JP4886473B2 JP 4886473 B2 JP4886473 B2 JP 4886473B2 JP 2006300344 A JP2006300344 A JP 2006300344A JP 2006300344 A JP2006300344 A JP 2006300344A JP 4886473 B2 JP4886473 B2 JP 4886473B2
Authority
JP
Japan
Prior art keywords
lens
image
covariance
imaging
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006300344A
Other languages
English (en)
Other versions
JP2008118442A (ja
Inventor
公祐 入江
健吉 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006300344A priority Critical patent/JP4886473B2/ja
Publication of JP2008118442A publication Critical patent/JP2008118442A/ja
Application granted granted Critical
Publication of JP4886473B2 publication Critical patent/JP4886473B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)

Description

本発明は、被写体像を撮像する撮像装置、および、そのような撮像装置が実行する撮像方法に関する。
従来、被写体光をCCD撮像素子(以下、CCDと称する)で受光して撮像する撮像装置が広範に用いられている。このような撮像装置は、被写体光を結像させる光学系にフォーカスレンズが備えられており、撮像の際には、このフォーカスレンズを合焦位置まで自動的に動かすオートフォーカス機能を有しているものが多い。
CCDを備えた撮像装置では、光学系によって結像された被写体光が受光され、その被写体光の結像像を表現した画像信号が撮像によって生成されるが、以下では、被写体光の結像像を被写体像と呼び、撮像で得られる画像信号が表す画像を、この被写体像と区別して撮像画像と呼ぶ。撮像画像を表わす画像信号は、撮像画像を構成する各画素の輝度を表す画素値からなる。このとき、フォーカスレンズが合焦位置から離れており被写体像がぼけている場合には、この被写体像の輝度が全体的に均された状態になるために、撮像画像における多くの画素の画素値が平均値に近いので画素値の分散が小さくなる。一方、フォーカスレンズが合焦位置に近く鮮明な被写体像が結像されている場合には、この被写体像中には被写体に応じて様々な輝度が分布することになり、撮像画像における画素値の分散が大きくなる。このように、撮像画像における画素値の分散は、フォーカスレンズの合焦状態を判断するためのパラメータとして有効に利用できることから、この分散が最大値となる位置までフォーカスレンズを動かすことで、このフォーカスレンズを合焦位置まで自動的に動かす技術が提案されている(例えば、特許文献1参照。)。
ここで、撮像で得られる画像信号にはランダムノイズが含まれることがあり、画素値がばらついてしまって、合焦位置でもないのに分散が大きくなり、その結果、フォーカスレンズが合焦位置から離れているにも係わらず誤って合焦状態にあると検出してしまうことがある。そこで、このようなランダムノイズの、分散に対する寄与分を算出して、その算出した寄与分を減じた分散に基づいてフォーカスレンズを動かす技術が提案されている(例えば、特許文献2参照。)。
特開平3−50513号公報 特開2003−501192号公報
ところで、上記のCCDは微小な受光部分が2次元的に配列されたものであるが、これらの受光部分の中には、製造時から損傷しているいわゆる点欠陥が存在していることが知られている。このような点欠陥の存在は、点欠陥での受光で得られた画素値が他の正常な受光部分での受光で得られた画素値とは大きく異なった異常値となることから、分散の増大を招き誤った合焦状態が検出される原因になる。このような点欠陥に起因する画素値のばらつきは、ランダムノイズに起因する一様なばらつきとは異なるため、上記の特許文献2に示されている技術では、このような点欠陥に起因する合焦状態の誤検出を防ぐことは困難である。
本発明は、上記事情に鑑み、高精度の合焦状態で撮像することができる撮像装置、および、そのような撮像装置が実行する撮像方法を提供することを目的とする。
上記目的を達成する本発明の撮像装置は、被写体光を通過させ、1つ以上のレンズの作用で結像させる光学系と、
上記光学系を通過して結像された被写体光の色を、複数の画素それぞれについて、所定の複数色それぞれに対応する複数の信号成分の組合せで表現した、その複数の画素からなる画像を表わす画像信号を生成する撮像部と、
上記撮像部で生成される画像信号が表す画像を構成する複数の画素について、上記複数の信号成分のうちの所定の2つの信号成分を用いた共分散を算出する共分散算出部と、
上記レンズを、上記光学系の光軸に沿って、上記共分散が増加する方向に移動させるレンズ移動部とを備えたことを特徴とする。
本発明の撮像装置によれば、上記レンズが2つの信号成分についての共分散が増加する方向に動かされる。この共分散は、基本的に被写体光の結像像(被写体像)が鮮明であるほど大きな値となるため、上記レンズは、このように動かされることで合焦位置に近づくこととなる。この共分散は、2つのうちどちらか一方の信号成分のばらつきだけが増えても変化せず、両方の信号成分のばらつきが互いに同じように増えると増加する。ここで、画像信号に含まれるランダムノイズは、画像信号をなす信号成分間でほとんど相関がないので、共分散を用いることで、このランダムノイズの影響を回避することができる。また、微小な受光部分が2次元的に配列されてなるCCDの撮像素子における、製造時から損傷している受光部分であるいわゆる点欠陥の影響についても、この共分散を用いることで次のように回避することができる。上記画像信号を生成する方法としては、被写体像を例えばRGB3色に色分解し、3つのCCDそれぞれで各色の被写体像を受光することで画像信号を生成する方法があり、この方法では、1つの画素についてのRGB3色の信号成分の組合せは、3つのCCDの間で互いに対応する位置にある3つの受光部分の組によって生成される。また、被写体像を1つのCCDで受光する方法もあり、この方法では、CCDを構成する複数の受光素子を、互いに隣接し各々がRGB3色それぞれの色の信号成分を生成する3つの受光素子の組に分け、1つの画素についてのRGB3色の信号成分の組合せは、これら3つの受光素子の組によって生成される。いずれの方法でも、ある画素について、ある色の信号成分を生成する受光部分は、他の色の信号成分を生成する受光部分とは物理的に異なっており、それらの受光部分の両方が点欠陥である確立は低い。この結果、点欠陥による信号成分の変動は、信号成分間でほとんど相関がないので、この点欠陥の影響についても、共分散を用いることで回避することができる。本発明の撮像装置によれば、この共分散に基づいて、上記レンズが合焦位置に近づけられることから、ランダムノイズや点欠陥の影響をほとんど受けずに高精度の合焦状態で撮像することができる。
ここで、本発明の撮像装置において、「この撮像装置が撮像するときの感度を設定する感度設定部と、
上記複数の画素について、上記複数種類の信号成分のうちの所定の1つの信号成分を用いた分散を算出する分散算出部とを備え、
上記レンズ移動部が、上記レンズを、上記光学系の光軸に沿って、上記共分散が増加する方向に移動させる第1モードと、そのレンズを、その光学系の光軸に沿って、上記分散が増加する方向に移動させる第2モードとを有し、上記感度設定部で設定された感度が所定感度を超えている場合にそのレンズを上記第1モードで移動させ、その感度設定部で取得された感度が所定感度以下である場合にそのレンズを上記第2モードで移動させるものであることを特徴とする」という形態は好ましい形態である。
上記共分散を求めるための演算は2つの信号成分についての演算となるため、1つの信号成分についての演算で足りる分散を求めるための演算に比べると手間や時間を要する。上記の好ましい形態の撮像装置によれば、画像信号中のノイズレベルが高く、分散による合焦状態の検出が困難となる可能性が高い高感度での撮像時にのみ共分散が使われるので効率的である。
また、本発明の撮像装置において、「上記撮像部は、交換可能な撮像素子が、その撮像素子が有する点欠陥の個数が記憶されたメモリと共に搭載されて、その撮像素子を使って上記画像信号を生成するものであり、
上記メモリに記憶されている上記点欠陥の数を取得する点欠陥数取得部と
上記複数の画素について、上記複数種類の信号成分のうちの所定の1つの信号成分を用いた分散を算出する分散算出部とを備え、
上記レンズ移動部が、上記レンズを、上記光学系の光軸に沿って、上記共分散が増加する方向に移動させる第1モードと、そのレンズを、その光学系の光軸に沿って、上記分散が増加する方向に移動させる第2モードとを有し、上記点欠陥数取得部で取得された点欠陥の数が所定数を超えている場合にそのレンズを上記第1モードで移動させ、その点欠陥数取得部で取得された点欠陥の数が所定数以下である場合にそのレンズを上記第2モードで移動させるものである」という形態も好ましい形態である。
この好ましい形態の撮像装置によれば、搭載された撮像素子に点欠陥が多く含まれており、分散による合焦状態の検出が困難となる可能性が高いときにのみ共分散が使われるので効率的である。
また、本発明の撮像装置において、「上記撮像部の温度を直接あるいは間接に検出する温度検出部と、
上記複数の画素について、上記複数種類の信号成分のうちの所定の1つの信号成分を用いた分散を算出する分散算出部とを備え、
上記レンズ移動部が、上記レンズを、上記光学系の光軸に沿って、上記共分散が増加する方向に移動させる第1モードと、そのレンズを、その光学系の光軸に沿って、上記分散が増加する方向に移動させる第2モードとを有し、上記温度検出部で検出された温度が所定温度を超えている場合にそのレンズを上記第1モードで移動させ、その温度検出部で検出された温度が所定温度以下である場合にそのレンズを上記第2モードで移動させるものである」という形態も好ましい形態である。
例えばCCD等の撮像素子における点欠陥は、周辺温度が高まるにつれ顕在化し、撮像画像に点状のキズ等が現れやすくなることが知られている。この好ましい形態の撮像装置によれば、撮像素子の温度が高く、その結果、撮像画像に点状のキズ等が現れやすく、分散がこのキズの影響を受けることにより合焦状態の検出が困難となる可能性が高いときにのみ共分散が使われるので効率的である。
また、上記目的を達成する本発明の撮像方法は、被写体光の画像を撮像する撮像装置が実行する撮像方法において、
被写体光を通過させ、1つ以上のレンズの作用で結像させる光学系を通過して結像された被写体光の色を、複数の画素それぞれについて、所定の複数色それぞれに対応する複数の信号成分の組合せで表現した、その複数の画素からなる画像を表わす画像信号を生成する撮像過程と、
上記撮像過程で生成される画像信号が表す画像を構成する複数の画素について、上記複数の信号成分のうちの所定の2つの信号成分を用いた共分散を算出する共分散算出過程と、
上記レンズを、上記光学系の光軸に沿って、上記共分散が増加する方向に移動させるレンズ移動過程とを有したことを特徴とする。
これら本発明の撮像方法によれば、高精度の合焦状態で撮像することができる。
尚、本発明の撮像方法については、ここではその基本形態のみを示すに止めるが、これは単に重複を避けるためであり、本発明の撮像方法には、上記の基本形態のみではなく、前述した撮像装置の好ましい形態に対応する形態が含まれる。
以上、説明したように、本発明によれば、高精度の合焦状態で撮像することができる。
以下図面を参照して本発明の第1から第4までの各実施形態を説明する。
図1は、本発明の第1から第4までの各実施形態である各デジタルカメラに共通の外観斜視図である。
図1に示すデジタルカメラの前面中央部には、フォーカスレンズを含む撮像レンズ11を内部に備えたズーム鏡胴12が備えられている。また、このデジタルカメラの前面上部には、撮像に同期してフラッシュを発するフラッシュ発光装置13と、光学式ファインダ対物窓14とが備えられている。また、このデジタルカメラの前面左側には、スライド式の電源スイッチ15が備えられている。さらに、このデジタルカメラの上面には、レリーズボタン16が備えられている。
以下、本発明の第1実施形態について説明する。
図2は、本発明の第1実施形態であるデジタルカメラの回路構成を示すブロック図である。
図2示すデジタルカメラ1には、前述した撮像レンズ11を構成するズームレンズ21およびフォーカスレンズ22と、絞り径を多段階に調節可能なアイリス23と、ズームレンズ21とフォーカスレンズ22を経由して結像された被写体像を受光してアナログ信号を生成するCCD撮像素子(以下、CCDと称する)24が備えられている。ここで、このCCD24は、微小な受光部分が2次元的に配列されたものであり、互いに隣接する3個の受光部分が1画素に対応すると共に、それら3個の受光部分それぞれが、不図示のフィルタを透過したR(レッド)、G(グリーン)、B(ブルー)3色それぞれの被写体光を受光する。そして、RGB各色の光を受光する各受光部分において、各色のアナログの信号成分が生成されて、各画素の色をRGB3色の信号成分の組合せで表現するアナログ信号が生成される。
また、このデジタルカメラ1には、CCD24での受光や画像信号の読出し等についての制御を行う読出回路25が備えられている。この読出回路25は、CCD24での受光タイミングや画像信号の読出しタイミング等を制御するタイミングジェネレータと、CCD24から読み出したアナログ信号をこのデジタルカメラ1の感度に応じて増幅する増幅回路と、その増幅済みのアナログ信号をデジタルの画像信号に変換するA/D変換回路とで構成されている。また、このデジタルカメラ1には、読出回路25からのデジタルの画像信号をバスライン50に伝達する画像入力コントローラ26と、バスライン50を介して入力されたデジタルの画像信号を輝度(Y)と色(C)とで表わされるYC信号に変換する画像信号処理回路27とが備えられている。
さらに、このデジタルカメラ1には、バスライン50を介して入力されたYC信号を圧縮処理する圧縮処理回路28と、バスライン50を介して入力されたYC信号をNTSC(National TV Standards Committee)信号に変換するビデオエンコーダ29が備えられている。ビデオエンコーダ29から出力されたNTSC信号は、液晶ディスプレイ(以下、LCDと称する)30に供給されてそのLCD30に画像が表示される。
また、デジタルカメラ1には、このデジタルカメラ1全体の制御を行うCPU31と、ズームレンズ21を駆動するモータドライバ32と、アイリス23を駆動するモータドライバ33と、フォーカスレンズ22を駆動するモータドライバ34と、図1にも示すレリーズボタン16が備えられている。
さらに、このデジタルカメラ1には、各種時間を計測するためのタイマ36、RGB3色の信号成分で構成されるデジタルの画像信号に基づいて、R色の信号成分とG色の信号成分とについての後述の共分散を算出する共分散演算回路37、その算出された共分散に基づいて合焦状態を検出することで、フォーカスレンズ22を合焦位置まで動かすAF検出回路38、デジタルの画像信号に基づいて被写体像の明るさである露出量(以下、EV値と称する)やホワイトバランスを検出するAE&AWB検出回路39、そのAE&AWB検出回路39で検出されたEV値に基づいて露出制御を行う露出制御回路40、このデジタルカメラ1の制御に使われる各種制御プログラムやデジタルの画像信号が一時的に記憶されるメモリ(SDRAM)41、圧縮処理回路28で圧縮された後の画像信号を可搬型記録媒体である記録メディア100に記録するためのメディアコントローラ42が備えられている。
さらに、このデジタルカメラ1には、レリーズボタン16の押下に応じて撮像を行う撮像モードと記録メディア100に記録されている撮像済みの画像を記録メディア100から読み出してLCD30に表示する再生モードとの切り替えや、ズームレンズ21の繰出しの指示等を行うための各種スイッチからなるスイッチ群43、図1にも示す電源スイッチ15、その電源スイッチ15のオン/オフにより制御され各部に電力を供給する電源回路44、その電源回路44へ電力を供給する電力源としてのバッテリ45、図1にも示すフラッシュ発光装置13が備えられている。
ここで、撮像レンズ11は、本発明にいう光学系の一例に相当し、フォーカスレンズ22は、本発明にいうレンズの一例に相当する。また、CCD24と読出回路25とを合わせたものは、本発明にいう撮像部の一例に相当する。さらに、共分散演算回路37は、本発明にいう共分散算出部の一例に相当し、AF検出回路38と、フォーカスレンズ22を駆動するモータドライバ34とを合わせたものは、本発明にいうレンズ移動部の一例に相当する。
次に、このデジタルカメラ1の一般的な撮像シーケンスを説明する。
図3は、図2に示すデジタルカメラ1で実行される撮像シーケンスを表すフローチャートである。
この図3に示すフローチャートが示す処理は、本発明の撮像方法の一実施形態に相当する。
電源がオンされると図3に示すフローチャートが示す処理がスタートし、まず、図1に示すズーム鏡胴12が繰出されるとともにLCD30がオンとなり、表示用の動画であるスルー画像がLCD30上に表示される(ステップS101)。その後、レリーズボタン16が半押しされるまで待機状態となり(ステップS102)、レリーズボタン16が半押しされると(ステップS102におけるYes判定)、まず、フォーカスレンズ22を合焦位置まで動かすフォーカス制御が実行される(ステップS110)。このフォーカス制御(ステップS110)については、後で詳細に説明する。
フォーカス制御(ステップS110)が終了すると、フォーカスレンズ22が合焦位置に合わされた状態での画像にLCD30上の表示が一時的に固定され、その画像に基づいて、被写体像の明るさである露出量(EV値)が検出され、その検出されたEV値に基づいて、実際の撮像の際にCCD24が被写体像を捉えるシャッタ秒時や、アイリス23の絞り径を表す絞り値等が決定され、それらのシャッタ秒時や絞り値等がその決定された値に設定されるという露出制御が露出制御回路40において実行される(ステップS103)。また、このステップS103の処理では、実際の撮像の際にフラッシュを発光することの可否の決定も行われる。
それらの処理が終了すると再びスルー画像がLCD30上に表示され、今度は、レリーズボタン16が全押しされるまで待機状態となる(ステップS104)。レリーズボタン16が全押しされると(ステップS104におけるYes判定)、全画素の読出しが、半押し時に設定されたシャッタ秒時、絞り値、および合焦位置等の条件下で実行され画像信号が生成される(ステップS105)。ここで、このステップS105の処理は、本発明にいう撮像過程の一例に相当する。
その後、このステップS105の処理で生成された画像信号が表す画像がLCD30に表示されると共に、その画像信号が記録メディア100に記録され(ステップS106)、このフローチャートが表す撮像シーケンスが終了する。この処理の終了後には、LCD30に再びスルー画像が表示され、次の撮像が可能となる。
次に、図3に示すフォーカス制御(ステップS110)の詳細について説明する。
図4は、フォーカス制御の流れを表すフローチャートである。
処理がスタートすると、まず、フォーカスレンズ22の位置が所定の初期位置に合わされる(ステップS111)。ここで、本実施形態のデジタルカメラ1では、フォーカスレンズ22を初期位置から限界位置まで段階的に動かすことが可能である。以下では、任意段階「k」のフォーカスレンズ22の位置を「F(k)」で表わし、さらに、初期位置に対応する段階を「A」、限界位置に対応する段階を「B」で表す。
フォーカスレンズ22の位置F(k)が初期位置F(A)に合わされると、まず、その状態でのRGBの画像信号の取得が行われる(ステップS112)。このステップS112の処理も、本発明にいう撮像過程の一例に相当する。
画像信号が取得されると、次に、その画像信号に対して、以下に説明するように、R色の信号成分とG色の信号成分とについての共分散が算出され、その算出された共分散が図2示すメモリ41内に一時的に格納される(ステップS113)。このステップS113の処理は、本発明にいう共分散算出過程の一例に相当する。
ここで、この共分散について説明する前に、従来、フォーカス制御用のパラメータとして使われることが多い分散について説明する。
例えば、RGB3色の信号成分のうち、画像信号が表す画像の中心部分のL×M=n画素のエリアについてのR色の信号成分の分散がフォーカス制御に使われる場合を想定する。
このエリア内の任意の画素に対応するR色の信号成分をR(i,j)、エリア内の全画素についてのR色の信号成分の平均値をRav、R色の信号成分についての分散をSrとすると、この分散は次の式で表わされる。
Figure 0004886473
この(1)式に示すように、この分散は、R色についての信号成分と平均値との差分の2乗の平均を算出したものである。従って、フォーカスレンズ22が合焦位置からずれて被写体像がぼけて輝度が全体的に均された状態になっていると、撮像画像における多くの画素の画素値が平均値に近くなるので分散が小さくなる。一方、フォーカスレンズが合焦位置に近く鮮明な被写体像が結像されている場合には、撮像画像中には被写体像の輝度に応じて様々な画素値が分布することになり分散が大きくなる。分散に基づくフォーカス制御では、このような分散が最大値となる位置を合焦位置として検出する。ところが、画像信号にノイズが多く生じている場合には、信号成分が平均値から大きくずれている画素の数も多く、その結果、分散は増加してしまう。また、R色の信号成分を生成する受光部分に点欠陥が生じている場合、その点欠陥に対応する画素では、信号成分が平均値から大きくずれることとなり、そのような点欠陥の数が増えると、分散も増加してしまう。このようなノイズや点欠陥に起因する分散の増加は、フォーカスレンズ22の位置とは無関係に生じるので、合焦位置の誤検出という不具合を引き起こす可能性が高い。
このため、本実施形態では、以下に説明するように、ノイズや点欠陥の影響を受けにくいという性質、即ちノイズや点欠陥に対する強い耐性、を有する共分散がフォーカス制御用のパラメータとして使われる。
本実施形態では、画像信号が表す画像の中心部分のL×M=n画素のエリアについて、R色の信号成分とG色の信号成分とについての共分散Srgが求められる。ここで、このエリア内の任意の画素に対応するR色の信号成分をR(i,j)、エリア内の全画素についてのR色の信号成分の平均値をRav、エリア内の任意の画素に対応するG色の信号成分をG(i,j)、エリア内の全画素についてのR色の信号成分の平均値をGav、R色の信号成分とG色の信号成分とについての共分散をSrgとすると、この共分散は次の式で表わされる。
Figure 0004886473
以下、この(2)式で表わされる共分散が有する、ノイズや点欠陥の影響を受けにくいという性質、即ち耐性について詳細に説明する。
この(2)式に示すように、共分散は、R色とG色とのそれぞれについての、各信号成分と平均値との差分の乗算結果の平均を算出したものである。ここで、各画素についての乗算結果は、R色の差分とG色の差分との双方が大きいと大きな値となり、そのような乗算結果が多いと共分散も大きな値となる。逆に、2つの差分のうちの一方が小さい場合には乗算結果は小さくなり共分散も小さな値となる。つまり、共分散は、各信号成分が互いに相関して平均値からずれているような場合には大きな値となり、一方の信号成分は平均値からずれているが他方の信号成分は平均値に近い値となっているというように互いに無相関な状態にあるときには小さな値となる。
ここで、画像信号におけるRGB3色それぞれの信号成分に含まれるノイズの多くは、RGB3色の信号成分間で互いに無相関に生じる。従って、各信号成分におけるノイズによる平均値からのずれも互いに無相関となることが多く、そのようなノイズによる共分散の増加分は小さなものとなる。つまり、共分散はノイズの影響をほとんど受けることがなく、ノイズに対して強い耐性を有していると言える。
次に、共分散の点欠陥に対する耐性について、上記(2)式と共に以下に示す図5も参照しながら説明する。
図5は、分散と共分散それぞれが、点欠陥からうける影響を模式的に示す図である。
この図5では、説明を簡単にするために、一次元的に配列された画素を想定している。
図5のパート(a)には、一次元的な画素の配列において、R色の受光部分の点欠陥が、2箇所に局所的に集中して生じている場合に、ある被写体像が捉えられたときの各色の信号成分を示すグラフG1が記載されている。このグラフG1では、横軸に一次元的な座標が示され、縦軸に信号成分のレベルが示されている。この図5のパート(a)の例では、図中左側の局所部分C1にはR色の受光部分とG色の受光部分に、信号レベルを下げるような点欠陥が生じ、右側の局所部分C2にはR色の受光部分に信号レベルを上げるような点欠陥が生じている。また、R色の受光部分についての点欠陥は、右側の局所部分C2よりも左側の局所部分C1の方が多く生じており、信号成分の変動は左側の局所部分C1の方が大きい。さらに、この左側の局所部分C1では、点欠陥は主にR色の受光部分に生じており、G色の受光部分に生じている点欠陥は僅かである。その結果、この左側の局所部分C1では、信号成分の変動は、R色の方がG色よりも大きい。
図5のパート(b)には、パート(a)に示す一次元の微小エリアAr1を矢印D方向に動かしたときの、この微小エリアAr1内における分散と共分散との変化を示すグラフG2が記載されている。パート(a)のグラフG1において信号成分が座標に対して変化しない平坦部分では、パート(b)のグラフG2に示すように、信号成分は微小エリアAr1内における平均値と等しいため分散も共分散もともに「0」となる。また、パート(a)のグラフG1の中間部分C3では各色の信号成分は右下がりに変化しており、この中間部分C3では、信号成分は平均値に対して様々な値をとることとなるので分散にピークP2が生じ共分散にもピークP1が生じる。
ここで、パート(a)のグラフG1の左側の局所部分C1では、点欠陥によってR色の信号成分とG色の信号成分とが変動するので、パート(b)のグラフG2に示すように、分散も共分散もともにピークが生じる。しかし、共分散については、G色の信号成分の変動が小さいことの影響を受けるので、この共分散のピークP3は、R色の信号成分の変動のみで決まる分散のピークP4よりも小さなものとなる。さらに、パート(a)のグラフG1の右側の局所部分C1では、点欠陥によってR色の信号成分だけが変動するので、パート(b)のグラフG2に示すように、分散についてはピークP5が生じるが、共分散については「0」のままである。
フォーカス制御に使われる分散や共分散は、被写体像の主要部分の全体的な合焦の程度を表す必要があるため、図5のパート(b)に示すような広域エリアAr2について求められる。
従来、行われることが多い、分散を利用したフォーカス制御は、このような広域エリアAr2での分散に含まれる、被写体像に基づくピークP2の高さが、フォーカスレンズ22の位置による合焦の程度に応じて増減することに基づいている。即ち、被写体像に基づくピークP2の高さは、フォーカスレンズ22が合焦位置から外れており画像が不鮮明なときには低く、フォーカスレンズ22が合焦位置に近づき画像が鮮明になるに従って高くなるので、分散が増加する方向へフォーカスレンズ22を動かし、分散が最大値となる位置にフォーカスレンズ22を合わせることで合焦位置が検出される。しかし、この広域エリアAr2での分散は、パート(b)に示すような点欠陥に起因するピークP4,P5も含んでいる。これらのピークP4,P5の高さは、点欠陥の数にのみ依存するのでフォーカスレンズ22の位置に係わらずほぼ一定の大きさを保ち続ける。その結果、広域エリアAr2での分散は、フォーカスレンズ22が合焦位置に合っていないにも係わらず大きな値を示すこととなり、このことが分散を用いる場合の合焦位置の誤検出原因の1つとなっている。
一方、本実施形態で、フォーカス制御に使われる広域エリアAr2での共分散では、パート(b)に示すように、その共分散に含まれる、点欠陥に起因するピークの数が、分散におけるそのようなピークの数よりも少なく、さらに、そのピークの高さが、分散におけるピークの高さよりも低い。このため、広域エリアAr2での共分散の大きさは、被写体像に基づくピークP1のみによって左右されることとなり、合焦位置の正確な検出が可能となっている。このように、共分散は点欠陥の影響をほとんど受けることがなく、点欠陥に対して強い耐性を有していると言える。
図6は、フォーカスレンズ22の位置と、分散および共分散それぞれとの関係が、ノイズや点欠陥からうける影響を模式的に示す図である。
この図6には、フォーカスレンズ22の位置に対する、上述した広域エリアAr2での共分散を表すラインL1と分散を表すラインL2が、ランダムノイズや点欠陥の増加に伴ってどのように変化するかが示されている。まず、ランダムノイズに対しては、ノイズが増加するに伴って分散は増加するが、ノイズに対して耐性を有する共分散はほぼ不変である。また、点欠陥に対しては、点欠陥の増加に伴って分散が大きく増加して合焦位置でのピークがかなり埋もれてしまうのに対し、点欠陥に対しても耐性を有する共分散はほぼ不変であり、合焦位置では明確なピークが現れる。
以上、説明したように、共分散はノイズや点欠陥に対して強い耐性を有し、本実施形態では、フォーカス制御にこの共分散が使われる。
以下、図4に戻って、この図4のフローチャートにおけるステップS112以降の処理について説明を続ける。
ステップS113において、フォーカスレンズ22の位置F(k)が初期位置F(A)に合わされたときの共分散が算出され、メモリ41内に一時的に格納されると、次に、現時点でのフォーカスレンズ22の移動段階「k」が、限界位置に対応する段階「B」に達しているか否かが判定される(ステップS114)。
まだこの段階「B」に達していない場合(ステップS104におけるNo判定)、移動段階「k」が1段階上げられ(ステップS115)、フォーカスレンズ22が、その1段階上げられたその移動段階の位置まで動かされて(ステップS116)、ステップS112まで処理が戻って、その状態での画像の取込みが実行される。このステップS112からステップS116までの処理は、フォーカスレンズ22の移動段階が限界位置に対応する段階「B」に達するまで(ステップS114におけるYes判定)繰り返される。
この段階「B」に達した場合には、初期位置に対応する段階「A」からこの限界位置に対応する段階「B」までの各段階の中から、ステップS113で図2示すメモリ41内に一時的に格納された共分散のうちで最大の共分散に対応する段階が選ばれる(ステップS117)。そして、この選ばれた段階の位置、即ち共分散が最大となる合焦位置までフォーカスレンズ22が動かされて(ステップS118)、この図3のフローチャートが示すフォーカス制御が終了する。このステップS118は、本発明にいうレンズ移動過程の一例に相当する。この、フォーカス制御が終了すると、処理は、図3のフローチャートが示す撮像処理に戻り、このフォーカス制御に続く処理が実行される。
以上、説明したように、第1実施形態のデジタルカメラ1によれば、ノイズや点欠陥に対して強い耐性を有する共分散に基づいてフォーカス制御が行われることから、高精度の合焦状態で撮像することができる。
次に、本発明の第2実施形態について説明する。
図7は、本発明の第2実施形態であるデジタルカメラの回路構成を示すブロック図である。
この図7示すデジタルカメラ2は、露出制御回路40で決定された感度に応じて、フォーカス制御に用いるパラメータを共分散と分散との間で切り替えるという点が、図2に示した第1実施形態のデジタルカメラ1とは異なる。そこで、以下では、この第1実施形態との相違点に注目した説明を行い、重複説明については省略する。また、図7では、図2に示す構成要素と同等な構成要素については図2と同じ符号が付されている。
図7に示すデジタルカメラ2は、露出制御回路40で決定された感度を取得する感度取得回路51と、この感度取得回路51が取得した感度に応じてフォーカス制御に用いるパラメータの演算を、共分散演算回路37による演算と分散演算回路53による演算との間で切り替える演算切替回路52と、分散を求める分散演算回路53とを備えている。ここで、このデジタルカメラ2の感度を決定する露出制御回路40が、本発明にいう感度設定部の一例に相当する。
また、このデジタルカメラ2では、AF検出回路54は、演算切替回路52によって共分散演算回路37による演算に切り替えられた場合には共分散に基づいてフォーカス制御を行い、分散演算回路53による演算に切り替えられた場合には分散に基づいてフォーカス制御を行う。ここで、この共分散に基づくフォーカス制御が、本発明にいう第1モードの一例に相当し、分散に基づくフォーカス制御が、本発明にいう第2モードの一例に相当する。
この第2実施形態のデジタルカメラ2で実行される撮像シーケンスは、フォーカス制御を除いて、第1実施形態のデジタルカメラ2で実行される図3に示す撮像シーケンスと同じである。そこで、以下では、このデジタルカメラ2で実行されるフォーカス制御に注目して説明する。
図8は、図7に示すデジタルカメラ2で実行されるフォーカス制御の流れを表すフローチャートである。
処理がスタートすると、まず、露出制御回路40で決定された感度が感度取得回路51で取得される(ステップS201)。そして、その取得された感度が所定の閾値よりも高いか否かが判定される(ステップS202)。感度が閾値よりも高い場合には(ステップS202におけるYes判定)、共分散を用いたフォーカス制御が実行され(ステップS203)、感度が閾値よりも低い場合には(ステップS202におけるNo判定)、分散を用いたフォーカス制御が実行される(ステップS204)。尚、ステップS203で実行されるフォーカス制御は、図4のフローチャートが表すフォーカス制御と同じであるので重複説明を省略する。また、ステップS204で実行されるフォーカス制御は、図4のフローチャートが表すフォーカス制御における共分散を分散に置き換えた他は同じ制御であるので、このステップS204で実行されるフォーカス制御についてのこれ以上の説明は省略する。
ここで、共分散を求める演算は、上記の(2)式に示すように、RG2色の信号成分を対象とした演算であり、上記の(1)式に示すR色の信号成分のみを対象とした分散の演算に比べると手間や時間を要する。そこで、本実施形態では、撮像の感度が所定の閾値以上に高く、撮像で得られる画像信号に含まれるノイズレベルが高くなり、分散に基づくフォーカス制御の精度が低下する恐れがあるときに限り、共分散に基づくフォーカス制御が実行される。これにより、この第2実施形態のデジタルカメラ2によれば、上記の第1実施形態と同様の高精度の合焦状態での撮像を効率的に実行することができる。
次に、本発明の第3実施形態について説明する。
図9は、本発明の第3実施形態であるデジタルカメラの回路構成を示すブロック図である。
この図9示すデジタルカメラ3は、フォーカス制御に用いるパラメータを共分散と分散との間で切り替えるという点は上記の第2実施形態と同様であるが、その演算の切替えが予め分かっているCCDの点欠陥数に応じて行われるという点が、第2実施形態とは異なる。そこで、以下では第2実施形態との相違点に注目した説明を行い、重複説明については省略する。また、図9では、図7に示す構成要素と同等な構成要素については図7と同じ符号が付されている。
ここで、この図9示すデジタルカメラ3には、交換可能なCCD55が搭載される。また、このCCD55はROM55aを有しており、このROM55aには、CCD55の出荷時に検査によって求められた点欠陥数が記憶されている。さらに、デジタルカメラ3は、このROM55aに記憶されている点欠陥数を取得する点欠陥数取得回路56を備えている。ここで、ROM55aが、本発明にいう「点欠陥の個数が記憶されたメモリ」の一例に相当し、点欠陥数取得回路56が、本発明にいう点欠陥数取得部の一例に相当する。そして、このデジタルカメラ3では、演算切替回路57は、この点欠陥数取得回路56で取得された点欠陥数に応じて、フォーカス制御に用いるパラメータの演算を、共分散演算回路37による演算と分散演算回路53による演算との間で切り替える。
図10は、図9に示すデジタルカメラ3で実行されるフォーカス制御の流れを表すフローチャートである。
処理がスタートすると、まず、現在デジタルカメラ3に搭載されているCCD55のROM55aから、点欠陥数取得回路56によってこのCCD55の点欠陥数が取得される(ステップS301)。そして、その取得された点欠陥数が所定の閾値よりも多いか否かが判定される(ステップS302)。点欠陥数が閾値よりも多い場合には(ステップS302におけるYes判定)、共分散を用いたフォーカス制御が実行され(ステップS303)、点欠陥数が閾値よりも少ない場合には(ステップS302におけるNo判定)、分散を用いたフォーカス制御が実行される(ステップS304)。尚、ステップS303およびステップS304で実行されるフォーカス制御については重複説明を省略する。
本実施形態では、搭載されているCCD55の点欠陥数が所定の閾値よりも多く、分散に基づくフォーカス制御の精度が低下する恐れがあるときに限り、共分散に基づくフォーカス制御が実行される。これにより、この第3実施形態のデジタルカメラ3によれば、上記の第1実施形態と同様の高精度の合焦状態での撮像を効率的に実行することができる。
次に、本発明の第4実施形態について説明する。
図11は、本発明の第4実施形態であるデジタルカメラの回路構成を示すブロック図である。
この図11示すデジタルカメラ4は、フォーカス制御に用いるパラメータを共分散と分散との間で切り替えるという点は上記の第2実施形態や第3実施形態と同様であるが、その演算の切替えがCCD24の温度に応じて行われるという点が、これらの実施形態とは異なる。そこで、以下では第2実施形態や第3実施形態との相違点に注目した説明を行い、重複説明については省略する。また、図11では、図7に示す構成要素と同等な構成要素については図7と同じ符号が付されている。
図11示すデジタルカメラ4は、CCD24の温度を取得する温度検出回路58を備えている。ここで、温度検出回路58が、本発明にいう温度検出部の一例に相当する。そして、このデジタルカメラ3では、演算切替回路59は、この温度検出回路58で検出された温度に応じて、フォーカス制御に用いるパラメータの演算を、共分散演算回路37による演算と分散演算回路53による演算との間で切り替える。
図12は、図11に示すデジタルカメラ4で実行されるフォーカス制御の流れを表すフローチャートである。
処理がスタートすると、温度検出回路58において、まず、デジタルカメラ4が起動してから所定時間が経過したか否かが図11に示すタイマ36で計測されている時間に基づいて判定され(ステップS401)、起動してから所定時間が経過していた場合に(ステップS401におけるYes判定)、CCD24の温度が検出される(ステップS402)。そして、その検出された温度が所定の閾値よりも高いか否かが判定される(ステップS403)。
検出された温度が閾値よりも高い場合には(ステップS403におけるYes判定)、共分散を用いたフォーカス制御が実行され(ステップS404)、起動してから所定時間が経過していなかった場合(ステップS401におけるNo判定)、あるいは、検出された温度が所定の閾値よりも低い場合には(ステップS403におけるNo判定)、分散を用いたフォーカス制御が実行される(ステップS405)。尚、ステップS404およびステップS405で実行されるフォーカス制御については重複説明を省略する。
本実施形態では、起動後所定時間が経過しCCD55の温度が所定の閾値よりも高く、CCD24における点欠陥が顕在化してフォーカス制御用に取り込んだ画像に点状のキズが生じ、そのキズの影響により分散に基づくフォーカス制御の精度が低下する恐れがあるときに限り、共分散に基づくフォーカス制御が実行される。これにより、この第4実施形態のデジタルカメラ4によれば、上記の第1実施形態と同様の高精度の合焦状態での撮像を効率的に実行することができる。
尚、上記では、本発明の一実施形態としてデジタルカメラを例示したが、本発明はこれに限るものではなく、本発明の一実施形態は、例えば、カメラ機能を有する携帯電話や、動画撮影を行うビデオカメラ等であっても良い。
また、上記では、本発明にいうレンズ移動部の一例として、フォーカスレンズを所定の初期位置から限界位置まで一通り動かして、共分散が最大となる位置を見つけた後に、フォーカスレンズを改めてその位置まで移動させるものを例示したが、本発明にいうレンズ移動部はこれに限るものではなく、例えば、共分散が増加する方向にフォーカスレンズを動かし、共分散の変化が極大となる位置でフォーカスレンズの移動を止めるというもの等であっても良い。
本発明の第1から第4までの各実施形態である各デジタルカメラに共通の外観斜視図である。 本発明の第1実施形態であるデジタルカメラの回路構成を示すブロック図である。 図2に示すデジタルカメラ1で実行される撮像シーケンスを表すフローチャートである。 フォーカス制御の流れを表すフローチャートである。 分散と共分散それぞれが、点欠陥からうける影響を模式的に示す図である。 フォーカスレンズ22の位置と、分散および共分散それぞれとの関係が、ノイズや点欠陥からうける影響を模式的に示す図である。 本発明の第2実施形態であるデジタルカメラの回路構成を示すブロック図である。 図7に示すデジタルカメラ2で実行されるフォーカス制御の流れを表すフローチャートである。 本発明の第3実施形態であるデジタルカメラの回路構成を示すブロック図である。 図9に示すデジタルカメラ3で実行されるフォーカス制御の流れを表すフローチャートである。 本発明の第4実施形態であるデジタルカメラの回路構成を示すブロック図である。 図11に示すデジタルカメラ4で実行されるフォーカス制御の流れを表すフローチャートである。
符号の説明
1,2,3,4 デジタルカメラ
11 撮像レンズ
12 ズーム鏡胴
13 フラッシュ発光装置
14 光学式ファインダ対物窓
15 電源スイッチ
16 レリーズボタン
21 ズームレンズ
22 フォーカスレンズ
23 アイリス
24,55 CCD
25 読出回路
26 画像入力コントローラ
27 画像信号処理回路
28 圧縮処理回路
29 ビデオエンコーダ
30 LCD
31 CPU
32,33,34 モータドライバ
36 タイマ
37 共分散演算回路
38,54 AF検出回路
39 AE&AWB検出回路
40 露出制御回路
41 メモリ
42 メディアコントローラ
43 スイッチ群
44 電源回路
45 バッテリ
50 バスライン
51 感度取得回路
52,57,59 演算切替回路
53 分散演算回路
55a ROM
56 点欠陥数取得回路
58 温度検出回路
100 記録メディア

Claims (5)

  1. 被写体光を通過させ、1つ以上のレンズの作用で結像させる光学系と、
    前記光学系を通過して結像された被写体光の色を、複数の画素それぞれについて、所定の複数色それぞれに対応する複数の信号成分の組合せで表現した、該複数の画素からなる画像を表わす画像信号を生成する撮像部と、
    前記撮像部で生成される画像信号が表す画像を構成する複数の画素について、前記複数の信号成分のうちの所定の2つの信号成分を用いた共分散を算出する共分散算出部と、
    前記レンズを、前記光学系の光軸に沿って、前記共分散が増加する方向に移動させるレンズ移動部とを備えたことを特徴とする撮像装置。
  2. この撮像装置が撮像するときの感度を設定する感度設定部と、
    前記複数の画素について、前記複数種類の信号成分のうちの所定の1つの信号成分を用いた分散を算出する分散算出部とを備え、
    前記レンズ移動部が、前記レンズを、前記光学系の光軸に沿って、前記共分散が増加する方向に移動させる第1モードと、該レンズを、該光学系の光軸に沿って、前記分散が増加する方向に移動させる第2モードとを有し、前記感度設定部で設定された感度が所定感度を超えている場合に該レンズを前記第1モードで移動させ、該感度設定部で取得された感度が所定感度以下である場合に該レンズを前記第2モードで移動させるものであることを特徴とする請求項1記載の撮像装置。
  3. 前記撮像部は、交換可能な撮像素子が、該撮像素子が有する点欠陥の個数が記憶されたメモリと共に搭載されて、該撮像素子を使って前記画像信号を生成するものであり、
    前記メモリに記憶されている前記点欠陥の数を取得する点欠陥数取得部と
    前記複数の画素について、前記複数種類の信号成分のうちの所定の1つの信号成分を用いた分散を算出する分散算出部とを備え、
    前記レンズ移動部が、前記レンズを、前記光学系の光軸に沿って、前記共分散が増加する方向に移動させる第1モードと、該レンズを、該光学系の光軸に沿って、前記分散が増加する方向に移動させる第2モードとを有し、前記点欠陥数取得部で取得された点欠陥の数が所定数を超えている場合に該レンズを前記第1モードで移動させ、該点欠陥数取得部で取得された点欠陥の数が所定数以下である場合に該レンズを前記第2モードで移動させるものであることを特徴とする請求項1記載の撮像装置。
  4. 前記撮像部の温度を直接あるいは間接に検出する温度検出部と、
    前記複数の画素について、前記複数種類の信号成分のうちの所定の1つの信号成分を用いた分散を算出する分散算出部とを備え、
    前記レンズ移動部が、前記レンズを、前記光学系の光軸に沿って、前記共分散が増加する方向に移動させる第1モードと、該レンズを、該光学系の光軸に沿って、前記分散が増加する方向に移動させる第2モードとを有し、前記温度検出部で検出された温度が所定温度を超えている場合に該レンズを前記第1モードで移動させ、該温度検出部で検出された温度が所定温度以下である場合に該レンズを前記第2モードで移動させるものであることを特徴とする請求項1記載の撮像装置。
  5. 被写体光の画像を撮像する撮像装置が実行する撮像方法において、
    被写体光を通過させ、1つ以上のレンズの作用で結像させる光学系を通過して結像された被写体光の色を、複数の画素それぞれについて、所定の複数色それぞれに対応する複数の信号成分の組合せで表現した、該複数の画素からなる画像を表わす画像信号を生成する撮像過程と、
    前記撮像過程で生成される画像信号が表す画像を構成する複数の画素について、前記複数の信号成分のうちの所定の2つの信号成分を用いた共分散を算出する共分散算出過程と、
    前記レンズを、前記光学系の光軸に沿って、前記共分散が増加する方向に移動させるレンズ移動過程とを有したことを特徴とする撮影方法。
JP2006300344A 2006-11-06 2006-11-06 撮像装置および撮像方法 Expired - Fee Related JP4886473B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006300344A JP4886473B2 (ja) 2006-11-06 2006-11-06 撮像装置および撮像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006300344A JP4886473B2 (ja) 2006-11-06 2006-11-06 撮像装置および撮像方法

Publications (2)

Publication Number Publication Date
JP2008118442A JP2008118442A (ja) 2008-05-22
JP4886473B2 true JP4886473B2 (ja) 2012-02-29

Family

ID=39504008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300344A Expired - Fee Related JP4886473B2 (ja) 2006-11-06 2006-11-06 撮像装置および撮像方法

Country Status (1)

Country Link
JP (1) JP4886473B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339839A (ja) * 1997-06-05 1998-12-22 Kokusai Electric Co Ltd レンズ合焦装置
JPH11344662A (ja) * 1998-06-02 1999-12-14 Ricoh Co Ltd 自動合焦装置
JP2004184634A (ja) * 2002-12-02 2004-07-02 Lapole System:Kk オートフォーカス方法及び装置

Also Published As

Publication number Publication date
JP2008118442A (ja) 2008-05-22

Similar Documents

Publication Publication Date Title
CN108028895B (zh) 有缺陷的图像传感器元件的校准
CN102970480B (zh) 图像拍摄装置及其控制方法
CN104168416B (zh) 摄像设备及其控制方法
JP5753371B2 (ja) 撮像装置およびその制御方法
US9716840B2 (en) Image pickup apparatus that reduces unevenness of exposure caused by artificial light source, method of detecting change in amount of light, and storage medium
JPWO2012133413A1 (ja) 撮像装置、撮像装置の制御方法及びプログラム
JP2010268052A (ja) 撮像装置
JPWO2012073729A1 (ja) 撮像装置及びその合焦位置検出方法
US9578232B2 (en) Image capturing apparatus, method for controlling the same, and storage medium
US9832360B2 (en) Image capturing apparatus and method of controlling the same
JP2020112635A (ja) 制御装置、撮像装置、制御方法、および、プログラム
JP4745077B2 (ja) 撮像装置
US7710492B2 (en) Imaging device and imaging method for performing automatic focus detection
JP5387341B2 (ja) 撮像装置
JP6960755B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP2009098167A (ja) 撮像装置及びそのプログラム
JP6482247B2 (ja) 焦点調節装置、撮像装置、焦点調節装置の制御方法、及びプログラム
JP4886473B2 (ja) 撮像装置および撮像方法
JP5965654B2 (ja) 追尾装置及び撮像装置、撮像装置に用いる追尾方法
JP5251700B2 (ja) 撮像装置
JP2013074368A (ja) 撮像装置及び撮像方法
JP2019186852A (ja) 撮像装置およびその制御方法
JP6902921B2 (ja) 撮像装置、制御方法、及びプログラム
KR101396328B1 (ko) 촬상 장치 및 오토 포커싱 방법
JP6806471B2 (ja) 焦点検出装置及び方法、及び撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4886473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees