JP4884579B2 - Lead-acid battery inter-cell connection method - Google Patents

Lead-acid battery inter-cell connection method Download PDF

Info

Publication number
JP4884579B2
JP4884579B2 JP16925999A JP16925999A JP4884579B2 JP 4884579 B2 JP4884579 B2 JP 4884579B2 JP 16925999 A JP16925999 A JP 16925999A JP 16925999 A JP16925999 A JP 16925999A JP 4884579 B2 JP4884579 B2 JP 4884579B2
Authority
JP
Japan
Prior art keywords
pressure
inter
cell
applied pressure
pressing force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16925999A
Other languages
Japanese (ja)
Other versions
JP2000357503A (en
Inventor
稔 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP16925999A priority Critical patent/JP4884579B2/en
Publication of JP2000357503A publication Critical patent/JP2000357503A/en
Application granted granted Critical
Publication of JP4884579B2 publication Critical patent/JP4884579B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鉛蓄電池のセル間接続方法に関するものである。
【0002】
【従来の技術】
鉛蓄電池のセル間接続方法としては様々な方法が提案されている。一般に車両始動用の鉛蓄電池においてはセル間を区画する隔壁に透孔を設け、この透孔を介してセル間接続を行なっている。そして、接続方法としては抵抗溶接が用いられている。これは隔壁に設けた透孔の両側に鉛合金のセル間接続体を対峙させ、ある加圧力でセル間接続体同士を押し出し変形させて接触させ、通電して接触部での抵抗発熱によってセル間接続体同士を溶接する方法である。
【0003】
通常の板材同士の抵抗溶接と異なり、鉛蓄電池のセル間における抵抗溶接の場合には被溶接部材である接続体の間に隔壁に設けた透孔を介して溶接する必要があることから、隔壁の厚みに応じてセル間接続体同士を押し出し変形させて両者を接触させるとともに溶接後には透孔内が溶接部で満たされる必要がある。また、電池としての性能を確保するために溶接後のセル間接続体と隔壁との液密性を充分に確保する必要があることから、特に様々な抵抗溶接方法が提案されている。
【0004】
その中でも特開平2−121257号公報には、1次加圧力でセル間接続体同士を接触させ、ほぼ同じ圧力を維持して通電し、通電末期もしくは通電終了直後の溶接部が未だ凝固していないタイミングで溶接部を1次加圧力よりも高い2次加圧力で加圧して凝固させることが記載されている。この方法によれば、2次加圧によって透孔内を溶融鉛で満たし、かつ溶融鉛内の気泡等を除去するとともに接続体と透孔周囲の隔壁とを密着させることができるので、鉛蓄電池のセル間接続に適切な透孔周囲の隔壁と溶接部との接触部の液密性が確保され、溶接部内の気孔・亀裂等の欠陥のない溶接部を得ることができる。
【0005】
【発明が解決しようとする課題】
このような加圧・通電パターンを有する鉛蓄電池のセル間接続方法は比較的小形の始動用鉛蓄電池に適当であるが、大型の始動用鉛蓄電池では放電電流が大きくなるため、接続体の体積をより大きく確保することが必要である。このような場合には隔壁間の透孔を介して対峙した接続体同士を押し出して突き合わせる加圧力をより高くすることが必要である。
【0006】
この点に関して米国特許3793086号明細書には接続体同士を初期の高い圧力で加圧して透孔内で突き合わせた後に、加圧力を減じて通電することが記載されている。これは、初期の高い圧力を維持したままで通電すると溶融鉛が溶接部から流出し、接続部に欠陥が発生するためである。この米国特許3793086号明細書に記載の技術によれば、大きい接続体を用いた場合にも接続体同士を突き合わせて抵抗溶接が可能である。
【0007】
しかしながら、この技術のみでは溶接部からの溶融鉛の流出を完全に抑制することができず、少量の溶融鉛の流出が発生する場合があった。さらに、このような溶融鉛の流出によって接続部と隔壁間の液密性が低下したり、流出した溶融鉛が極板間を短絡させる不具合が発生する場合があった。
【0008】
本発明は前記したような初期の高い圧力で隔壁に設けた透孔の両側に対峙し接続体を互いの方向に押し出して突き合わせた後に加圧力を減じて通電する鉛蓄電池のセル間接続体溶接において、溶接部から溶融鉛の流出を防止して接続部と隔壁との液密性を確保するとともに接続部内での気孔・亀裂の発生を抑制してセル間接続部の品位を高めることを目的とする。
【0009】
本発明は上記目的を達成するために、複数のセル室からなるモノブロック電槽を有した鉛蓄電池の隣接するセル同士をセル間の隔壁に設けた透孔を介して接続するセル間接続方法であって、前記透孔の両側にセル間接続体を対峙させ、前記セル間接続体を透孔方向に第1の加圧力で加圧し、前記セル間接続体同士を前記透孔内で突き合わせた工程と、その後前記セル間接続体同士の加圧力を前記第1の加圧力よりも低い第3の加圧力とした状態で前記セル間接続体間に通電して前記セル間接続体同士を抵抗溶接する鉛蓄電池のセル間接続方法において、前記第1の加圧力とした工程と、前記第3の加圧力とする通電工程との間に、前記セル間接続体間の加圧力を、前記第1の加圧力より低く、かつ前記第3の加圧力よりも低い第2の加圧力とする工程を含み、かつ、通電中もしくは通電終了直後に前記セル間接続体間の加圧力を前記第3の加圧力よりも高くかつ第1の加圧力と同等かそれ以上の第4の加圧力として、溶接部を冷却・凝固させることを特徴とする鉛蓄電池のセル間接続方法を示すものである。
【0011】
【発明の実施の形態】
本発明の実施の形態を図面を用いて説明する。図1の(a)は鉛蓄電池のセル間接続する前段階での接続体とセル間隔壁との位置関係を示す図である。ここでセル間隔壁1は一般にポリプロピレン樹脂等の成型体であり、セル間を接続する鉛合金製の接続体2、2´に対応して透孔1aが設けられている。次に図1の(b)に示したように第1の加圧力(P1)で加圧・通電用電極3、3´によって接続体2、2´同士を加圧して透孔1a内で押し出して突き合わせる。
【0012】
その後、加圧力を第1の加圧力(P1)より減じて第2の加圧力(P2)とした後に、再び加圧力を増加させて第3の加圧力(P3)で加圧する。この第3の加圧力(P3)を維持した状態で図1の(c)に示したように接続体2、2´間に通電して接続体2、2´間の接触抵抗により発熱させ、接続体2、2´同士を溶接する。通電末期もしくは通電直後の溶接部4が溶融状態にある時点で加圧力を第3の加圧力から増加せしめて第4の加圧力とし、冷却凝固させてセル間接続部を得るものである。
【0013】
ここで第1の加圧力(P1)は比較的大型のセル間接続体を押し出し変形させるために必要なものであり、本発明における前提条件である。但し、通電時の加圧力をこの第1の加圧力(P1)とした場合には高い圧力により溶接部から溶融鉛が流出するために通電時の加圧力は第1の加圧力(P1)よりも低下させることが必要である。本発明の本質的な部分はこの第1の加圧力から通電時の加圧力に低下させる過程にある。
【0014】
すなわち、前述した米国特許3793086号明細書に記載の技術のごとく、初期の高い圧力(本発明の第1の加圧力に相当)から溶接時の加圧力へと直接低下させるのではなく、一旦、第1の加圧力から溶接時の加圧力よりも低い第2の加圧力に減じたのち、再度加圧力を第1の加圧力よりも低いが第2の加圧力よりは高い第3の加圧力まで高め、通電して溶接を行うものである。第1の加圧力は接続体を介して隔壁の透孔の周囲を加圧して圧縮変形させる。この圧縮変形が加圧力の変化に追従しうる弾性変形であり、接続体と透孔周囲の隔壁との密着性が透孔の全周にわたって確保されるならば溶融鉛等の流出は発生しない。
【0015】
しかしながら、実際には加圧力を減ずる過程で接続体と透孔周囲の隔壁との間の一部で微少に密着性が損なわれることがある。さらに溶融鉛は非常に比重が高い(約10.5)ためにこのような微少な密着性の低下によっても通電時の圧力とその溶融鉛自身の自重によって溶融鉛が流出してしまう。このような接続体と透孔周囲の隔壁との間の密着性の低下は加圧による透孔周囲の隔壁の変形が完全な弾性変形ではなく、一部塑性変形で進行するためと推測される。
【0016】
すなわち、加圧力が低下した場合において、透孔周囲の隔壁の圧縮変形が弾性変形である場合、隔壁の圧縮変形は加圧力の低下に応じて復元し、接続体との密着性は確保される。しかしながら透孔周囲の隔壁の圧縮変形が完全な弾性変形ではなく塑性変形である場合には加圧力の低下によっても隔壁の圧縮変形は完全に復元しないために透孔周囲の隔壁と接続体との密着性が損なわれると考えられる。よって加圧力を減少させて通電時の加圧力とするのではなく、加圧力を増加させて通電時の加圧力とすることにより接続体と隔壁との間の密着性を確保することができる。
【0017】
本発明においては第1の加圧力から一旦第2の加圧力まで低下させる時点では、透孔周囲の隔壁と接続体との間に一部密着性が損なわれた部分が発生している。この時点から、再度第3の加圧力まで加圧力を増加させることにより溶接開始時点での透孔周囲の隔壁と接続体との密着性を透孔周囲の全周にわたって確保することができるものである。この第3の加圧力を維持して通電し、溶接部が形成される。通電終了直前もしくは通電終了直後の溶接部が未だ溶融している時点で、接続体間の加圧力から第3の加圧力よりも大である第4の加圧力に増加させる。
【0018】
これは透孔内を溶融した鉛で満たすために必要不可欠な操作であり、この操作によって溶接部での気泡、亀裂等の発生をも抑制することができる。ここで第4の加圧力は少なくとも第1の加圧力と同等かそれ以上とする。このような構成によれば隔壁の接続体部分の液密性をより確実に確保することができる。また、第2の加圧力は第3の加圧力よりも低い値であれば良いので第2の加圧力を0とすることももちろん可能である。
【0019】
【実施例】
まず、上述の通り本実施例によるセル間接続方法により、55D23型(JIS D5301)始動用鉛蓄電池のセル間接続を行った。溶接時の接続体間の加圧・通電パターンは図2に示した通りである。比較例として図3の(a)および(b)の加圧・通電パターンで同じ鉛蓄電池のセル間接続を行った。図2に示された加圧・通電パターンにおいて第4の加圧力(P4)を第1の加圧力(P1)と同じく10kgf/cm2としたパターン(A1)および(A2)と、第4の加圧力(P4)を第1の加圧力(P1)より大である12kgf/cm2としたパターン(A3)はより好ましい本実施例である。
【0020】
参考例は第4の加圧力(P4)を第1の加圧力(P1)より小である8kgf/cm2としたパターン(A4)である。また本発明の実施例および参考例においては第1の加圧力(P1)を10kgf/cm2、第2の加圧力をパターン(A1)とパターン(A3)およびパターン(A4)については1kgf/cm2、パターン(A2)については加圧力を0、すなわち0kgf/cm2とした。また通電時の加圧力すなわち第3の加圧力(P3)は5kgf/cm2とした。
【0021】
図3の(a)に示した比較例1(B)の加圧・通電パターンは本実施例の加圧・通電パターンである(A1)における第1の加圧力(P1)から第2の加圧力(P2)への移行と第2の加圧力(P2)から第3の加圧力(P3)へ移行するステップを除いたものである。図3の(b)に示した比較例2(C)の加圧・通電パターンは図3の(a)に示した比較例1において、通電終了直後に加圧力を増加させるステップを除いたものである。これらの本実施例および比較例によるセル間接続部について、溶融鉛の噴出の発生率、溶接部内部の気泡の発生率およびセル間接続部における隔壁の液密性を評価した。
【0022】
液密性の評価方法としては隔壁の両側のセル室に希硫酸電解液をセル間接続部以上に満たして一方のセル室を大気圧とし、もう一方のセル室の内圧を大気圧+100mmHg、大気圧+300mmHgに加圧して加圧したセル室の内圧変化を確認した。加圧したセル室の内圧が低下する場合には液密性が損なわれていることを示すものである。表1にこれらの評価結果を示す。
【0023】
【表1】

Figure 0004884579
【0024】
表1に示した結果から本実施例のセル間接続方法によれば溶接時の溶融鉛の流出、溶接部内部の気泡・亀裂や接続体溶接部における隔壁間の液密性ともに確保されていることが解る。その中でも本発明の実施例によるセル間接続部(加圧・通電パターンA1、A2およびA3)は参考例によるセル間接続部(加圧・通電パターンA4)に比較して特に優れた液密性を有していることがわかる。
【0025】
【発明の効果】
本発明によれば鉛蓄電池のセル間接続部において溶接時の溶融鉛の流出を抑制し、隔壁との液密性に優れ、溶接部内部にも気泡・亀裂のない信頼性の高いセル間接続部を得ることができ、工業上、極めて有効である。
【図面の簡単な説明】
【図1】 本発明によるセル間接続部を示す拡大断面図
【図2】 本発明および参考例のセル間接続方法における加圧・通電パターンを示す図
【図3】 比較例のセル間接続方法における加圧・通電パターンを示す図
【符号の説明】
1 隔壁
1a 透孔
2、2´ 接続体
3、3´ 加圧・通電用電極
4 溶接部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for connecting cells of a lead storage battery.
[0002]
[Prior art]
Various methods have been proposed for connecting cells of lead-acid batteries. In general, in a lead storage battery for starting a vehicle, a through hole is provided in a partition partitioning between cells, and inter-cell connection is performed through the through hole. And resistance welding is used as a connection method. This is because the inter-cell connecting body of lead alloy is opposed to both sides of the through hole provided in the partition wall, and the inter-cell connecting body is pushed and deformed with a certain pressure to be brought into contact with each other. This is a method of welding the connecting members.
[0003]
Unlike resistance welding between normal plate materials, in the case of resistance welding between cells of a lead storage battery, it is necessary to weld via a through-hole provided in the partition wall between connecting bodies that are welded members. It is necessary to push and deform the inter-cell connecting bodies according to the thickness of the two to bring them into contact with each other and to fill the inside of the through hole with the weld after welding. Moreover, in order to ensure the performance as a battery, since it is necessary to fully ensure the liquid-tightness of the connection body between cells and a partition wall after welding, various resistance welding methods are proposed especially.
[0004]
Among them, in Japanese Patent Application Laid-Open No. 2-121257, inter-cell connectors are brought into contact with each other with primary pressurization, energized while maintaining substantially the same pressure, and the welded portion at the end of energization or immediately after energization is still solidified. There is a description of pressurizing and solidifying a welded portion with a secondary pressure higher than the primary pressure at a timing that is not present. According to this method, the inside of the through hole is filled with molten lead by secondary pressurization, and bubbles and the like in the molten lead can be removed and the connecting body and the partition wall around the through hole can be brought into close contact with each other. Therefore, the liquid-tightness of the contact portion between the partition wall around the through hole and the welded portion suitable for the connection between the cells can be secured, and a welded portion free from defects such as pores and cracks in the welded portion can be obtained.
[0005]
[Problems to be solved by the invention]
The inter-cell connection method of a lead storage battery having such a pressurization / energization pattern is suitable for a relatively small start lead storage battery, but since the discharge current is large in a large start lead storage battery, the volume of the connection body is large. It is necessary to secure a larger value. In such a case, it is necessary to further increase the pressure applied by pushing the connected bodies facing each other through the through holes between the partition walls.
[0006]
In this regard, US Pat. No. 3,793,086 describes that the connecting members are pressed at an initial high pressure and are brought into contact with each other in the through hole, and then energized while reducing the applied pressure. This is because molten lead flows out of the welded portion when a current is applied while maintaining the initial high pressure, and a defect occurs in the connecting portion. According to the technique described in the specification of US Pat. No. 3,793,086, even when a large connecting body is used, resistance welding can be performed by abutting the connecting bodies together.
[0007]
However, this technique alone cannot completely suppress the outflow of molten lead from the weld, and a small amount of outflow of molten lead may occur. In addition, there is a case in which the liquid lead between the connecting portion and the partition wall is lowered due to the outflow of the molten lead or the outflow of molten lead causes a short circuit between the electrode plates.
[0008]
In the present invention, the inter-cell connecting body welding of a lead-acid battery that is opposed to both sides of the through-hole provided in the partition wall at the initial high pressure as described above, pushes the connecting body in the direction of each other, and then energizes with reduced pressure. In order to prevent the outflow of molten lead from the welded part and ensure the liquid-tightness between the connecting part and the partition wall, and to suppress the generation of pores and cracks in the connecting part, and to improve the quality of the connecting part between cells And
[0009]
In order to achieve the above object, the present invention provides an inter-cell connection method in which adjacent cells of a lead storage battery having a monoblock battery case composed of a plurality of cell chambers are connected through a through hole provided in a partition wall between the cells. The inter-cell connecting bodies are opposed to both sides of the through-holes, the inter-cell connecting bodies are pressed with a first pressure in the through-hole direction, and the inter-cell connecting bodies are butted together in the through-holes. And after that, the inter-cell connectors are energized between the inter-cell connectors in a state where the applied pressure between the inter-cell connectors is a third applied pressure lower than the first applied pressure. In the inter-cell connection method of the lead storage battery to be resistance-welded, the pressurizing force between the inter-cell connected bodies is set between the step of the first pressurizing force and the energizing step of the third pressurizing force. A second pressing force lower than the first pressing force and lower than the third pressing force; That step comprises and equal to or coincide with high first pressure than the third pressure to pressure of between between the cell connection body immediately during or application end energization more fourth pressurizing The present invention shows a method for connecting cells between lead-acid batteries, characterized by cooling and solidifying the weld as pressure.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. (A) of FIG. 1 is a figure which shows the positional relationship of the connection body and cell space | interval wall in the step before connecting between cells of a lead storage battery. Here, the cell interval wall 1 is generally a molded body such as polypropylene resin, and through holes 1a are provided corresponding to the lead alloy connection bodies 2 and 2 'for connecting the cells. Next, as shown in FIG. 1 (b), the connecting bodies 2 and 2 ′ are pressed together by the pressurizing and energizing electrodes 3 and 3 ′ with the first pressurizing force (P1) and pushed out through the through hole 1a. And match.
[0012]
Thereafter, the applied pressure is reduced from the first applied pressure (P1) to obtain the second applied pressure (P2), and then the applied pressure is increased again to pressurize with the third applied pressure (P3). In the state where the third pressure (P3) is maintained, as shown in FIG. 1 (c), electricity is applied between the connecting bodies 2 and 2 ′ to generate heat by the contact resistance between the connecting bodies 2 and 2 ′. The connectors 2, 2 'are welded together. When the welding part 4 at the end of energization or immediately after energization is in a molten state, the applied pressure is increased from the third applied pressure to become the fourth applied pressure, and cooled and solidified to obtain the inter-cell connection part.
[0013]
Here, the first pressure force (P1) is necessary for extruding and deforming a relatively large inter-cell connection body, and is a precondition in the present invention. However, when the applied pressure during energization is the first applied pressure (P1), the molten lead flows out from the weld due to the high pressure, so the applied pressure during energization is greater than the first applied pressure (P1). Need to be reduced. The essential part of the present invention is in the process of reducing the first applied pressure to the applied pressure during energization.
[0014]
That is, as in the technique described in the above-mentioned US Pat. No. 3,793086, instead of directly reducing the initial high pressure (corresponding to the first pressure of the present invention) to the pressure during welding, After the first applied pressure is reduced to the second applied pressure lower than the applied pressure during welding, the applied pressure is again lower than the first applied pressure but higher than the second applied pressure. The welding is performed by energizing. The first pressure is compressed and deformed by pressurizing the periphery of the through hole of the partition wall through the connecting body. This compressive deformation is an elastic deformation that can follow the change in the applied pressure, and if the adhesion between the connecting body and the partition wall around the through hole is ensured over the entire circumference of the through hole, no outflow of molten lead or the like occurs.
[0015]
However, in practice, in the process of reducing the applied pressure, the adhesion may be slightly impaired in a part between the connection body and the partition wall around the through hole. Furthermore, since molten lead has a very high specific gravity (about 10.5), molten lead flows out due to the pressure during energization and the weight of the molten lead itself even if such a slight decrease in adhesion is caused. Such a decrease in the adhesion between the connecting body and the partition wall around the through hole is presumed to be due to the fact that the deformation of the partition wall around the through hole due to pressurization is not a complete elastic deformation but partly a plastic deformation. .
[0016]
That is, when the applied pressure is reduced and the compressive deformation of the partition wall around the through hole is an elastic deformation, the compressive deformation of the partition wall is restored according to the decrease in the applied pressure, and the adhesion to the connection body is ensured. . However, if the compressive deformation of the partition wall around the through hole is not a complete elastic deformation but a plastic deformation, the compressive deformation of the partition wall is not completely restored even if the applied pressure is reduced. It is thought that adhesion is impaired. Therefore, the adhesiveness between the connection body and the partition wall can be ensured by decreasing the applied pressure and not increasing the applied pressure during energization, but increasing the applied pressure and applying the applied pressure during energization.
[0017]
In the present invention, at the time when the first applied pressure is once lowered to the second applied pressure, a portion in which the adhesion is partially lost is generated between the partition wall around the through hole and the connection body. From this point of time, by increasing the pressing force to the third pressing force again, the adhesion between the partition wall and the connection body around the through hole at the start of welding can be ensured over the entire periphery of the through hole. is there. The third pressurizing force is maintained to energize to form a weld. Immediately before the end of energization or immediately after the end of energization, the welded portion is still melted, and the applied pressure between the connecting bodies is increased to a fourth applied pressure that is greater than the third applied pressure.
[0018]
This is an indispensable operation for filling the inside of the through hole with molten lead, and this operation can also suppress the generation of bubbles, cracks and the like in the welded portion. Wherein the fourth pressure is you at least a first pressure equal to or higher. According to such a structure, the liquid-tightness of the connection body part of a partition can be ensured more reliably. Further, since the second pressing force only needs to be a value lower than the third pressing force, it is of course possible to set the second pressing force to zero.
[0019]
【Example】
First, as described above, the 55D23 type (JIS D5301) starting lead-acid battery was connected between cells by the inter-cell connection method according to this example. The pressurization / energization pattern between the connected bodies during welding is as shown in FIG. As a comparative example, inter-cell connection of the same lead storage battery was performed with the pressurization / energization patterns of FIGS. 3 (a) and 3 (b). In the pressurization / energization pattern shown in FIG. 2, patterns (A1) and (A2) in which the fourth pressure (P4) is set to 10 kgf / cm 2 like the first pressure (P1), The pattern (A3) in which the pressing force (P4) is 12 kgf / cm 2 which is larger than the first pressing force (P1) is a more preferred embodiment.
[0020]
The reference example is a pattern (A4) in which the fourth pressure (P4) is 8 kgf / cm 2 which is smaller than the first pressure (P1). In the examples and reference examples of the present invention, the first pressure (P1) is 10 kgf / cm 2 , and the second pressure is 1 kgf / cm for pattern (A1), pattern (A3) and pattern (A4). 2 For pattern (A2), the applied pressure was 0, that is, 0 kgf / cm 2 . The applied pressure during energization, that is, the third applied pressure (P3) was set to 5 kgf / cm 2 .
[0021]
The pressurization / energization pattern of Comparative Example 1 (B) shown in FIG. 3A is the second pressurization from the first pressurization force (P1) in (A1) which is the pressurization / energization pattern of this embodiment. The transition to the pressure (P2) and the step of transition from the second applied pressure (P2) to the third applied pressure (P3) are excluded. The pressurization / energization pattern of Comparative Example 2 (C) shown in (b) of FIG. 3 is the same as that of Comparative Example 1 shown in (a) of FIG. 3 except for the step of increasing the applied pressure immediately after the end of energization. It is. About the connection part between cells by these examples and comparative examples, the incidence rate of the molten lead ejection, the bubble generation rate inside the welded part, and the liquid tightness of the partition wall in the connection part between cells were evaluated.
[0022]
As a method for evaluating liquid tightness, the cell chambers on both sides of the partition wall are filled with dilute sulfuric acid electrolyte over the inter-cell connection part, one cell chamber is set to atmospheric pressure, and the internal pressure of the other cell chamber is set to atmospheric pressure + 100 mmHg, A change in internal pressure of the pressurized cell chamber was confirmed by pressurizing to +300 mmHg. When the internal pressure of the pressurized cell chamber decreases, it indicates that the liquid tightness is impaired. Table 1 shows the evaluation results.
[0023]
[Table 1]
Figure 0004884579
[0024]
From the results shown in Table 1, according to the inter-cell connection method of this example, molten lead outflow at the time of welding, bubbles / cracks inside the welded part, and liquid tightness between the partition walls in the welded part of the connected part are ensured. I understand that. Particularly excellent liquid cell joined portion according to the embodiment (pressurization and energization patterns A1, A2 and A3) is compared to the inter-cell connecting section (pressure-energization pattern A4) according to a reference example of Reproductions invention therein It turns out that it has denseness.
[0025]
【Effect of the invention】
According to the present invention, the flow of molten lead at the time of welding is suppressed at the connection part between cells of the lead storage battery, the liquid connection with the partition wall is excellent, and the connection between the cells is highly reliable without bubbles and cracks inside the welded part. Part is obtained, which is extremely effective industrially.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view showing an inter-cell connection portion according to the present invention. FIG. 2 is a diagram showing a pressurization / energization pattern in the inter-cell connection method of the present invention and a reference example . Of pressurization / energization pattern in the case
DESCRIPTION OF SYMBOLS 1 Partition 1a Through-hole 2, 2 'Connection body 3, 3' Electrode for pressurization and electricity supply 4 Welded part

Claims (1)

複数のセル室からなるモノブロック電槽を有した鉛蓄電池の隣接するセル同士をセル間の隔壁に設けた透孔を介して接続するセル間接続方法であり、前記透孔の両側にセル間接続体を対峙させ、前記セル間接続体を透孔方向に第1の加圧力で加圧し、前記セル間接続体同士を前記透孔内で突き合わせる工程と、その後、前記セル間接続体同士の加圧力を前記第1の加圧力よりも低い第3の加圧力とした状態で前記セル間接続体間に通電して前記セル間接続体同士を抵抗溶接する鉛蓄電池のセル間接続方法であって、
前記第1の加圧力とした工程と、前記第3の加圧力とする通電工程との間に、前記セル間接続体間の加圧力を、前記第1の加圧力より低く、かつ前記第3の加圧力よりも低い第2の加圧力とする工程を含み、かつ、通電中もしくは通電終了直後に前記セル間接続体間の加圧力を前記第3の加圧力よりも高くかつ第1の加圧力と同等かそれ以上の第4の加圧力として、溶接部を冷却・凝固させることを特徴とする鉛蓄電池のセル間接続方法。
A cell-to-cell connection method for connecting adjacent cells of a lead-acid battery having a monoblock battery case composed of a plurality of cell chambers through a through hole provided in a partition wall between cells, and between cells on both sides of the through hole Confronting the connection body, pressurizing the inter-cell connection body with a first pressure in the through-hole direction, and abutting the inter-cell connection bodies in the through-hole, and then the inter-cell connection bodies In the inter-cell connection method of a lead storage battery in which the inter-cell connection body is resistance-welded by energizing between the inter-cell connection bodies in a state where the applied pressure is a third applied pressure lower than the first applied pressure. There,
Between the step of setting the first pressing force and the energizing step of setting the third pressing force, the pressing force between the inter-cell connectors is lower than the first pressing force and the third pressing force is applied. of includes a step of a lower second pressure than pressure, and coincide with high first than the third pressure to pressure of between between the cell connection body immediately during or application end conduction A connection method between cells of a lead storage battery, wherein a welded portion is cooled and solidified as a fourth pressing force equal to or higher than the pressing force.
JP16925999A 1999-06-16 1999-06-16 Lead-acid battery inter-cell connection method Expired - Lifetime JP4884579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16925999A JP4884579B2 (en) 1999-06-16 1999-06-16 Lead-acid battery inter-cell connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16925999A JP4884579B2 (en) 1999-06-16 1999-06-16 Lead-acid battery inter-cell connection method

Publications (2)

Publication Number Publication Date
JP2000357503A JP2000357503A (en) 2000-12-26
JP4884579B2 true JP4884579B2 (en) 2012-02-29

Family

ID=15883200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16925999A Expired - Lifetime JP4884579B2 (en) 1999-06-16 1999-06-16 Lead-acid battery inter-cell connection method

Country Status (1)

Country Link
JP (1) JP4884579B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774657B2 (en) * 2001-09-12 2011-09-14 株式会社Gsユアサ Inter-cell connection method for lead-acid batteries

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091553A (en) * 1983-10-24 1985-05-22 Shin Kobe Electric Mach Co Ltd Manufacture of lead storage battery
JPH04155753A (en) * 1990-10-18 1992-05-28 Matsushita Electric Ind Co Ltd Welding device of inter-cell connection body for lead-acid battery

Also Published As

Publication number Publication date
JP2000357503A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
KR100558227B1 (en) Storage battery and method of fabricating the same
US20190273262A1 (en) Secondary battery and method of manufacturing secondary battery
JPH07211314A (en) Electrode plate including spongy metal type support for chemical battery and manufacture thereof
JP4884579B2 (en) Lead-acid battery inter-cell connection method
JPH0982306A (en) Lead-acid battery and manufacture thereof
US5318864A (en) Explosion-resistant storage battery and method of manufacture
JP4774657B2 (en) Inter-cell connection method for lead-acid batteries
JPH11149913A (en) Inter-cell connection method for lead-acid battery
JP5034543B2 (en) Lead acid battery
JPS62117261A (en) Reconnection after cutting of inter-cell connecting member for adjoining storage batteries
JP4222820B2 (en) Manufacturing method of battery safety mechanism
JPH02121257A (en) Welding device and welding method of intercell connection body for lead storage battery
WO2022259609A1 (en) Method for manufacturing bipolar power storage device
JP2005285515A (en) Alkali enclosed secondary battery and its manufacturing method
WO2022172596A1 (en) Bipolar storage battery
JPH0148611B2 (en)
US20210175643A1 (en) Conductive cell frame
JPH02201866A (en) Intercell connecting method for storage battery
JP3932677B2 (en) Lead acid battery
JP3991195B2 (en) Lead acid battery
JPH05234580A (en) Manufacture of lead-acid battery
JP2003203619A (en) Lead storage battery
JP2003223881A (en) Lead accumulator
JP6329799B2 (en) Manufacturing method of laminate
JP2003077526A (en) Element manufacturing method for lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100901

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4884579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term