JP4730257B2 - Thermal lens reciprocating optical path switching device and optical path switching method - Google Patents

Thermal lens reciprocating optical path switching device and optical path switching method Download PDF

Info

Publication number
JP4730257B2
JP4730257B2 JP2006229842A JP2006229842A JP4730257B2 JP 4730257 B2 JP4730257 B2 JP 4730257B2 JP 2006229842 A JP2006229842 A JP 2006229842A JP 2006229842 A JP2006229842 A JP 2006229842A JP 4730257 B2 JP4730257 B2 JP 4730257B2
Authority
JP
Japan
Prior art keywords
light
signal light
thermal lens
forming element
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006229842A
Other languages
Japanese (ja)
Other versions
JP2008052144A (en
Inventor
教雄 田中
代康 志賀
浩 長枝
一郎 上野
隆 平賀
宣孝 谷垣
典孝 山本
登志子 溝黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2006229842A priority Critical patent/JP4730257B2/en
Publication of JP2008052144A publication Critical patent/JP2008052144A/en
Application granted granted Critical
Publication of JP4730257B2 publication Critical patent/JP4730257B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光通信、光情報処理などの光エレクトロニクスおよびフォトニクスの分野において有用な、熱レンズ形成素子を用いる光路切替装置および光路切替方法に関するものである。   The present invention relates to an optical path switching device and an optical path switching method using a thermal lens forming element, which are useful in the fields of optoelectronics and photonics such as optical communication and optical information processing.

本発明者らは、全く新しい原理に基づく光路切替方法および装置として、熱レンズ形成素子中の光吸収層に、光吸収層が吸収する波長帯域の制御光、および、光吸収層が吸収しない波長帯域の信号光を各々収束させて照射し、制御光が照射されない場合は信号光が鏡の穴を通して直進するようにし、一方、制御光が照射され場合は、信号光の進行方向に対して傾けて設けた穴付ミラーを用いて反射することによって光路を変更させる方法およびそのための装置を発明した(特許文献1参照)。この発明以前の背景技術については、特許文献1に詳しく記載されている。   As an optical path switching method and apparatus based on a completely new principle, the inventors of the present invention have incorporated into the light absorption layer in the thermal lens forming element, the control light in the wavelength band that the light absorption layer absorbs, and the wavelength that the light absorption layer does not absorb When the control light is not irradiated, the signal light travels straight through the hole of the mirror. On the other hand, when the control light is irradiated, it is tilted with respect to the traveling direction of the signal light. Invented a method of changing the optical path by reflecting using a mirror with a hole provided and a device therefor (see Patent Document 1). The background art prior to the present invention is described in detail in Patent Document 1.

本発明者らは、また、熱レンズ形成素子および穴付ミラーを複数組み合わせて用いる光制御式光路切替型光信号伝送装置および光信号光路切替方法を開示した(特許文献2参照)。   The present inventors have also disclosed an optical control type optical path switching type optical signal transmission device and optical signal optical path switching method using a combination of a plurality of thermal lens forming elements and mirrors with holes (see Patent Document 2).

特許第3809908号明細書Japanese Patent No. 3809908 特開2005−234356号公報JP 2005-234356 A

特許文献1に記載の発明は、電気回路や機械的可動部分を用いずに、耐久性の高い、偏波依存性のない、光路切替の角度および方向を自由に設定可能な、信号光の光強度減衰が少なく多重連結使用が可能で、充分実用的な応答速度の光路切替装置および光路切替方法を提供している。しかるに、熱レンズ効果によってビーム断面の形状が「ドーナツ形」に変換された信号光を、単純なレンズ光学系でシングルモード光ファイバー中へ結合させようとすると、結合効率を高めにくいという制約が生ずる。   The invention described in Patent Document 1 is an optical signal light that does not use an electric circuit or a mechanical movable part, is highly durable, has no polarization dependence, and can freely set the angle and direction of optical path switching. There are provided an optical path switching device and an optical path switching method with a sufficiently practical response speed that can be used in multiple connection with little intensity attenuation. However, if the signal light whose beam cross-sectional shape has been converted into a “doughnut shape” by the thermal lens effect is to be coupled into a single-mode optical fiber with a simple lens optical system, there is a restriction that it is difficult to increase the coupling efficiency.

一方、特許文献2に記載のように、熱レンズ形成素子を用いる光路切替装置の基本ユニットを2段、組み合わせ、ドーナツ断面の信号光を第2の熱レンズ形成素子を通過させることによって、ビーム断面のエネルギー分布を、概ねガウス分布に変換することは可能である。しかしながら、その場合、装置の光学系が複雑になり、調整に多くの時間を要する、第2の熱レンズ形成のために制御光光源を追加する必要がある、などの課題が残る。   On the other hand, as described in Patent Document 2, the basic unit of the optical path switching device using the thermal lens forming element is combined in two stages, and the signal light of the donut cross section is passed through the second thermal lens forming element, whereby the beam cross section It is possible to convert the energy distribution of approximately to a Gaussian distribution. However, in this case, the optical system of the apparatus becomes complicated, and it takes a lot of time for adjustment, and there remains a problem that a control light source needs to be added for forming the second thermal lens.

本発明は、熱レンズ効果によってビーム断面の形状が「ドーナツ形」に変換された信号光を、できる限り簡潔な光学系によって、ビーム断面のエネルギー分布を概ねガウス分布に変換すること、および、シングルモード光ファイバーへの結合効率を高めること、を目的とする。   According to the present invention, the signal light whose shape of the beam cross section is converted into the “doughnut shape” by the thermal lens effect is converted into an approximately Gaussian distribution of the energy of the beam cross section by an optical system as simple as possible. The purpose is to increase the coupling efficiency to the mode optical fiber.

本発明の光路切替装置は、以下の特徴を有する。   The optical path switching device of the present invention has the following features.

(1)少なくとも制御光が焦点を結ぶように配置された光吸収層と、
少なくとも前記光吸収層に、前記光吸収層が吸収する波長帯域から選ばれる波長の制御光と、前記光吸収層が吸収しない波長帯域から選ばれる波長の信号光とを各々収束させて照射する手段と、
前記光吸収層を含み、前記光吸収層が前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因して可逆的に形成される屈折率の分布に基づいた熱レンズを用いることによって、制御光が照射されず熱レンズが形成されない場合は前記収束された信号光が通常の開き角度で出射する状態と、制御光が照射されて熱レンズが形成される場合は前記収束された信号光が通常の開き角度よりも大きい開き角度で出射する状態とを、前記制御光の照射の有無に対応させて実現させる熱レンズ形成素子と、
通常の開き角度で前記熱レンズ形成素子から出射する前記信号光を受光レンズによって前記通常の開き角度を変更させコリメートした後、通過させる穴を設けたミラーであって、通常よりも大きい開き角度で前記熱レンズ形成素子から拡がりながら出射する前記信号光について前記受光レンズによって前記通常よりも大きい開き角度を変更させコリメートした後、正反射させる穴付きミラーと、
前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付きミラーによって正反射されて逆方向に進む信号光とを分離する手段と、
を備え
前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付きミラーによって正反射されて逆方向に進む信号光とを、それぞれシングルモード光ファイバーに結合させる
(1) a light absorbing layer disposed so that at least the control light is focused;
Means for converging and irradiating at least the light absorption layer with control light having a wavelength selected from a wavelength band absorbed by the light absorption layer and signal light having a wavelength selected from a wavelength band not absorbed by the light absorption layer When,
By using a thermal lens that includes the light absorption layer and is based on a refractive index distribution that is reversibly formed due to a temperature rise that occurs in the region where the control light has absorbed the control light and the surrounding region. When the control lens is not irradiated and a thermal lens is not formed, the converged signal light is emitted at a normal opening angle, and when the control lens is irradiated and a thermal lens is formed, the converged signal is emitted. A thermal lens forming element that realizes a state in which light is emitted at an opening angle larger than a normal opening angle in correspondence with the presence or absence of irradiation of the control light;
A mirror provided with a hole through which the signal light emitted from the thermal lens forming element at a normal opening angle is collimated by changing the normal opening angle by a light receiving lens, and has a larger opening angle than usual. A mirror with a hole that makes regular reflection after changing and collimating the signal light emitted from the thermal lens forming element while spreading from the light receiving lens with a larger opening angle than the normal.
Means for separating the signal light traveling in the direction first incident on the thermal lens forming element and the signal light traveling in the reverse direction after being regularly reflected by the holed mirror;
Equipped with a,
Signal light traveling in the direction first incident on the thermal lens forming element and signal light traveling in the reverse direction after being regularly reflected by the holed mirror are respectively coupled to the single mode optical fiber .

