JP4883306B2 - Wavelength conversion device and wavelength conversion method - Google Patents

Wavelength conversion device and wavelength conversion method Download PDF

Info

Publication number
JP4883306B2
JP4883306B2 JP2007093920A JP2007093920A JP4883306B2 JP 4883306 B2 JP4883306 B2 JP 4883306B2 JP 2007093920 A JP2007093920 A JP 2007093920A JP 2007093920 A JP2007093920 A JP 2007093920A JP 4883306 B2 JP4883306 B2 JP 4883306B2
Authority
JP
Japan
Prior art keywords
light
conversion
wavelength
signal
signal light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007093920A
Other languages
Japanese (ja)
Other versions
JP2008250170A (en
Inventor
隆 平賀
宣孝 谷垣
一郎 上野
典孝 山本
登志子 溝黒
教雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2007093920A priority Critical patent/JP4883306B2/en
Publication of JP2008250170A publication Critical patent/JP2008250170A/en
Application granted granted Critical
Publication of JP4883306B2 publication Critical patent/JP4883306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、波長変換装置及び波長変換方法に関するものである。さらに詳しくは、本発明は、特に光通信分野や光情報処理分野において好ましく用いられる新規な波長変換装置及び波長変換方法に関するものである。   The present invention relates to a wavelength conversion device and a wavelength conversion method. More specifically, the present invention relates to a novel wavelength conversion apparatus and wavelength conversion method preferably used particularly in the fields of optical communication and optical information processing.

光通信分野や光情報処理分野において重要な光学素子として、波長変換装置がある。この波長変換装置は、たとえばある特定の波長のパルス信号を別の波長のパルス信号に変換するものである。従来の波長変換装置の一例を図1に模式的に示す。   A wavelength converter is an important optical element in the optical communication field and the optical information processing field. This wavelength converter converts, for example, a pulse signal having a specific wavelength into a pulse signal having another wavelength. An example of a conventional wavelength converter is schematically shown in FIG.

図1に示す波長変換装置は、光通信の波長帯域である波長1.55μmの入射パルス光をフォトダイオード(PD)1で受光し、その出力でもってレーザダイオード(LD)2を駆動させ、波長780nmのパルス光を出射するものである。   The wavelength converter shown in FIG. 1 receives incident pulsed light having a wavelength of 1.55 μm, which is a wavelength band of optical communication, by a photodiode (PD) 1, drives a laser diode (LD) 2 with the output, and outputs a wavelength. It emits 780 nm pulsed light.

一方で、インターネット等の急速な普及に伴い、より高速な光ネットワークに実現が切望されている。そのために高速応答が可能な各種の光学素子の実現が望まれている。   On the other hand, with the rapid spread of the Internet and the like, realization of a faster optical network is desired. Therefore, realization of various optical elements capable of high-speed response is desired.

ところが、図1に示すような従来の波長変換装置では、光パルス⇒電気パルス変換の電子回路及び電気パルス⇒光パルス変換の電子回路へ電源を供給する必要がある、前記電子回路が電磁波障害の影響をうけやすい、前記電子回路が電磁波障害の原因に成りうる、使用できる波長がレーザダイオード(LD)等を用いているため制限がある、などの課題があり、高速光ネットワーク等の実現のためには、電磁波障害の影響を受けず、かつ、電磁波障害の原因にならず、波長選択の範囲が広い光の利用が可能となることが切望されていた。また、電気回路や機械的可動部分を用いないで、高速な波長変換が行うことができる耐久性が高い波長変換装置の実現が望まれていた。   However, in the conventional wavelength converter as shown in FIG. 1, it is necessary to supply power to an electronic circuit of optical pulse → electrical pulse conversion and an electronic circuit of electric pulse → optical pulse conversion. To realize high-speed optical networks and the like, there are problems such as being easily affected, the electronic circuit can cause electromagnetic interference, and the wavelength that can be used is limited because it uses a laser diode (LD) etc. Therefore, it has been eagerly desired that light having a wide wavelength selection range can be used without being affected by the electromagnetic interference and without causing the electromagnetic interference. Also, it has been desired to realize a highly durable wavelength conversion device that can perform high-speed wavelength conversion without using an electric circuit or a mechanically movable part.

そこで、本発明者らは、特許文献1において、電気回路や機械的可動部分を用いないで、電磁波障害の影響を受けず、電磁波障害の原因とならず、波長選択の範囲が広い光の利用が可能となり、しかも耐久性が高い、新規な波長変換技術を提案した。   Therefore, the inventors of the present invention use a light having a wide wavelength selection range in Patent Document 1 without using an electric circuit or a mechanically movable part, not being affected by electromagnetic interference, not causing electromagnetic interference. We have proposed a new wavelength conversion technology that is possible and has high durability.

この波長変換技術による波長変換装置は、特定の波長のパルス状信号光を入射する信号光入力部と、信号光とは異なる波長の変換用光を照射する変換用光光源と、信号光に対し吸収性を示し変換用光に対し透過性を示す波長帯域を持つ光吸収層と、光吸収層に信号光と変換用光が焦点を結ぶように各々収束させて照射する手段と、前記光吸収層を含み、前記光吸収層が信号光を吸収した領域及びその周辺領域に起こる温度上昇に起因して可逆的に生ずる屈折率の分布に基づいた熱レンズを用いることによって、信号光が照射されず熱レンズが形成されない場合は収束された変換用光が通常の開き角度で出射する状態と、制御光が照射されて熱レンズが形成される場合は収束された変換用光が通常の開き角度よりも大きい開き角度で出射する状態とを、信号光の照射の有無に対応させて実現させる熱レンズ形成光素子と、出射した変換用光のうち、通常の開き角度よりも大きい角度で出射する変換用光のみを変換光として出射する状態と、通常の開き角度で出射する変換用光のみを変換光として出射する状態との選択を行うことができる変換光選択手段と、変換光選択手段により選択された変換光を集光して、信号光とは異なる波長のパルス状変換光とする集光部を備えることを特徴とするものである。   A wavelength conversion device based on this wavelength conversion technology includes a signal light input unit that receives pulsed signal light having a specific wavelength, a conversion light source that irradiates conversion light having a wavelength different from that of signal light, and signal light. A light-absorbing layer having a wavelength band that exhibits absorptivity and transparency to conversion light, means for irradiating the light-absorbing layer so that the signal light and the conversion light are focused so as to be focused, and the light absorption Signal light is irradiated by using a thermal lens based on a refractive index distribution that reversibly occurs due to a temperature rise that occurs in a region where the light absorption layer absorbs signal light and its surrounding region. When a thermal lens is not formed, the converged conversion light is emitted at a normal opening angle, and when the control lens is irradiated to form a thermal lens, the converged conversion light is at a normal opening angle. The light is emitted with a larger opening angle than And a thermal lens forming optical element that realizes in correspondence with the presence or absence of signal light irradiation, and out of the emitted conversion light, only conversion light emitted at an angle larger than the normal opening angle is emitted as conversion light. And a conversion light selection means capable of selecting only a conversion light emitted at a normal opening angle as a conversion light, and condensing the converted light selected by the conversion light selection means. In addition, the light-emitting device includes a condensing unit that generates pulsed converted light having a wavelength different from that of the signal light.

さらに特許文献2には、電気的又は機械的手段を採らず、制御ビームの照射でスイッチ物質の屈折率を変え、信号ビームの光路を変える光スイッチが提案されている。
特開2006−139225号公報 米国特許第4,585,301号
Furthermore, Patent Document 2 proposes an optical switch that changes the refractive index of the switch material by irradiation of a control beam and changes the optical path of the signal beam without using electrical or mechanical means.
JP 2006-139225 A U.S. Pat.No. 4,585,301

特許文献1において提案した波長変換技術によれば、電気回路や機械的可動部分を用いないで、電磁波障害の影響を受けず、電磁波障害の原因とならず、波長選択の範囲が広い光の利用が可能となったものの、依然、多くの光学部品を必要とするため、本格的な実用化のためにはさらに改善の余地があった。   According to the wavelength conversion technique proposed in Patent Document 1, the use of light having a wide wavelength selection range without using an electric circuit or a mechanically movable part, not affected by electromagnetic interference, causing no electromagnetic interference. However, since many optical components are still required, there is room for further improvement for full-scale practical application.

一方、特許文献2に開示されている光路切替手法をこの波長変換技術に適用することも考えられるが、その場合、偏向角をあまり大きくできず、また屈折率変化を行わせるレーザ光は大パワーが必要であるという問題があった。   On the other hand, it is conceivable to apply the optical path switching method disclosed in Patent Document 2 to this wavelength conversion technique. In this case, however, the deflection angle cannot be increased so much and the laser beam that changes the refractive index has a large power. There was a problem that was necessary.

本発明は、このような実情に鑑みてなされたもので、光学部品点数を低減させ、低コスト化を図ることができ、電気回路や機械的可動部分を用いないで、電磁波障害の影響を受けず、電磁波障害の原因とならず、波長選択の範囲が広い光の利用が可能となり、しかも耐久性が高く、本格的な実用化が期待される波長変換装置及び波長変換方法を提供することを課題とする。   The present invention has been made in view of such circumstances, and can reduce the number of optical components and reduce the cost, and can be affected by electromagnetic interference without using an electric circuit or a mechanically movable part. Therefore, it is possible to provide a wavelength conversion device and a wavelength conversion method that do not cause electromagnetic interference, can use light with a wide wavelength selection range, have high durability, and are expected to be put into practical use. Let it be an issue.

本発明は、上記課題を解決するものとして、第1には、特定の波長のパルス状信号光を入射する信号光入力部と、信号光とは異なる波長の変換用光を照射する変換用光光源と、信号光に対し吸収性を示し変換用光に対し透過性を示す波長帯域を持つ光吸収層を有する熱レンズ形成光素子と、光吸収層に信号光と変換用光とを、各々集光点が、信号光と変換用光が熱レンズ形成光素子の入射面に平行光として入射するとした場合の光軸に対して垂直な方向において25〜50μm異なる位置となるように集光させる第1の集光部を備え、熱レンズ形成光素子は、光吸収層が信号光を吸収した領域及びその周辺領域に起こる温度上昇に起因して可逆的に生ずる屈折率の分布に基づいた熱レンズを用いることによって、信号光が照射されず熱レンズが形成されない場合は変換用光を進行方向を変えない非偏向光として出射する状態と、信号光が照射されて熱レンズが形成された場合は変換用光を進行方向を変えた偏向光として出射する状態とを、信号光の照射の有無に対応させて実現させ、さらに、熱レンズ形成光素子より出射した出射した変換用光のうち、偏向光として出射する変換用光のみを変換光として出射する状態と、非偏向光として出射する変換用光のみを変換光として出射する状態との選択を行うことができる変換光選択部と、変換光選択部からの変換光を集光して、信号光とは異なる波長のパルス状変換光とする第2の集光部を備えることを特徴とする波長変換装置を提供する。 In order to solve the above-described problems, the present invention firstly includes a signal light input unit that receives pulsed signal light having a specific wavelength, and conversion light that irradiates conversion light having a wavelength different from that of the signal light. A light source, a thermal lens-forming optical element having a light absorption layer having a wavelength band that absorbs signal light and transmits light for conversion , and each of the light absorption layer includes signal light and conversion light. The condensing point is condensed so that the signal light and the conversion light are different from each other by 25 to 50 μm in the direction perpendicular to the optical axis when the incident light is incident on the incident surface of the thermal lens forming optical element as parallel light . The thermal lens forming optical element includes a first condensing unit, and the thermal lens forming optical element is based on a refractive index distribution reversibly generated due to a temperature rise occurring in a region where the light absorption layer absorbs signal light and a peripheral region thereof. By using the lens, the signal light is not irradiated and the thermal lens When not formed, the conversion light is emitted as non-deflected light that does not change the traveling direction, and when the thermal lens is formed by irradiation with signal light, the conversion light is emitted as deflected light whose traveling direction is changed. The state is realized in correspondence with the presence or absence of the signal light irradiation, and among the conversion light emitted from the thermal lens forming optical element, only the conversion light emitted as the deflection light is emitted as the conversion light. A conversion light selection unit capable of selecting a state and a state in which only conversion light emitted as non-polarized light is emitted as conversion light, and condensing the conversion light from the conversion light selection unit to obtain signal light There is provided a wavelength conversion device comprising a second light condensing unit that converts pulsed converted light having a wavelength different from the above.

また、第2には、上記第1の発明において、出射する変換光の偏光状態を、入射した信号光の偏光状態と同じ状態にするか又は異なる状態にするかを切り替える偏光状態切替手段を備えることを特徴とする波長変換装置を提供する。 According to a second aspect of the present invention, in the first invention, a polarization state switching unit that switches a polarization state of the outgoing converted light to a state that is the same as or different from a polarization state of the incident signal light is provided. The wavelength converter characterized by the above is provided.

また、本発明は、第3には、特定の波長のパルス状信号光に対し吸収性を示し信号光とは異なる波長の変換用光に対し透過性を示す波長帯域を持つ光吸収層を含む熱レンズ形成光素子の該光吸収層に、信号光と変換用光とを、各々集光点が、信号光と変換用光が熱レンズ形成光素子の入射面に平行光として入射するとした場合の光軸に対して垂直な方向において25〜50μm異なる位置となるように集光させ、光吸収層が信号光を吸収した領域及びその周辺領域に起こる温度上昇に起因して可逆的に生ずる屈折率の分布に基づいた熱レンズを用いることによって、信号光が照射されず熱レンズが形成されない場合は変換用光を進行方向を変えない非偏向光として出射する状態と、制御光が照射されて熱レンズが形成された場合は変換用光を進行方向を変えた偏向光として出射する状態とを、信号光の照射の有無に対応させて実現させ、出射した変換用光のうち、偏向光である変換用光と非偏向光である変換用光のいずれか一方のみを切替選択して変換光として出射させ、出射した変換光を集光して、信号光とは異なる波長のパルス状変換光とすることを特徴とする波長変換方法を提供する。 In addition, the present invention thirdly includes a light absorption layer having a wavelength band that absorbs pulsed signal light having a specific wavelength and exhibits transparency for conversion light having a wavelength different from that of the signal light. When the signal light and the conversion light are incident on the light absorption layer of the thermal lens forming optical element, respectively, and the signal light and the conversion light are incident on the incident surface of the thermal lens forming optical element as parallel light. Refraction that occurs reversibly due to the temperature rise occurring in the area where the light absorption layer absorbs signal light and its surrounding area, by condensing the light so that it is 25 to 50 μm different in the direction perpendicular to the optical axis By using a thermal lens based on the rate distribution, when the signal light is not irradiated and the thermal lens is not formed, the conversion light is emitted as unpolarized light that does not change the traveling direction, and the control light is irradiated. If a thermal lens is formed, convert light A state in which the light is emitted as the deflected light whose direction is changed is realized in correspondence with the presence or absence of the irradiation of the signal light. Provide a wavelength conversion method characterized in that only one of the light is switched and emitted as converted light, and the emitted converted light is condensed to form pulsed converted light having a wavelength different from that of the signal light To do.

さらに、第4には、上記第3の発明において、出射する変換光の偏光状態を、入射した信号光の偏光状態と同じ状態又は異なる状態にするかを切り替え可能であることを特徴とする波長変換方法を提供する。 Further, fourthly, in the third invention described above, the wavelength of the converted light that is emitted can be switched between the polarization state of the incident signal light and the same or different state Provide a conversion method .

この出願の発明によれば、以下の効果が得られる。
光学部品点数を低減させ、低コスト化を図ることができ、電気回路や機械的可動部分を用いないで、電磁波障害の影響を受けず、電磁波障害の原因とならず、波長選択の範囲が広い光の利用が可能となり、しかも耐久性が高く、本格的な実用化が期待される新規な波長変換技術を提供することができる。
また、入射信号と反対位相の変換光を得ることができる利点がある。
また、入射信号と同位相又は反対位相の変換光を選択して得ることができる利点がある。
さらに、入射信号の偏光状態と同じ偏光状態と異なる偏光状態の変換光を選択して得ることができる利点がある。
According to the invention of this application, the following effects can be obtained.
The number of optical parts can be reduced, cost can be reduced, no electrical circuit or mechanical moving parts are used, no influence of electromagnetic interference, no cause of electromagnetic interference, and wide wavelength selection range It is possible to provide a novel wavelength conversion technique that makes it possible to use light, has high durability, and is expected to be put into practical use.
Further, there is an advantage that converted light having a phase opposite to that of the incident signal can be obtained.
Further, there is an advantage that it is possible to select and obtain converted light having the same phase or opposite phase as the incident signal.
Further, there is an advantage that converted light having the same polarization state as the incident signal and a different polarization state can be selected and obtained.

本発明の一実施形態に係る波長変換装置の概念図を図2に示し、図2の熱レンズ形成光素子に使用される一例の光吸収層に用いる材料(この場合、色素)の波長と吸収特性及び透過特性との関係を図3に示す。   The conceptual diagram of the wavelength converter which concerns on one Embodiment of this invention is shown in FIG. 2, The wavelength and absorption of the material (in this case pigment | dye) used for the light absorption layer of an example used for the thermal lens formation optical element of FIG. The relationship between the characteristics and the transmission characteristics is shown in FIG.

本実施形態の波長変換装置では、光制御型熱レンズ形成光素子11を用い、信号入力部12より任意波長Aの光パルス信号を信号光14として入射するとともに、変換用光光源13より任意波長Bの連続光を変換用光15として入射し、任意波長Bの光パルスを変換光16として出射する。信号入力部12より入射する信号光14はレーザ光源をはじめ従来から使用されている各種の光源からの光を用いることができる。また、変換用光光源13にはレーザ装置が好適に用いられるが、これに限定されない。   In the wavelength conversion device of the present embodiment, the optical control thermal lens forming optical element 11 is used, and an optical pulse signal having an arbitrary wavelength A is made incident as a signal light 14 from the signal input unit 12, and at an arbitrary wavelength from the conversion light source 13. The B continuous light is incident as the conversion light 15, and an optical pulse having an arbitrary wavelength B is emitted as the conversion light 16. As the signal light 14 incident from the signal input unit 12, light from various light sources conventionally used such as a laser light source can be used. A laser device is preferably used for the conversion light source 13, but is not limited thereto.

熱レンズ形成光素子11には、図3に示すような波長帯域を持つ光吸収層を設ける。すなわち、この光吸収層は、波長Aに対して吸収率が大であり、波長Bに対して透過率が大で、かつ、屈折率効果(温度の変化に対して大きな屈折率変化を示す)を有するものとする。このような波長帯域の形態は、光吸収層の材料によって様々な形態をとるので、材料の選択により波長A、Bは任意に選ぶことができる。以上は、本発明者らが先に特許文献1で述べたものと同様であるが、以下に詳述する点において相違している。   The thermal lens forming optical element 11 is provided with a light absorption layer having a wavelength band as shown in FIG. That is, this light absorption layer has a large absorptance with respect to the wavelength A, a large transmittance with respect to the wavelength B, and a refractive index effect (shows a large refractive index change with respect to a change in temperature). It shall have. Since the wavelength band has various forms depending on the material of the light absorption layer, the wavelengths A and B can be arbitrarily selected by selecting the material. The above is the same as that described in Patent Document 1 by the present inventors, but differs in the points described in detail below.

図4は本実施形態の波長変換装置の要部構成をより具体的に示した図である。この波長変換装置は図示しない変換用光光源(図2の13)を有し、この変換用光光源からの連続(CW)光である変換用光21を取り込むための入力ポート22と、変換用光21の波長とは異なる波長を有するパルス状信号光23を取り込むための入力ポート24が設けられている。入力ポート22の下流側には入射した変換用光21を平行光とするための第1のコリメートレンズ25が配置され、入力ポート24の下流側には入射した信号光23を平行光とするための第2のコリメートレンズ26が配置されている。なお、便宜上、図4には、平行光を幅を持たない直線で表してある。第1のコリメートレンズ25と第2のコリメートレンズ26の下流側には光混合器27が配置され、光混合器27は、第1のコリメートレンズ25からの平行光である変換用光21は透過させ、第2のコリメートレンズ26からの平行光である信号光23は反射しその光路を変える。光混合器27の下流側には第1の集光レンズ28、熱レンズ形成光素子29、第3のコリメートレンズ30、波長選択透過フィルター31、分岐ミラー32、第2の集光レンズ33がそれぞれ配置されている。第1の集光レンズ28は光混合器27からの変換用光21及び信号光23を熱レンズ形成光素子29の光吸収層に集光(収束)させる。ここで、第1の集光レンズ28には変換用光21と信号光23は光軸に直角な方向にずれた位置にて入射し、熱レンズ形成光素子29の光吸収層にも光軸に直角な方向にずれた位置にて入射し、集光点が分離するようになっている。   FIG. 4 is a diagram more specifically showing the configuration of the main part of the wavelength conversion device of the present embodiment. This wavelength converter has a conversion light source (13 in FIG. 2) (not shown), an input port 22 for taking in conversion light 21, which is continuous (CW) light from the conversion light source, and a conversion light source. An input port 24 for taking in pulsed signal light 23 having a wavelength different from the wavelength of the light 21 is provided. A first collimating lens 25 for converting incident conversion light 21 into parallel light is disposed on the downstream side of the input port 22. In order to convert incident signal light 23 into parallel light on the downstream side of the input port 24. The second collimating lens 26 is arranged. For convenience, FIG. 4 shows parallel light as a straight line having no width. An optical mixer 27 is disposed on the downstream side of the first collimating lens 25 and the second collimating lens 26, and the optical mixer 27 transmits the conversion light 21 that is parallel light from the first collimating lens 25. Then, the signal light 23 which is parallel light from the second collimating lens 26 is reflected and its optical path is changed. A first condenser lens 28, a thermal lens forming optical element 29, a third collimator lens 30, a wavelength selective transmission filter 31, a branch mirror 32, and a second condenser lens 33 are respectively provided downstream of the optical mixer 27. Has been placed. The first condenser lens 28 condenses (converges) the conversion light 21 and the signal light 23 from the optical mixer 27 on the light absorption layer of the thermal lens forming optical element 29. Here, the conversion light 21 and the signal light 23 are incident on the first condenser lens 28 at positions shifted in a direction perpendicular to the optical axis, and the optical axis is also incident on the light absorption layer of the thermal lens forming optical element 29. The light is incident at a position shifted in a direction perpendicular to the light beam, and the condensing point is separated.

熱レンズ形成光素子29は、変換用光21のみが入射した場合には進行方向を変えない非偏向光として出射し、変換用光21と信号光23が同時に入射した場合には熱レンズを形成し、変換用光21を進行方向を変えた偏向光として出射する。第3のコリメートレンズ30は変換用光21(非偏向光及び偏向光)と信号光23を平行光とする。波長選択透過フィルター31は、変換用光21は透過させ、信号光23はカットする。波長選択透過フィルター31の下流に設けられた分岐ミラー32は非偏向光と偏向光とを分岐し、偏向光は反射しその光路を変える。非偏向光はそのまま直進することになる。また、分岐ミラー32の図中上方には、光路を変えた偏向光の光路を更に変えるミラー34と、ミラー34からの光を集光する第3の集光レンズ35が配置されている。また、本波長変換装置は2つの出力ポート36、37を有している。出力ポート36は信号光23のオフ時に第2の集光レンズ33で集光された非偏向光の光出力を行う。出力ポート37は信号光23のオン時に分岐ミラー32及びミラー34で光路を変えられ、第3の集光レンズ35で集光された偏向光の光出力を行う。本波長変換装置では、出力ポート36から出力される非偏向光と、出力ポート37から出力される偏向光のいずれかを変換光とする。非偏向光と偏向光のいずれを変換光とするか切替選択手段を設けることができる。   The thermal lens forming optical element 29 emits unpolarized light that does not change the traveling direction when only the conversion light 21 is incident, and forms the thermal lens when the conversion light 21 and the signal light 23 are incident simultaneously. Then, the conversion light 21 is emitted as deflected light whose traveling direction is changed. The third collimating lens 30 converts the conversion light 21 (unpolarized light and deflected light) and the signal light 23 into parallel light. The wavelength selective transmission filter 31 transmits the conversion light 21 and cuts the signal light 23. A branch mirror 32 provided downstream of the wavelength selective transmission filter 31 branches the non-deflected light and the deflected light, and the deflected light is reflected to change its optical path. Unpolarized light travels straight. Further, a mirror 34 for further changing the optical path of the deflected light whose optical path has been changed and a third condenser lens 35 for condensing the light from the mirror 34 are disposed above the branch mirror 32 in the drawing. In addition, this wavelength converter has two output ports 36 and 37. The output port 36 outputs light of unpolarized light collected by the second condenser lens 33 when the signal light 23 is off. The output port 37 changes the optical path by the branch mirror 32 and the mirror 34 when the signal light 23 is turned on, and outputs the light of the deflected light condensed by the third condenser lens 35. In this wavelength converter, either non-deflected light output from the output port 36 or deflected light output from the output port 37 is converted light. It is possible to provide a switching selection means for selecting either non-deflected light or deflected light as converted light.

本波長変換装置においては、上述したように、変換用光21の波長は、熱レンズ形成光素子29の光吸収層に対して透過性を示す波長の光を用いる。また、信号光23の波長は、熱レンズ形成光素子29の光吸収層に対して吸収性を示す波長の光を用いる。   In the present wavelength conversion device, as described above, the wavelength of the conversion light 21 is light having a wavelength that shows transparency to the light absorption layer of the thermal lens forming optical element 29. In addition, as the wavelength of the signal light 23, light having a wavelength that exhibits absorption with respect to the light absorption layer of the thermal lens forming optical element 29 is used.

本波長変換装置で使用される熱レンズ形成光素子29中の光吸収層の材料、変換用光21の波長帯域、及び信号光23の波長帯域は、例えば、先ず、信号光23の波長ないし波長帯域を決定し、次に、これを制御するのに最適な光吸収層の材料と変換用光21の波長の組み合わせを選定することができるが、これに限定されない。   The material of the light absorption layer in the thermal lens forming optical element 29 used in the present wavelength conversion device, the wavelength band of the conversion light 21 and the wavelength band of the signal light 23 are, for example, the wavelength or wavelength of the signal light 23 first. The optimum combination of the light absorbing layer material and the wavelength of the conversion light 21 can be selected for determining the band and then controlling the band. However, the present invention is not limited to this.

第1のコリメートレンズ25、第2のコリメートレンズ26、第3のコリメートレンズ30としては、例えば焦点距離8mmの非球面レンズを用いることができるが、焦点距離は8mmである必要はなく、より小型の波長変換装置にするためにさらに短い焦点距離を用いてもよいことは言うまでもない。また、非球面レンズである必要はないが、小型軽量にするためには非球面レンズが好ましい。   As the first collimating lens 25, the second collimating lens 26, and the third collimating lens 30, for example, an aspherical lens having a focal length of 8 mm can be used, but the focal length does not need to be 8 mm and is smaller. Needless to say, an even shorter focal length may be used in order to obtain a wavelength conversion device. Further, although it is not necessary to use an aspheric lens, an aspheric lens is preferable in order to reduce the size and weight.

光混合器27としては、例えば変換用光21は透過し、信号光23は反射するダイクロイックミラーなどの公知の光学部材を用いることができる。もちろん、入力ポート22と入力ポート24の位置を入れ替えて、変換用光21が反射し、信号光23が透過するように構成してもよいことは言うまでもない。   As the optical mixer 27, for example, a known optical member such as a dichroic mirror that transmits the conversion light 21 and reflects the signal light 23 can be used. Of course, it is needless to say that the positions of the input port 22 and the input port 24 may be interchanged so that the conversion light 21 is reflected and the signal light 23 is transmitted.

第1の集光レンズ28、第2の集光レンズ33、第3の集光レンズ35には、例えば焦点距離8mmの非球面レンズを用いることができるが、焦点距離は8mmである必要はなく、より小型の波長変換装置にするためにさらに短い焦点距離を用いてもよいことは言うまでもない。また、非球面レンズである必要はないが、小型軽量にするためには非球面レンズが好ましい。   As the first condenser lens 28, the second condenser lens 33, and the third condenser lens 35, for example, an aspherical lens having a focal length of 8 mm can be used, but the focal length is not necessarily 8 mm. Needless to say, a shorter focal length may be used in order to obtain a smaller wavelength converter. Further, although it is not necessary to use an aspheric lens, an aspheric lens is preferable in order to reduce the size and weight.

本波長変換装置では、変換用光21と信号光23は、第1の集光レンズ28により、光の進行方向で熱レンズ形成光素子29の光吸収層の入射面又はその近辺において集光させる。変換用光21と信号光23とを熱レンズ形成光素子29の光吸収層の入射面近辺の同一の所に集光させると変換用光21はドーナツ状に拡がる。この状況を図5に示す。信号光23がない場合には図5(a)の写真1aのように変換用光21は丸ビームであるが、信号光23が同時に同一の所に照射されると、図5(b)の写真1bのようにドーナツ形状となる。このドーナツ形状が鮮明で大きく形成されるのが、光吸収層の入射面であると思われる。本波長変換装置において光吸収層の入射面という場合は、変換用光21と信号光23を同一の所に集光させたときにこのドーナツ形状が鮮明で大きく形成される位置に相当する面とする。もちろん、本波長変換装置で実際に用いる変換用光21と信号光23とは集光点の位置では光軸に直角な方向に25〜50μmほど離間させるので、ドーナツ形状は形成されないが、調整時には変換用光21と信号光23とを同一点に入射させ、ドーナツ形状を形成させ、その後、変換用光21と信号光23との集光点を分離させ、位置調整を行う。なお、変換用光21と信号光23との集光点間の距離が25μm未満の場合には、図5(a)に示すような丸ビームにならず、三日月型ビームになってしまう。変換用光21が三日月型ビームになると、のちに集光させ光ファイバーに入射させた場合には入射効率が減少してしまい、実用性にかけるおそれがある。また、上記距離が50μmを超えると、偏向角が低下傾向となる。   In the present wavelength conversion device, the conversion light 21 and the signal light 23 are condensed by the first condenser lens 28 at or near the incident surface of the light absorption layer of the thermal lens forming optical element 29 in the light traveling direction. . When the conversion light 21 and the signal light 23 are condensed at the same position near the incident surface of the light absorption layer of the thermal lens forming optical element 29, the conversion light 21 spreads in a donut shape. This situation is shown in FIG. When the signal light 23 is not present, the conversion light 21 is a round beam as shown in the photograph 1a of FIG. 5A, but when the signal light 23 is simultaneously irradiated to the same place, the conversion light 21 shown in FIG. It has a donut shape as shown in Photo 1b. It is considered that the light-absorbing layer incident surface has a clear and large donut shape. In the present wavelength conversion device, the incident surface of the light absorption layer is a surface corresponding to a position where the donut shape is clear and large when the conversion light 21 and the signal light 23 are condensed at the same place. To do. Of course, the conversion light 21 and the signal light 23 that are actually used in the present wavelength conversion device are separated by about 25 to 50 μm in the direction perpendicular to the optical axis at the position of the condensing point, so a donut shape is not formed, but at the time of adjustment The conversion light 21 and the signal light 23 are incident on the same point to form a donut shape, and then the condensing points of the conversion light 21 and the signal light 23 are separated to adjust the position. In addition, when the distance between the condensing points of the conversion light 21 and the signal light 23 is less than 25 μm, a round beam as shown in FIG. When the conversion light 21 becomes a crescent-shaped beam, if it is condensed and then incident on the optical fiber, the incident efficiency is reduced, which may impair practicality. Further, when the distance exceeds 50 μm, the deflection angle tends to decrease.

熱レンズ形成光素子29は、図6に示したような概略構成であるが、図4では説明を容易にするため、光吸収層のみを図示してある。図6において、熱レンズ形成光素子41(29)の光吸収層42は、色素を溶剤に溶解したものをガラス容器43に封じて用いる。溶剤に可溶性の色素としては、使用する信号光の波長領域に吸収性を示し、使用する変換用光の波長領域に吸収性がなく透過性を示す色素を使用することができる。例えばレーザ光44が透過するガラス容器43のガラスの厚みは約500μm程度、光吸収層42の厚みは200〜1000μm程度とすることができる。   Although the thermal lens forming optical element 29 has a schematic configuration as shown in FIG. 6, only the light absorption layer is shown in FIG. 4 for ease of explanation. In FIG. 6, the light absorbing layer 42 of the thermal lens forming optical element 41 (29) is used by sealing a dye in a solvent in a glass container 43. As the dye that is soluble in the solvent, a dye that exhibits absorbency in the wavelength region of the signal light to be used and does not absorb in the wavelength region of the conversion light to be used and exhibits transparency can be used. For example, the glass container 43 through which the laser beam 44 transmits can have a glass thickness of about 500 μm, and the light absorption layer 42 can have a thickness of about 200 to 1000 μm.

色素の具体例としては、例えば、ローダミンB、ローダミン6G、エオシン、フロキシンBなどのキサンテン系色素、アクリジンオレンジ、アクリジンレッドなどのアクリジン系色素、エチルレッド、メチルレッドなどのアゾ色素、ポルフィリン系色素、フタロシアニン系色素、3,3’−ジエチルチアカルボシアニンヨージド、3,3’−ジエチルオキサジカルボシアニンヨージドなどのシアニン色素、エチル・バイオレット、ビクトリア・ブルーRなどのトリアリールメタン系色素、ナフトキノン系色素、アントラキノン系色素、ナフタレンテトラカルボン酸ジイミド系色素、ペリレンテトラカルボン酸ジイミド系色素などを好適に使用することができる。また、これらの色素を単独で、又は、2種以上を混合して使用することができる。   Specific examples of the dye include, for example, xanthene dyes such as rhodamine B, rhodamine 6G, eosin and phloxine B, acridine dyes such as acridine orange and acridine red, azo dyes such as ethyl red and methyl red, porphyrin dyes, Phthalocyanine dyes, cyanine dyes such as 3,3′-diethylthiacarbocyanine iodide, 3,3′-diethyloxadicarbocyanine iodide, triarylmethane dyes such as ethyl violet and Victoria Blue R, naphthoquinone A dye, an anthraquinone dye, a naphthalene tetracarboxylic acid diimide dye, a perylene tetracarboxylic acid diimide dye, or the like can be suitably used. Moreover, these pigment | dyes can be used individually or in mixture of 2 or more types.

溶剤としては、少なくとも使用する色素を溶解するものを用いることができるが、熱レンズ形成時の温度上昇に際し、熱分解することなく、かつ、沸騰する温度(沸点)が100℃以上、好ましくは200℃以上、さらに好ましくは300℃以上のものを好適に用いることができる。具体的には、硫酸などの無機系溶剤、o−ジクロロベンゼンなどのハロゲン化芳香族炭化水素系、1−フェニル−1−キシリルエタン又は1−フェニル−1−エチルフェニルエタンなどの芳香族置換脂肪族炭化水素系、ニトロベンゼンなどのニトロベンゼン誘導体系、などの有機溶剤を好適に用いることができる。   As the solvent, a solvent that dissolves at least the dye to be used can be used. However, the temperature (boiling point) of boiling without being thermally decomposed when the temperature rises during the formation of the thermal lens is 100 ° C. or higher, preferably 200. Those having a temperature of at least ° C, more preferably at least 300 ° C can be suitably used. Specifically, inorganic solvents such as sulfuric acid, halogenated aromatic hydrocarbons such as o-dichlorobenzene, aromatic substituted aliphatics such as 1-phenyl-1-xylylethane or 1-phenyl-1-ethylphenylethane Organic solvents such as hydrocarbons and nitrobenzene derivatives such as nitrobenzene can be suitably used.

波長選択透過フィルター31としては、熱レンズ形成光素子41(29)をわずかに透過する信号光3を遮光し、変換用光1は透過する誘電体フィルターなどを用いることができる。熱レンズ形成光素子41(29)で実用上問題ない程度に信号光23が吸収されれば、必ずしも波長選択透過フィルター31を用いる必要はない。   As the wavelength selective transmission filter 31, a dielectric filter or the like that shields the signal light 3 slightly transmitted through the thermal lens forming optical element 41 (29) and transmits the conversion light 1 can be used. If the signal light 23 is absorbed to the extent that there is no practical problem with the thermal lens forming optical element 41 (29), the wavelength selective transmission filter 31 is not necessarily used.

また、熱レンズ形成光素子41(29)は、基本的に上記のような吸収、透過の波長特性を持ち、熱レンズの形成可能な光吸収層を有しておればよく、光吸収を促進させる層や、伝熱層、保温層等、本発明者らの出願に係る特開2005−265986号公報に記載されているような各種の構造のものとすることができる。   Further, the thermal lens forming optical element 41 (29) basically has the absorption and transmission wavelength characteristics as described above, and has only to have a light absorption layer capable of forming a thermal lens, thereby promoting light absorption. It can be of various structures as described in JP-A-2005-265986 related to the application of the present inventors, such as a layer to be heated, a heat transfer layer, and a heat insulating layer.

ここで、熱レンズ形成光素子41(29)における熱レンズ形成による変換用光21の偏向について説明する。   Here, the deflection of the conversion light 21 by the thermal lens formation in the thermal lens forming optical element 41 (29) will be described.

熱レンズ形成光素子41(29)の光吸収層で信号光23が吸収されると、光吸収層の温度が上昇し、屈折率が変わる。温度が上昇するので、一般に屈折率は下がる方向に変化する。通常のレーザ光源から出射するレーザ光や、通常のレーザ光源から出射し光ファイバーを透過してきたレーザ光の強度分布はガウス分布である。また、前記レーザ光をレンズ等で集光した光もガウス分布をしている。よって、信号光23が照射された光吸収層での屈折率分布は、信号光23の光軸で屈折率が一番低下し、信号光23の周辺では屈折率の低下が少なくなる。また、熱伝導があるので、光の照射されていない部分でも屈折率が変化する。   When the signal light 23 is absorbed by the light absorption layer of the thermal lens forming optical element 41 (29), the temperature of the light absorption layer rises and the refractive index changes. As the temperature increases, the refractive index generally changes in a decreasing direction. The intensity distribution of laser light emitted from a normal laser light source or laser light emitted from a normal laser light source and transmitted through an optical fiber is a Gaussian distribution. Further, the light obtained by condensing the laser light with a lens or the like has a Gaussian distribution. Therefore, the refractive index distribution in the light absorption layer irradiated with the signal light 23 has the lowest refractive index on the optical axis of the signal light 23 and the decrease in the refractive index around the signal light 23 is reduced. Further, since there is heat conduction, the refractive index changes even in a portion where light is not irradiated.

図7は、変換用光45(21)が偏向する状況を説明した図である。なお、説明を簡単にするため、図7では光吸収層と光吸収層の周りの媒質との屈折率の違いによる光の屈折は無視している。図7には、熱レンズ形成光素子41(29)の光吸収層42に、変換用光45(21)のみが照射された場合と、変換用光45(21)と信号光46(23)が同時に照射された場合が示されている。図中、47は、信号光46(23)が照射されなかった場合の熱レンズ形成光素子41(29)の光吸収層42を透過した変換用光である。48は、信号光46(23)が照射された場合の熱レンズ形成光素子41(29)の光吸収層42を透過した変換用光である。また、熱レンズ形成光素子41(29)の光吸収層42の入射面近辺での信号光の光強度分布49、及び、熱レンズ形成光素子41(29)の光吸収層42の出射面近辺での光強度分布50が併せて示されている。   FIG. 7 is a diagram illustrating a situation in which the conversion light 45 (21) is deflected. In order to simplify the description, in FIG. 7, light refraction due to the difference in refractive index between the light absorption layer and the medium around the light absorption layer is ignored. In FIG. 7, the light absorption layer 42 of the thermal lens forming optical element 41 (29) is irradiated with only the conversion light 45 (21), the conversion light 45 (21), and the signal light 46 (23). In the case where is simultaneously irradiated. In the figure, reference numeral 47 denotes conversion light transmitted through the light absorption layer 42 of the thermal lens forming optical element 41 (29) when the signal light 46 (23) is not irradiated. Reference numeral 48 denotes conversion light transmitted through the light absorption layer 42 of the thermal lens forming optical element 41 (29) when the signal light 46 (23) is irradiated. Further, the light intensity distribution 49 of the signal light in the vicinity of the incident surface of the light absorption layer 42 of the thermal lens forming optical element 41 (29), and the vicinity of the emission surface of the light absorption layer 42 of the thermal lens forming optical element 41 (29). The light intensity distribution 50 is also shown.

図7aはレーザ光を集光しない場合、図7bは本波長変換装置のようにレーザ光を集光した場合のレーザ光の光路を模式的に示したものである。レーザ光を集光しない場合のレーザ光の強度分布領域49、50は、光吸収層42の入射面近辺と出射面近辺では変わらない。このことは、変換用光45(21)が光吸収層42を進むに従って、屈折率の変化の少ない領域を通過することを意味する。一方、レーザ光を集光した場合はレーザ光の強度分布領域49、50は、光吸収層42の入射面近辺と出射面近辺では大きく変わり、出射面近辺では領域が拡がっている。このことは、屈折率も徐々に拡がっていることになり、変換用光45(21)が光吸収層42を進むに従ってより大きな偏向を受ける作用が及んでくることになる。なお、屈折率変化は信号光パワーにほぼ比例して変化するので、光吸収層42を進むに従って屈折率変化は小さくなる。   FIG. 7a schematically shows the optical path of the laser light when the laser light is not condensed, and FIG. 7b schematically shows the optical path of the laser light when the laser light is condensed as in the present wavelength converter. The intensity distribution regions 49 and 50 of the laser light when the laser light is not condensed do not change between the vicinity of the entrance surface and the exit surface of the light absorption layer 42. This means that the conversion light 45 (21) passes through the region where the refractive index changes little as it travels through the light absorption layer. On the other hand, when the laser beam is condensed, the intensity distribution regions 49 and 50 of the laser beam are greatly changed near the incident surface and the exit surface of the light absorption layer 42, and the region is expanded near the exit surface. This means that the refractive index also gradually increases, and the action of receiving a larger deflection as the conversion light 45 (21) advances through the light absorption layer 42 is exerted. Since the refractive index change changes substantially in proportion to the signal light power, the refractive index change decreases as the light absorption layer 42 is advanced.

図7bでは、変換用光45(21)も熱レンズ形成光素子41(29)の光吸収層42の入射面に集光するようにしているが、入射面近辺であってもよい。特に変換用光45(21)は、光吸収層42のもう少し出射面側に集光するようにしてもよい。また、変換用光45(21)と信号光46(23)とは光の進行方向で同一面に入射するようにしているが、全く同一面である必要はなく、多少ずれていても構わない。   In FIG. 7b, the conversion light 45 (21) is also condensed on the incident surface of the light absorbing layer 42 of the thermal lens forming optical element 41 (29), but it may be near the incident surface. In particular, the conversion light 45 (21) may be condensed on the light exit surface side of the light absorption layer 42 a little. The conversion light 45 (21) and the signal light 46 (23) are incident on the same surface in the light traveling direction. However, the light does not have to be exactly the same and may be slightly shifted. .

偏向角は、次の条件が変わると変化する。   The deflection angle changes when the following conditions change.

1.熱レンズ形成光素子41(29)の光吸収層42の、変換用光45(21)と信号光46(23)の第1の集光レンズ28の集光(収束)点に対する位置
2.信号光パワー
3.信号光位置(第1の集光レンズ28の集光点での変換用光45(21)と信号光46(23)の光軸に直角方向の距離)
4.熱レンズ形成光素子41(29)の光吸収層42の厚み
5.信号光波長及び変換用光波長
6.光吸収層42の色素濃度
これ以外にも、光吸収層42の材質、光吸収層42への信号光46(23)及び変換用光45(21)の集光角等によっても変化する。
1. 1. Position of the light absorbing layer 42 of the thermal lens forming optical element 41 (29) with respect to the condensing (converging) point of the first condenser lens 28 for the conversion light 45 (21) and the signal light 46 (23). 2. Signal light power Signal light position (distance perpendicular to the optical axis of the conversion light 45 (21) and the signal light 46 (23) at the condensing point of the first condenser lens 28)
4). 4. Thickness of the light absorption layer 42 of the thermal lens forming optical element 41 (29) 5. Signal light wavelength and conversion light wavelength In addition to this, the dye concentration of the light absorption layer 42 also varies depending on the material of the light absorption layer 42, the light collection angle of the signal light 46 (23) and the conversion light 45 (21) to the light absorption layer 42, and the like.

本波長変換装置の一例では、波長1550nmの変換用光21をコア径9.5μmのシングルモード石英光ファイバーで入力ポート22に入射させ、波長980nmの信号光23をコア径9.5μmのシングルモード石英光ファイバーで入力ポート24に入射させ、焦点距離8mmの第1のコリメートレンズ25及び第2のコリメートレンズ26で変換用光21及び信号光23をほぼ平行光にし、光吸収層の厚み500μmであって光吸収層の波長1550nmにおける透過率95%及び波長980nmにおける透過率0.2%の熱レンズ形成光素子29に、焦点距離8mmの第1の集光レンズ28で集光して入射させた。   In an example of the wavelength converter, conversion light 21 having a wavelength of 1550 nm is made incident on an input port 22 by a single-mode quartz optical fiber having a core diameter of 9.5 μm, and signal light 23 having a wavelength of 980 nm is single-mode quartz having a core diameter of 9.5 μm. The input light is made incident on the input port 24 by an optical fiber, and the conversion light 21 and the signal light 23 are made almost parallel light by the first collimating lens 25 and the second collimating lens 26 having a focal length of 8 mm, and the thickness of the light absorption layer is 500 μm. The light absorbing layer was condensed and made incident on the thermal lens forming optical element 29 having a transmittance of 95% at a wavelength of 1550 nm and a transmittance of 0.2% at a wavelength of 980 nm by the first condenser lens 28 having a focal length of 8 mm.

図8に、図4の分岐ミラー32の直前で、光軸に直角に紙面内方向に、スリット開口を持った光検出器を設けて、この光検出器を動かして測定した変換用光21の光強度分布を示す。図8において、線51(丸点を結ぶ実線)は信号光が照射されなかった場合の非偏向光、線52(四角点を結ぶ実線)は信号光パワー7.8mWが照射された場合の偏向光、線53(×点を結ぶ実線)は信号光パワー12.9mWが照射された場合の偏向光の光強度分布を示す。信号光パワー7.8mWが照射された場合の偏向光の場合51は、非偏向光の場合52と強度分布の裾のところで重なり合っておりお互いの分離が不充分であるが、信号光パワー12.9mWが照射された場合の偏向光の場合53は、非偏向光の場合52と充分に分離している。よって、分岐ミラー52で非偏向光と信号光パワー12.9mWが照射された場合の偏向光とは分離できることがわかる。なお、図8において、信号光位置(第1の集光レンズ28の集光点での変換用光21と信号光23の光軸に直角方向の距離)は35μmであり、信号光23と変換用光21は光吸収層の光入射面から約30μm進んだところに集光し、光吸収層の厚みは500μmであった。   In FIG. 8, a light detector having a slit opening is provided in the in-plane direction perpendicular to the optical axis immediately before the branching mirror 32 in FIG. 4, and the conversion light 21 measured by moving the light detector is measured. The light intensity distribution is shown. In FIG. 8, a line 51 (solid line connecting round dots) is unpolarized light when no signal light is irradiated, and a line 52 (solid line connecting square points) is deflection when a signal light power of 7.8 mW is irradiated. The light line 53 (solid line connecting the dots) represents the light intensity distribution of the deflected light when the signal light power of 12.9 mW is applied. In the case of the deflected light 51 when the signal light power is 7.8 mW, the light 51 is overlapped with the non-deflected light 52 at the bottom of the intensity distribution and is insufficiently separated from each other. The deflected light 53 when 9 mW is irradiated is sufficiently separated from the unpolarized light 52. Therefore, it can be seen that the non-deflected light and the deflected light when the signal light power of 12.9 mW is irradiated by the branch mirror 52 can be separated. In FIG. 8, the signal light position (distance perpendicular to the optical axis of the conversion light 21 and the signal light 23 at the condensing point of the first condenser lens 28) is 35 μm and is converted from the signal light 23. The working light 21 was collected at a location approximately 30 μm from the light incident surface of the light absorbing layer, and the thickness of the light absorbing layer was 500 μm.

また、信号光パワーと偏向角との関係を図9に示す。信号光パワーが大きくなると偏向角が大きくなることがわかる。なお、図9において、信号光位置(第1の集光レンズ28の集光点での変換用光21と信号光23の光軸に直角方向の距離)は35μm、信号光23と変換用光21は光吸収層の光入射面から約60μm進んだところに集光させた。   FIG. 9 shows the relationship between the signal light power and the deflection angle. It can be seen that the deflection angle increases as the signal light power increases. In FIG. 9, the signal light position (distance perpendicular to the optical axis of the conversion light 21 and the signal light 23 at the condensing point of the first condenser lens 28) is 35 μm, the signal light 23 and the conversion light. No. 21 was condensed at a position advanced by about 60 μm from the light incident surface of the light absorption layer.

本波長変換装置では、図4に示す第3のコリメートレンズ30と第2の集光レンズ33及び第3の集光レンズ35の焦点距離は同じ8mmのものを用いたので、偏向角は、分岐ミラー32で分岐しなかった場合の偏向光の光軸と非偏向光の光軸とのなす角度となる。本例の場合、信号光パワー7.8mWの場合は約6.7度、信号光パワー12.9mWの場合は約10.1度、信号光パワー18mWの場合は約13.2度となった。   In the present wavelength converter, the third collimating lens 30, the second condensing lens 33, and the third condensing lens 35 shown in FIG. 4 have the same focal length of 8 mm. This is the angle between the optical axis of the deflected light and the optical axis of the non-deflected light when the mirror 32 does not branch. In the case of this example, the signal light power is 6.7 mW, about 6.7 degrees, the signal light power 12.9 mW is about 10.1 degrees, and the signal light power 18 mW is about 13.2 degrees. .

図10に、図6に示した熱レンズ形成光素子41(29)の光吸収層42への変換用光21と信号光23の集光点の入射位置(「光吸収層位置」と記す)と偏向角との関係を示す。図10において、横軸の光吸収層位置は熱レンズ形成光素子41(29)の光吸収層42への光の入射面の位置(信号光23と変換用光21の集光点に対する位置)である。0点は信号光23と変換用光21の集光点の位置であり、図7bの状態である。マイナス方向が光の進行方向であり、プラスの位置では変換用光21と信号光23が熱レンズ形成光素子41(29)の光吸収層42内で集光する。縦軸は偏向角である。なお、図10において、信号光パワーは約12.9mWであり、信号光位置(図4の第1の集光レンズ28の集光点での変換用光21と信号光23の光軸に対して直角方向の距離)は35μm、光吸収層42の厚みは500μmであった。   In FIG. 10, the incident positions of the condensing points of the conversion light 21 and the signal light 23 on the light absorption layer 42 of the thermal lens forming optical element 41 (29) shown in FIG. 6 (denoted as “light absorption layer position”). And the deflection angle. In FIG. 10, the position of the light absorption layer on the horizontal axis is the position of the light incident surface on the light absorption layer 42 of the thermal lens forming optical element 41 (29) (position with respect to the condensing point of the signal light 23 and the conversion light 21). It is. Point 0 is the position of the condensing point of the signal light 23 and the conversion light 21, which is the state of FIG. 7b. The minus direction is the light traveling direction. At the plus position, the conversion light 21 and the signal light 23 are collected in the light absorption layer 42 of the thermal lens forming optical element 41 (29). The vertical axis represents the deflection angle. In FIG. 10, the signal light power is about 12.9 mW, and the signal light position (with respect to the optical axes of the conversion light 21 and the signal light 23 at the condensing point of the first condenser lens 28 in FIG. 4). The distance in the perpendicular direction) was 35 μm, and the thickness of the light absorption layer 42 was 500 μm.

さらに、図11に、図6に示す熱レンズ形成光素子41(29)の光吸収層42への変換用光21と信号光23の収束(集光)点の入射位置(すなわち、光吸収層位置)と非偏向光と偏向光との分離距離の測定データの例を示す。光吸収層42への入射位置が約60μmの場合は分離距離が0に近いが、これからずれると分離距離が大きくなる。図11で分離距離の正負の符号は、変換用光21の入射点を原点(すなわち0点)とし、偏向する方向を正とした。図11において、信号光パワーは15.4mW、光吸収層42の厚みは1000μmであり、信号光位置(第1の集光レンズ28の集光点での変換用光21と信号光23の光軸に直角方向の距離)は25μmであった。   Further, FIG. 11 shows an incident position (that is, a light absorption layer) of a convergence (condensation) point of the conversion light 21 and the signal light 23 to the light absorption layer 42 of the thermal lens forming optical element 41 (29) shown in FIG. An example of measurement data of a separation distance between (position), unpolarized light and deflected light is shown. When the incident position on the light absorption layer 42 is about 60 μm, the separation distance is close to 0, but when the position is shifted from this, the separation distance becomes large. In FIG. 11, the positive and negative signs of the separation distance are set such that the incident point of the conversion light 21 is the origin (that is, 0 point) and the deflection direction is positive. In FIG. 11, the signal light power is 15.4 mW, the thickness of the light absorption layer 42 is 1000 μm, and the signal light position (the light of the conversion light 21 and the signal light 23 at the condensing point of the first condenser lens 28). The distance perpendicular to the axis) was 25 μm.

なお、偏向角は、信号光波長及び変換用光波長によっても異なる。波長が短いほど偏向角が大きくなる。   The deflection angle varies depending on the signal light wavelength and the conversion light wavelength. The shorter the wavelength, the greater the deflection angle.

以上、本実施形態の波長変換装置の一例を説明してきたが、本発明は上記に限定されるものではなく、種々の変形、変更が可能である。   As mentioned above, although an example of the wavelength converter of this embodiment has been described, the present invention is not limited to the above, and various modifications and changes are possible.

例えば、本発明によれば、図4の入力ポート22、24、第1のコリメートレンズ25、第2のコリメートレンズ26、光混合器27よりなる信号入力部に代えて、図12に断面図で示すような2芯光ファイバーフェルール65を用いた信号入力部としてもよい。2芯光ファイバーフェルール65は変換用光光出射ファイバー66と信号光光出射ファイバー67を並設して備えている。これらの光ファイバー66、67としては、例えば、コア9.5μmのシングルモード石英光ファイバーのクラッド層をフッ酸で所望の太さにエッチングして用いる。エッチングする部分は、光ファイバーの先端数mmだけとする。エッチングした後の光ファイバーの太さ「ω」は、光吸収層に集光した変換用光と信号光の集光点の光軸に直角方向の距離「χ」と次の関係で決めることができる。
(式1)
ω=χ/m
ここでmは、第1の集光レンズ28の結像倍率である。
For example, according to the present invention, in place of the signal input unit including the input ports 22 and 24, the first collimating lens 25, the second collimating lens 26, and the optical mixer 27 shown in FIG. It is good also as a signal input part using the 2-core optical fiber ferrule 65 as shown. The two-core optical fiber ferrule 65 includes a conversion light emitting fiber 66 and a signal light emitting fiber 67 arranged in parallel. As these optical fibers 66 and 67, for example, a clad layer of a single-mode quartz optical fiber having a core of 9.5 μm is etched to a desired thickness with hydrofluoric acid. The portion to be etched is only a few mm of the tip of the optical fiber. The thickness “ω” of the optical fiber after etching can be determined by the following relationship with the distance “χ” perpendicular to the optical axis of the converging point of the conversion light and the signal light collected on the light absorption layer. .
(Formula 1)
ω = χ / m
Here, m is the imaging magnification of the first condenser lens 28.

このような構成としても、上記実施形態と同様の効果を得ることができる上、光入射部の構成をより簡素化できる利点がある。   Even with such a configuration, the same effects as those of the above embodiment can be obtained, and the configuration of the light incident portion can be further simplified.

次に、本発明の実施例を述べる。   Next, examples of the present invention will be described.

図4で要部構成を示す波長変換装置において、熱レンズ形成光素子29は、信号光23に対し高い吸収性を示し変換用光21に対し高い透過性を示す波長帯域を持つ色素含有溶液を透明な光学セルに収容したものを用いた。詳しくは、熱レンズ形成光素子29の光吸収層として、色素(商品名CIR−960;日本カーリット社製:近赤外領域(780〜1500nm)に大きな吸収を示す)のテトラヒドロフラン(TFT)溶液を透明な光学セル内に収容したものを用いた。なお、この色素CIR−960の吸収及び透過の波長帯域の形態は図3のものとは異なっており、上記のような波長帯域となっている。   In the wavelength converter shown in FIG. 4, the thermal lens forming optical element 29 is a dye-containing solution having a wavelength band that exhibits high absorption with respect to the signal light 23 and high transmittance with respect to the conversion light 21. What was accommodated in the transparent optical cell was used. Specifically, as a light absorption layer of the thermal lens forming optical element 29, a tetrahydrofuran (TFT) solution of a dye (trade name: CIR-960; manufactured by Nippon Carlit Co., Ltd .: shows a large absorption in the near infrared region (780-1500 nm)). What was accommodated in the transparent optical cell was used. The form of the absorption and transmission wavelength band of the dye CIR-960 is different from that of FIG. 3 and has the wavelength band as described above.

図4の波長変換装置において、入力ポート24であるファイバー増幅器から波長1.55μmのパルス状信号光23を入射し、第2のコリメートレンズ26により平行光として光混合器27に送った。一方、変換用光光源であるレーザダイオードより波長650nmのレーザ光(連続光)を変換用光21として入力ポート22に取り込み、第1のコリメートレンズ25により平行光とし、光混合器27に送った。なお、変換用光22の位相、偏光状態は信号光と同じものとした。   In the wavelength converter of FIG. 4, pulsed signal light 23 having a wavelength of 1.55 μm is incident from a fiber amplifier serving as an input port 24, and is sent to the optical mixer 27 as parallel light by the second collimating lens 26. On the other hand, laser light having a wavelength of 650 nm (continuous light) is taken into the input port 22 as conversion light 21 from a laser diode that is a conversion light source, and is converted into parallel light by the first collimator lens 25 and sent to the optical mixer 27. . The phase and polarization state of the conversion light 22 are the same as those of the signal light.

光混合器27で、送られてきた信号光23と変換用光21を、熱レンズ形成光素子29の光吸収層に、各々集光点を光軸に対して直角方向で異ならせて集光させた。   The optical mixer 27 condenses the transmitted signal light 23 and conversion light 21 on the light absorption layer of the thermal lens forming optical element 29 with their respective condensing points different in the direction perpendicular to the optical axis. I let you.

熱レンズ形成光素子29では、パルス状の信号光23がオン(又はhigh)のときは、光吸収層が波長1.55μmの光に高い吸収性を持つため、熱レンズを形成した。このとき、変換用光21は、形成された熱レンズのため、その屈折率の特性により、進行方向を変えた偏向光の変換用光21として出射した。この変換用光21は第3のコリメートレンズ30により平行光とされ、信号光23は波長選択透過フィルター31でカットされ、分岐ミラー32で反射して向きを変えられ、ミラー34で更に反射し、第3の集光レンズ35で変換光として出力ポート37から光ファイバーに出射された。   In the thermal lens forming optical element 29, when the pulsed signal light 23 is on (or high), the thermal absorption layer is highly absorbable for light having a wavelength of 1.55 μm, so a thermal lens is formed. At this time, since the conversion light 21 was formed as a thermal lens, the conversion light 21 was emitted as the conversion light 21 of the deflected light whose traveling direction was changed due to the characteristics of the refractive index. The conversion light 21 is converted into parallel light by the third collimating lens 30, and the signal light 23 is cut by the wavelength selective transmission filter 31, reflected by the branch mirror 32, changed in direction, and further reflected by the mirror 34, The converted light was emitted from the output port 37 to the optical fiber by the third condenser lens 35.

一方、熱レンズ形成光素子29では、パルス状の信号光23がオン(又はlow)のときは、光吸収層には信号光23が照射されないため、熱レンズは形成されない。したがって、変換用光21は、非偏向光として出力ポート36から出力され、図示しない遮断手段によりカットされる。   On the other hand, in the thermal lens forming optical element 29, when the pulsed signal light 23 is on (or low), the signal light 23 is not irradiated on the light absorption layer, and thus no thermal lens is formed. Therefore, the conversion light 21 is output from the output port 36 as unpolarized light, and is cut by a blocking means (not shown).

したがって、信号光23のパルスのオン・オフ(あるいはhigh・low)により、熱レンズの形成の有無が繰り返され、信号光23の波長のデータが、同位相の変換光の波長のデータに変換される。熱レンズ形成光素子の応答速度は数十ナノ秒と非常に高速なため、電気回路や機械的可動部分を用いないで、応答速度が非常に高速で、種々の波長の光の利用が可能となり、しかも耐久性が高い波長変換が可能となる。また、波長変換が光だけで行われるため、電磁波障害の影響を受けず、また、電磁波障害の原因となることもない。さらに、光学部品を低減させることができるため、低コスト化を図ることができる。   Therefore, the presence or absence of the thermal lens is repeated by turning on / off the pulse of the signal light 23 (or high / low), and the wavelength data of the signal light 23 is converted into the wavelength data of the converted light of the same phase. The The response speed of the thermal lens forming optical element is very fast at several tens of nanoseconds, so the response speed is very fast and light of various wavelengths can be used without using an electric circuit or mechanical moving parts. Moreover, wavelength conversion with high durability becomes possible. Further, since wavelength conversion is performed only with light, it is not affected by electromagnetic interference and does not cause electromagnetic interference. Furthermore, since optical components can be reduced, cost reduction can be achieved.

また、上記において、出力ポート36から出射する非偏向光を変換光とすると、信号光23の波長のデータが、逆位相の変換光の波長のデータに変換される。   In the above description, when the unpolarized light emitted from the output port 36 is converted light, the wavelength data of the signal light 23 is converted into the wavelength data of the anti-phase converted light.

また、上記において、偏向光と非偏向光の利用を切り替えるための光学的切替選択手段を設けるようにしてもよい。   Further, in the above, an optical switching selection means for switching use of deflected light and non-deflected light may be provided.

さらに、上記において、偏光状態を変化させる部材を変換用光21の途中、例えば第1のコリメートレンズ22と光混合器27の間に設け、偏光状態を変化させない状態と偏光状態を変化させた状態の変換光を得るようにしてもよい。   Further, in the above, a member that changes the polarization state is provided in the middle of the conversion light 21, for example, between the first collimating lens 22 and the optical mixer 27, and the polarization state is not changed and the polarization state is changed. The converted light may be obtained.

従来の波長変換装置の一例を模式的に示す図である。It is a figure which shows typically an example of the conventional wavelength converter. この出願の発明の波長変換装置の一実施形態の概念図である。It is a conceptual diagram of one Embodiment of the wavelength converter of invention of this application. 熱レンズ形成光素子に使用される一例の光吸収層に用いる材料の波長と吸収特性及び透過特性との関係を示す図である。It is a figure which shows the relationship between the wavelength of the material used for the light absorption layer of an example used for a thermal lens formation optical element, an absorption characteristic, and a permeation | transmission characteristic. 本発明の実施形態に係る波長変換装置の要部構成を模式的に示す図である。It is a figure which shows typically the principal part structure of the wavelength converter which concerns on embodiment of this invention. 熱レンズ形成光素子の光吸収層へ変換用光と信号光とを同一の所に集光させるときに、信号光がない場合と信号光がある場合の変換用光の出射の状況を示す図である。The figure which shows the condition of emission of conversion light when there is no signal light and when there is signal light when condensing conversion light and signal light on the same place to the light absorption layer of the thermal lens forming optical element It is. 熱レンズ形成光素子の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of a thermal lens formation optical element. 集光しない場合の変換用光が偏向する状況の説明図である。It is explanatory drawing of the condition where the conversion light in the case of not condensing deflects. 集光した場合の変換用光が偏向する状況の説明図である。It is explanatory drawing of the condition where the conversion light at the time of condensing deflects. 信号光を照射しない場合と、信号光のパワーを変えて照射した場合の光強度分布を示す図である。It is a figure which shows light intensity distribution when not irradiating signal light, and when irradiating by changing the power of signal light. 信号光パワーと偏向角との関係を示すグラフである。It is a graph which shows the relationship between signal light power and a deflection angle. 光吸収層の位置と偏向角との関係を示すグラフである。It is a graph which shows the relationship between the position of a light absorption layer, and a deflection angle. 非偏向光と偏向光の分離距離の関係を示すグラフである。It is a graph which shows the relationship between the separation distance of non-deflected light and deflected light. 本発明の別例の波長変換装置で用いる光スイッチの2芯光ファイバーフェルールの概念図である。It is a conceptual diagram of the two-core optical fiber ferrule of the optical switch used with the wavelength converter of another example of this invention.

11 熱レンズ形成光素子
12 信号入力部(ファイバー増幅器)
13 変換用光光源(レーザダイオード)
14 信号光
15 変換用光
16 変換光
21 変換用光
22、24 入力ポート
23 信号光
25、26、30 コリメートレンズ
27 分離器
34 ミラー
28、33、35 集光レンズ
29 熱レンズ形成光素子
31 波長選択透過フィルター
32 分岐ミラー
36、37 出力ポート
11 thermal lens forming optical element 12 signal input unit (fiber amplifier)
13 Light source for conversion (laser diode)
14 Signal light 15 Conversion light 16 Conversion light 21 Conversion light 22, 24 Input port 23 Signal light 25, 26, 30 Collimator lens 27 Separator 34 Mirror 28, 33, 35 Condensing lens 29 Thermal lens forming optical element 31 Wavelength Selective transmission filter 32 Branch mirror 36, 37 Output port

Claims (4)

特定の波長のパルス状信号光を入射する信号光入力部と、
信号光とは異なる波長の変換用光を照射する変換用光光源と、
信号光に対し吸収性を示し変換用光に対し透過性を示す波長帯域を持つ光吸収層を有する熱レンズ形成光素子と、
光吸収層に信号光と変換用光とを、各々集光点が、信号光と変換用光が熱レンズ形成光素子の入射面に平行光として入射するとした場合の光軸に対して垂直な方向において25〜50μm異なる位置となるように集光させる第1の集光部を備え、
熱レンズ形成光素子は、光吸収層が信号光を吸収した領域及びその周辺領域に起こる温度上昇に起因して可逆的に生ずる屈折率の分布に基づいた熱レンズを用いることによって、信号光が照射されず熱レンズが形成されない場合は変換用光を進行方向を変えない非偏向光として出射する状態と、信号光が照射されて熱レンズが形成された場合は変換用光を進行方向を変えた偏向光として出射する状態とを、信号光の照射の有無に対応させて実現させ、
さらに、熱レンズ形成光素子より出射した出射した変換用光のうち、偏向光として出射する変換用光のみを変換光として出射する状態と、非偏向光として出射する変換用光のみを変換光として出射する状態との選択を行うことができる変換光選択部と、
変換光選択部からの変換光を集光して、信号光とは異なる波長のパルス状変換光とする第2の集光部を備えることを特徴とする波長変換装置。
A signal light input unit for inputting pulsed signal light of a specific wavelength; and
A conversion light source that emits conversion light having a wavelength different from that of the signal light;
A thermal lens-forming optical element having a light absorption layer having a wavelength band that absorbs signal light and transmits light for conversion;
The signal light and the conversion light are incident on the light absorption layer, and the light condensing points are perpendicular to the optical axis when the signal light and the conversion light are incident on the incident surface of the thermal lens forming optical element as parallel light. A first condensing unit that condenses light so that the position is different from 25 to 50 μm in the direction ;
The thermal lens forming optical element uses a thermal lens based on a refractive index distribution reversibly generated due to a temperature rise occurring in a region where the light absorption layer absorbs signal light and a peripheral region thereof. When the thermal lens is not irradiated and the thermal lens is not formed, the conversion light is emitted as unpolarized light that does not change the traveling direction, and when the thermal lens is formed by irradiation with the signal light, the traveling direction of the conversion light is changed. The state of exiting as a deflected light is realized corresponding to the presence or absence of signal light irradiation,
Furthermore, out of the conversion light emitted from the thermal lens forming optical element, only the conversion light emitted as the deflection light is emitted as the conversion light, and only the conversion light emitted as the non-deflection light is used as the conversion light. A converted light selection unit capable of selecting the state of emission ; and
A wavelength conversion device comprising: a second condensing unit that condenses the converted light from the converted light selecting unit to form pulsed converted light having a wavelength different from that of the signal light.
出射する変換光の偏光状態を、入射した信号光の偏光状態と同じ状態にするか又は異なる状態にするかを切り替える偏光状態切替手段を備えることを特徴とする請求項1に記載の波長変換装置。 The wavelength conversion device according to claim 1, further comprising polarization state switching means for switching a polarization state of the outgoing converted light to a state that is the same as or different from a polarization state of the incident signal light. . 特定の波長のパルス状信号光に対し吸収性を示し信号光とは異なる波長の変換用光に対し透過性を示す波長帯域を持つ光吸収層を含む熱レンズ形成光素子の該光吸収層に、信号光と変換用光とを、各々集光点が、信号光と変換用光が熱レンズ形成光素子の入射面に平行光として入射するとした場合の光軸に対して垂直な方向において25〜50μm異なる位置となるように集光させ、光吸収層が信号光を吸収した領域及びその周辺領域に起こる温度上昇に起因して可逆的に生ずる屈折率の分布に基づいた熱レンズを用いることによって、信号光が照射されず熱レンズが形成されない場合は変換用光を進行方向を変えない非偏向光として出射する状態と、制御光が照射されて熱レンズが形成された場合は変換用光を進行方向を変えた偏向光として出射する状態とを、信号光の照射の有無に対応させて実現させ、In the light absorbing layer of the thermal lens forming optical element including a light absorbing layer having a wavelength band that absorbs pulsed signal light having a specific wavelength and transmits light for conversion light having a wavelength different from the signal light. In the direction perpendicular to the optical axis when the signal light and the conversion light are respectively converged at the condensing point, and the signal light and the conversion light are incident on the incident surface of the thermal lens forming optical element as parallel light. Use a thermal lens based on the refractive index distribution reversibly caused by the temperature rise that occurs in the region where the light absorption layer absorbs signal light and its surrounding region, and condenses the light so that it is at a position different by -50 μm. Thus, when the signal light is not irradiated and the thermal lens is not formed, the conversion light is emitted as unpolarized light that does not change the traveling direction, and when the control lens is irradiated and the thermal lens is formed, the conversion light is emitted. Is a polarized light with a different direction And a state of emitting, to realize in correspondence to the presence or absence of irradiation of the signal light,
出射した変換用光のうち、偏向光である変換用光と非偏向光である変換用光のいずれか一方のみを切替選択して変換光として出射させ、Of the emitted conversion light, only one of the conversion light that is deflected light and the conversion light that is non-deflection light is switched and emitted as converted light,
出射した変換光を集光して、信号光とは異なる波長のパルス状変換光とすることを特徴とする波長変換方法。A wavelength conversion method characterized by condensing the emitted converted light into pulsed converted light having a wavelength different from that of the signal light.
出射する変換光の偏光状態を、入射した信号光の偏光状態と同じ状態又は異なる状態にするかを切り替え可能であることを特徴とする請求項3に記載の波長変換方法。4. The wavelength conversion method according to claim 3, wherein the polarization state of the outgoing converted light can be switched between the polarization state of the incident signal light and the same or different state.
JP2007093920A 2007-03-30 2007-03-30 Wavelength conversion device and wavelength conversion method Expired - Fee Related JP4883306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007093920A JP4883306B2 (en) 2007-03-30 2007-03-30 Wavelength conversion device and wavelength conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093920A JP4883306B2 (en) 2007-03-30 2007-03-30 Wavelength conversion device and wavelength conversion method

Publications (2)

Publication Number Publication Date
JP2008250170A JP2008250170A (en) 2008-10-16
JP4883306B2 true JP4883306B2 (en) 2012-02-22

Family

ID=39975159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093920A Expired - Fee Related JP4883306B2 (en) 2007-03-30 2007-03-30 Wavelength conversion device and wavelength conversion method

Country Status (1)

Country Link
JP (1) JP4883306B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635148B2 (en) * 2004-11-15 2011-02-16 独立行政法人産業技術総合研究所 Wavelength conversion device and wavelength conversion method
JP5051576B2 (en) * 2007-03-22 2012-10-17 独立行政法人産業技術総合研究所 Optical buffer memory device and optical signal recording method

Also Published As

Publication number Publication date
JP2008250170A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP3972066B2 (en) Light control type optical path switching type data distribution apparatus and distribution method
JP3906926B2 (en) Optical control type optical path switching type optical signal transmission apparatus and optical signal optical path switching method
TWI226456B (en) Optical path switching device and method
US8208770B2 (en) Optical deflection method and optical deflection apparatus
WO2024001455A1 (en) Reconfigurable photonic integrated chip based on phase-change material thin film, and processing method therefor
JP4822113B2 (en) Optical deflection method and optical deflection apparatus
JP4822115B2 (en) Optical path switching method and optical path switching apparatus
JP4822114B2 (en) Deflection type optical path switching method and optical path switching apparatus
JP4872065B2 (en) Automatic loop collection type data collection system
JP4883306B2 (en) Wavelength conversion device and wavelength conversion method
US6583916B2 (en) Optical shutter assembly
JP4674336B2 (en) Vector-controlled optical path switching method and optical path switching apparatus
JP4883305B2 (en) Optical flip-flop circuit
JP5051576B2 (en) Optical buffer memory device and optical signal recording method
JP4730257B2 (en) Thermal lens reciprocating optical path switching device and optical path switching method
JP4982652B2 (en) Optical logic circuit
JP4900706B2 (en) Data distribution system and data distribution method
US6870983B2 (en) Optical switch, element therefor, and optical switching method
TWI364889B (en) Laser device and laser system using the same
JP4724817B2 (en) Chromatic aberration correction method and optical apparatus capable of correcting chromatic aberration
JP4635148B2 (en) Wavelength conversion device and wavelength conversion method
Yang Thirteenth International Conference on Information Optics and Photonics (CIOP 2022)
Wu et al. Multi-Fiber-Channel, Ultrafast, All-Optical Switch Utilizing a 2D Fresnel Lens Array
WO2013071481A1 (en) System and method for writing waveguide polarizer into quartz or optical fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees