JP4774657B2 - Inter-cell connection method for lead-acid batteries - Google Patents

Inter-cell connection method for lead-acid batteries Download PDF

Info

Publication number
JP4774657B2
JP4774657B2 JP2001275971A JP2001275971A JP4774657B2 JP 4774657 B2 JP4774657 B2 JP 4774657B2 JP 2001275971 A JP2001275971 A JP 2001275971A JP 2001275971 A JP2001275971 A JP 2001275971A JP 4774657 B2 JP4774657 B2 JP 4774657B2
Authority
JP
Japan
Prior art keywords
inter
hole
cell
electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001275971A
Other languages
Japanese (ja)
Other versions
JP2003086168A (en
Inventor
毅 亀田
能弘 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2001275971A priority Critical patent/JP4774657B2/en
Publication of JP2003086168A publication Critical patent/JP2003086168A/en
Application granted granted Critical
Publication of JP4774657B2 publication Critical patent/JP4774657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鉛蓄電池のセル間接続方法に関するものである。
【0002】
【従来の技術】
従来の鉛蓄電池のセル間接続方法は、図3に示すように電槽9のセル室6を仕切る隔壁7に貫通孔8を設け、該貫通孔8を介して、隣り合うセル室6,6内の極板群12,12のストラップ10,10に立設された互いに反対極性のセル間接続体11,11を向かい合わせて配置し、これら接続体11,11を背面よりセル間接続装置の電極チップ1,1で貫通孔8内に押し込み、これら接続体11,11が一定の接触面積を得た時点で電極チップ1,1に通電して溶接する方法(以下、抵抗溶接という)であった。
【0003】
通常、この方法を採用する場合は、電槽隔壁7に設けられた貫通孔8の形状が真円形であり、電極チップ1の突起3の形状も図4に示すように真円形であった。しかしながら、最近、電池の容積効率向上の要求が高まり、接続体11の高さ寸法を小さくして、その分だけ極板13,14の作用面の高さを高くする工夫がなされている。その一つに、電極チップ1の突起3の形状を真円形から図5のように上下方向に短い長円形にし、電槽隔壁7の貫通孔8の形状も真円形から長円形にしたものがある。なお、この時の長円形の断面積は、真円形の断面積と変わらないようにしてある。
【0004】
このようにすると、真円形の直径と長円形の短直径(上下方向の長さ)との差の分だけ接続体11の高さ寸法を短くでき、その分だけ極板13,14の作用面の高さを高くできるので、同一容積における電池の放電容量を増加できる。なお、貫通孔8の形状は楕円形状でもよく、電極チップ1の形状は貫通孔8の形状と同一で、貫通孔8の断面積に対して接続体11の接触面積が30〜60%になるように直径を決めている。
【0005】
【発明が解決しようとする課題】
しかしながら上記のように構成された鉛蓄電池においてセル間接続を行うと、電極チップ1で接続体11を貫通孔8内に押し込んだ後、抵抗溶接する際に、抵抗熱で溶融し膨張した鉛が貫通孔内の空間を満たすが、その後の冷却過程で前記溶融した鉛が収縮固化して貫通孔内に図6に示すような空孔4が生じ、最悪の場合、溶接不良が生じるという問題点が発生した。
【0006】
本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、容積効率の優れた鉛蓄電池を作製でき、かつ良好なセル間接続状態を得ることができる鉛蓄電池のセル間接続法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、以上の課題を解決する為、電槽の隔壁を介して隣接する極板群の互いに反対極性のセル間接続体を該接続体の背面より電極チップで押圧して該隔壁の貫通孔内で該接続体同士を接触させ抵抗溶接する鉛蓄電池のセル間接続法において、前記貫通孔は上下方向が水平方向より短く形成され、前記接続体は溶接後の前記貫通孔の内径寸法が溶接前の前記内径寸法より大きくなるように、先端が平坦で傾斜をもつ長円形の錐形の突起を有し、前面が上方ほど正面側に傾斜した電極チップにより押圧されて抵抗溶接されることを特徴とする。そして、前記接続体の前記電極チップにより押圧される力が0.80MPa以上であることが望ましい。
【0008】
これにより、電極チップ1で接続体11を押圧した後、抵抗溶接する際に、接続体11の鉛が抵抗熱で溶融し膨張した後、冷却過程で前記溶融した鉛が収縮固化しても、電極チップ1に十分な押圧力を加えることで、電極チップ1が貫通孔を上下方向に押し広げながら押圧方向に進行するので、溶接後に貫通孔内に空孔が発生するのを防止することができる。その結果、良好なセル間接続状態を得ることができ、接続体の高さ寸法を小さくでき、容積効率の優れた鉛蓄電池の製造法を提供できる。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づき説明する。
【0010】
先ず、図2に示すような6個のセル室6を有し、隣り合うセル室6,6を仕切る隔壁7に上下方向が水平方向より短い長円形の貫通孔8を有する電槽9を準備する。
【0011】
次に、図3のように電槽9の各セル室6に、同極性の極板同士をストラップ10で連結し、該ストラップ10の一端に接続体11を立設した極板群12を収納する。この際、隣り合うセル室6,6のセル間接続体11,11が隔壁7の貫通孔8を介して互いに反対極性になるように収納する。なお、13は正極板、14は負極板である。
【0012】
次に、貫通孔8を介して向かい合うセル間接続体11,11の背面に、電極チップ1,1の先端を当て、アーム2,2によりそれぞれの電極チップ1,1を互いに近づけて、セル間接続体11,11を貫通孔8内に押し込んで行く。そして、所定の時間が経過したら該アームの移動を止め、電極チップ1、1に電流を流して貫通孔8内の接続体11、11同士を抵抗溶接してセル間接続を完成する。
【0013】
ここで、電極チップの形状は、図5に示すように、先端が平坦で傾斜をもつ錐形の突起3を有し、アームに近づくに従い太くなっている。突起3は、上下方向が水平方向より短く長円形をなし、固定座16は真円の平滑面からなる。さらに、前記電極チップ1は、電極チップ1の前面が上方ほど正面側に傾斜しており、背面でアーム2と固定されている。
【0014】
次に、実施形態の方法で電極チップの押圧力を変えてセル間接続を実施し、セル間接続後、それぞれのセル間接続体(電池1個につき5か所)を引き剥がし、貫通孔および溶接面の状態から空孔発生による溶接不良率を調査した。その結果を図1に示す。
【0015】
図1の結果から、押圧力が0.80MPa未満のときは、押圧力の増加とともに不良率は減少するものの、貫通孔の内周と溶接面の上下部間での空孔発生による不良率は高かった。一方、押圧力が0.80MPa以上になると、隣接するセル間接続体の溶接面および貫通孔の形状がほぼ同一になり空孔の発生による溶接不良率は0.01%以下と問題のないレベルに達した。以上の結果から、0.80MPa以上の押圧力でセル間接続することにより、隣接するセル間接続体11,11の溶接面15と貫通孔8の形状がほぼ同一になり、溶接不良を大幅に抑制することができ、良好なセル間接続部が得られる。
【0016】
なお、本実施形態では0.80MPa以上押圧力でセル間接続することにより溶接不良を大幅に抑制することができるが、前記押圧力をさらに大きくしても、本発明の効果は同じであることから、設定値は製造ばらつきを考慮に入れた範囲を設定してその下限値を0.80MPa以上にすればよい。また、押圧力は本実施形態で求めた値に限定されるものではなく、貫通孔の形状やセル間接続体の形状等、その設計仕様により最適な押圧力は変わるので、各仕様にあわせてその最適条件を設定してセル間接続すれば、本発明の効果が得られる。
【0017】
【発明の効果】
以上詳述したように、本発明によれば、溶接後の貫通孔の内径寸法が、溶接前の貫通孔の内径寸法より大きくなるように前記接続体を電極チップで押圧してセル間接続するので、セル間接続部の溶接部に空孔が生じず、良好な接続が得られる。また、本発明によれば、セル間接続部の形状を上下方向が水平方向より短い長円形にできるので、セル間接続体の高さを低くでき、容積効率に優れた鉛蓄電池を提供できる。
【図面の簡単な説明】
【図1】電極チップの押圧力と貫通孔における不良率との関係を示すグラフである。
【図2】本発明のセル間接続に係る電槽の斜視図である。
【図3】従来および本発明のセル間接続方法の説明図である。
【図4】(イ)は従来の電極チップを示す要部側面図であり、(ロ)は同要部正面図である。
【図5】(イ)は本発明の実施形態に係る電極チップを示す要部側面図であり、(ロ)は同要部正面図である。
【図6】従来の方法による溶接面に空孔が発生した時の状態を示す断面図である。
【符号の説明】
1 電極チップ
7 隔壁
8 貫通孔
9 電槽
11 セル間接続体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for connecting cells of a lead storage battery.
[0002]
[Prior art]
As shown in FIG. 3, a conventional lead-acid battery inter-cell connection method is provided with a through hole 8 in a partition wall 7 that partitions the cell chamber 6 of the battery case 9, and the adjacent cell chambers 6, 6 through the through hole 8. The inter-cell connecting bodies 11 and 11 of opposite polarities standing on the straps 10 and 10 of the inner electrode plate groups 12 and 12 are arranged facing each other, and these connecting bodies 11 and 11 are arranged on the back of the inter-cell connecting apparatus from the back. This is a method (hereinafter referred to as resistance welding) in which the electrode tips 1 and 1 are pushed into the through-hole 8 and when the connection bodies 11 and 11 obtain a certain contact area, the electrode tips 1 and 1 are energized and welded. It was.
[0003]
Usually, when this method is adopted, the shape of the through-hole 8 provided in the battery case partition wall 7 is a perfect circle, and the shape of the protrusion 3 of the electrode tip 1 is also a perfect circle as shown in FIG. Recently, however, demands for improving the volumetric efficiency of the battery have increased, and the height of the connection body 11 is reduced, and the height of the working surface of the electrode plates 13 and 14 is increased accordingly. For example, the shape of the protrusion 3 of the electrode chip 1 is changed from a perfect circle to a short ellipse in the vertical direction as shown in FIG. 5, and the shape of the through hole 8 of the battery case partition 7 is also changed from a perfect circle to an ellipse. is there. Note that the oval cross-sectional area at this time is not different from the true circular cross-sectional area.
[0004]
In this way, the height of the connection body 11 can be shortened by the difference between the diameter of the perfect circle and the short diameter of the oval (length in the vertical direction), and the working surface of the electrode plates 13 and 14 can be reduced accordingly. Therefore, the discharge capacity of the battery in the same volume can be increased. The shape of the through hole 8 may be elliptical, the shape of the electrode tip 1 is the same as the shape of the through hole 8, and the contact area of the connection body 11 is 30 to 60% with respect to the cross-sectional area of the through hole 8. The diameter is determined as follows.
[0005]
[Problems to be solved by the invention]
However, when the inter-cell connection is performed in the lead storage battery configured as described above, the lead 11 that has been melted and expanded by resistance heat is formed when the connection body 11 is pushed into the through-hole 8 by the electrode tip 1 and then resistance welding is performed. Although the space in the through hole is filled, the molten lead shrinks and solidifies in the subsequent cooling process, resulting in a hole 4 as shown in FIG. 6 in the through hole, and in the worst case, poor welding occurs. There has occurred.
[0006]
The present invention has been made in view of the above-described problems, and the object of the present invention is to provide a lead storage battery that can produce a lead storage battery with excellent volumetric efficiency and can obtain a good connection state between cells. It is to provide an inter-cell connection method.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention presses an inter-cell connection body of opposite polarities of adjacent electrode plate groups through an electrode chip from the back surface of the connection body through the partition wall of the battery case to penetrate the partition wall. In a lead-acid battery inter-cell connection method in which the connection bodies are brought into contact with each other in a hole and resistance welding is performed, the through hole is formed so that the vertical direction is shorter than the horizontal direction, and the connection body has an inner diameter dimension of the through hole after welding. The tip is flat and inclined with an oval cone-shaped projection that is larger than the inner diameter before welding, and the front surface is pressed by an electrode tip inclined toward the front side toward the upper side and resistance welded. It is characterized by. And it is desirable for the force pressed by the said electrode tip of the said connection body to be 0.80 Mpa or more.
[0008]
Thereby, after pressing the connection body 11 with the electrode tip 1, after the lead of the connection body 11 is melted and expanded by resistance heat when resistance welding is performed, even if the molten lead shrinks and solidifies in the cooling process, By applying a sufficient pressing force to the electrode tip 1, the electrode tip 1 advances in the pressing direction while expanding the through-hole in the vertical direction, so that it is possible to prevent holes from being generated in the through-hole after welding. it can. As a result, a good connection state between cells can be obtained, the height of the connection body can be reduced, and a method for manufacturing a lead storage battery having excellent volumetric efficiency can be provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0010]
First, a battery case 9 having six cell chambers 6 as shown in FIG. 2 and having an oval through hole 8 whose vertical direction is shorter than the horizontal direction is prepared in a partition wall 7 that partitions adjacent cell chambers 6 and 6. To do.
[0011]
Next, as shown in FIG. 3, the electrode plates 12 having the same polarity connected to each cell chamber 6 of the battery case 9 by the strap 10 and the connection body 11 standing at one end of the strap 10 are accommodated. To do. At this time, the inter-cell connecting bodies 11, 11 of the adjacent cell chambers 6, 6 are accommodated so as to have opposite polarities through the through holes 8 of the partition walls 7. In addition, 13 is a positive electrode plate, 14 is a negative electrode plate.
[0012]
Next, the tips of the electrode chips 1, 1 are applied to the back surfaces of the inter-cell connecting bodies 11, 11 facing each other through the through-holes 8, and the electrode chips 1, 1 are brought close to each other by the arms 2, 2. The connecting bodies 11 and 11 are pushed into the through hole 8. Then, when the predetermined time has elapsed, the movement of the arm is stopped, and a current is passed through the electrode tips 1 and 1 to resistance weld the connection bodies 11 and 11 in the through hole 8 to complete the connection between cells.
[0013]
Here, as shown in FIG. 5, the shape of the electrode tip has a conical protrusion 3 having a flat tip and an inclined shape, and becomes thicker as it approaches the arm. The protrusion 3 has an elliptical shape in which the vertical direction is shorter than the horizontal direction, and the fixed seat 16 is formed of a perfect circular smooth surface. Furthermore, the electrode chip 1 is inclined to the front side as the front surface of the electrode chip 1 is upward, and is fixed to the arm 2 on the back surface.
[0014]
Next, the inter-cell connection is performed by changing the pressing force of the electrode tip by the method of the embodiment, and after the inter-cell connection, each inter-cell connection body (five places per battery) is peeled off, The weld failure rate due to the generation of holes was investigated from the state of the weld surface. The result is shown in FIG.
[0015]
From the results shown in FIG. 1, when the pressing force is less than 0.80 MPa, the defect rate decreases as the pressing force increases, but the defect rate due to void generation between the inner periphery of the through hole and the upper and lower portions of the weld surface is it was high. On the other hand, when the pressing force is 0.80 MPa or more, the shape of the welded surface and the through hole of the adjacent inter-cell connector is substantially the same, and the welding defect rate due to the generation of voids is 0.01% or less, which is not a problem level. Reached. From the above results, by connecting between cells with a pressing force of 0.80 MPa or more, the shape of the weld surface 15 of the adjacent inter-cell connector 11, 11 and the through-hole 8 are substantially the same, which greatly reduces welding defects. Therefore, a good inter-cell connection part can be obtained.
[0016]
In this embodiment, welding failure can be significantly suppressed by connecting cells with a pressing force of 0.80 MPa or more, but the effect of the present invention is the same even if the pressing force is further increased. Therefore, the set value may be set in a range that takes manufacturing variation into consideration, and the lower limit value may be set to 0.80 MPa or more. In addition, the pressing force is not limited to the value obtained in this embodiment, and the optimal pressing force varies depending on the design specifications such as the shape of the through-hole and the connection between cells, etc. The effect of the present invention can be obtained by setting the optimum conditions and connecting the cells.
[0017]
【The invention's effect】
As described above in detail, according to the present invention, the connection body is pressed with the electrode tip so that the inner diameter dimension of the through hole after welding is larger than the inner diameter dimension of the through hole before welding. As a result, no holes are formed in the welded portion of the inter-cell connecting portion, and a good connection is obtained. Furthermore, according to the present invention, the shape of the inter-cell connecting portion can be made into an oval whose vertical direction is shorter than the horizontal direction, so that the height of the inter-cell connecting body can be lowered and a lead storage battery excellent in volumetric efficiency can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a pressing force of an electrode tip and a defect rate in a through hole.
FIG. 2 is a perspective view of a battery case according to the connection between cells of the present invention.
FIG. 3 is an explanatory diagram of a conventional inter-cell connection method according to the present invention.
4A is a side view of a main part of a conventional electrode chip, and FIG. 4B is a front view of the main part.
FIG. 5A is a side view of a main part showing an electrode chip according to an embodiment of the present invention, and FIG. 5B is a front view of the main part.
FIG. 6 is a cross-sectional view showing a state when holes are generated on a welding surface by a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrode chip 7 Partition 8 Through-hole 9 Battery case 11 Connection body between cells

Claims (2)

電槽の隔壁を介して隣接する極板群の互いに反対極性のセル間接続体を該接続体の背面より電極チップで押圧して該隔壁の貫通孔内で該接続体同士を接触させ抵抗溶接する鉛蓄電池のセル間接続法において、前記貫通孔は上下方向が水平方向より短く形成され、前記接続体は溶接後の前記貫通孔の内径寸法が溶接前の前記内径寸法より大きくなるように、先端が平坦で傾斜をもつ長円形の錐形の突起を有し、前面が上方ほど正面側に傾斜した電極チップにより押圧されて抵抗溶接されることを特徴とする鉛蓄電池のセル間接続法。Resistance welding is performed by pressing the inter-cell connecting bodies of opposite polarities of the adjacent electrode plate groups through the partition walls of the battery case with electrode tips from the back surface of the connecting bodies to bring the connecting bodies into contact with each other in the through holes of the partition walls. In the inter-cell connection method of the lead storage battery, the through hole is formed so that the vertical direction is shorter than the horizontal direction, and the connection body has an inner diameter dimension of the through hole after welding larger than the inner diameter dimension before welding. An inter-cell connection method for a lead-acid battery, characterized in that it has an elliptical cone-shaped projection with a flat tip and an inclination, and is pressed and resistance welded by an electrode tip inclined frontward toward the front side . 前記接続体の前記電極チップにより押圧される力が0.80MPa以上であることを特徴とする請求項1記載の鉛蓄電池のセル間接続法。  2. The inter-cell connection method for a lead storage battery according to claim 1, wherein a force pressed by the electrode tip of the connection body is 0.80 MPa or more.
JP2001275971A 2001-09-12 2001-09-12 Inter-cell connection method for lead-acid batteries Expired - Lifetime JP4774657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001275971A JP4774657B2 (en) 2001-09-12 2001-09-12 Inter-cell connection method for lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001275971A JP4774657B2 (en) 2001-09-12 2001-09-12 Inter-cell connection method for lead-acid batteries

Publications (2)

Publication Number Publication Date
JP2003086168A JP2003086168A (en) 2003-03-20
JP4774657B2 true JP4774657B2 (en) 2011-09-14

Family

ID=19100745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001275971A Expired - Lifetime JP4774657B2 (en) 2001-09-12 2001-09-12 Inter-cell connection method for lead-acid batteries

Country Status (1)

Country Link
JP (1) JP4774657B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019203607A1 (en) * 2019-03-18 2020-09-24 Volkswagen Ag Battery module and motor vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114035A (en) * 1977-03-17 1978-10-05 Yuasa Battery Co Ltd Method of manufacturing lead storage battery
JP3245022B2 (en) * 1995-09-14 2002-01-07 松下電器産業株式会社 Lead storage battery and method of manufacturing the same
JPH11149913A (en) * 1997-11-18 1999-06-02 Furukawa Battery Co Ltd:The Inter-cell connection method for lead-acid battery
JP4884579B2 (en) * 1999-06-16 2012-02-29 パナソニック株式会社 Lead-acid battery inter-cell connection method

Also Published As

Publication number Publication date
JP2003086168A (en) 2003-03-20

Similar Documents

Publication Publication Date Title
CN1131569C (en) Accumulator and its making method
CN106575798B (en) Lead-acid accumulator
JP4774657B2 (en) Inter-cell connection method for lead-acid batteries
CN1945890B (en) Accumulator, accumulator group and their producing method
JPH09293529A (en) Cylindrical sealed storage battery and manufacture thereof
JP2001126735A (en) Lead accumulator
JP4120746B2 (en) Lead-acid battery inter-cell connection device
JPH04123757A (en) Preparation of nickel electrode
CN100416892C (en) Cylindrical cell and manufacturing method thereof
JP4884579B2 (en) Lead-acid battery inter-cell connection method
JP2001155722A (en) Sealed lead acid storage battery and method of fabricating it
JPH0412610Y2 (en)
JPH11312533A (en) Manufacture of sealed lead-acid battery
JP3991195B2 (en) Lead acid battery
JPS5942769A (en) Manufacture of lead-acid battery
JPS5923471A (en) Manufacture of substrate for lead-acid battery
JPH08329936A (en) Secondary battery and electrode preparation that is used forthis
JPH11149913A (en) Inter-cell connection method for lead-acid battery
JPH07153468A (en) Electrode plate for storage battery
JP2004179107A (en) Inter-cell connection method of lead acid storage battery, and lead acid storage battery using it
JPH07307148A (en) Lead-acid battery
JPH0320859B2 (en)
JPH1012213A (en) Inter-cell connecting method of lead-acid battery and device therefor
JP2000260426A (en) Sealed lead-acid battery and its manufacture
JP2009093999A (en) Intercell connection method of lead storage battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Ref document number: 4774657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

EXPY Cancellation because of completion of term