(2)前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付きミラーによって正反射されて逆方向に進む信号光とを分離する手段として、さらに、
前記受光レンズと前記穴付きミラーの間に設けられた、通常の開き角度で前記熱レンズ形成素子から出射する前記信号光について受光レンズによって前記通常の開き角度を変更させコリメートした後、通過させる穴を設けた1/4波長板と、
前記1/4波長板を通過したのち前記穴付きミラーで正反射され、再度前記穴付1/4波長板を通過することによって偏光面が90度回転した信号光を選択して反射させるために、設けられた偏光ビームスプリッターとを有する。
(2) As means for separating the signal light traveling in the direction first incident on the thermal lens forming element and the signal light traveling in the reverse direction after being regularly reflected by the holed mirror,
A hole provided between the light receiving lens and the mirror with a hole, through which the signal light emitted from the thermal lens forming element at a normal opening angle is collimated by changing the normal opening angle by the light receiving lens. A quarter wave plate provided with
In order to selectively reflect the signal light whose polarization plane is rotated 90 degrees by passing through the quarter-wave plate and then being regularly reflected by the mirror with the hole, and passing through the quarter-wave plate with the hole again. And a polarizing beam splitter provided.

(3)前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付きミラーで正反射されて逆方向に進む信号光とを分離する手段は、光サーキュレーターである。   (3) The means for separating the signal light traveling in the direction first incident on the thermal lens forming element and the signal light traveling in the reverse direction after being regularly reflected by the holed mirror is an optical circulator.

本発明の光路切替方法は、また、以下の特徴を有する。   The optical path switching method of the present invention also has the following characteristics.

(4)少なくとも光吸収層を含む熱レンズ形成素子中の光吸収層に、前記光吸収層が吸収する波長帯域から選ばれる波長の制御光と、前記光吸収層が吸収しない波長帯域から選ばれる波長の信号光とを各々収束させて照射し、少なくとも前記制御光が前記光吸収層内において焦点を結ぶように前記光吸収層の配置を調整し、前記光吸収層が前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因して可逆的に生ずる屈折率の分布に基づいた熱レンズを用いることによって、制御光が照射されず熱レンズが形成されない場合は前記収束された信号光が通常の開き角度で前記熱レンズ形成素子から出射する状態と、制御光が照射されて熱レンズが形成される場合は前記収束された信号光が通常の開き角度よりも大きい開き角度で前記熱レンズ形成素子から出射する状態とを、前記制御光の照射の有無に対応させて実現させ、
制御光が照射されず熱レンズが形成されない場合は、通常の開き角度で前記熱レンズ形成素子から出射する前記信号光を受光レンズによって前記通常の開き角度を変更させコリメートした後、前記信号光が通過する穴を設けた穴付きミラーの穴を通して直進させ、
一方、制御光が照射されて熱レンズが形成される場合は、通常よりも大きい開き角度で前記熱レンズ形成素子から拡がりながら出射する前記信号光を受光レンズによって前記拡がりの開き角度を変更させコリメートした後、前記穴付きミラーの反射面を用いて正反射させ、
更に、前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付きミラーで正反射されて逆方向に進む信号光とを分離することによって光路を変更させ
前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付きミラーによって正反射されて逆方向に進む信号光とを、それぞれシングルモード光ファイバーに結合させ、シングルモード光ファイバーへの結合効率を高める
(4) The light absorbing layer in the thermal lens forming element including at least the light absorbing layer is selected from the control light having a wavelength selected from the wavelength band absorbed by the light absorbing layer and the wavelength band not absorbed by the light absorbing layer. The signal light of the wavelength is converged and irradiated, and the arrangement of the light absorption layer is adjusted so that at least the control light is focused in the light absorption layer, and the light absorption layer absorbs the control light When a thermal lens is used that is not irradiated with control light and a thermal lens is formed by using a thermal lens based on a refractive index distribution that occurs reversibly due to a temperature rise that occurs in the region and its surrounding region, the converged signal light Is emitted from the thermal lens forming element at a normal opening angle, and when a control lens is irradiated to form a thermal lens, the converged signal light has a front opening angle larger than the normal opening angle. And a state of emitting the thermal lens forming device, is realized in correspondence to the presence or absence of irradiation of the control light,
When the control light is not irradiated and a thermal lens is not formed, the signal light emitted from the thermal lens forming element at a normal opening angle is collimated by changing the normal opening angle by a light receiving lens, and then the signal light is Go straight through the hole in the mirror with a hole that has a hole to pass through,
On the other hand, when a thermal lens is formed by irradiation with control light, the signal light emitted while spreading from the thermal lens forming element with a larger opening angle than usual is changed by the light receiving lens to change the opening angle of the spreading. After that, regular reflection using the reflective surface of the mirror with a hole,
Furthermore, the optical path is changed by separating the signal light that travels in the direction first incident on the thermal lens forming element and the signal light that is specularly reflected by the mirror with holes and travels in the reverse direction ,
The signal light traveling in the direction first incident on the thermal lens forming element and the signal light traveling in the opposite direction after being regularly reflected by the holed mirror are coupled to the single mode optical fiber, respectively, and coupled to the single mode optical fiber. To increase .

(5)前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴を設けた鏡で正反射されて逆方向に進む信号光とを分離するにあたり、前記穴付きミラーで正反射されて逆方向に進む信号光を1/4波長板を用いて偏光面を90度回転させ、偏光面が90度回転した信号光を偏光ビームスプリッターを用いて取り出す。   (5) When separating the signal light that travels in the direction first incident on the thermal lens forming element and the signal light that is specularly reflected by the mirror provided with the hole and proceeds in the reverse direction, it is specularly reflected by the mirror with the hole. Then, the signal light traveling in the reverse direction is rotated by 90 degrees using the quarter wavelength plate, and the signal light having the polarization plane rotated by 90 degrees is taken out by using the polarization beam splitter.

(6)前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付ミラーで正反射されて逆方向に進む信号光とを分離するにあたり、光サーキュレーターを用いて取り出す。   (6) In order to separate the signal light traveling in the direction first incident on the thermal lens forming element and the signal light traveling in the reverse direction after being regularly reflected by the mirror with holes, it is extracted using an optical circulator.

本発明の装置および方法によって、熱レンズ効果によってビーム断面の形状が「ドーナツ形」に変換された信号光を、簡潔な光学系によって、ビーム断面のエネルギー分布を概ねガウス分布に変換すること、および、シングルモード光ファイバーへの結合効率を高めること、ができる。   By the apparatus and method of the present invention, the signal light whose beam cross-sectional shape has been converted to a “doughnut shape” by the thermal lens effect is converted into a substantially Gaussian distribution by the simple optical system, and The coupling efficiency to a single mode optical fiber can be increased.

(第1の実施の形態)
図1は本発明の第1の実施形態にかかる概略構成例である。本発明の第1の実施の形態は、図1に概要を例示するように入射信号光の光ファイバー100と、信号光をほぼ平行光にするコリメートレンズ30と、入射制御光の光ファイバー200と、入射信号光は透過するが光路切替され戻ってきた信号光は反射する偏光ビームスプリッター20と、制御光をほぼ平行光にするコリメートレンズ31と、制御光を反射させるミラー41と、信号光と制御光とを合わせるダイクロイックミラー40と、熱レンズ形成素子10と、信号光1と制御光2とを熱レンズ形成素子10の光吸収層15に集光する集光手段である集光レンズ50と、熱レンズ形成素子10を透過した光をほぼ平行光にする受光レンズ60と、制御光が照射されリング状に拡がり光路が切替された信号光6を円偏光にする穴付1/4波長板70と、制御光が照射されリング状に拡がり光路が切替された信号光6を反射する穴付ミラー80と、直進信号光の光ファイバー111と、制御光が照射されない場合に直進する信号光5を集光し、収束光101として直進信号光の光ファイバー111に結合させる集光レンズ90と、光路切替された信号光の光ファイバー112と、制御光が照射されリング状に拡がり光路が切替された穴付ミラー80で反射され、受光レンズ60、熱レンズ形成素子10、集光レンズ50、ダイクロイックミラー40を経て、偏向ビームスプリッター20により反射されてきた信号光を集光し、収束光102として光路切替された信号光の光ファイバー112に集光する集光レンズ91とを有する。光学系配置の必要に応じて、例えば図1に示すように、穴付きミラー80により反射された信号光を光ファイバー112に導くため、偏光ビームスプリッター20から出射する信号光を反射するミラー42を光路上に設けても良く、図1に記載したミラー41を設けずに、制御光2を直接、ダイクロイックミラー40に入射させても良い。
(First embodiment)
FIG. 1 is a schematic configuration example according to the first embodiment of the present invention. As illustrated in FIG. 1, the first embodiment of the present invention includes an optical fiber 100 for incident signal light, a collimating lens 30 for making the signal light substantially parallel, an optical fiber 200 for incident control light, and an incident light. A polarizing beam splitter 20 that transmits signal light but reflects signal light that has been switched back and reflected, a collimating lens 31 that makes control light substantially parallel light, a mirror 41 that reflects control light, and signal light and control light. The dichroic mirror 40, the thermal lens forming element 10, the condensing lens 50 as a condensing means for condensing the signal light 1 and the control light 2 on the light absorption layer 15 of the thermal lens forming element 10, and the heat. A light receiving lens 60 that makes the light transmitted through the lens forming element 10 substantially parallel light, and a 1/4 wave with a hole that makes the signal light 6 that is irradiated with control light and spreads in a ring shape and whose optical path is switched circularly polarized. A plate 70, a mirror 80 with a hole that reflects the signal light 6 that is irradiated with the control light and spreads in a ring shape and whose optical path is switched, the optical fiber 111 of the straight signal light, and the signal light 5 that goes straight when the control light is not irradiated , And a converging lens 90 for converging to the optical fiber 111 of the straight-ahead signal light as the convergent light 101, the optical fiber 112 of the signal light whose optical path has been switched, and the hole in which the control light is irradiated and spread in a ring shape and the optical path is switched The signal light reflected by the attached mirror 80, reflected by the deflecting beam splitter 20 through the light receiving lens 60, the thermal lens forming element 10, the condensing lens 50, and the dichroic mirror 40 is condensed, and the optical path is switched as convergent light 102. And a condensing lens 91 that condenses the signal light that has been collected onto the optical fiber 112. As shown in FIG. 1, for example, as shown in FIG. 1, in order to guide the signal light reflected by the holed mirror 80 to the optical fiber 112, the mirror 42 that reflects the signal light emitted from the polarization beam splitter 20 The control light 2 may be directly incident on the dichroic mirror 40 without providing the mirror 41 described in FIG.

図1において、入射信号光の光ファイバー100は偏波面保存光ファイバーを用いた。信号光1の光源としては発振波長780nmのレーザーダイオードを用い、波長780nmを伝送可能な信号光の光ファイバー100を通して入射させた。また、制御光2の光源としては発振波長660nmのレーザーダイオードを用い、波長660nmを伝送可能な入射制御光の光ファイバー200を通して入射させた。コリメートレンズ30と31には、焦点距離8mmの非球面レンズを用いた。偏光ビームスプリッター20においては、非偏光状態の入射信号光1は透過し、一方、光路切替され逆行してくる、偏光面が90度回転した信号光7は反射する様にした。ダイクロイックミラー40は、780nmの信号光1および7は透過するが660nmの制御光2は反射する様にした。言うまでもなく、信号光と制御光の位置を逆にし、780nmの信号光は反射し、660nmの制御光は透過するようにしても良い。   In FIG. 1, a polarization-preserving optical fiber is used as the optical fiber 100 for incident signal light. A laser diode having an oscillation wavelength of 780 nm was used as the light source of the signal light 1 and was incident through the optical fiber 100 of signal light capable of transmitting the wavelength of 780 nm. Further, a laser diode having an oscillation wavelength of 660 nm was used as the light source of the control light 2 and was incident through the optical fiber 200 of incident control light capable of transmitting the wavelength of 660 nm. As the collimating lenses 30 and 31, aspherical lenses having a focal length of 8 mm were used. In the polarization beam splitter 20, the incident signal light 1 in a non-polarized state is transmitted, while the signal light 7 whose polarization plane is rotated by 90 degrees, which is reversed by switching the optical path, is reflected. The dichroic mirror 40 transmits the 780 nm signal lights 1 and 7 but reflects the 660 nm control light 2. Needless to say, the positions of the signal light and the control light may be reversed so that the signal light of 780 nm is reflected and the control light of 660 nm is transmitted.

制御光1と信号光2は、焦点距離8mmの集光レンズ50により熱レンズ形成素子10の光吸収層の入射面またはその近辺で同一のところに集光する様にした。   The control light 1 and the signal light 2 are condensed at the same place on or near the incident surface of the light absorption layer of the thermal lens forming element 10 by a condensing lens 50 having a focal length of 8 mm.

熱レンズ形成素子10としては、直径10mm厚さ1mmの石英ガラスの丸板に直径10mm内径8mmのリング状石英ガラスを溶融・接着したものを精密研磨して、厚さ100μmの液膜を保持できるように加工したものへ、後述の色素溶液を入れ、もう1枚の直径10mm厚さ1mmの石英ガラスを紫外線硬化樹脂で接着したものを用いた。   The thermal lens forming element 10 can hold a liquid film having a thickness of 100 μm by precisely polishing a quartz glass round plate having a diameter of 10 mm and a thickness of 1 mm fused and bonded to a ring-shaped quartz glass having a diameter of 10 mm and an inner diameter of 8 mm. The dye solution described later was put into the product processed as described above, and another quartz glass having a diameter of 10 mm and a thickness of 1 mm was bonded with an ultraviolet curable resin.

熱レンズ形成素子10の光吸収層15としては、フタロシアニン系色素、銅(II)2,9,16,23−テトラ−tert−ブチル−29H,31H−フタロシアニン(Copper(II)2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine)を色素濃度0.5重量%で1,2-ジクロロベンゼン中に溶解したものを用いた。光吸収層15の吸光度スペクトルを図5に示す。   The light absorption layer 15 of the thermal lens forming element 10 includes a phthalocyanine dye, copper (II) 2,9,16,23-tetra-tert-butyl-29H, 31H-phthalocyanine (Copper (II) 2,9,16 , 23-tetra-tert-butyl-29H, 31H-phthalocyanine) dissolved in 1,2-dichlorobenzene at a pigment concentration of 0.5% by weight. The absorbance spectrum of the light absorption layer 15 is shown in FIG.

制御光2が照射されない場合は、信号光1は熱レンズ形成素子10をそのまま通過し、受光レンズ60と集光レンズ90とで、直進信号光の光ファイバー111に結合される。制御光2が照射されない場合の信号光5は、穴付1/4波長板70および穴付ミラー80の各々に設けられた穴を通過して前記集光レンズ90に入射する。受光レンズ60は焦点距離8mmの非球面レンズを、集光レンズ90は焦点距離13mmの非球面レンズを用いた。穴付1/4波長板70と穴付ミラー80の穴径は、制御光が照射されない場合の信号光が殆ど蹴られることなく通過するよう、制御光2が照射されない状態で受光レンズ60を通過する信号光のビーム径に対し、10ないし20%大きくなるよう調整した。   When the control light 2 is not irradiated, the signal light 1 passes through the thermal lens forming element 10 as it is, and is coupled to the optical fiber 111 of the straight signal light by the light receiving lens 60 and the condenser lens 90. When the control light 2 is not irradiated, the signal light 5 passes through holes provided in each of the quarter-wave plate 70 with holes and the mirror 80 with holes and enters the condenser lens 90. The light receiving lens 60 was an aspherical lens having a focal length of 8 mm, and the condenser lens 90 was an aspherical lens having a focal length of 13 mm. The hole diameters of the quarter-wave plate 70 with a hole and the mirror 80 with a hole pass through the light-receiving lens 60 in a state where the control light 2 is not irradiated so that the signal light passes without being kicked when the control light is not irradiated. It was adjusted to be 10 to 20% larger than the beam diameter of the signal light.

制御光2が照射されると、信号光6はリング状に拡がり、穴付1/4波長板70を通過し円偏光となり、穴付ミラー80で反射し、再び穴付1/4波長板70を通過し偏光面が90度回転した直線偏光となる。そして、受光レンズ60、熱レンズ形成素子10、集光レンズ50を入射の時と逆にたどり、逆行信号光7として偏光ビームスプリッター20で反射され、ミラー42で方向を変えた後、集光レンズ91で光路切替された信号光の光ファイバー112に集光する。集光レンズ91も焦点距離13mmの非球面レンズを用いた。穴付ミラー80で反射した光は入射光が進んできたところを逆にたどれるように、受光レンズ60の立体配置および穴付ミラー80の角度を精密に調整をした。受光レンズでの位置および穴付ミラー80の角度調整を正確に行うと、リング状に拡がった信号光は、再び元の入射とほぼ同じ円ビームに戻り、光路切替された信号光の光ファイバー112への入射効率が高くなった。ビームプロファイラーを用いて、光路切替された信号光の光ファイバー112へ入射する信号光のビーム断面エネルギー分布を測定したところ、概ねガウス分布に戻っていることが確認された。   When the control light 2 is irradiated, the signal light 6 spreads in a ring shape, passes through the holed quarter-wave plate 70, becomes circularly polarized light, is reflected by the holed mirror 80, and is again formed with the holed quarter-wave plate 70. And the polarization plane of the light becomes linearly polarized light rotated 90 degrees. Then, the light receiving lens 60, the thermal lens forming element 10, and the condenser lens 50 are traced in reverse to the incident time, reflected as the backward signal light 7 by the polarization beam splitter 20, changed in direction by the mirror 42, and then the condenser lens. The signal light whose optical path has been switched in 91 is condensed on the optical fiber 112. The condensing lens 91 is also an aspheric lens having a focal length of 13 mm. The three-dimensional arrangement of the light receiving lens 60 and the angle of the mirror with holes 80 were precisely adjusted so that the light reflected by the mirror with holes 80 traces the place where the incident light traveled. If the position of the light receiving lens and the angle of the mirror 80 with a hole are accurately adjusted, the signal light spread in a ring shape returns to the same circular beam as the original incident again, and the optical path 112 of the signal light whose optical path has been switched is returned. Incidence efficiency increased. When the beam cross-sectional energy distribution of the signal light incident on the optical fiber 112 of the signal light whose optical path was switched was measured using a beam profiler, it was confirmed that the signal light returned to a Gaussian distribution.

表1に測定データを示す。No.1は、制御光を入射せず、直進する信号光5を直進信号光の光ファイバー111に収束入射させた場合である。No.2は、比較例1として、制御光を入射させリング形状のビームにした後、図1の穴付1/4波長板70と穴付ミラー80を取り除き、直進信号光の光ファイバー111に入射させた場合である。詳細は後に述べる。No.3は、本実施形態のようにし、光路切替された信号光の光ファイバー112へ入射させた場合である。なお、直進信号光の光ファイバー111および光路切替された信号光の光ファイバー112は、コアー径約6μmのシングルモード石英ファイバーである。   Table 1 shows the measurement data. No. Reference numeral 1 denotes a case where the control light is not incident and the straight traveling signal light 5 is converged and incident on the optical fiber 111 of the straight traveling signal light. No. 2, as Comparative Example 1, after making the control light incident into a ring-shaped beam, the quarter-wave plate 70 with a hole and the mirror with a hole 80 in FIG. 1 were removed, and the straight signal light was made incident on the optical fiber 111. Is the case. Details will be described later. No. Reference numeral 3 denotes a case where the signal light whose optical path is switched is incident on the optical fiber 112 as in the present embodiment. The optical fiber 111 for straight signal light and the optical fiber 112 for signal light whose optical path has been switched are single mode quartz fibers having a core diameter of about 6 μm.

Figure 0004730257
Figure 0004730257

(第2の実施の形態)
図2は本発明の第2の実施形態にかかる光路切替装置の概略構成例である。本発明の第2の実施の形態において、第1の実施の形態と同じ光学部材については、同一の番号を付けた。
(Second Embodiment)
FIG. 2 is a schematic configuration example of an optical path switching apparatus according to the second embodiment of the present invention. In the second embodiment of the present invention, the same optical members as those in the first embodiment are given the same numbers.

図2において、図1と異なるところは、偏光ビームスプリッター20、集光レンズ91、および、1/4波長板70を用いず、代わりに、光サーキュレーター300を用いることである。   2 is different from FIG. 1 in that the polarizing beam splitter 20, the condensing lens 91, and the quarter-wave plate 70 are not used, and an optical circulator 300 is used instead.

一般的には、光を一方向のみ通すデバイス「光アイソレータ」としては、偏光を利用したものが使われている。ここで、光アイソレータを3個以上リング状に接続すると、一方の回転方向には透過するが逆方向には透過しないようにすることができる。これを「光サーキュレーター」と呼ぶ。   In general, as a device “optical isolator” that allows light to pass only in one direction, a device using polarized light is used. Here, when three or more optical isolators are connected in a ring shape, the light can be transmitted in one rotational direction but not transmitted in the reverse direction. This is called “optical circulator”.

図2において、入射信号光の光ファイバー100はコアー径約9.5μmシングルモード石英ファイバーを用いた。   In FIG. 2, an optical fiber 100 for incident signal light is a single mode quartz fiber having a core diameter of about 9.5 μm.

信号光の光源としては発振波長1550nmのレーザーダイオードを用い、これを信号光の光ファイバー100から入射させ、一方、制御光の光源としては発振波長980nmのレーザーダイオードを用い、これを入射制御光の光ファイバー200から入射させた。コリメートレンズ30と31には、焦点距離8mmの非球面レンズを用いた。ダイクロイックミラー40は、1550nmの信号光は透過するが980nmの制御光は反射する様にした。言うまでもなく、信号光と制御光の位置を逆にし、1550nmの信号光は反射し980nmの制御光は透過するようにしても良い。   A laser diode with an oscillation wavelength of 1550 nm is used as the light source for signal light, and this is made incident from the optical fiber 100 for signal light. On the other hand, a laser diode with an oscillation wavelength of 980 nm is used as the light source for control light. 200. As the collimating lenses 30 and 31, aspherical lenses having a focal length of 8 mm were used. The dichroic mirror 40 transmits 1550 nm signal light but reflects 980 nm control light. Needless to say, the positions of the signal light and the control light may be reversed so that the signal light of 1550 nm is reflected and the control light of 980 nm is transmitted.

制御光1と信号光2は、焦点距離8mmの集光レンズ50により熱レンズ形成素子10の光吸収層の入射面またはその近辺で同一のところに集光する様にした。熱レンズ形成素子10の光吸収層15としては、赤外線吸収シアニン色素の8-[2-Chloro-3-(2,4-diphenyl-6,7-dihydro-5H-chromone-8-ylmethylene)-cyclohex-1-enylmethylene]-2,4-diphenyl-5,6,7,8-tetorahydro-chromenylium perchlorateを1,2-ジクロロベンゼンに0.2重量%で溶解させたものを、セルギャップ500μmの石英セルに充填して用いた。   The control light 1 and the signal light 2 are condensed at the same place on or near the incident surface of the light absorption layer of the thermal lens forming element 10 by a condensing lens 50 having a focal length of 8 mm. As the light absorption layer 15 of the thermal lens forming element 10, infrared absorbing cyanine dye 8- [2-Chloro-3- (2,4-diphenyl-6,7-dihydro-5H-chromone-8-ylmethylene) -cyclohex -1-enylmethylene] -2,4-diphenyl-5,6,7,8-tetorahydro-chromenylium perchlorate dissolved in 1,2-dichlorobenzene at 0.2% by weight, a quartz cell with a cell gap of 500 μm And used.

制御光が照射されない場合は、信号光5は熱レンズ形成素子10をそのまま通過し、受光レンズ60と集光レンズ90とで、直進信号光の光ファイバー111に集光する。制御光が照射されない場合の信号光5は、穴付ミラー80の穴を通過する。受光レンズ60は焦点距離8mmの非球面レンズを、集光レンズ90は焦点距離13mmの非球面レンズを用いた。穴付ミラー80の穴径は、4mmφにした。   When the control light is not irradiated, the signal light 5 passes through the thermal lens forming element 10 as it is, and is condensed by the light receiving lens 60 and the condensing lens 90 onto the optical fiber 111 of the straight signal light. When the control light is not irradiated, the signal light 5 passes through the hole of the holed mirror 80. The light receiving lens 60 was an aspherical lens having a focal length of 8 mm, and the condenser lens 90 was an aspherical lens having a focal length of 13 mm. The hole diameter of the holed mirror 80 was 4 mmφ.

制御光が照射されると、信号光6はリング状に拡がり、穴付ミラー80で反射し、そして、受光レンズ60、熱レンズ形成素子10、集光レンズ50を入射の時と逆にたどり、逆行信号光7として光サーキュレーター300に入射し、最終的に光路切替された信号光の光ファイバー112に入射する。穴付ミラー80で反射した光は入射光が進んできたところを逆にたどれるように、受光レンズ60の位置および穴付ミラー80の角度調整をした。受光レンズ60の位置および穴付ミラー80の角度調整を正確に行うと、リング状に拡がった信号光は、再び元の入射とほぼ同じ円ビームに戻り、光サーキュレーター300で光路切替された信号光の光ファイバー112への入射効率は、上記第1の実施形態の場合と同等に高くなった。   When the control light is irradiated, the signal light 6 spreads in a ring shape, is reflected by the mirror 80 with a hole, and follows the light receiving lens 60, the thermal lens forming element 10, and the condenser lens 50 in reverse to the incident time, It enters the optical circulator 300 as the retrograde signal light 7 and finally enters the optical fiber 112 of the signal light whose optical path has been switched. The position of the light receiving lens 60 and the angle of the mirror 80 with a hole were adjusted so that the light reflected by the mirror 80 with a hole traces the place where the incident light has traveled. When the position of the light receiving lens 60 and the angle of the mirror 80 with a hole are accurately adjusted, the signal light expanded in a ring shape returns to the same circular beam as the original incident again, and the signal light whose optical path has been switched by the optical circulator 300. The incident efficiency on the optical fiber 112 was as high as in the case of the first embodiment.

(比較例1)
特許文献1に記載の穴付ミラー400を用いる光路切替装置の概略構成図を図3に示す。なお、上記第1,第2の実施の形態で説明した構成には同一符号を付し、その説明を省略する。
(Comparative Example 1)
FIG. 3 shows a schematic configuration diagram of an optical path switching device using the mirror 400 with a hole described in Patent Document 1. In addition, the same code | symbol is attached | subjected to the structure demonstrated in the said 1st, 2nd embodiment, and the description is abbreviate | omitted.

図3に概要を例示するように入射信号光の光ファイバー100と、信号光をほぼ平行光にするコリメートレンズ30と、入射制御光の光ファイバー200と、制御光をほぼ平行光にするコリメートレンズ31と、制御光を反射させるミラー41と、信号光と制御光とを合わせるダイクロイックミラー40と、信号光1と制御光2とを熱レンズ形成素子10の光吸収層15に集光する集光手段である集光レンズ50と、熱レンズ形成素子10と、熱レンズ形成素子10を透過した光をほぼ平行光にする受光レンズ60と、制御光が照射されリング状に拡がり光路が切替された信号光6を反射する穴付ミラー400と、直進信号光の光ファイバー111と、制御光が照射されない場合に直進する信号光5を集光し、収束光101として直進信号光の光ファイバー111に結合させる集光レンズ90と、光路切替された信号光の光ファイバー112と、制御光が照射されリング状に拡がり、光路が切替された穴付ミラー400で反射してきた信号光を集光させる集光レンズ91と、集光レンズ91により集光され収束光102が入射される信号光の光ファイバー112と、を有する。   As schematically illustrated in FIG. 3, an optical fiber 100 for incident signal light, a collimating lens 30 for making the signal light substantially parallel, an optical fiber 200 for incident control light, and a collimating lens 31 for making the control light substantially parallel. A mirror 41 for reflecting the control light, a dichroic mirror 40 for combining the signal light and the control light, and a condensing means for condensing the signal light 1 and the control light 2 on the light absorption layer 15 of the thermal lens forming element 10. A condensing lens 50, a thermal lens forming element 10, a light receiving lens 60 that makes light transmitted through the thermal lens forming element 10 substantially parallel light, and a signal light that is irradiated with control light and spreads in a ring shape and whose optical path is switched. 6, a mirror 400 with a hole for reflecting 6, an optical fiber 111 for straight signal light, and the signal light 5 that travels straight when the control light is not irradiated are collected, and the straight signal light is used as convergent light 101. The condensing lens 90 coupled to the optical fiber 111, the optical fiber 112 of the signal light whose optical path has been switched, and the control light is irradiated and spread in a ring shape, and the signal light reflected by the mirror 400 with the hole whose optical path has been switched is condensed. A condensing lens 91 to be collected, and an optical fiber 112 for signal light that is collected by the condensing lens 91 and into which the convergent light 102 enters.

図3において、信号光1の光源としては発振波長780nmのレーザーダイオードを用い、波長780nmを伝送可能な信号光の光ファイバー100を通して入射させた。たま、制御光2の光源としては発振波長660nmのレーザーダイオードを用い、波長660nmを伝送可能な入射制御光の光ファイバー200を通して入射させた。コリメートレンズ30と31には、焦点距離8mmの非球面レンズを用いた。ダイクロイックミラー40は、780nmの信号光1および7は透過するが660nmの制御光2は反射する様にした。   In FIG. 3, a laser diode having an oscillation wavelength of 780 nm is used as the light source of the signal light 1 and is incident through the optical fiber 100 of signal light capable of transmitting the wavelength of 780 nm. In addition, a laser diode having an oscillation wavelength of 660 nm was used as the light source of the control light 2 and was incident through the optical fiber 200 of incident control light capable of transmitting the wavelength of 660 nm. As the collimating lenses 30 and 31, aspherical lenses having a focal length of 8 mm were used. The dichroic mirror 40 transmits the 780 nm signal lights 1 and 7 but reflects the 660 nm control light 2.

制御光1と信号光2は、焦点距離8mmの集光レンズ50により熱レンズ形成素子10の光吸収層の入射面またはその近辺で同一のところに集光する様にした。   The control light 1 and the signal light 2 are condensed at the same place on or near the incident surface of the light absorption layer of the thermal lens forming element 10 by a condensing lens 50 having a focal length of 8 mm.

熱レンズ形成素子10および光吸収層15としては、第1の実施の形態に記載したものと同じものを用いた。   As the thermal lens forming element 10 and the light absorption layer 15, the same ones as described in the first embodiment were used.

制御光2が照射されない場合は、信号光1は熱レンズ形成素子10をそのまま通過し、受光レンズ60と集光レンズ90とで、直進信号光の光ファイバー111に結合される。制御光2が照射されない場合の信号光5は、穴付ミラー400に設けられた穴401を通過し、更に制御光の漏れ光を反射させるダイクロイックミラー48を透過して前記集光レンズ90に入射する。受光レンズ60は焦点距離8mmの非球面レンズを、集光レンズ90は焦点距離13mmの非球面レンズを用いた。穴付ミラー400の穴401の径は、制御光が照射されない場合の信号光が殆ど蹴られることなく通過するよう、制御光2が照射されない状態で受光レンズ60を通過する信号光のビーム径に対し、10ないし20%大きくなるよう調整した。   When the control light 2 is not irradiated, the signal light 1 passes through the thermal lens forming element 10 as it is, and is coupled to the optical fiber 111 of the straight signal light by the light receiving lens 60 and the condenser lens 90. When the control light 2 is not irradiated, the signal light 5 passes through the hole 401 provided in the mirror 400 with a hole, and further passes through the dichroic mirror 48 that reflects the leakage light of the control light and enters the condenser lens 90. To do. The light receiving lens 60 was an aspherical lens having a focal length of 8 mm, and the condenser lens 90 was an aspherical lens having a focal length of 13 mm. The diameter of the hole 401 of the mirror with hole 400 is the beam diameter of the signal light that passes through the light receiving lens 60 in a state where the control light 2 is not irradiated so that the signal light passes when the control light is not irradiated is hardly kicked. On the other hand, it was adjusted to be 10 to 20% larger.

制御光2が照射されると、信号光6はリング状に拡がり、受光レンズ60にてコリメートされた後、光学系配置の必要上設けられるミラー46で方向を変えた後、集光レンズ91にて集光され、光路切替された信号光の光ファイバー112に結合される。集光レンズ91も焦点距離13mmの非球面レンズを用いた。   When the control light 2 is irradiated, the signal light 6 spreads in a ring shape, collimated by the light receiving lens 60, and then changed in direction by a mirror 46 that is provided for the arrangement of the optical system, and then applied to the condenser lens 91. Then, the light is condensed and coupled to the optical fiber 112 of the signal light whose optical path has been switched. The condensing lens 91 is also an aspheric lens having a focal length of 13 mm.

本比較例の場合の光ファイバー結合効率の実験結果は、表1.No.2に示すように、第1,第2の実施形態に比べ、著しく劣るものであった。   The experimental results of the optical fiber coupling efficiency in this comparative example are shown in Table 1. No. As shown in FIG. 2, it was significantly inferior to the first and second embodiments.

(比較例2)
比較例2の光路切替装置の概略構成を図4に示す。なお、上記第1,第2の実施の形態及び比較例1にて、説明した構成には同一符号を付し、その説明を省略する。
(Comparative Example 2)
A schematic configuration of the optical path switching device of Comparative Example 2 is shown in FIG. In addition, the same code | symbol is attached | subjected to the structure demonstrated in the said 1st, 2nd embodiment and the comparative example 1, and the description is abbreviate | omitted.

比較例1において、リング状に広がった信号光に、ダイクロイックミラー45を用いて、第2の制御光の光ファイバーから出射した波長660nmのレーザー光をコリメートレンズ32によってコリメートした制御光を重ね合わせ、第2の集光レンズ51にて集光し、第2の熱レンズ形成素子11の光吸収層16の信号光出射面またはその近傍へ収束入射光8および9として入射させた。なお、第2の熱レンズ形成素子11および光吸収層16としては、第1の実施の形態にて説明した熱レンズ形成素子10および光吸収層15と同じものを用いた。   In Comparative Example 1, the control light obtained by collimating the laser light having a wavelength of 660 nm emitted from the optical fiber of the second control light with the collimating lens 32 is superimposed on the signal light spread in a ring shape by using the dichroic mirror 45. Condensed by the second condenser lens 51 and made incident as convergent incident light 8 and 9 on the signal light emitting surface of the light absorption layer 16 of the second thermal lens forming element 11 or its vicinity. In addition, as the 2nd thermal lens formation element 11 and the light absorption layer 16, the same thing as the thermal lens formation element 10 and the light absorption layer 15 which were demonstrated in 1st Embodiment was used.

第2の制御光によって光吸収層16内部に形成される熱レンズによって、信号光ビームは概ねガウス分布に変換され、受光レンズ61および集光レンズ91を経由して光路切替された信号光102として光路切替された信号光の光ファイバー112へ収束入射させられる際の光ファイバー結合効率は、本発明の第1の実施形態の場合と、ほぼ同等であった。   The signal light beam is converted into a Gaussian distribution by the thermal lens formed inside the light absorption layer 16 by the second control light, and the signal light 102 is switched in the optical path via the light receiving lens 61 and the condenser lens 91. The optical fiber coupling efficiency when the signal light whose optical path has been switched is converged and incident on the optical fiber 112 was substantially the same as that of the first embodiment of the present invention.

同等の性能を示す比較例2に比較して、本発明の第1の実施形態には、以下に列挙するようなメリットがある。すなわち、
(i)第2の制御光にかかる光学部品一式(光源、光ファイバー220、コリメートレンズ32、ミラー47)が不要となる。
(ii)第2の熱レンズにかかる光学部品一式(集光レンズ51、熱レンズ形成素子11、受光レンズ61)が不要となる。
(iii)上記の光学部品を精密に調整する必要がない。
Compared to Comparative Example 2 that shows equivalent performance, the first embodiment of the present invention has the following merits. That is,
(I) A set of optical components (light source, optical fiber 220, collimating lens 32, mirror 47) related to the second control light is not necessary.
(Ii) A set of optical components (the condensing lens 51, the thermal lens forming element 11, and the light receiving lens 61) related to the second thermal lens is not necessary.
(Iii) It is not necessary to precisely adjust the above optical components.

本発明の光路切替装置および光路切替方法は、例えば、企業のオフィス、工場、病院、一般家庭などにおいて、高精細画像データおよび高精細動画データなどの大容量デジタル情報を、サーバーから複数のクライアントの特定の1箇所を選択し、光路を切り替えて高速に配信するシステムにおいて好適に使用される。   The optical path switching device and the optical path switching method of the present invention can be used to transfer large-capacity digital information such as high-definition image data and high-definition video data from a server to a plurality of clients in a corporate office, factory, hospital, general home, and the like. It is suitably used in a system that selects a specific location and switches the optical path to deliver at high speed.

本発明の第1の実施の形態の光路切替装置の概念図である。It is a conceptual diagram of the optical path switching apparatus of the 1st Embodiment of this invention. 本発明の第2の実施の形態の光路切替装置の概念図である。It is a conceptual diagram of the optical path switching apparatus of the 2nd Embodiment of this invention. 比較例1の光路切替装置の概念図である。It is a conceptual diagram of the optical path switching apparatus of the comparative example 1. 比較例2の光路切替装置の概念図である。It is a conceptual diagram of the optical path switching apparatus of the comparative example 2. 実施形態1で使用した熱レンズ形成素子(光吸収層)の透過率スペクトルを表した図である。It is a figure showing the transmittance | permeability spectrum of the thermal lens formation element (light absorption layer) used in Embodiment 1. FIG.

符号の説明Explanation of symbols

1 信号光、2,3 制御光、4 収束入射する制御光および信号光、5 直進出射信号光、6 リング状に拡がる出射信号光、7 光路切替された逆行信号光、8 収束入射するリング状出射信号光、9 収束入射する第2の制御光、10,11 熱レンズ形成素子、15,16 光吸収層、20 偏光ビームスプリッター、30,31,32 コリメートレンズ、40 ダイクロイックミラー、41,42,43 ミラー、45 ダイクロイックミラー、46,47 ミラー、48 ダイクロイックミラー、50,51 集光レンズ、60,61 受光レンズ、70 穴付1/4波長板、80 穴付ミラー、90,91 集光レンズ、100 入射信号光の光ファイバー、101 直進信号光、102 光路切替された信号光、107 直進および逆行信号光の光ファイバー、112 直進信号光の光ファイバー、111 光路切替された信号光の光ファイバー、200 入射制御光の光ファイバー、220 第2の制御光の光ファイバー、300 光サーキュレーター、400 信号光進行方向に対し傾けて設けられた穴付ミラー、401 信号光進行方向に対し傾けて設けられた穴付ミラー400の穴。   1 signal light, 2, 3 control light, 4 convergent incident control light and signal light, 5 rectilinear outgoing signal light, 6 outgoing signal light that spreads in a ring shape, 7 reverse signal light whose optical path has been switched, and 8 in a convergent incident ring shape Output signal light, 9 Convergent incident second control light, 10, 11 Thermal lens forming element, 15, 16 Light absorption layer, 20 Polarizing beam splitter, 30, 31, 32 Collimator lens, 40 Dichroic mirror, 41, 42, 43 mirror, 45 dichroic mirror, 46, 47 mirror, 48 dichroic mirror, 50, 51 condenser lens, 60, 61 light receiving lens, 70 quarter-wave plate with hole, 80 mirror with hole, 90, 91 condenser lens, 100 optical fiber for incident signal light, 101 straight signal light, 102 signal light whose optical path has been switched, 107 straight and reverse signal Optical fiber, 112 Straight signal optical fiber, 111 Optical path switched optical fiber, 200 Incident control optical fiber, 220 Second control optical fiber, 300 Optical circulator, 400 Tilt with respect to signal light traveling direction Mirror with hole provided, 401 Hole of mirror 400 with hole provided inclined with respect to the signal light traveling direction.

Claims (6)

少なくとも制御光が焦点を結ぶように配置された光吸収層と、
少なくとも前記光吸収層に、前記光吸収層が吸収する波長帯域から選ばれる波長の制御光と、前記光吸収層が吸収しない波長帯域から選ばれる波長の信号光とを各々収束させて照射する手段と、
前記光吸収層を含み、前記光吸収層が前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因して可逆的に形成される屈折率の分布に基づいた熱レンズを用いることによって、制御光が照射されず熱レンズが形成されない場合は前記収束された信号光が通常の開き角度で出射する状態と、制御光が照射されて熱レンズが形成される場合は前記収束された信号光が通常の開き角度よりも大きい開き角度で出射する状態とを、前記制御光の照射の有無に対応させて実現させる熱レンズ形成素子と、
通常の開き角度で前記熱レンズ形成素子から出射する前記信号光を受光レンズによって前記通常の開き角度を変更させコリメートした後、通過させる穴を設けたミラーであって、通常よりも大きい開き角度で前記熱レンズ形成素子から拡がりながら出射する前記信号光について前記受光レンズによって前記通常よりも大きい開き角度を変更させコリメートした後、正反射させる穴付きミラーと、
前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付きミラーによって正反射されて逆方向に進む信号光とを分離する手段と、
を備え
前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付きミラーによって正反射されて逆方向に進む信号光とを、それぞれシングルモード光ファイバーに結合させることを特徴とする光路切替装置。
A light absorption layer arranged so that at least the control light is focused; and
Means for converging and irradiating at least the light absorption layer with control light having a wavelength selected from a wavelength band absorbed by the light absorption layer and signal light having a wavelength selected from a wavelength band not absorbed by the light absorption layer When,
By using a thermal lens that includes the light absorption layer and is based on a refractive index distribution that is reversibly formed due to a temperature rise that occurs in the region where the control light has absorbed the control light and the surrounding region. When the control lens is not irradiated and a thermal lens is not formed, the converged signal light is emitted at a normal opening angle, and when the control lens is irradiated and a thermal lens is formed, the converged signal is emitted. A thermal lens forming element that realizes a state in which light is emitted at an opening angle larger than a normal opening angle in correspondence with the presence or absence of irradiation of the control light;
A mirror provided with a hole through which the signal light emitted from the thermal lens forming element at a normal opening angle is collimated by changing the normal opening angle by a light receiving lens, and has a larger opening angle than usual. A mirror with a hole that makes regular reflection after changing and collimating the signal light emitted from the thermal lens forming element while spreading from the light receiving lens with a larger opening angle than the normal.
Means for separating the signal light traveling in the direction first incident on the thermal lens forming element and the signal light traveling in the reverse direction after being regularly reflected by the holed mirror;
Equipped with a,
An optical path switching device that couples a signal light traveling in the direction first incident on the thermal lens forming element and a signal light traveling in the reverse direction by being regularly reflected by the holed mirror to a single mode optical fiber, respectively. .
前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付きミラーによって正反射されて逆方向に進む信号光とを分離する手段として、さらに、
前記受光レンズと前記穴付きミラーの間に設けられ、通常の開き角度で前記熱レンズ形成素子から出射する前記信号光について受光レンズによって前記通常の開き角度を変更させコリメートした後、通過させる穴を設けた1/4波長板と、
前記1/4波長板を通過したのち前記穴付きミラーで正反射され、再度前記穴付1/4波長板を通過することによって偏光面が90度回転した信号光を選択して反射させるために、設けられた偏光ビームスプリッターと、
を有することを特徴とする請求項1に記載の光路切替装置。
As a means for separating the signal light traveling in the direction first incident on the thermal lens forming element and the signal light traveling in the reverse direction by being regularly reflected by the holed mirror,
A hole that is provided between the light receiving lens and the mirror with a hole, passes through the signal light emitted from the thermal lens forming element at a normal opening angle after the normal opening angle is changed and collimated by the light receiving lens. A quarter wave plate provided,
In order to selectively reflect the signal light whose polarization plane is rotated 90 degrees by passing through the quarter-wave plate and then being regularly reflected by the mirror with the hole, and passing through the quarter-wave plate with the hole again. A provided polarizing beam splitter;
The optical path switching device according to claim 1, comprising:
前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付きミラーで正反射されて逆方向に進む信号光とを分離する手段は、光サーキュレーターであることを特徴とする請求項1に記載の光路切替装置。   The optical circulator is characterized in that the means for separating the signal light traveling in the direction first incident on the thermal lens forming element and the signal light traveling in the reverse direction after being regularly reflected by the holed mirror is an optical circulator. 2. The optical path switching device according to 1. 少なくとも光吸収層を含む熱レンズ形成素子中の光吸収層に、前記光吸収層が吸収する波長帯域から選ばれる波長の制御光と、前記光吸収層が吸収しない波長帯域から選ばれる波長の信号光とを各々収束させて照射し、少なくとも前記制御光が前記光吸収層内において焦点を結ぶように前記光吸収層の配置を調整し、前記光吸収層が前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因して可逆的に生ずる屈折率の分布に基づいた熱レンズを用いることによって、制御光が照射されず熱レンズが形成されない場合は前記収束された信号光が通常の開き角度で前記熱レンズ形成素子から出射する状態と、制御光が照射されて熱レンズが形成される場合は前記収束された信号光が通常の開き角度よりも大きい開き角度で前記熱レンズ形成素子から出射する状態とを、前記制御光の照射の有無に対応させて実現させ、
制御光が照射されず熱レンズが形成されない場合は、通常の開き角度で前記熱レンズ形成素子から出射する前記信号光を受光レンズによって前記通常の開き角度を変更させコリメートした後、前記信号光が通過する穴を設けた穴付きミラーの穴を通して直進させ、
一方、制御光が照射されて熱レンズが形成される場合は、通常よりも大きい開き角度で前記熱レンズ形成素子から拡がりながら出射する前記信号光を受光レンズによって前記拡がりの開き角度を変更させコリメートした後、前記穴付きミラーの反射面を用いて正反射させ、
更に、前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付きミラーで正反射されて逆方向に進む信号光とを分離することによって光路を変更させ
前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付きミラーによって正反射されて逆方向に進む信号光とを、それぞれシングルモード光ファイバーに結合させ、シングルモード光ファイバーへの結合効率を高めることを特徴とする光路切替方法。
Control light having a wavelength selected from a wavelength band absorbed by the light absorption layer and a signal having a wavelength selected from a wavelength band not absorbed by the light absorption layer in the light absorption layer in the thermal lens forming element including at least the light absorption layer The light is converged and irradiated, and the arrangement of the light absorption layer is adjusted so that at least the control light is focused in the light absorption layer, and the light absorption layer absorbs the control light and the region thereof By using a thermal lens based on a refractive index distribution that occurs reversibly due to a temperature rise that occurs in the peripheral region, when the control light is not irradiated and a thermal lens is not formed, the converged signal light is normal. When the thermal lens is emitted from the thermal lens forming element at an opening angle and when a thermal lens is formed by irradiation with control light, the converged signal light is heated at an opening angle larger than a normal opening angle. And a state emitted from's forming element, to realize in correspondence to the presence or absence of irradiation of the control light,
When the control light is not irradiated and a thermal lens is not formed, the signal light emitted from the thermal lens forming element at a normal opening angle is collimated by changing the normal opening angle by a light receiving lens, and then the signal light is Go straight through the hole in the mirror with a hole that has a hole to pass through,
On the other hand, when a thermal lens is formed by irradiation with control light, the signal light emitted while spreading from the thermal lens forming element with a larger opening angle than usual is changed by the light receiving lens to change the opening angle of the spreading. After that, regular reflection using the reflective surface of the mirror with a hole,
Furthermore, the optical path is changed by separating the signal light that travels in the direction first incident on the thermal lens forming element and the signal light that is specularly reflected by the mirror with holes and travels in the reverse direction ,
The signal light traveling in the direction first incident on the thermal lens forming element and the signal light traveling in the opposite direction after being regularly reflected by the holed mirror are coupled to the single mode optical fiber, respectively, and coupled to the single mode optical fiber. optical path switching method characterized by enhanced.
前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付きミラーで正反射されて逆方向に進む信号光とを分離するにあたり、前記穴付きミラーで正反射されて逆方向に進む信号光を1/4波長板を用いて偏光面を90度回転させ、偏光面が90度回転した信号光を偏光ビームスプリッターを用いて取り出すことを特徴とする請求項4に記載の光路切替方法。   In separating the signal light that travels in the direction first incident on the thermal lens forming element and the signal light that is regularly reflected by the holed mirror and travels in the reverse direction, it is regularly reflected by the holed mirror and reversed in the reverse direction. 5. The optical path switching according to claim 4, wherein the traveling signal light has its polarization plane rotated by 90 degrees using a quarter-wave plate, and the signal light whose polarization plane has been rotated by 90 degrees is extracted using a polarization beam splitter. Method. 前記熱レンズ形成素子に最初に入射した方向に進む信号光と、前記穴付ミラーで正反射されて逆方向に進む信号光とを分離するにあたり、光サーキュレーターを用いて取り出すことを特徴とする請求項4に記載の光路切替方法。   A signal circulator is used to separate signal light that travels in the direction first incident on the thermal lens forming element and signal light that is specularly reflected by the mirror with holes and travels in the reverse direction. Item 5. The optical path switching method according to Item 4.
JP2006229842A 2006-08-25 2006-08-25 Thermal lens reciprocating optical path switching device and optical path switching method Expired - Fee Related JP4730257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229842A JP4730257B2 (en) 2006-08-25 2006-08-25 Thermal lens reciprocating optical path switching device and optical path switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229842A JP4730257B2 (en) 2006-08-25 2006-08-25 Thermal lens reciprocating optical path switching device and optical path switching method

Publications (2)

Publication Number Publication Date
JP2008052144A JP2008052144A (en) 2008-03-06
JP4730257B2 true JP4730257B2 (en) 2011-07-20

Family

ID=39236231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229842A Expired - Fee Related JP4730257B2 (en) 2006-08-25 2006-08-25 Thermal lens reciprocating optical path switching device and optical path switching method

Country Status (1)

Country Link
JP (1) JP4730257B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347662B2 (en) 2009-04-03 2013-11-20 ソニー株式会社 Organic electroluminescence device and display device
JP2012141515A (en) * 2011-01-05 2012-07-26 Tokyo Institute Of Technology Fluid optical element, laser light source device and laser processing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1026747A (en) * 1996-07-09 1998-01-27 Nikon Corp Optical modulation device
JP2004109892A (en) * 2002-09-20 2004-04-08 National Institute Of Advanced Industrial & Technology Optical path switching apparatus and method for switching optical path
JP2006145757A (en) * 2004-11-18 2006-06-08 Fujitsu Ltd Dispersion compensator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3906926B2 (en) * 2004-02-20 2007-04-18 大日精化工業株式会社 Optical control type optical path switching type optical signal transmission apparatus and optical signal optical path switching method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1026747A (en) * 1996-07-09 1998-01-27 Nikon Corp Optical modulation device
JP2004109892A (en) * 2002-09-20 2004-04-08 National Institute Of Advanced Industrial & Technology Optical path switching apparatus and method for switching optical path
JP2006145757A (en) * 2004-11-18 2006-06-08 Fujitsu Ltd Dispersion compensator

Also Published As

Publication number Publication date
JP2008052144A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP5493126B2 (en) Optical path switching device and optical signal optical path switching method
US9563073B2 (en) Combined splitter, isolator and spot-size converter
JPH06258598A (en) Optical isolator
JP4730257B2 (en) Thermal lens reciprocating optical path switching device and optical path switching method
JP2014018800A (en) Laser joining method and laser joining system
JP4822113B2 (en) Optical deflection method and optical deflection apparatus
TW548439B (en) Manufacturing method of fiber collimator
WO2007115432A1 (en) An optical diode light collection device
CN103499890B (en) Multikilowatt collimation-type isolator
JP2023529528A (en) Mode-selective separation or superposition of optical coupling and optical fields
JPS58150146A (en) Optical pickup for optical disc
TW424237B (en) A read-writeable optical pickup head
CN216487322U (en) Optical storage blue light optical head with quick read-write function
TWI235261B (en) Light transceiving module
CN101183771A (en) High power dual-cladding fiber laser end-pumped method and device
JP5051576B2 (en) Optical buffer memory device and optical signal recording method
JP4883306B2 (en) Wavelength conversion device and wavelength conversion method
CN113764010A (en) Optical storage blue light optical head with quick read-write function
US20240081633A1 (en) Methods and apparatus for reconfigurable optical endoscopic catheter
WO2015045481A1 (en) Optical unit
JP4883305B2 (en) Optical flip-flop circuit
JP2001194560A (en) Bi-directional optical communication device and bi- directional optical communication equipment
RU2005111797A (en) DEVICE FOR FORMING IMAGES WITH HIGH RESOLUTION INSIDE TRANSPARENT OR LOW-TRANSPARENT SOLID MATERIAL
US6807140B2 (en) Optical pickup device for emitting laser beams having different wavelengths and optical disk driver for use therewith
JP2005189677A (en) Beam alignment polarization beam splitter and optical pickup

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110125

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees