JP4724817B2 - Chromatic aberration correction method and optical apparatus capable of correcting chromatic aberration - Google Patents

Chromatic aberration correction method and optical apparatus capable of correcting chromatic aberration Download PDF

Info

Publication number
JP4724817B2
JP4724817B2 JP2006259704A JP2006259704A JP4724817B2 JP 4724817 B2 JP4724817 B2 JP 4724817B2 JP 2006259704 A JP2006259704 A JP 2006259704A JP 2006259704 A JP2006259704 A JP 2006259704A JP 4724817 B2 JP4724817 B2 JP 4724817B2
Authority
JP
Japan
Prior art keywords
light
signal light
optical
control
control light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006259704A
Other languages
Japanese (ja)
Other versions
JP2008083094A (en
Inventor
一郎 上野
宣孝 谷垣
典孝 山本
登志子 溝黒
隆 平賀
教雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2006259704A priority Critical patent/JP4724817B2/en
Publication of JP2008083094A publication Critical patent/JP2008083094A/en
Application granted granted Critical
Publication of JP4724817B2 publication Critical patent/JP4724817B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、光通信、光情報処理などの光エレクトロニクスおよびフォトニクスの分野において有用な、色収差補正方法および色収差が補正された光学装置に関するものである。特に、熱レンズ効果による屈折率の変化に基づいて光の偏向を行う熱レンズ方式の光路偏向方法および装置に係る色収差補正方法および色収差補正可能な光学装置に関する。   The present invention relates to a chromatic aberration correction method and an optical apparatus with corrected chromatic aberration, which are useful in the fields of optical electronics and photonics such as optical communication and optical information processing. More particularly, the present invention relates to a thermal lens type optical path deflection method and apparatus for deflecting light based on a change in refractive index due to a thermal lens effect, and an optical apparatus capable of correcting chromatic aberration.

熱レンズ形成光素子に光を照射することで引き起こされる透過率変化や屈折率変化を利用し、直接、光で光の強度や周波数を変調する、全光型熱レンズ形成光素子や光制御方式の研究が盛んに行われている。本発明者らは、全光型光素子等による新たな情報処理技術の開発を目指して、有機色素凝集体をポリマーマトリックスに分散した有機ナノパーティクル光熱レンズ形成素子(非特許文献1参照)を用いて、光制御方式の研究を行って来た。現在、制御光(660nmおよび980nm)により信号光(780nmおよび1550nm)の変調を行う方式で、制御光と信号光を同軸・同焦点入射させることを特徴とし、制御光の吸収により過渡的に形成される熱レンズにより信号光が屈折されるという動作原理の素子を開発しており、約20ナノ秒の高速応答が達成されている。光応答性組成物からなる熱レンズ形成光素子に制御光を照射し、制御光とは異なる波長帯域にある信号光の透過率および/または屈折率を可逆的に変化させることにより前記熱レンズ形成光素子を透過する前記信号光の強度変調および/または光束密度変調を行う光制御方法であって、前記制御光および前記信号光を各々収束させて前記熱レンズ形成光素子へ照射し、かつ、前記制御光および前記信号光のそれぞれの焦点の近傍(ビームウエスト)の光子密度が最も高い領域が前記熱レンズ形成光素子中において互いに重なり合うように前記制御光および前記信号光の光路を調整することを特徴とする光制御方法が開示されている(特許文献1から特許文献7参照)。光応答性組成物からなる熱レンズ形成光素子に、互いに波長の異なる制御光および信号光を照射し、前記制御光の波長は前記光応答性組成物が吸収する波長帯域から選ばれるものとし、前記光応答性組成物が前記制御光を吸収した領域およびその周辺領域に発生する温度上昇に起因する密度変化の分布に基づいた熱レンズを可逆的に形成させ、前記熱レンズを透過する信号光の強度変調および/または光束密度変調を行う光制御方法が開示されている(特許文献8参照)。そして、上記熱レンズ形成光素子として例えば色素/樹脂膜や色素溶液膜が用いられ、制御光のパワー2ないし25mWにおける制御光照射に対する信号光の応答時間は、2マイクロ秒未満と記載されている(特許文献8参照)。これらの方法は光で光を制御する点で優れ、かつ高速応答も可能であるが、制御光照射時に形成され光束形状がドーナツ型になり、そのために光ファイバーへの結合効率が小さいという問題がある。   All-optical thermal lens forming optical element and light control method that directly modulates the intensity and frequency of light with light using the change in transmittance and refractive index caused by irradiating light to the thermal lens forming optical element There has been a great deal of research. The present inventors have used an organic nanoparticle photothermal lens forming element (see Non-Patent Document 1) in which an organic dye aggregate is dispersed in a polymer matrix with the aim of developing a new information processing technique using an all-optical type optical element. I have studied light control systems. Currently, the control light (660 nm and 980 nm) is used to modulate the signal light (780 nm and 1550 nm). The control light and the signal light are coaxially and confocally incident and formed transiently by absorption of the control light. An element with the principle of operation that signal light is refracted by a thermal lens is developed, and a high-speed response of about 20 nanoseconds is achieved. Forming the thermal lens by irradiating control light to a thermal lens forming optical element made of a photoresponsive composition and reversibly changing the transmittance and / or refractive index of signal light in a wavelength band different from the control light An optical control method for performing intensity modulation and / or light flux density modulation of the signal light transmitted through an optical element, wherein the control light and the signal light are converged and irradiated to the thermal lens forming optical element, and Adjusting the optical paths of the control light and the signal light so that regions having the highest photon density in the vicinity (beam waist) of the respective focal points of the control light and the signal light overlap each other in the thermal lens forming optical element. A light control method is disclosed (see Patent Document 1 to Patent Document 7). The thermal lens forming optical element made of a photoresponsive composition is irradiated with control light and signal light having different wavelengths, and the wavelength of the control light is selected from a wavelength band absorbed by the photoresponsive composition, A signal light that reversibly forms a thermal lens based on a density change distribution caused by a temperature rise generated in a region where the photoresponsive composition absorbs the control light and a peripheral region thereof, and transmits the thermal lens. A light control method for performing intensity modulation and / or light beam density modulation is disclosed (see Patent Document 8). For example, a dye / resin film or a dye solution film is used as the thermal lens forming optical element, and the response time of the signal light with respect to the control light irradiation at the control light power of 2 to 25 mW is described as less than 2 microseconds. (See Patent Document 8). These methods are excellent in controlling light with light and can respond at high speed. However, there is a problem in that the shape of the light beam formed at the time of control light irradiation becomes a donut shape, so that the coupling efficiency to the optical fiber is small. .

上記問題を解決する方法として、本発明者等は、光吸収層を含む熱レンズ形成光素子中の光吸収層に、制御光と信号光とを前記光吸収層にて収束するように照射し、かつ前記制御光および前記信号光の各々の収束点の位置が光軸に対して垂直方向で相異なるように照射され、前記制御光と前記信号光は、光の進行方向で前記光吸収層の入射面またはその内部において収束したのち拡散することによって、前記光吸収層内における前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因し可逆的に形成される熱レンズにより、屈折率が変化して、前記信号光の進行方向を変える(偏向させる)方法(特願2006−46027号)、前記制御光が照射されず進行方向が変わらなかった信号光と、前記制御光が照射され進行方向が変えられた(偏向した)信号光とを、分離して検出することを特徴とする光路切替方法(特願2006−46028号および特願2006−46029号)を出願している。この方法では、進行方向が変えられた(偏向した)信号光の光束形状がドーナツ型にならず、元の光束形状に近いので光ファイバーへの結合効率が小さいという課題は解消される。特願2006−46027号、特願2006−46028号、および、特願2006−46029号では、信号光および制御光の入射方法として、1つのフェルールに複数の光ファイバーを近接して並べる方法を開示している。しかし、用いるレンズが色収差補正をしてない場合は、信号光の波長(例えば1550nm)と制御光の波長(例えば980nm)が異なるため、熱レンズ形成光素子中の光吸収層に集光した集光点が異なり、信号光の偏向量を大きくできない、偏向した信号光形状がコマ収差を起こしたような形状になり、検出に用いた光ファイバーへの結合効率が悪くなるという課題が生じた。   As a method for solving the above problem, the present inventors irradiate the light absorbing layer in the thermal lens forming optical element including the light absorbing layer with the control light and the signal light so as to converge on the light absorbing layer. And the control light and the signal light are irradiated such that the positions of the convergence points of the control light and the signal light are different from each other in the direction perpendicular to the optical axis. Refracted by a thermal lens that is reversibly formed by converging and then diffusing on the light incident surface or inside thereof, due to the temperature rise occurring in the region where the control light is absorbed in the light absorption layer and its peripheral region. A method of changing (deflecting) the traveling direction of the signal light by changing the rate (Japanese Patent Application No. 2006-46027), the signal light that is not irradiated with the control light and the traveling direction is not changed, and the control light is irradiated The direction of travel is And the obtained (deflected) signal light, and filed an optical path switching method characterized by separately detected (Japanese Patent Application No. 2006-46028 and Japanese Patent Application No. 2006-46029). This method eliminates the problem that the light beam shape of the signal light whose direction of travel has been changed (deflected) is not a donut shape and is close to the original light beam shape, so that the coupling efficiency to the optical fiber is small. Japanese Patent Application Nos. 2006-46027, 2006-46028, and 2006-46029 disclose a method of arranging a plurality of optical fibers close to one ferrule as an incident method of signal light and control light. ing. However, when the lens to be used is not corrected for chromatic aberration, the wavelength of the signal light (for example, 1550 nm) and the wavelength of the control light (for example, 980 nm) are different, and thus the light collected on the light absorption layer in the thermal lens forming optical element is collected. There is a problem in that the light spot is different, the amount of deflection of the signal light cannot be increased, the shape of the deflected signal light becomes a shape causing coma aberration, and the coupling efficiency to the optical fiber used for detection deteriorates.

ここで熱レンズ効果とは、光吸収の中心部分において光を吸収した分子などが光を熱に変換し、この熱が周囲に伝搬されることにより温度分布が生じ、その結果、光透過媒体の屈折率が光吸収中心から外部へ向けて球状に変化して光吸収中心の屈折率が低く外部へ向けて屈折率が高くなる分布を生じ、これが凹レンズのように機能するような光の屈折効果を示す。熱レンズ効果は分光分析の分野で古くから利用されており、現在では分子1個による光吸収をも検出するような超高感度分光分析も可能になっている(非特許文献2および非特許文献3参照)。   Here, the thermal lens effect means that molecules that absorb light in the central part of light absorption convert light into heat, and this heat is propagated to the surroundings, resulting in a temperature distribution. The refractive index of the light changes such that the refractive index changes spherically from the light absorption center to the outside, resulting in a distribution in which the refractive index at the light absorption center is low and the refractive index increases toward the outside, which functions like a concave lens. Indicates. The thermal lens effect has been used for a long time in the field of spectroscopic analysis, and now it is possible to perform ultrasensitive spectroscopic analysis that detects light absorption by a single molecule (Non-Patent Document 2 and Non-Patent Document). 3).

平賀隆、田中教雄、早水紀久子、守谷哲郎著、色素会合体・凝集体の作成・構造評価・光物性、「電子技術総合研究所彙報」、通商産業省工業技術院電子技術総合研究所発行、第59巻、第2号、29−49頁(1994年)Takashi Hiraga, Norio Tanaka, Kikuko Hayami, Tetsuro Moriya, Creation of dye aggregates / aggregates, structural evaluation, photophysical properties, "Electronics Research Institute Vocabulary", Ministry of International Trade and Industry 59, No. 2, pp. 29-49 (1994) 藤原祺多夫、不破敬一郎、小林孝嘉著、レーザ誘起熱レンズ効果とその比色法への応用、「化学」、化学同人発行、第36巻、第6号、432−438頁(1981年)Takao Fujiwara, Keiichiro Fuwa, Takayoshi Kobayashi, Laser-induced thermal lens effect and its application to colorimetric method, "Chemical", Kagaku Dojin, Vol. 36, No. 6, pp. 432-438 (1981) 北森武彦、澤田嗣郎著、光熱変換分光分析法、「ぶんせき」、日本分析化学会発行、1994年3月号、178−187頁Takehiko Kitamori, Goro Sawada, Photothermal Conversion Spectroscopy, “Bunseki”, published by the Japan Society for Analytical Chemistry, March 1994, pp. 178-187 特開平8−286220号公報JP-A-8-286220 特開平8−320535号公報JP-A-8-320535 特開平8−320536号公報JP-A-8-320536 特開平9−329816号公報Japanese Patent Laid-Open No. 9-329816 特開平10−90733号公報Japanese Patent Laid-Open No. 10-90733 特開平10−90734号公報JP-A-10-90734 特開平10−148852号公報Japanese Patent Laid-Open No. 10-148852 特開平10−148853号公報Japanese Patent Laid-Open No. 10-148853

本発明は、少なくとも1つの波長が異なる2つ以上の光を、同一面上に配置された各々の出射領域からそれぞれ出射させ、非球面単レンズを用いて収束させるとき、前記非球面単レンズが色収差補正をしていなくとも、前記少なくとも1つの波長が異なる2つ以上の光を同一平面上に結像させることを目的とする。   In the present invention, when two or more lights having different wavelengths are emitted from the respective emission regions arranged on the same surface and converged using the aspheric single lens, the aspheric single lens is An object of the present invention is to form two or more lights having different wavelengths on the same plane without correcting chromatic aberration.

本発明は、また、近接して出射する波長の異なる複数の光を、同一の色収差補正が十分でない安価な光学系を用いて熱レンズ形成素子に集光する場合に、色収差により生じる熱レンズ素子での集光点の違いを補正し、制御光による信号光の偏向角度を大きくし、かつ偏向した信号光のビーム形状を悪くせず、ビーム断面におけるエネルギー分布をガウス分布状態に保つことを目的とする。これにより、小型で安価な光学系で、複雑で高価な電気回路や機械的可動部品を用いずに光偏向を可能とすることができるとともに、故障が極めて少なく、耐久性の高い、偏波依存性の極めて少ない、信号光の光強度減衰が少なく、小さい制御光パワーにより偏向角度を大きく調整することができ、調整が容易で動作の安定した、光偏向方法および光偏向装置および消光比の高い1入力複数出力が可能な小型な光路切替装置および光路切替方法を提供することも可能となる。   The present invention also provides a thermal lens element caused by chromatic aberration when a plurality of light beams having different wavelengths emitted in the vicinity are condensed on the thermal lens forming element by using an inexpensive optical system in which the same chromatic aberration correction is not sufficient. The purpose of this is to correct the difference in the light condensing point, increase the deflection angle of the signal light by the control light, and maintain the energy distribution in the beam section in a Gaussian distribution state without deteriorating the beam shape of the deflected signal light And This makes it possible to deflect light without using complicated and expensive electric circuits and mechanically moving parts with a small and inexpensive optical system, and has extremely few failures and high durability, and polarization dependence. Optical deflection method, optical deflection apparatus, and extinction ratio are extremely low, the light intensity attenuation of signal light is small, the deflection angle can be adjusted greatly with a small control light power, the adjustment is easy and the operation is stable It is also possible to provide a compact optical path switching device and an optical path switching method capable of one input and multiple outputs.

本発明は、以下の特徴を有する。   The present invention has the following features.

(1)少なくとも光吸収層を含む熱レンズ形成光素子中の光吸収層に、制御光と信号光とを入射させ、前記制御光および前記信号光は、前記光吸収層またはその近辺にて収束するように照射されかつ前記制御光および前記信号光の各々の収束点の位置が相異なるように照射され、前記制御光の波長と前記信号光の波長を異ならせ、前記制御光の波長は前記光吸収層が吸収する波長帯域から選ばれ、前記信号光の波長は前記光吸収層が吸収しない波長帯域から選ばれ、前記制御光と前記信号光は、前記光吸収層内における前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因し可逆的に形成される熱レンズにより、屈折率が変化して、前記信号光の進行方向を変えることを特徴とする光偏向方法において、さらに、前記制御光および前記信号光を、同一面上に配置された各々の出射領域からそれぞれ出射させ、前記制御光および前記信号光の少なくとも1つは前記制御光および前記信号光の光の波長毎に厚みtの定まった光学平板を通過させて実質的光路長を補正し、前記制御光および前記信号光に共通の、結像のための光学手段を通過させて前記制御光および前記信号光を同一面上に結像させる色収差補正方法である。 (1) Control light and signal light are incident on a light absorption layer in a thermal lens forming optical element including at least a light absorption layer, and the control light and the signal light converge at or near the light absorption layer. And the control light and the signal light are irradiated such that the positions of the convergence points of the control light and the signal light are different from each other, and the wavelength of the control light and the wavelength of the signal light are different from each other. The wavelength band of the signal light is selected from a wavelength band that is absorbed by the light absorption layer, the wavelength of the signal light is selected from a wavelength band that is not absorbed by the light absorption layer, and the control light and the signal light are the control light in the light absorption layer. In the light deflection method, wherein the refractive index is changed by the thermal lens formed reversibly due to the temperature rise occurring in the absorbed region and the surrounding region, and the traveling direction of the signal light is changed. The control light Preliminary the signal light, respectively is emitted from the emission region of each, which are arranged on the same plane, at least one of the control light and the signal light of the thickness t for each wavelength of light of the control light and the signal light passed through a stated optical plate corrected substantial optical path length, common to the control light and the signal light, the control light and the signal light is passed through an optical means for imaging on the same surface This is a chromatic aberration correction method for forming an image.

(2)信号光を出射する領域と、前記信号光の出射領域と同一平面に設けられた、前記信号光とは異なる波長の1種類以上の制御光を出射する領域と、前記制御光を出射する領域と信号光を出射する領域とのそれぞれに隣接ないし接して設けられ、さらに前記信号光のみを通過させる位置に設けられ前記信号光の開口角に応じて入射側から出射側に向かって開口が増大するテーパー状の穴を有し、前記穴を通過して拡がりながら出射する前記信号光と前記制御光とが干渉しないように厚みtを有する光学平板と、前記信号光は透過し、前記制御光を選択的に吸収する光吸収層を含む熱レンズ形成光素子と、前記熱レンズ形成素子の前記光吸収層またはその近辺に、前記光学平板から出射し前記光吸収層が吸収する波長帯域から選ばれた前記制御光と、前記光学平板から出射し前記光吸収層が吸収しない波長帯域から選ばれた前記信号光とを、を各々収束点が異なるように集光させる集光手段と、を有し、前記熱レンズ形成光素子は、前記制御光と前記信号光が、前記光吸収層内における前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因し可逆的に形成される熱レンズにより、屈折率が変化して、前記信号光の進行方向を変え、さらに、前記光学平板と集光手段は、前記信号光および少なくとも1つ以上の前記制御光を、前記熱レンズ形成光素子の同一平面上に結像させる色収差補正可能な光学装置である。
(2) A region that emits signal light, a region that is provided in the same plane as the signal light emission region, emits one or more types of control light having a wavelength different from that of the signal light, and emits the control light Provided adjacent to or in contact with each of the signal light output region and the signal light output region, and further provided at a position through which only the signal light passes, and opening from the incident side toward the output side according to the opening angle of the signal light. An optical flat plate having a thickness t so that the control light does not interfere with the signal light emitted while expanding through the hole, and the signal light is transmitted, A thermal lens forming optical element including a light absorbing layer that selectively absorbs control light; and a wavelength band that is emitted from the optical flat plate and absorbed by the light absorbing layer at or near the light absorbing layer of the thermal lens forming element. The system selected from Condensing means for condensing light and the signal light selected from the wavelength band that is emitted from the optical flat plate and is not absorbed by the light absorption layer so that the convergence points thereof are different from each other, and the heat The lens-forming optical element is refracted by a thermal lens that is reversibly formed due to a temperature rise in the area where the control light and the signal light have absorbed the control light in the light absorption layer and its peripheral area. And the optical flat plate and the condensing means transmit the signal light and at least one control light on the same plane of the thermal lens forming optical element. a color aberration correcting optics apparatus which Ru is imaged.

(3)前記(1)の色収差補正方法であって、さらに、前記光学平板の厚さtが、以下の式〔1〕で表される。   (3) In the chromatic aberration correction method of (1), the thickness t of the optical flat plate is expressed by the following formula [1].

t≦(d−c)/2N …〔1〕
(ここで、cは前記出射領域を円形に近似したときの平均直径、dは円形に近似した前記出射領域間の平均距離、Nは前記出射領域から出射する光の開口数である。)
t ≦ (dc) / 2N (1)
(Here, c is an average diameter when the emission area is approximated to a circle, d is an average distance between the emission areas approximating a circle, and N is a numerical aperture of light emitted from the emission area.)

(4)前記(2)の色収差が補正された光学装置であって、さらに、前記光学平板の厚さtが、以下の式〔1〕で表される。   (4) In the optical device in which the chromatic aberration of (2) is corrected, the thickness t of the optical flat plate is expressed by the following formula [1].

t≦(d−c)/2N …〔1〕
(ここで、cは前記出射領域を円形に近似したときの平均直径、dは円形に近似した前記出射領域間の平均距離、Nは前記出射領域から出射する光の開口数である。)
t ≦ (dc) / 2N (1)
(Here, c is an average diameter when the emission area is approximated to a circle, d is an average distance between the emission areas approximating a circle, and N is a numerical aperture of light emitted from the emission area.)

(5)前記(1)または(3)に記載の色収差補正方法であって、信号光と信号光と波長が異なる少なくとも1つ以上の制御光とを各々出射させる、同一面上に配置された出射領域が、各々の端面が同一面上に配置されて束ねられたコア・クラッド構造の複数の光ファイバーのコアである。 (5) The chromatic aberration correction method according to (1) or (3), wherein the signal light, the signal light, and at least one control light having different wavelengths are respectively emitted on the same plane. The emission region is a core of a plurality of optical fibers having a core / cladding structure in which end faces are arranged on the same surface and bundled.

(6)前記(2)または(4)に記載の色収差補正可能な光学装置であって、信号光と信号光と波長が異なる少なくとも1つ以上の制御光とを各々出射させる、同一面上に配置された出射領域が、各々の端面が同一面上に配置されて束ねられたコア・クラッド構造の複数の光ファイバーのコアである。 (6) The optical device capable of correcting chromatic aberration according to (2) or (4), wherein signal light and at least one control light having different wavelengths are emitted on the same plane. The arranged emission regions are cores of a plurality of optical fibers having a core / cladding structure in which each end face is arranged on the same surface and bundled.

本発明によれば、少なくとも1つの波長が異なる2つ以上の光を、同一平面上に配置された各々の出射領域からそれぞれ出射させ、非球面単レンズを用いて収束させるとき、前記非球面単レンズが色収差補正をしていなくとも、前記少なくとも1つの波長が異なる2つ以上の光を同一平面上に結像させることができる。   According to the present invention, when two or more lights having different wavelengths are emitted from the respective emission regions arranged on the same plane and converged using the aspheric single lens, the aspheric single unit is used. Even if the lens does not correct chromatic aberration, it is possible to form an image of two or more lights having different at least one wavelength on the same plane.

本発明によれば、また、波長の異なる複数の信号光と制御光を、同一平面上に配置された各々の出射領域からそれぞれ出射させ、非球面単レンズを用いて収束させるとき、前記非球面単レンズが色収差補正をしていなくとも、同一平面に集光して照射することが可能となり、制御光の照射により生じた屈折率の変化を効率良く信号光に及ぼすことができ、また、偏向した信号光の形状を悪化させずに低パワーで偏向が可能となる。また、信号光の偏向を利用した光路切替が可能となる。さらに、偏向された信号光は、集光前のビーム断面と同じ形状で熱レンズ形成光素子より出力され、細密状に並べた光ファイバーに入射して取り出すことができるので、小型で複数の方向に光路を切り替える光スイッチが可能となる。また、低パワーの半導体レーザを用いることができるので、小型で安価な装置を提供できる。   According to the present invention, when a plurality of signal light and control light having different wavelengths are emitted from the respective emission regions arranged on the same plane and converged using an aspherical single lens, the aspherical surface Even if a single lens is not corrected for chromatic aberration, it can be focused and irradiated on the same plane, and the change in refractive index caused by control light irradiation can be efficiently applied to the signal light. It is possible to deflect with low power without deteriorating the shape of the signal light. Further, the optical path can be switched using the deflection of the signal light. Furthermore, the deflected signal light is output from the thermal lens forming optical element in the same shape as the beam cross-section before condensing, and can be taken out by entering the optical fiber arranged in a minute form, so it is compact and can be used in multiple directions. An optical switch that switches the optical path is possible. In addition, since a low-power semiconductor laser can be used, a small and inexpensive device can be provided.

以下、図面を参照して本発明の実施の形態を説明する。なお、本実施の形態では、「色収差」は、特に1つの色から他の色への光軸上での像点位置の差、軸上色収差をいう。   Embodiments of the present invention will be described below with reference to the drawings. In the present embodiment, “chromatic aberration” refers to a difference in image point position on the optical axis from one color to another, and axial chromatic aberration.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る色収差補正可能な光偏向型光路切替装置の概略構成図である。ここで、光は、光の進行方向1001に沿って進行する。
(First embodiment)
FIG. 1 is a schematic configuration diagram of an optical deflection type optical path switching device capable of correcting chromatic aberration according to a first embodiment of the present invention. Here, the light travels along the light traveling direction 1001.

また、図3aに、7芯光ファイバー120の7芯光ファイバー120の出射側端面を模式的に示す。   FIG. 3 a schematically shows an emission side end face of the seven-core optical fiber 120 of the seven-core optical fiber 120.

さらに、図5に、7芯光ファイバー120の光出射側端面から出射する信号光1および制御光21の拡がりを模式的に示す。   Further, FIG. 5 schematically shows the spread of the signal light 1 and the control light 21 emitted from the light emission side end face of the seven-core optical fiber 120.

図1,図3aおよび図5において、少なくとも1つの波長が異なる2つ以上の光を、同一面上に配置された各々の出射領域からそれぞれ出射させる光源として、2本以上のシングルモード光ファイバーを束ね、各光ファイバーの光出射端面を同一平面になるよう研磨した、7芯光ファイバー120を用い、各光ファイバーのコアを前記の出射領域とし、7芯光ファイバー120の中心の光ファイバーのコア100の出射端面101から信号光1を出射させ、7芯光ファイバー120の周辺の光ファイバーのコア201出射端面から制御光21を出射させ、信号光1と制御光21は異なる波長とし、信号光1は、信号光と制御光の波長の違いによる集光点のずれ、すなわち色収差を補正するための光学平板4に設けられた穴3を通過するようにし、制御光21は7芯光ファイバー120の出射端面に接触させて配置された光学平板4を、穴3を避けて透過するようにし、信号光1と制御光21は共通の、結像のための光学手段としての集光レンズ5および6を通過し、熱レンズ形成素子7の光吸収層71またはその近辺の同一平面上に結像される。熱レンズ形成素子7の光吸収層71は信号光1の波長を吸収せず、制御光21の波長は吸収するような光吸収スペクトル特性を有するものを用いるものとする。制御光21が照射されない場合、信号光1は熱レンズ形成素子7を直進し、制御光21が照射される場合、熱レンズ形成素子7の光吸収層71が制御光21を吸収した領域およびその周辺領域に起こる温度上昇にともなう屈折率変化、すなわち、温度が高い領域ほど屈折率が小さくなる屈折率分布(これを熱レンズ効果という)によって、信号光1は光路が偏向され、光路偏向された信号光2として出射する。   In FIGS. 1, 3a, and 5, two or more single mode optical fibers are bundled as light sources that emit two or more lights having different wavelengths from the respective emission regions arranged on the same plane. Using the 7-core optical fiber 120 in which the light exit end face of each optical fiber is polished to be in the same plane, the core of each optical fiber is the exit area, and the exit end face 101 of the core 100 of the optical fiber at the center of the 7-core optical fiber 120 is used. The signal light 1 is emitted, the control light 21 is emitted from the exit end face of the optical fiber core 201 around the seven-core optical fiber 120, the signal light 1 and the control light 21 have different wavelengths, and the signal light 1 is the signal light and the control light. So as to pass through the hole 3 provided in the optical flat plate 4 for correcting the shift of the condensing point, that is, the chromatic aberration due to the difference in wavelength of The control light 21 is transmitted through the optical flat plate 4 arranged in contact with the emission end face of the seven-core optical fiber 120 so as to avoid the hole 3, and the signal light 1 and the control light 21 are common for image formation. The light passes through the condenser lenses 5 and 6 as optical means and forms an image on the light absorbing layer 71 of the thermal lens forming element 7 or on the same plane in the vicinity thereof. The light absorption layer 71 of the thermal lens forming element 7 does not absorb the wavelength of the signal light 1 and has a light absorption spectrum characteristic that absorbs the wavelength of the control light 21. When the control light 21 is not irradiated, the signal light 1 travels straight through the thermal lens forming element 7. When the control light 21 is irradiated, the light absorbing layer 71 of the thermal lens forming element 7 absorbs the control light 21 and its region. The optical path of the signal light 1 is deflected by the refractive index change accompanying the temperature rise that occurs in the peripheral area, that is, the refractive index distribution in which the refractive index decreases as the temperature increases (this is called the thermal lens effect). The signal light 2 is emitted.

7芯光ファイバー120としては、屈折率の異なる2種類の石英ガラスからなるコアおよびクラッドで構成されるシングルモード光ファイバー7本の一端を束ね、フェルール121の穴に挿入し、接着剤122で固定し、光ファイバー7本の出射端面を揃えて同一平面になるよう研磨したものであって、例えば、中心コア100および周辺コア201,202,203,204,205および206の直径はすべて9.5μm、中心クラッド110および周辺クラッド211,212,213,214,215および216の直径はすべて39.0μmのものを用いた。この場合、中心コア100と、周辺コア201,202,203,204,205または206のコア中心間距離は39.0μmであり、また、隣接する周辺コアの中心間距離も39.0μmである。   As the seven-core optical fiber 120, one end of seven single-mode optical fibers composed of a core and a clad made of two types of quartz glass having different refractive indexes are bundled, inserted into the hole of the ferrule 121, and fixed with an adhesive 122, For example, the central core 100 and the peripheral cores 201, 202, 203, 204, 205, and 206 have a diameter of 9.5 μm and a central cladding. 110 and peripheral claddings 211, 212, 213, 214, 215, and 216 all had a diameter of 39.0 μm. In this case, the center-center distance between the central core 100 and the peripheral cores 201, 202, 203, 204, 205, or 206 is 39.0 μm, and the center-to-center distance between adjacent peripheral cores is also 39.0 μm.

7芯光ファイバー120を構成する7本のシングルモード光ファイバーはコア直径9.5μmのシングルモード石英光ファイバーのクラッド層をフッ酸で所望の太さにエッチングして用いた。エッチングする部分は、光ファイバーの先端数mmとした。エッチングした後の光ファイバーの太さは、光吸収層71に収束(集光)した信号光と制御光の収束(集光)点の光軸に直角方向の所望の距離から算出した。本実施の形態では、エッチングした後の光ファイバーの直径を39.0μmとした。   The seven single-mode optical fibers constituting the seven-core optical fiber 120 were used by etching a clad layer of a single-mode quartz optical fiber having a core diameter of 9.5 μm to a desired thickness with hydrofluoric acid. The portion to be etched was a few mm of the tip of the optical fiber. The thickness of the optical fiber after etching was calculated from a desired distance perpendicular to the optical axis of the convergence (condensation) point of the signal light and control light converged (condensed) on the light absorption layer 71. In the present embodiment, the diameter of the optical fiber after etching is 39.0 μm.

7芯光ファイバー120の束ねられていない片方の末端(図示せず)は、7本とも独立しており、クラッドの直径はいずれも125μmであり、中心の光ファイバーは信号光1の光源1基(図示せず)へ、周辺の光ファイバー6本は、各々、制御光21〜26の光源6基(図示せず)に接続される。   One end (not shown) of the seven-core optical fiber 120 that is not bundled is independent of all seven, the clad diameter is 125 μm, and the central optical fiber is one light source of signal light 1 (see FIG. The six peripheral optical fibers are connected to six light sources (not shown) of the control lights 21 to 26, respectively.

信号光1の光源としては、例えば、発振波長1550nm、出力1ないし20mWの半導体レーザを1つ用いた。   As the light source of the signal light 1, for example, one semiconductor laser having an oscillation wavelength of 1550 nm and an output of 1 to 20 mW was used.

制御光21〜26の光源としては、例えば、発振波長980nm、出力10ないし20mWの半導体レーザを最大6基用いた。制御光の光源の数は用途に応じて、1ないし6の範囲で任意に選択される。   As the light source of the control lights 21 to 26, for example, a maximum of six semiconductor lasers having an oscillation wavelength of 980 nm and an output of 10 to 20 mW were used. The number of light sources for the control light is arbitrarily selected in the range of 1 to 6 depending on the application.

なお、信号光および制御光の波長および出力には、特に制限はなく、用途に応じて入手可能なものを任意に選択して使用することができる。   There are no particular restrictions on the wavelengths and outputs of the signal light and control light, and any of those available according to the application can be selected and used.

熱レンズ形成素子7としては、直径10mm厚さ1mmの石英ガラスの丸板に直径10mm内径8mmのリング状石英ガラスを溶融・接着したものを精密研磨して、厚さ500μmの液膜を保持できるように加工したものへ、後述の色素溶液を入れ、もう1枚の直径10mm厚さ1mmの石英ガラスを紫外線硬化樹脂で接着したものを用いた。   The thermal lens forming element 7 can hold a liquid film having a thickness of 500 μm by precisely polishing a fused quartz glass having a diameter of 10 mm and an inner diameter of 8 mm on a quartz glass round plate having a diameter of 10 mm and a thickness of 1 mm. The dye solution described later was put into the product processed as described above, and another quartz glass having a diameter of 10 mm and a thickness of 1 mm was bonded with an ultraviolet curable resin.

熱レンズ形成素子7の光吸収層71としては、例えば、赤外線吸収シアニン色素の8-[2-Chloro-3-(2,4-diphenyl-6,7-dihydro-5H-chromone-8-ylmethylene)-cyclohex-1-enylmethylene]-2,4-diphenyl-5,6,7,8-tetorahydro-chromenylium perchlorateを1,2-ジクロロベンゼンに0.2重量%で溶解させたものを、セルギャップ500μmの前記石英セルに充填して用いた。   As the light absorption layer 71 of the thermal lens forming element 7, for example, infrared absorption cyanine dye 8- [2-Chloro-3- (2,4-diphenyl-6,7-dihydro-5H-chromone-8-ylmethylene) -cyclohex-1-enylmethylene] -2,4-diphenyl-5,6,7,8-tetorahydro-chromenylium perchlorate dissolved in 1,2-dichlorobenzene at 0.2% by weight with a cell gap of 500 μm The quartz cell was used by filling.

熱レンズ形成光素子7の光吸収層で制御光が吸収されると、光吸収層の温度が上昇し、屈折率が変わる。温度が上昇するので、一般に屈折率は下がる方向に変化する。通常のレーザ光源から出射するレーザ光、および、通常のレーザ光源から出射し光ファイバーを透過してきたレーザ光の強度分布はガウス分布である。また、前記レーザ光をレンズ等で集光した光もガウス分布をしている。よって、制御光が照射された光吸収層での屈折率分布は、制御光の光軸で屈折率が一番低下し、制御光の周辺では屈折率の低下が少なくなる。また、熱伝導があるので、光の照射されていない部分でも屈折率が変化する。さらに、集光して入射させているので、集光点の近辺での屈折率の変化が大きい。信号光は制御光に近接して入射するので、信号光は制御光による屈折率の変化の影響で偏向する(進行方向が曲がる)。偏向角は、制御光の強さにほぼ比例して変化する。   When the control light is absorbed by the light absorption layer of the thermal lens forming optical element 7, the temperature of the light absorption layer rises and the refractive index changes. As the temperature increases, the refractive index generally changes in a decreasing direction. The intensity distribution of laser light emitted from a normal laser light source and laser light emitted from a normal laser light source and transmitted through an optical fiber is a Gaussian distribution. Further, the light obtained by condensing the laser light with a lens or the like has a Gaussian distribution. Therefore, in the refractive index distribution in the light absorption layer irradiated with the control light, the refractive index is the lowest on the optical axis of the control light, and the refractive index is less reduced around the control light. Further, since there is heat conduction, the refractive index changes even in a portion where light is not irradiated. Further, since the light is condensed and incident, the change in the refractive index in the vicinity of the condensing point is large. Since the signal light is incident close to the control light, the signal light is deflected due to the change in the refractive index caused by the control light (the traveling direction is bent). The deflection angle changes almost in proportion to the intensity of the control light.

集光レンズ5および6としては、ともに、焦点距離2mmの非球面レンズを用いた。本実施の形態では、集光(結像)倍率は、1とした。集光レンズ5および6の代わりに1つの単レンズを用いても良い。いずれにしても、屈折率の異なる凸レンズと凹レンズを複数枚数組み合わせた大がかりな、色収差補正レンズを用いない限り、レンズ構成材料の屈折率波長分散により、波長が短い光ほど焦光点は近く、波長が長い光ほど焦光点は遠くなる、という色収差が発生することを避けることはできない。本実施の形態でも、焦点距離2mmの第1のレンズ5と焦点距離2mmの第2のレンズ6で、同一面から出射する波長1550nmの信号光と波長980nmの制御光を熱レンズ形成光学素子7の光吸収層71またはその近辺に集光しているが、信号光と制御光の集光点は光の進行方向で約50μmずれてしまう。もし、焦点距離2mmの1枚のレンズで集光したとすると、ずれ量はこの約2倍になってしまう。信号光と制御光とで、このような集光点位置ずれが生じると、制御光の集光点の近辺では信号光は未だ集光しきれず拡がっており、信号光に対する屈折率の影響が光軸に垂直な断面位置により異なり、信号光分布がガウス分布から大きくはずれてしまう。その結果、全体として偏向効率が悪くなってしまう。   As the condenser lenses 5 and 6, both aspherical lenses having a focal length of 2 mm were used. In the present embodiment, the condensing (imaging) magnification is 1. One single lens may be used instead of the condenser lenses 5 and 6. In any case, unless you use a large chromatic aberration correction lens that combines multiple convex and concave lenses with different refractive indexes, the shorter the wavelength, the closer the focal point is to the focal point, due to the refractive index wavelength dispersion of the lens component material. However, it is unavoidable that the chromatic aberration that the focal point becomes farther as the light becomes longer. Also in the present embodiment, the first lens 5 having a focal length of 2 mm and the second lens 6 having a focal length of 2 mm are used to convert the signal light having a wavelength of 1550 nm and the control light having a wavelength of 980 nm emitted from the same surface to the thermal lens forming optical element 7. However, the condensing point of the signal light and the control light is shifted by about 50 μm in the light traveling direction. If the light is collected by a single lens with a focal length of 2 mm, the amount of deviation will be approximately double this. When such a condensing point position shift occurs between the signal light and the control light, the signal light has not yet been collected in the vicinity of the condensing point of the control light, and the influence of the refractive index on the signal light is light. Depending on the cross-sectional position perpendicular to the axis, the signal light distribution deviates greatly from the Gaussian distribution. As a result, the deflection efficiency is deteriorated as a whole.

そこで、本実施の形態では、信号光1は、信号光と制御光の波長の違いによる集光点のずれ、すなわち色収差を補正するための光学平板4に設けられた穴3を通過するようにし、制御光21は7芯光ファイバー120の出射端面に接触させて配置された光学平板4を、穴3を避けて透過するようにした。穴3は、コア100の光出射端面101から出射する信号光1の開口角に合わせて、テーパー状にすることが好ましい。また、光学平板4に穴3を加工する方法としては、サンドブラスト法、エキシマーレーザーアブレーション法などが好適に用いられるが、いずれの場合も、径が一定の穴を開けるよりも、テーパー状の穴を開ける方が加工が容易である。因みに、フッ化アルゴン(ArF)のエキシマレーザーを用いると、直径数μmの穴を開けることもできる。   Therefore, in the present embodiment, the signal light 1 passes through the hole 3 provided in the optical plate 4 for correcting the shift of the condensing point due to the difference in wavelength between the signal light and the control light, that is, chromatic aberration. The control light 21 is transmitted through the optical flat plate 4 arranged in contact with the emission end face of the seven-core optical fiber 120 while avoiding the hole 3. The hole 3 is preferably tapered in accordance with the opening angle of the signal light 1 emitted from the light emitting end face 101 of the core 100. In addition, as a method for processing the hole 3 in the optical flat plate 4, a sandblasting method, an excimer laser ablation method, or the like is preferably used. In any case, a tapered hole is formed rather than a hole having a constant diameter. Opening is easier to process. Incidentally, when an excimer laser of argon fluoride (ArF) is used, a hole having a diameter of several μm can be formed.

図4に光学平板4に設けられたテーパー付き穴3と7芯光ファイバー120の出射側端面の位置関係を示す。言うまでもなく、テーパー付き穴3は、7芯光ファイバー120の出射側端面に隣接する穴30が小さく、光学平板4の出射側の穴31が大きい。7芯光ファイバー120のコア直径が9.5μm、クラッド直径が39.0μmであることから、穴30の直径は10〜20μm、穴31の直径は40μm程度が好ましい。このようなテーパー状穴3と拡がりながら出射する信号光1とが干渉しないようにするためには、光学平板4の厚さtを、以下の式〔1〕を満たすように設定すれば良い。   FIG. 4 shows the positional relationship between the tapered hole 3 provided in the optical flat plate 4 and the emission side end face of the seven-core optical fiber 120. Needless to say, in the tapered hole 3, the hole 30 adjacent to the emission side end face of the seven-core optical fiber 120 is small, and the emission side hole 31 of the optical flat plate 4 is large. Since the core diameter of the seven-core optical fiber 120 is 9.5 μm and the cladding diameter is 39.0 μm, the diameter of the hole 30 is preferably 10 to 20 μm, and the diameter of the hole 31 is preferably about 40 μm. In order to prevent interference between the tapered hole 3 and the signal light 1 emitted while expanding, the thickness t of the optical flat plate 4 may be set to satisfy the following formula [1].

t≦(d−c)/2N …〔1〕
(ここで、cは前記出射領域を円形に近似したときの平均直径[光ファイバーのコア直径]、dは円形に近似した前記出射領域間の平均距離[隣接コア間距離]、Nは前記出射領域[コア]から出射する光の開口数である。)
t ≦ (dc) / 2N (1)
(Where c is an average diameter when the exit area is approximated to a circle [core diameter of optical fiber], d is an average distance between the exit areas approximating a circle [distance between adjacent cores], and N is the exit area. (Numerical aperture of light emitted from [core].)

シングルモード光ファイバーの開口数Nは、通常、約0.11である。従って、本実施の形態において、dを39.0μm、cを9.5μmとすると、tは134μm以下であれば良い。   The numerical aperture N of a single mode optical fiber is usually about 0.11. Therefore, in this embodiment, if d is 39.0 μm and c is 9.5 μm, t may be 134 μm or less.

一方、前記の色収差(信号光と制御光の集光点は光の進行方向で約50μm)を補正するために必要な光学平板4の厚さtは、光学平板4の材質として、波長980nmでの屈折率1.883という高屈折率のものを用いた場合、100μmで良い。この値は、上記の式〔1〕も満足する。言うまでもなく、制御光(980nm)に対する色収差補正効果を最大にするためには、信号光(1550nm)を屈折率1の空気(穴3)を通過させるのが好適である。   On the other hand, the thickness t of the optical flat plate 4 necessary for correcting the chromatic aberration (the focal point of the signal light and the control light is about 50 μm in the light traveling direction) is 980 nm as the material of the optical flat plate 4. When a high refractive index of 1.883 is used, 100 μm is sufficient. This value also satisfies the above equation [1]. Needless to say, in order to maximize the effect of correcting the chromatic aberration with respect to the control light (980 nm), it is preferable to pass the signal light (1550 nm) through the air (hole 3) having a refractive index of 1.

用いたシングルモード光ファイバーのコア径は9.5μmで点光源と見なせる。用いたシングルモード光ファイバーの開口数は約0.11であるので、光ファイバー120のコア100からの信号光1は、色収差補正のための光学平板4を光ファイバー120の光出射端面に密着させると、光学平板4の出射面(光ファイバーの反対側の面)での信号光太さは約30μmとなる。前述のように光学平板4の出射面には約40μmの穴を開けているので、信号光1は光学平板4と干渉することなく、穴3を通過することができる。   The core diameter of the single mode optical fiber used is 9.5 μm and can be regarded as a point light source. Since the numerical aperture of the single mode optical fiber used is about 0.11, the signal light 1 from the core 100 of the optical fiber 120 is optical when the optical flat plate 4 for correcting chromatic aberration is brought into close contact with the light emitting end face of the optical fiber 120. The thickness of the signal light on the emission surface of the flat plate 4 (surface opposite to the optical fiber) is about 30 μm. As described above, since the hole of about 40 μm is formed in the exit surface of the optical flat plate 4, the signal light 1 can pass through the hole 3 without interfering with the optical flat plate 4.

図5に示すように、信号光は、コア100の出射端面101から光学平板4の穴を通過して、空気中に直接出射する。一方、制御光21は、コア201の端面2011からコア材料よりも高屈折率の光学平板4を通過した後、光学平板4の出射面2112から空気中に出射される。従って、制御光は空気よりも高屈折率の光学平板4を通過する結果、見かけ上は約50μm光の進行方向に進んだところから出射したようになり、前記の色収差(信号光と制御光の集光点は光の進行方向で約50μm)は補正される。   As shown in FIG. 5, the signal light passes through the hole of the optical flat plate 4 from the emission end face 101 of the core 100 and is emitted directly into the air. On the other hand, the control light 21 passes through the optical plate 4 having a higher refractive index than the core material from the end surface 2011 of the core 201 and then exits from the exit surface 2112 of the optical plate 4 into the air. Therefore, as a result of the control light passing through the optical flat plate 4 having a higher refractive index than air, it appears that the control light is emitted from a position where the light travels in the traveling direction of about 50 μm, and the chromatic aberration (signal light and control light The condensing point is corrected by about 50 μm in the light traveling direction.

制御光22〜26についても、制御光21と全く同様にして、色収差が補正される。   Also for the control lights 22 to 26, the chromatic aberration is corrected in the same manner as the control light 21.

(第2の実施の形態)
図2は本発明の第2の実施の形態に係る光偏向型光路切替装置の概略構成図である。
(Second Embodiment)
FIG. 2 is a schematic configuration diagram of an optical deflection type optical path switching device according to a second embodiment of the present invention.

本発明の第2の実施の形態において、第1の実施の形態と同じ光学部材については、同一の番号を付けた。図2において、第1の実施の形態と異なるのは、熱レンズ素子7を通過した信号光を集光レンズ8および9によって受光し、コリメートした後、受光側光ファイバー130へ入射させていることである。その他の構成は第1の実施形態と同様である。レンズ8は焦点距離2mmの非球面レンズ、レンズ9は焦点距離2.75mmの非球面レンズを用いた。本実施の形態では、2つのレンズで信号光を収束(集光)させたが、1つのレンズで収束(集光)させるようにしても良いことは言うまでもない。焦点距離は2mmおよび2.75mmである必要はないが、小型化にすることと、7芯光ファイバー130の受光側端面に入射する信号光の分離と入射効率の関係から前述の焦点距離のものを用いることとした。   In the second embodiment of the present invention, the same optical members as those in the first embodiment are given the same numbers. In FIG. 2, the difference from the first embodiment is that the signal light that has passed through the thermal lens element 7 is received by the condenser lenses 8 and 9, collimated, and then incident on the light receiving side optical fiber 130. is there. Other configurations are the same as those of the first embodiment. The lens 8 was an aspheric lens having a focal length of 2 mm, and the lens 9 was an aspheric lens having a focal length of 2.75 mm. In the present embodiment, the signal light is converged (condensed) by two lenses, but it goes without saying that the signal light may be converged (condensed) by one lens. The focal lengths need not be 2 mm and 2.75 mm, but the focal lengths are the same as those described above because of the size reduction, separation of the signal light incident on the light receiving side end face of the 7-core optical fiber 130 and the incidence efficiency. I decided to use it.

図3aは図2のA−A’線に沿った断面図であり、7芯光ファイバー120の光出射側端面を模式的に表している。   3A is a cross-sectional view taken along the line A-A ′ in FIG. 2, and schematically shows the light emission side end face of the seven-core optical fiber 120.

また、図3bは図2のB−B’’線に沿った断面図であり、7芯光ファイバー130の受光側端面を模式的に表している。   FIG. 3B is a cross-sectional view taken along line B-B ″ in FIG. 2, and schematically shows the light receiving side end face of the seven-core optical fiber 130.

7芯光ファイバー120の中心コア100からは信号光1が出射し、制御光21〜26が照射されない場合、信号光1は集光レンズ5および6、熱レンズ形成素子7、集光レンズ8および9を直進し、7芯光ファイバー130の中心コア300へ入射する。このような7芯光ファイバー130の任意のコアへの入射は、7芯光ファイバー130の出射側末端(図示せず;独立して存在)の各々に光検出器を設けることで検知することができる。7芯光ファイバー130を用いず、直接、光検出器を設置しても良いことは言うまでもない。   When the signal light 1 is emitted from the central core 100 of the seven-core optical fiber 120 and the control lights 21 to 26 are not irradiated, the signal light 1 is collected by the condenser lenses 5 and 6, the thermal lens forming element 7, and the condenser lenses 8 and 9. And enter the central core 300 of the seven-core optical fiber 130. Such incident on an arbitrary core of the seven-core optical fiber 130 can be detected by providing a photodetector at each of the emission-side ends (not shown; independently present) of the seven-core optical fiber 130. It goes without saying that the photodetector may be installed directly without using the seven-core optical fiber 130.

受光側光ファイバー130のコア300〜306への選択的入射の調整は、直進信号光1を検出するコア300の位置調整をまず行い、その後、制御光21および22の制御光パワーを調整して例えばコア301への入射効率向上をはかった。7芯光ファイバーの光出射側と受光側で中心コア100および300の中心を回転軸として、回転方向にずれが生じていると、制御光が1つしか入射しない場合は、受光側コアへの入射が十分にできない。光軸に直角方向のずれは、制御光の強度を変えることで調整できるが、回転方向の調整ができない。よって、受光側コアへの入射の調整は、次のように行った。   The adjustment of the selective incidence of the light receiving side optical fiber 130 on the cores 300 to 306 is performed by first adjusting the position of the core 300 that detects the straight signal light 1, and then adjusting the control light power of the control lights 21 and 22, for example. The incident efficiency to the core 301 was improved. If there is a shift in the rotation direction around the center of the central cores 100 and 300 on the light emitting side and the light receiving side of the seven-core optical fiber, if only one control light is incident, the light enters the light receiving side core. Can not be enough. The deviation in the direction perpendicular to the optical axis can be adjusted by changing the intensity of the control light, but the rotation direction cannot be adjusted. Therefore, adjustment of incidence on the light receiving side core was performed as follows.

1.まず、光照射側7芯光ファイバー120と受光側7芯光ファイバーとの上下左右の位置、および中心コア100および300の中心を中心にした回転方向の位置を、粗く合わせる。   1. First, the vertical and horizontal positions of the light-irradiating side seven-core optical fiber 120 and the light-receiving side seven-core optical fiber and the positions in the rotation direction around the centers of the central cores 100 and 300 are roughly matched.

2.次に、制御光を照射せず、出射側7芯光ファイバー120の中心コア100から出射する直進信号光1を受光側7芯光ファイバー130の中心コア300で完全に受光できるよう、受光側7芯光ファイバー130の位置を3軸方向に動かし、微調整する。   2. Next, the light receiving side 7-core optical fiber is completely irradiated with the central core 300 of the light receiving side 7-core optical fiber 130 without irradiating the control light so that the straight signal light 1 emitted from the center core 100 of the emission side 7-core optical fiber 120 can be completely received. Move the position of 130 in the direction of the three axes to make fine adjustments.

3.次いで、出射側7芯光ファイバー120の周辺コアの1つ、例えばコア201から制御光21を出射させ、出射側7芯光ファイバー120の中心コア100から出射する信号光1の光路を偏向させ、受光側7芯光ファイバー130を中心コア300の中心軸を回転の中心として回転させ、偏向された信号光221が、受光側7芯光ファイバー130の周辺コアの1つ、例えばコア301で完全に受光できるよう精密に調整する。次いで、制御光21を消灯し、出射側7芯光ファイバー120の周辺コア202から制御光22を出射させ、その光強度を微調整することによって、偏向された信号光222を受光側7芯光ファイバー130の周辺コア302で完全に受光できるよう調整する。7芯光ファイバー120および130の加工精度の関係で、制御光22の強度のみで、上記コア302での信号光受光が完全に行えない場合は、制御光22の出射するコア202に隣接する周辺コア201または203からも制御光21または23を(制御光22よりも弱い強度で)出射させ、上記コア302で信号光を完全に受光できるよう微調整する。以下、同様にして、制御光23〜26の照射によって、信号光が受光側7芯光ファイバー130の周辺コア303〜306で各々完全に受光できるよう調整する。   3. Next, the control light 21 is emitted from one of the peripheral cores of the emission-side 7-core optical fiber 120, for example, the core 201, and the optical path of the signal light 1 emitted from the central core 100 of the emission-side 7-core optical fiber 120 is deflected. The seven-core optical fiber 130 is rotated with the central axis of the central core 300 as the center of rotation, and the deflected signal light 221 is precisely received by one of the peripheral cores of the light-receiving-side seven-core optical fiber 130, for example, the core 301. Adjust to. Next, the control light 21 is turned off, the control light 22 is emitted from the peripheral core 202 of the emission-side seven-core optical fiber 120, and the light intensity is finely adjusted, whereby the deflected signal light 222 is received by the reception-side seven-core optical fiber 130. The peripheral core 302 is adjusted so that it can receive light completely. If the signal light cannot be completely received by the core 302 only by the intensity of the control light 22 due to the processing accuracy of the seven-core optical fibers 120 and 130, the peripheral core adjacent to the core 202 from which the control light 22 is emitted The control light 21 or 23 is also emitted from the 201 or 203 (with a lower intensity than the control light 22), and fine adjustment is performed so that the core 302 can receive the signal light completely. In the same manner, adjustment is performed so that the signal light can be completely received by the peripheral cores 303 to 306 of the light receiving side seven-core optical fiber 130 by irradiation of the control lights 23 to 26 in the same manner.

以上、本実施の形態で述べたように、信号光1は、信号光と制御光の波長の違いによる集光点のずれ、すなわち色収差を補正するための光学平板4に設けられた穴3を通過するようにし、制御光21〜26は7芯光ファイバー120の出射端面に接触させて配置された光学平板4を、穴3を避けて透過するようにすることで、出射側7芯光ファイバー120の中心コア100から出射する信号光1の光路を偏向させ、受光側7芯光ファイバー130の周辺コア303〜306で各々完全に受光できるよう調整することが可能となる。   As described above, as described in the present embodiment, the signal light 1 has the holes 3 provided in the optical flat plate 4 for correcting the shift of the focal point due to the difference in wavelength between the signal light and the control light, that is, chromatic aberration. The control lights 21 to 26 pass through the optical flat plate 4 arranged in contact with the emission end face of the seven-core optical fiber 120 so as to avoid the hole 3, so that the output-side seven-core optical fiber 120 is transmitted. The optical path of the signal light 1 emitted from the central core 100 can be deflected and adjusted so that it can be completely received by the peripheral cores 303 to 306 of the light receiving side seven-core optical fiber 130.

本発明は、光通信分野および光情報処理分野において有効に用いることができる。   The present invention can be effectively used in the fields of optical communication and optical information processing.

本発明の第1の実施の形態に係る光偏向型光路切替装置の概略構成図である。1 is a schematic configuration diagram of an optical deflection type optical path switching device according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る光偏向型光路切替装置の概略構成図である。It is a schematic block diagram of the light deflection type optical path switching device concerning a 2nd embodiment of the present invention. 図2のA−A’線に沿った断面図であり、7芯光ファイバー120の光出射側端面を模式的に表す図である。FIG. 3 is a cross-sectional view taken along the line A-A ′ of FIG. 2, and schematically shows a light emission side end surface of a seven-core optical fiber 120. 図2のB−B’線に沿った断面図であり、7芯光ファイバー130の受光側端面を模式的に表す図である。FIG. 3 is a cross-sectional view taken along line B-B ′ in FIG. 2, schematically showing a light receiving side end face of a seven-core optical fiber 130. 光学平板4に設けられたテーパー付き穴3と7芯光ファイバー120の出射側端面の位置関係を表す図である。FIG. 4 is a diagram illustrating a positional relationship between a tapered hole 3 provided in an optical flat plate 4 and an emission side end face of a seven-core optical fiber 120. 図4のC−C’線に沿った断面図であり、7芯光ファイバー120の光出射側端面から出射する信号光1および制御光21の拡がりを模式的に表す図である。FIG. 5 is a cross-sectional view taken along line C-C ′ in FIG. 4, schematically illustrating the spread of the signal light 1 and the control light 21 emitted from the light emission side end face of the seven-core optical fiber 120.

符号の説明Explanation of symbols

1 7芯光ファイバー120の中心コア100から出射した信号光、2 熱レンズ形成素子7によって光路偏向された信号光、3 光学平板4に設けられた穴、4 光学平板、5,6 集光レンズ、7 熱レンズ形成素子、8,9 集光レンズ、21,22,23,24,25,26 7芯光ファイバー120の周辺コア201、202、203、204、205および206から各々出射した制御光、30 テーパー状の穴(小)、31 テーパー状の穴(大)、71 光吸収層、100 7芯光ファイバー120の中心コア、101 コア100の出射端面、110 7芯光ファイバー120の中心クラッド、120 光出射側の7芯光ファイバー、121 7芯光ファイバー120のフェルール、122 接着剤、130 受光側の7芯光ファイバー、131 7芯光ファイバー130のフェルール、132 接着剤、201,202,203,204,205,206 7芯光ファイバー120の周辺コア、211,212,213,214,215,216 7芯光ファイバー120の周辺クラッド、221,222 熱レンズ形成素子7によって光路偏向された信号光、300 7芯光ファイバー130の中心コア、301,302,303,304,305,306 7芯光ファイバー130の周辺コア、310 7芯光ファイバー130の中心クラッド、311,312,313,314,315,316 7芯光ファイバー130の周辺クラッド、1001 光の進行方向、2011 7芯光ファイバー120の周辺クラッド201の出射端面、2112 光学平板4から出射する制御光21の出射面。   1 signal light emitted from the central core 100 of the 7-core optical fiber 120, 2 signal light deflected in the optical path by the thermal lens forming element 7, 3 holes provided in the optical flat plate 4, 4 optical flat plates, 5, 6 condenser lenses, 7 thermal lens forming element, 8, 9 condenser lens, 21, 22, 23, 24, 25, 26 control light emitted from the peripheral cores 201, 202, 203, 204, 205 and 206 of the 7-core optical fiber 120, 30 Tapered hole (small), 31 Tapered hole (large), 71 Light absorption layer, 100 7-core optical fiber 120 central core, 101 Core 100 emission end face, 110 7-core optical fiber 120 central cladding, 120 Light emission Side 7-core optical fiber, 121 7-core optical fiber 120 ferrule, 122 adhesive, 130 light-receiving side 7-core optical fiber 131, ferrule of 7-core optical fiber 130, 132 adhesive, 201, 202, 203, 204, 205, 206 peripheral core of 7-core optical fiber 120, 211, 212, 213, 214, 215, 216 peripheral cladding of 7-core optical fiber 120 , 221, 222 Signal light deflected in the optical path by the thermal lens forming element 7, central core of 300 7-core optical fiber 130, peripheral core of 301, 302, 303, 304, 305, 306 peripheral core of 7-core optical fiber 130, 310 7-core optical fiber 130 Center cladding, 311, 312, 313, 314, 315, 316 peripheral cladding of the seven-core optical fiber 130, 1001 light traveling direction, output end surface of the peripheral cladding 201 of the seven-core optical fiber 120, 2112 control from the optical flat plate 4 Emitting surface of the light 21.

Claims (6)

少なくとも光吸収層を含む熱レンズ形成光素子中の光吸収層に、制御光と信号光とを入射させ、
前記制御光および前記信号光は、前記光吸収層またはその近辺にて収束するように照射されかつ前記制御光および前記信号光の各々の収束点の位置が相異なるように照射され、
前記制御光の波長と前記信号光の波長を異ならせ、前記制御光の波長は前記光吸収層が吸収する波長帯域から選ばれ、前記信号光の波長は前記光吸収層が吸収しない波長帯域から選ばれ、
前記制御光と前記信号光は、前記光吸収層内における前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因し可逆的に形成される熱レンズにより、屈折率が変化して、前記信号光の進行方向を変えることを特徴とする光偏向方法において、
さらに、前記制御光および前記信号光を、同一面上に配置された各々の出射領域からそれぞれ出射させ、前記制御光および前記信号光の少なくとも1つは前記制御光および前記信号光の光の波長毎に厚みtの定まった光学平板を通過させて実質的光路長を補正し、
前記制御光および前記信号光に共通の、結像のための光学手段を通過させて前記制御光および前記信号光を同一面上に結像させることを特徴とする色収差補正方法。
The control light and the signal light are incident on the light absorption layer in the thermal lens forming optical element including at least the light absorption layer,
The control light and the signal light are irradiated so as to converge at or near the light absorption layer, and the control light and the signal light are irradiated such that the positions of the convergence points of the control light and the signal light are different from each other,
The wavelength of the control light is different from the wavelength of the signal light, the wavelength of the control light is selected from a wavelength band that is absorbed by the light absorption layer, and the wavelength of the signal light is from a wavelength band that is not absorbed by the light absorption layer. Chosen,
The control light and the signal light have a refractive index changed by a heat lens formed reversibly due to a temperature rise occurring in a region where the control light is absorbed in the light absorption layer and a peripheral region thereof, In the light deflection method characterized by changing the traveling direction of the signal light,
Further, the control light and the signal light are respectively emitted from the respective emission regions disposed on the same plane, and at least one of the control light and the signal light is a wavelength of the light of the control light and the signal light The optical path length is corrected by passing an optical flat plate having a thickness t every time,
A chromatic aberration correction method, wherein the control light and the signal light are imaged on the same plane by passing through an optical means for image formation common to the control light and the signal light.
信号光を出射する領域と、
前記信号光の出射領域と同一平面に設けられた、前記信号光とは異なる波長の1種類以上の制御光を出射する領域と、
前記制御光を出射する領域と信号光を出射する領域とのそれぞれに隣接ないし接して設けられ、さらに前記信号光のみを通過させる位置に設けられ前記信号光の開口角に応じて入射側から出射側に向かって開口が増大するテーパー状の穴を有し、前記穴を通過して拡がりながら出射する前記信号光と前記制御光とが干渉しないように厚みtを有する光学平板と、
前記信号光は透過し、前記制御光を選択的に吸収する光吸収層を含む熱レンズ形成光素子と、
前記熱レンズ形成素子の前記光吸収層またはその近辺に、前記光学平板から出射し前記光吸収層が吸収する波長帯域から選ばれた前記制御光と、前記光学平板から出射し前記光吸収層が吸収しない波長帯域から選ばれた前記信号光とを、各々収束点が異なるように集光させる集光手段と、
を有し、
前記熱レンズ形成光素子は、前記制御光と前記信号光が、前記光吸収層内における前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因し可逆的に形成される熱レンズにより、屈折率が変化して、前記信号光の進行方向を変え、
さらに、前記光学平板と集光手段は、前記信号光および少なくとも1つ以上の前記制御光を、前記熱レンズ形成光素子の同一平面上に結像させることを特徴とする色収差補正可能な光学装置。
An area for emitting signal light;
An area for emitting one or more types of control light having a wavelength different from that of the signal light, which is provided in the same plane as the emission area of the signal light;
Provided adjacent to or in contact with each of the region emitting the control light and the region emitting the signal light, and further provided at a position allowing only the signal light to pass through, and exiting from the incident side according to the opening angle of the signal light An optical flat plate having a tapered hole whose opening increases toward the side, and having a thickness t so that the control light and the signal light emitted while expanding through the hole do not interfere with each other;
A thermal lens forming optical element including a light absorbing layer that transmits the signal light and selectively absorbs the control light;
The control light selected from the wavelength band emitted from the optical flat plate and absorbed by the light absorbing layer on or near the light absorbing layer of the thermal lens forming element, and the light absorbing layer emitted from the optical flat plate Light collecting means for condensing the signal light selected from a wavelength band that does not absorb, so that the convergence points are different from each other,
Have
The thermal lens forming optical element is formed by a thermal lens that is reversibly formed due to a temperature rise that occurs in the area where the control light and the signal light absorb the control light in the light absorption layer and in the peripheral area. , The refractive index changes, changes the traveling direction of the signal light,
Further, the optical plate and the focusing means, the signal light and at least one of said control light, possible chromatic aberration correction, wherein the benzalkonium is focused on the same plane of the heat lens forming optical element Optical device.
さらに、前記光学平板の厚さtが、以下の式〔1〕で表されることを特徴とする請求項1に記載の色収差補正方法。
t≦(d−c)/2N …〔1〕
(ここで、cは前記出射領域を円形に近似したときの平均直径、dは円形に近似した前記出射領域間の平均距離、Nは前記出射領域から出射する光の開口数である。)
2. The chromatic aberration correction method according to claim 1, wherein the thickness t of the optical flat plate is expressed by the following formula [1].
t ≦ (dc) / 2N (1)
(Here, c is an average diameter when the emission area is approximated to a circle, d is an average distance between the emission areas approximating a circle, and N is a numerical aperture of light emitted from the emission area.)
さらに、前記光学平板の厚さtが、以下の式〔1〕で表されることを特徴とする請求項2に記載の色収差補正可能な光学装置。
t≦(d−c)/2N …〔1〕
(ここで、cは前記出射領域を円形に近似したときの平均直径、dは円形に近似した前記出射領域間の平均距離、Nは前記出射領域から出射する光の開口数である。)
The optical apparatus capable of correcting chromatic aberration according to claim 2, wherein the thickness t of the optical flat plate is expressed by the following equation [1].
t ≦ (dc) / 2N (1)
(Here, c is an average diameter when the emission area is approximated to a circle, d is an average distance between the emission areas approximating a circle, and N is a numerical aperture of light emitted from the emission area.)
信号光と信号光と波長が異なる少なくとも1つ以上の制御光とを各々出射させる、同一面上に配置された出射領域が、各々の端面が同一面上に配置されて束ねられたコア・クラッド構造の複数の光ファイバーのコアであることを特徴とする請求項1または請求項3に記載の色収差補正方法。   A core / cladding system in which signal light, at least one control light having a different wavelength and each of the control light beams are emitted and arranged in the same plane, each end face being arranged on the same plane and bundled The chromatic aberration correction method according to claim 1, wherein the chromatic aberration correction method is a core of a plurality of optical fibers having a structure. 信号光と信号光と波長が異なる少なくとも1つ以上の制御光とを各々出射させる、同一面上に配置された出射領域が、各々の端面が同一面上に配置されて束ねられたコア・クラッド構造の複数の光ファイバーのコアであることを特徴とする請求項2または請求項4に記載の色収差補正可能な光学装置。   A core / cladding system in which signal light, at least one control light having a different wavelength and each of the control light beams are emitted and arranged in the same plane, each end face being arranged on the same plane and bundled 5. The optical device capable of correcting chromatic aberration according to claim 2, wherein the optical device is a core of a plurality of optical fibers having a structure.
JP2006259704A 2006-09-25 2006-09-25 Chromatic aberration correction method and optical apparatus capable of correcting chromatic aberration Expired - Fee Related JP4724817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006259704A JP4724817B2 (en) 2006-09-25 2006-09-25 Chromatic aberration correction method and optical apparatus capable of correcting chromatic aberration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006259704A JP4724817B2 (en) 2006-09-25 2006-09-25 Chromatic aberration correction method and optical apparatus capable of correcting chromatic aberration

Publications (2)

Publication Number Publication Date
JP2008083094A JP2008083094A (en) 2008-04-10
JP4724817B2 true JP4724817B2 (en) 2011-07-13

Family

ID=39354072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259704A Expired - Fee Related JP4724817B2 (en) 2006-09-25 2006-09-25 Chromatic aberration correction method and optical apparatus capable of correcting chromatic aberration

Country Status (1)

Country Link
JP (1) JP4724817B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120133943A1 (en) * 2010-11-29 2012-05-31 Norman Henry Fontaine Systems And Methods For Multi-Wavelength SPR Biosensing With Reduced Chromatic Aberration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194551A (en) * 2000-01-07 2001-07-19 Kyocera Corp Optical module
JP2005265986A (en) * 2004-03-16 2005-09-29 Dainichiseika Color & Chem Mfg Co Ltd Optically controlled optical path switching type data distribution device and distribution method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194551A (en) * 2000-01-07 2001-07-19 Kyocera Corp Optical module
JP2005265986A (en) * 2004-03-16 2005-09-29 Dainichiseika Color & Chem Mfg Co Ltd Optically controlled optical path switching type data distribution device and distribution method

Also Published As

Publication number Publication date
JP2008083094A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
EP2553523B1 (en) Optical-path-switching apparatus and light signal optical-path-switching method
US7826696B2 (en) Optical deflection method and optical deflection apparatus
JP3906926B2 (en) Optical control type optical path switching type optical signal transmission apparatus and optical signal optical path switching method
JP4822115B2 (en) Optical path switching method and optical path switching apparatus
JP4822113B2 (en) Optical deflection method and optical deflection apparatus
JP2002365252A (en) Microchemical system
JP4822114B2 (en) Deflection type optical path switching method and optical path switching apparatus
JP4674336B2 (en) Vector-controlled optical path switching method and optical path switching apparatus
JP4724817B2 (en) Chromatic aberration correction method and optical apparatus capable of correcting chromatic aberration
WO2021145358A1 (en) Laser processing device
KR100552552B1 (en) Laser light source device of surface inspection device and surface inspection device using the same
JP3848125B2 (en) Photothermal conversion spectroscopic analysis method and microchemical system
US6870983B2 (en) Optical switch, element therefor, and optical switching method
JP2002228954A (en) Optical switch
US7057729B2 (en) Photothermal conversion spectroscopic analysis method, and photothermal conversion spectroscopic analysis apparatus for carrying out the method
US7092099B2 (en) Microchemical system and photothermal conversion spectroscopic analysis method implemented by the system
JP2019002964A (en) Optical path switching device and optical path switching method
RU2807585C1 (en) Optical interface for ion quantum register
JP4883305B2 (en) Optical flip-flop circuit
JP4883306B2 (en) Wavelength conversion device and wavelength conversion method
CN117539129A (en) Optical fiber transmission laser direct-writing lithography system based on dispersion compensation
JP4982652B2 (en) Optical logic circuit
JPH05289118A (en) Adjusting method for condensing point position

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees