JP4885688B2 - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
JP4885688B2
JP4885688B2 JP2006310576A JP2006310576A JP4885688B2 JP 4885688 B2 JP4885688 B2 JP 4885688B2 JP 2006310576 A JP2006310576 A JP 2006310576A JP 2006310576 A JP2006310576 A JP 2006310576A JP 4885688 B2 JP4885688 B2 JP 4885688B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
diode
electrode
type terminal
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006310576A
Other languages
Japanese (ja)
Other versions
JP2008130611A (en
Inventor
主之 宮部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2006310576A priority Critical patent/JP4885688B2/en
Publication of JP2008130611A publication Critical patent/JP2008130611A/en
Application granted granted Critical
Publication of JP4885688B2 publication Critical patent/JP4885688B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、DVD/CD用半導体レーザ装置に関し、特に、サージに対する保護回路を備えた2波長半導体レーザ装置に関する。   The present invention relates to a DVD / CD semiconductor laser device, and more particularly to a two-wavelength semiconductor laser device having a surge protection circuit.

近年、再生型DVD/CDは世界中に広く普及しており、AV、ストレージ機器の中で欠かせない技術となっている。DVD/CDの読取りには半導体レーザが使われており、各種のメディアにより波長を使い分けている。
通常、DVDには650nm帯の赤色半導体レーザ、CDには780nm帯の赤外半導体レーザが用いられ、コスト削減、部品点数の削減の観点から、650nm帯と780nm帯の半導体レーザを1つのパッケージに組み込んだ2波長半導体レーザが主流となっている。
In recent years, reproducible DVD / CD has become widespread all over the world and has become an indispensable technology in AV and storage devices. A semiconductor laser is used for reading DVD / CD, and the wavelength is properly selected according to various media.
Usually, a 650 nm band red semiconductor laser is used for DVD, and a 780 nm band infrared semiconductor laser is used for CD. From the viewpoint of cost reduction and the reduction in the number of parts, the 650 nm band and 780 nm band semiconductor lasers are combined into one package. Embedded two-wavelength semiconductor lasers are the mainstream.

しかしながら、650nm帯や780nm帯のいわゆる短波系の半導体レーザは、サージ電流等の電気的ストレスに弱い。その原因の一つに、短波系の半導体レーザ素子特有の破壊現象、すなわちCOD(Catastrofic Optical Damage)によるところが大きい。CODは、サージ電圧などが印加されたときに、順方向に過大な電流が印加されることにより最大定格以上の光が発せられ、高温となった発光端面部が破壊される現象である。
大きな光出力で使用する記録型DVD/CD用半導体レーザは発光端面部に窓構造を設ける等、光の吸収を低減することにより発熱を抑制し、CODが起きる光出力レベルに十分な余裕を持たせている。しかし、光出力の小さい再生型DVD/CDで用いられる半導体レーザでは、発光端面部は結晶を劈開した後、端面の保護膜を形成するのみである。そのためサージ電流によるCODを防止する対策の一つとして、半導体レーザに保護回路を設ける技術が知られている。
However, so-called short-wave semiconductor lasers in the 650 nm band and the 780 nm band are vulnerable to electrical stress such as surge current. One of the causes is largely due to a destruction phenomenon peculiar to a short-wave semiconductor laser device, that is, COD (Catalytic Optical Damage). COD is a phenomenon in which, when a surge voltage or the like is applied, light exceeding the maximum rating is emitted by applying an excessive current in the forward direction, and the light emitting end face portion that has become high temperature is destroyed.
Recording DVD / CD semiconductor lasers that are used with large light output suppresses heat generation by reducing light absorption, such as by providing a window structure at the light emitting end face, and has a sufficient margin for the light output level at which COD occurs. It is However, in a semiconductor laser used in a reproducible DVD / CD having a small light output, the light emitting end face part only forms a protective film on the end face after cleaving the crystal. Therefore, as one of measures for preventing COD due to surge current, a technique of providing a protection circuit in a semiconductor laser is known.

2波長半導体レーザ装置に保護回路を設けた技術の例が、特許文献1に開示されている。サージ耐性の弱いほうの650nm帯の半導体レーザチップにだけ保護回路が設けられ、装置としてのサージ耐圧を改善したものである。保護素子は2つの半導体レーザ層を積層して形成したサイリスタがレーザチップに作り込まれ、650nm帯の半導体レーザに並列接続されている。また、特許文献2には、1つの半導体レーザチップに保護回路を並列に設けたものが開示されている。その装置構成は通常のダイオードとツェナーダイオードを含む保護回路をSiヒートシンクに作りこみ、1つの半導体レーザをマウントしたものである。そのほかにも、特許文献3にはLEDでの保護回路の構成が開示されている。   An example of a technique in which a protection circuit is provided in a two-wavelength semiconductor laser device is disclosed in Patent Document 1. A protective circuit is provided only in the semiconductor laser chip of 650 nm band having a weaker surge resistance, and the surge withstand voltage as an apparatus is improved. As the protective element, a thyristor formed by laminating two semiconductor laser layers is formed in a laser chip and connected in parallel to a 650 nm band semiconductor laser. Patent Document 2 discloses a semiconductor laser chip provided with a protection circuit in parallel. The device configuration is such that a protection circuit including a normal diode and a Zener diode is formed on a Si heat sink, and one semiconductor laser is mounted. In addition, Patent Document 3 discloses a configuration of a protection circuit using LEDs.

特開2005−217381JP-A-2005-217381 特開平05−102602JP 05-102602 A 特許第3787648号Japanese Patent No. 3787648

特許文献1は、2つの半導体レーザ層を積層して形成したサイリスタ層を保護素子として用い、レーザチップ上に集積したものである。必然的にサイリスタ層は、基板からの高さが半導体レーザ層より厚くなる。放熱性の観点から、通常は、いわゆるジャンクションダウンでヒートシンクにマウントされるが、上記構成では、レーザチップ上に凹凸が出来るため、ヒートシンクにマウントするには凹凸を考慮した特別なヒートシンクや、特別な組立工程が必要となり、装置のコストアップを招く。   In Patent Document 1, a thyristor layer formed by laminating two semiconductor laser layers is used as a protective element and integrated on a laser chip. Inevitably, the thyristor layer is thicker than the semiconductor laser layer from the substrate. From the viewpoint of heat dissipation, it is usually mounted on a heat sink by so-called junction down. However, in the above configuration, irregularities are formed on the laser chip. An assembly process is required, which increases the cost of the apparatus.

ところで、保護回路は、半導体レーザの通常動作の動作電圧よりある程度高い電圧でターンオンしなければいけない。一方、保護回路は単純な構成のほうが、製造が容易であり、コストの点で有利である。特に、DVD/CD装置に用いられる2波長半導体レーザ装置はコストダウン要求が強く低コスト性は重要である。特許文献2のように、通常のダイオードとツェナーダイオードを1つずつ接続した回路構成では、異なる素子を使うため、製造工程が複雑になり装置のコストダウンは限定される。特許文献1のように、サイリスタを用いれば1段でも高いターンオン電圧を実現できるが、サイリスタはpnpn構造であるので、ダイオードに比べ構造が複雑であり、装置のコストダウンは限定される。   By the way, the protection circuit must be turned on at a voltage somewhat higher than the operating voltage of the semiconductor laser in a normal operation. On the other hand, a simple configuration of the protection circuit is easier to manufacture and is advantageous in terms of cost. In particular, a two-wavelength semiconductor laser device used for a DVD / CD device has a strong demand for cost reduction, and low cost is important. As in Patent Document 2, in a circuit configuration in which a normal diode and a Zener diode are connected one by one, different elements are used, so that the manufacturing process becomes complicated and the cost reduction of the apparatus is limited. As in Patent Document 1, if a thyristor is used, a high turn-on voltage can be realized even in one stage. However, since the thyristor has a pnpn structure, the structure is more complicated than a diode, and the cost reduction of the device is limited.

本発明の2波長半導体レーザ装置は、第一の半導体レーザと前記第一の半導体レーザと並列接続された保護回路とを備え、保護回路は、第一の半導体レーザよりサージ耐圧の高い第二の半導体レーザを備えることを特徴とする。 The two-wavelength semiconductor laser device of the present invention includes a first semiconductor laser and a protection circuit connected in parallel with the first semiconductor laser, and the protection circuit has a second surge breakdown voltage higher than that of the first semiconductor laser. A semiconductor laser is provided.

本発明によれば、保護回路を備えた低コストの2波長半導体レーザ装置が実現される。   According to the present invention, a low-cost two-wavelength semiconductor laser device including a protection circuit is realized.

次に、本発明による2波長半導体レーザ装置の好適な実施形態について、図面を参照しながら詳細に説明する。
(第一の実施形態)
図1は本発明の第一の実施形態を示す2波長半導体レーザ装置10の回路図である。第一の半導体レーザ11に対して並列接続された保護回路12で構成され、保護回路には第二の半導体レーザ13を備えている。保護回路12は、第二の半導体レーザ13と同じpn接合構造を有する2段のダイオード14とを備えている。第二の半導体レーザ13は第一の半導体レーザ11よりサージ耐圧が高い。ダイオード14のp側端子/n側端子はそれぞれ第一の半導体レーザ11のp側と第二の半導体レーザ13のp側端子とに接続されている。また、第一の半導体レーザ11のp側端子、第二の半導体レーザ13のp側端子には、それぞれ動作電流を導入する電流導入部15、16が設けられている。更に、第一の半導体レーザ11のn側端子と第二の半導体レーザ13のn側端子とが繋がってn側の共通端子17が設けられている。保護回路12の順方向立ち上がり電圧は、第一の半導体レーザ11の動作電圧より高い。ダイオード14の逆方向耐圧は第二の半導体レーザ13の順方向サージ耐圧より高い。また、保護回路12の抵抗は第一の半導体レーザ11の抵抗より小さい。
Next, a preferred embodiment of a two-wavelength semiconductor laser device according to the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a circuit diagram of a two-wavelength semiconductor laser device 10 showing a first embodiment of the present invention. The protection circuit 12 is connected in parallel to the first semiconductor laser 11, and the protection circuit includes a second semiconductor laser 13. The protection circuit 12 includes a two-stage diode 14 having the same pn junction structure as that of the second semiconductor laser 13. The second semiconductor laser 13 has a surge withstand voltage higher than that of the first semiconductor laser 11. The p-side terminal / n-side terminal of the diode 14 is connected to the p-side of the first semiconductor laser 11 and the p-side terminal of the second semiconductor laser 13, respectively. Further, current introduction portions 15 and 16 for introducing an operating current are provided on the p-side terminal of the first semiconductor laser 11 and the p-side terminal of the second semiconductor laser 13, respectively. Further, an n-side common terminal 17 is provided by connecting the n-side terminal of the first semiconductor laser 11 and the n-side terminal of the second semiconductor laser 13. The forward rising voltage of the protection circuit 12 is higher than the operating voltage of the first semiconductor laser 11. The reverse breakdown voltage of the diode 14 is higher than the forward surge breakdown voltage of the second semiconductor laser 13. Further, the resistance of the protection circuit 12 is smaller than the resistance of the first semiconductor laser 11.

図2は、本発明の第一の実施形態の2波長半導体レーザ装置10の斜視図、また、図3は図2のA−A‘に沿った断面図を示す。ヒートシンクとなるp型のSi基板21の表面にはn型領域22が2箇所設けられ、n型領域22の中にp型領域23が設けられて、同じpn接合構造の2つのダイオード14が作りこまれている。Si基板21上には、絶縁膜24を介して第一の電極25と第二の電極26が設けられている。また、第一の電極25と第二の電極26は各々、絶縁膜24に開けられたコンタクトホールを介して、p領域23/n領域22と接続されており、それぞれダイオード14のp側端子/n側端子となっている。また、ダイオード14は第一の電極25と第二の電極26との跨った位置に配置されると共に、絶縁膜24に開けられたコンタクトホールを介して配線27でダイオード14間が接続されている。第一の電極25と第二の電極26には各々、半田28を介して第一の半導体レーザ11のp側端子となるp側電極29と第二の半導体レーザ13のp側端子となるp側電極30とが融着されている。第一の半導体レーザ11と第二の半導体レーザ13はいわゆるジャンクションダウンで融着されている。第一の半導体レーザ11と第二の半導体レーザ13はGaAsからなる半導体基板31上に1チップ集積されており、共通のn側端子となるn側電極32が設けられている。第一の電極25と第二の電極26は、それぞれ第一の半導体レーザ11と第二の半導体レーザ13の動作電流を印加する、電流導入部となっておりワイヤ33がボンディングされている。また、n電極側33にもワイヤ33がボンディングされている。   FIG. 2 is a perspective view of the two-wavelength semiconductor laser device 10 according to the first embodiment of the present invention, and FIG. 3 is a cross-sectional view taken along A-A ′ of FIG. Two n-type regions 22 are provided on the surface of the p-type Si substrate 21 serving as a heat sink, and a p-type region 23 is provided in the n-type region 22 to form two diodes 14 having the same pn junction structure. It is included. A first electrode 25 and a second electrode 26 are provided on the Si substrate 21 via an insulating film 24. Each of the first electrode 25 and the second electrode 26 is connected to the p region 23 / n region 22 through a contact hole opened in the insulating film 24, and is connected to the p-side terminal / It is an n-side terminal. In addition, the diode 14 is disposed at a position straddling the first electrode 25 and the second electrode 26, and the diodes 14 are connected by a wiring 27 through a contact hole opened in the insulating film 24. . The first electrode 25 and the second electrode 26 are respectively connected via a solder 28 to a p-side electrode 29 serving as a p-side terminal of the first semiconductor laser 11 and a p-side terminal serving as a p-side terminal of the second semiconductor laser 13. The side electrode 30 is fused. The first semiconductor laser 11 and the second semiconductor laser 13 are fused by so-called junction down. The first semiconductor laser 11 and the second semiconductor laser 13 are integrated in one chip on a semiconductor substrate 31 made of GaAs, and an n-side electrode 32 serving as a common n-side terminal is provided. The first electrode 25 and the second electrode 26 are current introduction portions for applying operating currents of the first semiconductor laser 11 and the second semiconductor laser 13, respectively, and a wire 33 is bonded thereto. A wire 33 is also bonded to the n-electrode side 33.

次に、本発明の第一の実施形態を示す2波長半導体レーザ装置の製造工程について説明する。ヒートシンクとなるp型のSi基板21にn型不純物を熱拡散し、2箇所のn型領域22を形成する。n型不純物として例えば、リン、砒素、アンチモンが用いられる。n型領域22の中に濃度の高いp型不純物を熱拡散してp型領域23を形成し、ダイオード14を作りこむ。p型不純物として例えば、ホウ素が用いられる。ダイオード14は、その逆方向耐圧が第二の半導体レーザ13の順方向サージ耐圧より高くなるようpn接合のキャリアプロファイルが設定されている。次に、Si基板21上に絶縁膜24を形成する。絶縁膜24は例えば、酸化珪素、窒化珪素、酸化チタン、酸化アルミニウム、窒化アルミニウムが望ましく、少なくとも10nm以上の厚さで形成される。次に、p領域23、n領域22上の絶縁膜24にコンタクトホールを形成し、絶縁膜24上に第一の電極25、第二の電極26を形成すると共に、p領域23と第一の電極25、n領域23と第二の電極26をそれぞれ接続する。
次に、第一の半導体レーザ11のp側電極29と第二の半導体レーザ13のp側電極30とを一括して、それぞれ、第一の電極25と第二の電極26とに半田28を介して融着する。半田28は例えば金錫合金が用いられる。次に、第一の電極25、第二の電極26、n電極31にそれぞれワイヤ33をボンディングする。尚、図には示していないが、Si基板21はサブマウント或いはステムに装着され、ワイヤ33は外部回路と接続される。
Next, the manufacturing process of the two-wavelength semiconductor laser device showing the first embodiment of the present invention will be described. An n-type impurity is thermally diffused in a p-type Si substrate 21 serving as a heat sink to form two n-type regions 22. For example, phosphorus, arsenic, or antimony is used as the n-type impurity. A p-type region 23 is formed by thermally diffusing a high-concentration p-type impurity in the n-type region 22, thereby forming the diode 14. For example, boron is used as the p-type impurity. The diode 14 has a pn junction carrier profile so that its reverse breakdown voltage is higher than the forward surge breakdown voltage of the second semiconductor laser 13. Next, an insulating film 24 is formed on the Si substrate 21. For example, the insulating film 24 is preferably silicon oxide, silicon nitride, titanium oxide, aluminum oxide, or aluminum nitride, and is formed with a thickness of at least 10 nm. Next, a contact hole is formed in the insulating film 24 on the p region 23 and the n region 22, a first electrode 25 and a second electrode 26 are formed on the insulating film 24, and The electrode 25, the n region 23, and the second electrode 26 are connected to each other.
Next, the p-side electrode 29 of the first semiconductor laser 11 and the p-side electrode 30 of the second semiconductor laser 13 are batched, and solder 28 is applied to the first electrode 25 and the second electrode 26, respectively. Fusing through. For example, a gold-tin alloy is used for the solder 28. Next, wires 33 are bonded to the first electrode 25, the second electrode 26, and the n-electrode 31, respectively. Although not shown in the figure, the Si substrate 21 is mounted on a submount or a stem, and the wire 33 is connected to an external circuit.

次に、本実施形態の効果について説明する。上述したように、保護回路12は同じpn構造のダイオード14と第二の半導体レーザ13で構成されている。ダイオード14は2回の不純物拡散で一括してSi基板21に作りこみ、2段構成にしただけであり、素子構造、回路構成、製造工程は簡単である。また、第二の半導体レーザ13を保護回路12の一部として利用し、ダイオード14との回路接続も第一の半導体レーザ11と一括して行われる。従って、保護回路12は2種類のダイオードで構成されるものの、そのことで、製造工程が増えたり、複雑になることはない。また、ダイオードだけで保護回路を形成する場合に比べダイオードの段数を減らす、すなわち素子数を削減できるので、製造コストを下げることが出来る。更に、第一の半導体レーザ11と第二の半導体レーザ13は結晶成長厚がほぼ同じであり、融着面の高さは揃っているため、融着にあたってはヒートシンクに特別の構成や特別の組立方法は必要としない。
また、ダイオード14は第一の電極25と第二の電極26との跨った位置に配置されている。この配置では、半導体基板31が覆いかぶさることにより、第一の半導体レーザ11或いは第二の半導体レーザ13の光出力の一部が迷光としてダイオード14に入射することを防止する。従って、ダイオード14に迷光が入射することによる光電流発生を防止し、第一の半導体レーザ11或いは第二の半導体レーザ13の動作が不安定になることを防ぐ効果がある。また、ヒートシンクとなるSi基板21のサイズを最小限に抑えることが出来る。なお、ダイオード14の配置は、半導体基板31が覆いかぶさる位置であればよいので、図3において、紙面に垂直方向に配置してもよい。
Siのダイオード14は2段構成となっておりその順方向立ち上がり電圧は0.6Vx2=1.2V、780nm帯半導体レーザである第二の半導体レーザ13の順方向立ち上がり電圧は1.4Vであるので、保護回路12の順方向立ち上がり電圧は2.6Vとなる。一方、650nm帯半導体レーザである第一の半導体レーザ11は、DVDの読取りに用いられる小光出力の場合、その動作電圧は2.3V程度であり、第一の半導体レーザ11が通常動作する条件下では、保護回路に電流は流れ込まない。
Next, the effect of this embodiment will be described. As described above, the protection circuit 12 includes the diode 14 having the same pn structure and the second semiconductor laser 13. The diode 14 is simply formed on the Si substrate 21 by two impurity diffusions and has a two-stage configuration, and the element structure, circuit configuration, and manufacturing process are simple. Further, the second semiconductor laser 13 is used as a part of the protection circuit 12, and circuit connection with the diode 14 is also performed together with the first semiconductor laser 11. Therefore, although the protection circuit 12 includes two types of diodes, this does not increase the manufacturing process or complicate the manufacturing process. In addition, since the number of diodes can be reduced, that is, the number of elements can be reduced as compared with the case where the protection circuit is formed with only the diodes, the manufacturing cost can be reduced. Furthermore, since the first semiconductor laser 11 and the second semiconductor laser 13 have substantially the same crystal growth thickness and the height of the fusion surface is uniform, a special configuration or special assembly is used for the heat sink during fusion. I don't need a method.
The diode 14 is disposed at a position straddling the first electrode 25 and the second electrode 26. In this arrangement, when the semiconductor substrate 31 is covered, a part of the light output of the first semiconductor laser 11 or the second semiconductor laser 13 is prevented from entering the diode 14 as stray light. Therefore, it is possible to prevent generation of photocurrent due to stray light entering the diode 14 and to prevent the operation of the first semiconductor laser 11 or the second semiconductor laser 13 from becoming unstable. In addition, the size of the Si substrate 21 serving as a heat sink can be minimized. Note that the diode 14 may be disposed at a position where the semiconductor substrate 31 is covered, and therefore may be disposed in a direction perpendicular to the paper surface in FIG.
Since the Si diode 14 has a two-stage configuration, its forward rise voltage is 0.6Vx2 = 1.2V, and the forward rise voltage of the second semiconductor laser 13 which is a 780 nm band semiconductor laser is 1.4V. The forward rising voltage of the protection circuit 12 is 2.6V. On the other hand, the first semiconductor laser 11 which is a 650 nm band semiconductor laser has an operating voltage of about 2.3 V in the case of a small optical output used for reading a DVD, and the conditions under which the first semiconductor laser 11 operates normally. Below, no current flows into the protection circuit.

第一の半導体レーザ11にサージにより、保護回路12の立ち上がり電圧を超える過大な電圧が順方向に印加されると、それにより印加される過大な電流は保護回路に分流され、実効的に第一の半導体レーザ11のサージ耐圧が向上する。   When an excessive voltage exceeding the rising voltage of the protection circuit 12 is applied to the first semiconductor laser 11 due to a surge in the forward direction, the excessive current applied thereby is shunted to the protection circuit, and effectively the first The surge breakdown voltage of the semiconductor laser 11 is improved.

ところで、一般に、650nm帯半導体レーザはAlGaInP系の材料、780nm帯半導体レーザはAlGaAs系の材料より構成され、その電気抵抗、熱抵抗の違いから、780nm帯半導体レーザの方がESDに強い。実際、マンマシンモデルによるESD(Electro−Static−Discharge:静電気放電)試験により、780nm帯半導体レーザでは100V以上のESD耐圧すなわちサージ耐圧があるのに対して、650nm帯半導体レーザでは50V程度しかないことがあることを確認している。   By the way, in general, a 650 nm band semiconductor laser is composed of an AlGaInP-based material, and a 780 nm band semiconductor laser is composed of an AlGaAs-based material, and the 780 nm band semiconductor laser is more resistant to ESD due to the difference in electric resistance and thermal resistance. In fact, according to an ESD (Electro-Static-Discharge) test using a man-machine model, the 780 nm band semiconductor laser has an ESD breakdown voltage, that is, a surge breakdown voltage of 100 V or more, whereas the 650 nm band semiconductor laser has only about 50 V. Make sure that there is.

従って、本実施形態では、第一の半導体レーザ11よりサージ耐圧の高い第二の半導体レーザ13を保護回路12の一部として用いているため、第一の半導体レーザ11のサージ破壊電圧以下で、第二の半導体レーザ13は破壊されない。   Therefore, in this embodiment, since the second semiconductor laser 13 having a surge withstand voltage higher than that of the first semiconductor laser 11 is used as a part of the protection circuit 12, the surge breakdown voltage of the first semiconductor laser 11 is less than or equal to The second semiconductor laser 13 is not destroyed.

また逆に、第二の半導体レーザ13が通常動作する条件下では、ダイオード14は逆バイアスとなるので、第一の半導体レーザ11へ電流が流れ込むことはない。更に、第二の半導体レーザ13にサージにより、過大な電圧が順方向に印加された場合も、ダイオード14の逆方向耐圧は第二の半導体レーザ13の順方向サージ耐圧よりも高いので、第二の半導体レーザ13へ印加される過大な電流は第一の半導体レーザ11へは流れ込まない。
本実施の形態では、第二の半導体レーザ13のサージ耐圧は維持され、第一の半導体レーザ11のサージ耐圧が実効的に、50Vから80Vと大きく改善されることにより、2波長半導体レーザ装置としてのサージ耐圧が50Vから80Vへと大きく改善された。
(第二の実施形態)
図4は第二の実施形態の2波長半導体レーザ装置40の斜視図を示す。本実施形態では、Si基板21上に、レーザ出力をモニターするための光出力モニターフォトダイオード41が作り込まれており、ワイヤ43からモニタ出力が取り出される。その他の構成は第一の実施例と同じなので詳細説明は省略する。従って、保護回路の構成/動作における効果は第一の実施形態で説明したものと同等である。
また、本実施の形態では、例えば、特許文献2と異なり、ダイオード14を第一の電極と第二の電極26に跨った領域に形成しているので、レーザ後方直近に光出力モニターフォトダイオード41を配置でき、十分なモニター電流が得られる利点を持つ。製造工程は第一の実施例と比べると、例えば、n型領域を形成するときに同時にn型不純物を熱拡散して、フォトダイオード41のpn接合領域を形成し、また、光出力モニターフォトダイオード41のn側電極42もダイオード14の電極形成時に一括して形成すれば、工程数は増えない。
尚、ダイオード14の段数2段に限定されず、第一の半導体レーザ11の動作電圧、第二の半導体レーザ13の順方向立ち上がり電圧が本実施例と異なるものを使う場合は、上述した実施例の主旨に沿って、適宜決めればよい。また、第一の半導体レーザ11、第二の半導体レーザ13は650nm帯と780nm帯の半導体レーザの例を示したが、他の波長帯のレーザでも構成できることは言うまでもない。
Conversely, under the condition that the second semiconductor laser 13 operates normally, the diode 14 is reverse-biased, so that no current flows into the first semiconductor laser 11. Further, even when an excessive voltage is applied to the second semiconductor laser 13 due to a surge in the forward direction, the reverse breakdown voltage of the diode 14 is higher than the forward surge breakdown voltage of the second semiconductor laser 13. An excessive current applied to the semiconductor laser 13 does not flow into the first semiconductor laser 11.
In the present embodiment, the surge withstand voltage of the second semiconductor laser 13 is maintained, and the surge withstand voltage of the first semiconductor laser 11 is effectively improved from 50 V to 80 V, thereby providing a two-wavelength semiconductor laser device. The surge withstand voltage was greatly improved from 50V to 80V.
(Second embodiment)
FIG. 4 is a perspective view of the two-wavelength semiconductor laser device 40 of the second embodiment. In this embodiment, a light output monitor photodiode 41 for monitoring the laser output is formed on the Si substrate 21, and the monitor output is taken out from the wire 43. Since other configurations are the same as those of the first embodiment, detailed description thereof is omitted. Therefore, the effect in the configuration / operation of the protection circuit is the same as that described in the first embodiment.
In the present embodiment, for example, unlike Patent Document 2, since the diode 14 is formed in a region straddling the first electrode and the second electrode 26, the light output monitor photodiode 41 is located in the immediate rearward direction of the laser. This has the advantage that a sufficient monitor current can be obtained. Compared with the first embodiment, for example, the n-type impurity is thermally diffused simultaneously to form the pn junction region of the photodiode 41 when the n-type region is formed. If the n-side electrode 42 of 41 is also formed at the same time when the electrode of the diode 14 is formed, the number of processes will not increase.
Note that the number of stages of the diodes 14 is not limited to two, and when the operating voltage of the first semiconductor laser 11 and the forward rising voltage of the second semiconductor laser 13 are different from those of the present embodiment, the above-described embodiment is used. What is necessary is just to decide suitably according to the main point of. In addition, although the first semiconductor laser 11 and the second semiconductor laser 13 are examples of semiconductor lasers in the 650 nm band and the 780 nm band, it goes without saying that lasers in other wavelength bands can also be configured.

本発明の2波長半導体レーザ装置の活用例として、DVD/CD用半導体レーザ装置が挙げられる。   As an application example of the two-wavelength semiconductor laser device of the present invention, there is a DVD / CD semiconductor laser device.

本発明の第一の実施形態の2波長半導体レーザ装置の回路図The circuit diagram of the two-wavelength semiconductor laser device of the first embodiment of the present invention 本発明の第一の実施形態の2波長半導体レーザ装置の斜視図1 is a perspective view of a two-wavelength semiconductor laser device according to a first embodiment of the present invention. 図2のA−A‘断面図A-A 'sectional view of FIG. 本発明の第二の実施形態の2波長半導体レーザ装置の斜視図The perspective view of the two-wavelength semiconductor laser device of the second embodiment of the present invention

符号の説明Explanation of symbols

10:2波長半導体レーザ装置
11:第一の半導体レーザ
12:保護回路
13:第二の半導体レーザ
14:ダイオード
15、16:電流導入部
17:共通端子
21:Si基板
22:n型領域
23:p型領域
24:絶縁膜
25:第一の電極
26:第二の電極
27:配線
28:半田
29:p側電極
30:p側電極
31:半導体基板
32:n側電極
33:ワイヤ
41:光出力モニターフォトダイオード
42:n側電極
43:ワイヤ
10: two-wavelength semiconductor laser device 11: first semiconductor laser 12: protection circuit 13: second semiconductor laser 14: diode 15, 16: current introduction part 17: common terminal 21: Si substrate 22: n-type region 23: p-type region 24: insulating film 25: first electrode 26: second electrode 27: wiring 28: solder 29: p-side electrode 30: p-side electrode 31: semiconductor substrate 32: n-side electrode 33: wire 41: light Output monitor photodiode 42: n-side electrode 43: wire

Claims (9)

第一の半導体レーザと、前記第一の半導体レーザと並列接続された保護回路と、を備え、
前記保護回路は、前記第一の半導体レーザよりサージ耐圧の高い第二の半導体レーザとpn接合構造のダイオードを備え
前記ダイオードは、p型端子が前記第一の半導体レーザのp型端子に、n型端子が前記第二の半導体レーザのp型端子に、それぞれ接続されており、
前記ダイオードの前記p型端子及び前記第一の半導体レーザの前記p型端子は、前記第一の半導体レーザの動作電流を導入する第1の電流導入部に接続しており、
前記ダイオードの前記n型端子及び前記第二の半導体レーザの前記p型端子は、前記第二の半導体レーザの動作電流を導入する第2の電流導入部に接続していることを特徴とする半導体レーザ装置。
A first semiconductor laser, and a protection circuit connected in parallel with the first semiconductor laser,
The protection circuit includes a second semiconductor laser having a surge breakdown voltage higher than that of the first semiconductor laser and a diode having a pn junction structure ,
The diode has a p-type terminal connected to the p-type terminal of the first semiconductor laser and an n-type terminal connected to the p-type terminal of the second semiconductor laser,
The p-type terminal of the diode and the p-type terminal of the first semiconductor laser are connected to a first current introduction unit that introduces an operating current of the first semiconductor laser,
The semiconductor is characterized in that the n-type terminal of the diode and the p-type terminal of the second semiconductor laser are connected to a second current introducing portion for introducing an operating current of the second semiconductor laser. Laser device.
前記ダイオードは、同じpn接合構造のダイオード素子が複数段直列に接続された構造を有しており、
最も前記第一の半導体レーザに近い前記ダイオード素子の前記p型端子が前記第1の電流導入部に接続しており、
最も前記第二の半導体レーザに近い前記ダイオード素子の前記n型端子が前記第2の電流導入部に接続していることを特徴とする、請求項1に記載の半導体レーザ装置。
The diode has a structure in which a plurality of diode elements having the same pn junction structure are connected in series ,
The p-type terminal of the diode element closest to the first semiconductor laser is connected to the first current introduction unit;
2. The semiconductor laser device according to claim 1, wherein the n-type terminal of the diode element closest to the second semiconductor laser is connected to the second current introduction unit .
前記保護回路の順方向立ち上がり電圧が、前記第一の半導体レーザの動作電圧より高いことを特徴とする、請求項ないしに記載の半導体レーザ装置。 3. The semiconductor laser device according to claim 1, wherein a forward rising voltage of the protection circuit is higher than an operating voltage of the first semiconductor laser. 前記ダイオードの逆方向耐圧が、前記第二の半導体レーザの順方向サージ耐圧より高いことを特徴とする、請求項ないしに記載の半導体レーザ装置。 Reverse breakdown voltage of the diode, and wherein the higher than a forward surge resistance of the second semiconductor laser, a semiconductor laser device according to claims 1 to 3. Siのヒートシンクを備え、前記ダイオードが、前記ヒートシンクに作りこまれていることを特徴とする、請求項ないしに記載の半導体レーザ装置。 Comprising a Si heat sink, the diodes, characterized in that it is built into the heat sink, the semiconductor laser device according to claims 1 to 4. 前記ヒートシンクは、前記第一の半導体レーザと前記第二の半導体レーザとをマウントする第一の電極と第二の電極とを備え、前記ダイオードが前記第一の電極と前記第二の電極とに跨った位置に配置されることを特徴とする、請求項に記載の半導体レーザ装置。 The heat sink includes a first electrode and a second electrode for mounting the first semiconductor laser and the second semiconductor laser, and the diode is connected to the first electrode and the second electrode. The semiconductor laser device according to claim 5 , wherein the semiconductor laser device is disposed in a straddling position. 前記ヒートシンクには、光出力モニターフォトダイオードが作りこまれていることを特徴とする、請求項ないしに記載の半導体レーザ装置。 The heat sink is characterized in that the optical output monitor photo diode is fabricated, the semiconductor laser device according to 6 the preceding claims 5. 前記第一の半導体レーザは650nm帯半導体レーザであり、前記第二の半導体レーザは780nm帯半導体レーザであることを特徴とする請求項1ないしに記載の半導体レーザ装置。 It said first semiconductor laser is 650nm band semiconductor laser, a semiconductor laser device according to claims 1 to 7, characterized in that said second semiconductor laser is 780nm band semiconductor laser. 前記第一の半導体レーザと前記第二の半導体レーザとが1チップ集積されていることを特徴とする、請求項1ないしに記載の半導体レーザ装置。 Wherein the first semiconductor laser and said second semiconductor laser is characterized in that it is a one-chip integrated semiconductor laser device according to claims 1 to 8.
JP2006310576A 2006-11-16 2006-11-16 Semiconductor laser device Expired - Fee Related JP4885688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006310576A JP4885688B2 (en) 2006-11-16 2006-11-16 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006310576A JP4885688B2 (en) 2006-11-16 2006-11-16 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2008130611A JP2008130611A (en) 2008-06-05
JP4885688B2 true JP4885688B2 (en) 2012-02-29

Family

ID=39556176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006310576A Expired - Fee Related JP4885688B2 (en) 2006-11-16 2006-11-16 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP4885688B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017006331T5 (en) * 2016-12-16 2019-09-19 Sumitomo Electric Industries, Ltd. OPTICAL MODULE
JP7153713B2 (en) 2017-04-24 2022-10-14 アイメック・ヴェーゼットウェー Solid nanocomposite electrolyte materials
WO2019088196A1 (en) 2017-11-02 2019-05-09 アイメック・ヴェーゼットウェー Solid electrolyte, electrode, electric power storage element, and method for manufacturing solid electrolyte
US11710850B2 (en) 2017-11-02 2023-07-25 Imec Vzw Solid electrolyte, electrode, power storage device, and method for producing solid electrolytes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992805A (en) * 1995-09-22 1997-04-04 Sony Corp Optical integrated circuit device
JP4299524B2 (en) * 2001-11-27 2009-07-22 シャープ株式会社 Semiconductor laser device and manufacturing method thereof
JP2004221274A (en) * 2003-01-14 2004-08-05 Rohm Co Ltd Semiconductor device
EP1687879B1 (en) * 2003-11-28 2008-12-10 OSRAM Opto Semiconductors GmbH Light-emitting semiconductor component comprising a protective diode
JP2005217381A (en) * 2004-02-02 2005-08-11 Sony Corp Semiconductor light emitting device and its manufacturing method
JP4815812B2 (en) * 2004-02-04 2011-11-16 富士ゼロックス株式会社 Vertical cavity surface emitting semiconductor laser device
JP2005340344A (en) * 2004-05-25 2005-12-08 Sony Ericsson Mobilecommunications Japan Inc Light emitting device and portable electronic device
JP2007129012A (en) * 2005-11-02 2007-05-24 Seiko Epson Corp Optical semiconductor element

Also Published As

Publication number Publication date
JP2008130611A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
US7860136B2 (en) Fault tolerant laser diode package
US7105860B2 (en) Flip chip light-emitting diode package
JP5354828B2 (en) III-nitride light-emitting device with enhanced light generation capability
JP2023522559A (en) 3D and LiDAR sensing module
EP1587151A2 (en) Semiconductor light emitting device and fabrication method thereof
US20120033702A1 (en) Semiconductor laser apparatus
US20060104565A1 (en) Optical semiconductor module
US9780523B2 (en) Semiconductor laser device
JP2008235792A (en) Semiconductor device and production method therefor
JPWO2013150715A1 (en) Semiconductor laser device and manufacturing method thereof
JP4885688B2 (en) Semiconductor laser device
US8138663B2 (en) Light emitting device and method of manufacturing the same
JP2005183996A (en) Radiation light-emitting semiconductor component element and method for fixing semiconductor chip on lead frame
KR101116766B1 (en) Production Method of Zenor Diode
US20030133481A1 (en) Semiconductor laser device and method of manufacturing the same
JPH02278783A (en) Semiconductor laser
JP5216807B2 (en) Semiconductor laser device
KR100397608B1 (en) Light emitting device using GaN series III-V group nitride semiconductor laser diode
JP2023179042A (en) Sub-mount and laser module with the same
JP2004193302A (en) Semiconductor laser element
US20040150000A1 (en) Semiconductor device
JP2011029677A5 (en)
JPH05226782A (en) Semiconductor optical device
JPS61107784A (en) Semiconductor laser device
JP2010183111A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091015

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees