JP4882735B2 - Cutting method of continuous cast steel pieces - Google Patents

Cutting method of continuous cast steel pieces Download PDF

Info

Publication number
JP4882735B2
JP4882735B2 JP2006351853A JP2006351853A JP4882735B2 JP 4882735 B2 JP4882735 B2 JP 4882735B2 JP 2006351853 A JP2006351853 A JP 2006351853A JP 2006351853 A JP2006351853 A JP 2006351853A JP 4882735 B2 JP4882735 B2 JP 4882735B2
Authority
JP
Japan
Prior art keywords
cast steel
input variable
data
continuous cast
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006351853A
Other languages
Japanese (ja)
Other versions
JP2008161888A (en
Inventor
知則 大元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006351853A priority Critical patent/JP4882735B2/en
Publication of JP2008161888A publication Critical patent/JP2008161888A/en
Application granted granted Critical
Publication of JP4882735B2 publication Critical patent/JP4882735B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、連鋳鋳造鋼片の切断方法に関するものであり、特に、連続鋳造鋼片切断時で使用する補正係数の算出方法に関するものである。   The present invention relates to a method for cutting continuous cast steel pieces, and more particularly to a method for calculating a correction coefficient used when cutting continuously cast steel pieces.

連続鋳造設備では、取鍋により運搬された溶鋼は、取鍋の底部よりタンディッシュ内に注がれた後、ここで一時貯留され安定した流れとなって鋳型に導かれる。そして溶鋼は鋳型内で冷却され周囲が凝固してシェルが形成され、オッシレーションで振動されながら引抜かれた後、スプレー帯からの冷却水にて冷却されると共に湾曲したローラエプロンによって水平に矯正されたストランドとなる。このストランドは1次ピンチロールにてトーチカーへ給送され、ここで所定長の鋳片に溶断される。   In the continuous casting equipment, the molten steel transported by the ladle is poured into the tundish from the bottom of the ladle, and is temporarily stored here and led to a mold as a stable flow. The molten steel is cooled in the mold and the surroundings solidify to form a shell, which is pulled out while being oscillated by oscillation, then cooled with cooling water from the spray zone and corrected horizontally by a curved roller apron. Strands. This strand is fed to a torch car by a primary pinch roll, and is melted into a slab of a predetermined length.

このような製造過程において切断すべき鋳片長は、後続プロセスにおける請求重量に応じて、公称単位重量 (以後、公称単重という) とこれを補正する補正係数とから求められていた。ここで公称単重とは、鋳型の断面積及び溶鋼の成分より定まる比重を用いて求められるストランドの単位長さ当たりの重量であるが、例えばストランドの断面積は鋳型から引抜かれた直後と冷却された後とは変化するため、補正係数を用いて切断直前のストランドの単位重量に補正される。   The slab length to be cut in such a manufacturing process is determined from a nominal unit weight (hereinafter referred to as a nominal unit weight) and a correction coefficient for correcting the slab length in accordance with the requested weight in the subsequent process. Here, the nominal unit weight is the weight per unit length of the strand determined by using the specific gravity determined from the cross-sectional area of the mold and the composition of the molten steel. For example, the cross-sectional area of the strand is immediately after being drawn from the mold and cooled. Since it is different from that after being cut, the correction unit is used to correct the unit weight of the strand immediately before cutting.

この補正係数は、これまで連鋳オペレータが経験に基づいて決定、または、補正係数のテーブルを設けてそれに従っての操業が行われていた。しかし、オペレータにより補正係数の指定にばらつきがあるため鋼片重量が目標に対してばらつくという問題点がある。また、工程において発生する条件に変化が生じた時、補正係数のテーブルを見直す必要があるという問題点もある。   This correction coefficient has been determined by a continuous casting operator based on experience so far, or a table of correction coefficients has been provided and operations have been performed accordingly. However, there is a problem that the weight of the steel slab varies with respect to the target because there is variation in the specification of the correction coefficient by the operator. Another problem is that it is necessary to review the correction coefficient table when a change occurs in conditions that occur in the process.

そこで、特許文献1に開示された技術がある。この技術は、切断された複数の鋳片に関する鋳込条件情報及び該複数の鋳片の重量より前記補正係数に対する鋳込条件情報の寄与率を求め、該寄与率及び切断すべき鋳片に関する鋳込条件情報から切断すべき鋳片に係る補正係数を求め、該補正係数を用いて所要の重量となる鋳片の長さを求めるものである。
特開平6−114519号公報
Therefore, there is a technique disclosed in Patent Document 1. In this technique, the contribution ratio of casting condition information to the correction coefficient is obtained from casting condition information regarding a plurality of cut slabs and the weight of the plurality of slabs, and the contribution ratio and castings regarding the slab to be cut are calculated. The correction coefficient relating to the slab to be cut is obtained from the insertion condition information, and the length of the slab having a required weight is obtained using the correction coefficient.
JP-A-6-114519

しかしながら、特許文献1に開示された技術では、それまでに切断されたすべての鋳片を対象にそれらに合う寄与率を求めるようにしているため、例えば、これから切断しようとしている鋳片が、それまで余りデータの少ない又は条件が大きく異なるといった鋳込条件情報の場合には、鋼片重量が目標に対してばらつくという問題点がある。   However, in the technique disclosed in Patent Document 1, since the contribution ratio suitable for them is obtained for all the slabs that have been cut so far, for example, the slab that is to be cut is In the case of casting condition information where the data is too small or the conditions are greatly different, there is a problem that the billet weight varies from the target.

本発明は、上記問題を解決するためになされたものであり、鋼片重量が目標に対してばらつかない補正係数を決定する連鋳鋳造鋼片の切断方法を提供することを目的とする。   The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a continuous cast steel slab cutting method that determines a correction coefficient that does not vary the steel slab weight with respect to a target.

請求項1に係る発明は、連続鋳造製造過程において対象とする新規な連鋳鋳造鋼片の切断方法であって、前記連鋳鋳造鋼片の鋼片重量に影響を与える補正係数を決定するにあたり、過去の実績操業データベースに収められた操業条件を表す実績入力変数と、前記連鋳鋳造鋼片の新規入力変数との類似度を計算する類似度計算工程と、計算された類似度が高い所定数のデータを選択し、選択されたデータに対する重み付け係数を計算する重み付け計算工程と、選択されたデータを用いて、モデルを作成するモデル作成工程と、作成したモデルから前記補正係数を算出する補正係数算出工程とを、有することを特徴とする連鋳鋳造鋼片の切断方法である。   The invention according to claim 1 is a novel method for cutting a continuous cast steel slab targeted in a continuous casting manufacturing process, and determines a correction coefficient that affects the slab weight of the continuous cast steel slab. A similarity calculation step for calculating a similarity between a performance input variable representing an operation condition stored in a past performance operation database and a new input variable of the continuous cast steel slab, and a predetermined high degree of similarity A weight calculation process for selecting a number of data and calculating a weighting coefficient for the selected data, a model creation process for creating a model using the selected data, and a correction for calculating the correction coefficient from the created model And a coefficient calculation step. A method for cutting a continuous cast steel piece, comprising: a coefficient calculation step.

また請求項2に係る発明は、請求項1に記載の連鋳鋳造鋼片の切断方法において、前記入力変数は、少なくとも鋳込速度、比水量、鋼片表面速度、およびモールドから2次冷却帯までの鋼片通過時間のいずれかを含むことを特徴とする連鋳鋳造鋼片の切断方法である。   The invention according to claim 2 is the method for cutting continuous cast steel pieces according to claim 1, wherein the input variables include at least a casting speed, a specific water amount, a steel piece surface speed, and a secondary cooling zone from a mold. Any one of the steel piece passage times up to and including a continuous casting cast steel piece cutting method.

さらに請求項3に係る発明は、請求項1または請求項2のいずれか1項に記載の連鋳鋳造鋼片の切断方法において、
前記データ選択には、対象とする新規な連鋳鋳造鋼片の新規入力変数および前記実績操業データベースに収められた実績入力変数を、前記実績操業データベースに収められた実績入力変数の統計量でそれぞれ正規化し、
この正規化された、新規入力変数と実績入力変数との差のノルムを算出して、この算出されたノルムが小さい所定数の実績操業データを類似度の高いデータとして選択することを特徴とする連鋳鋳造鋼片の切断方法である。
Furthermore, the invention which concerns on Claim 3 WHEREIN: In the cutting method of the continuous cast cast steel piece of any one of Claim 1 or Claim 2,
In the data selection, a new input variable of a new continuous cast steel slab to be processed and an actual input variable stored in the actual operation database are respectively statistics of the actual input variable stored in the actual operation database. Normalize,
The normalized norm of the difference between the new input variable and the actual input variable is calculated, and a predetermined number of actual operation data having a small calculated norm are selected as data having high similarity. This is a method for cutting continuous cast steel pieces.

本発明は、補正係数を決定すべき各鋼片について、それぞれの鋼片毎に最適な回帰式を作成し、作成した回帰式に基づいて補正係数を決定するようにしたので、鋼片重量の適中精度が良くなり歩留まりを向上することができる。また、各鋼片毎に回帰式を作成するようにしているので、工程で条件の変化が生じても迅速に対応することができる。   In the present invention, for each billet for which the correction coefficient is to be determined, an optimal regression equation is created for each billet, and the correction factor is determined based on the created regression equation. Appropriate accuracy is improved and the yield can be improved. In addition, since the regression equation is created for each steel piece, even if a change in conditions occurs in the process, it is possible to respond quickly.

本発明では、補正係数の決定に当たり、補正係数を直接計算することのできる近似モデルを作成し、作成した近似モデルから補正係数を計算する。そして本発明では、この近似モデルを作成するに当たり、補正係数の計算対象となる鋼片と類似した過去の鋼片を集め、その集まった実績データから適切なモデルを構築する。このモデルの構築方法は数多く考えられるが、本発明は、そのうちの1つの方法を提供するものであり、そして、この手法は、補正係数指定の対象となる鋼片の操業条件の近傍を集め、その近傍で成立するモデルをその都度構築するというものである。   In the present invention, in determining the correction coefficient, an approximate model capable of directly calculating the correction coefficient is created, and the correction coefficient is calculated from the created approximate model. In the present invention, when creating this approximate model, past steel slabs similar to the steel slab for which the correction coefficient is calculated are collected, and an appropriate model is constructed from the collected performance data. There are many possible methods for constructing this model, but the present invention provides one of them, and this method collects the vicinity of the operating condition of the billet for which the correction coefficient is specified, A model established in the vicinity is constructed each time.

以下、本発明を実施するための最良の形態について、図面および式を用いて説明する。図1は、本発明による補正係数決定方法を示すフローチャートである。   The best mode for carrying out the present invention will be described below with reference to the drawings and formulas. FIG. 1 is a flowchart showing a correction coefficient determination method according to the present invention.

先ず、S1およびS2にて、新規および実績鋳込条件を、上位計算機または事例データベースより入力する。ここで、入力変数および鋼片重量を、以下に示すように定義する。なお、入力変数については、以下は例示であり他の変数を用いるようにしても良い。
X :入力変数
Y:鋼片重量
ここで、
n:データ数
n=0の時は、推定したい新規鋼片のデータ
n=1〜Nの時は、過去の鋼片の実績データ
m:各入力変数を表す添字であり、例えば、以下の種類がある。
First, in S1 and S2, new and actual casting conditions are input from a host computer or a case database. Here, input variables and billet weight are defined as shown below. Note that the following are examples of input variables, and other variables may be used.
X m n: input variables
Y n : Billet weight where
n: Number of data When n = 0, data of new billet to be estimated When n = 1 to N, actual data of past billet m: Subscript representing each input variable. For example, the following types There is.

m=1:鋳込速度、m=1:比水量
m=3:鋼片表面温度、m=4:モールドから2次冷却帯までの鋼片通過時間
m=5:補正係数、m=6:日付
次に、S3にて、各入力変数の最小値Xm、minおよび最大値Xm、maxの計算を行う。そして、S4にて、以下の(1)式より、入力変数の正規化を行う。
m = 1: Casting speed, m = 1: Specific water amount m = 3: Steel slab surface temperature, m = 4: Steel slab transit time from mold to secondary cooling zone m = 5: Correction coefficient, m = 6: Date Next, in S3, the minimum value Xm, min and the maximum value Xm, max of each input variable are calculated. In S4, the input variable is normalized from the following equation (1).

Figure 0004882735
Figure 0004882735

そして、S5にて、過去の実績データと推定したい新規鋼片のデータとの類似度計算を行う。ここ計算には、例えば、以下の(2)式のような2-normとして計算するが、他の距離測度を利用してもよい。   Then, in S5, similarity calculation between past performance data and new billet data to be estimated is performed. In this calculation, for example, the calculation is performed as 2-norm as in the following equation (2), but other distance measures may be used.

Figure 0004882735
Figure 0004882735

さらに、類似度の高い順に並べ替えて、k番目(例えば、400番目)までのデータに、以下の(3)式に示す重み付け係数Wkを計算する(S6)。 Furthermore, the data are rearranged in descending order of similarity, and the weighting coefficient W k shown in the following equation (3) is calculated for the data up to k-th (for example, 400th) (S6).

Figure 0004882735
Figure 0004882735

次に、S7にて、選択した類似度の高いデータを用いて重み付け最小二乗法により、以下の(4)式に示すような、目標鋼重量Yを求める線形重回帰モデルを作成する。   Next, in S7, a linear multiple regression model for obtaining the target steel weight Y as shown in the following equation (4) is created by the weighted least square method using the selected data with high similarity.

Figure 0004882735
Figure 0004882735

そして、最終的にS8にて、(4)式を(5)式のように変形して、推定したい鋼片に対する補正係数を求める。   Finally, in S8, equation (4) is transformed into equation (5) to obtain a correction coefficient for the steel piece to be estimated.

Figure 0004882735
Figure 0004882735

以下、本発明に係る実施例について説明する。なお、本実施例は発明の有効性を示すためのものであり、かつ、一例を示したものである。従って、本発明はこれらの実施例に制限されるものではない。   Examples according to the present invention will be described below. The present embodiment is for showing the effectiveness of the invention, and shows an example. Therefore, the present invention is not limited to these examples.

本実施例では、補正係数指定鋼片として非定常部(鍋交換等のイベントが発生した部分)について扱った。要因項目としては、鋳込速度、比水量、鋼片表面温度、モールドから2次冷却帯までの鋼片通過時間の操業条件を用いた。抽出した類似データに基づいて最小二乗法により回帰式を作成し、作成した回帰式に基づいて補正係数を算出し、そして、この補正係数を使用した場合の鋼片重量の適中精度をシミュレーションにより評価した。   In this example, the unsteady part (the part where an event such as pan change occurred) was handled as the correction coefficient designation steel piece. Factors used were operating conditions such as casting speed, specific water amount, steel slab surface temperature, and slab transit time from the mold to the secondary cooling zone. Based on the extracted similar data, a regression equation is created by the least square method, a correction factor is calculated based on the created regression equation, and the appropriateness accuracy of the billet weight when this correction factor is used is evaluated by simulation did.

図2は、本発明で提案する方法と従来法との比較例を示す図である。目標とした鋼片重量に対する適中度合いを割合で示す付加重量を横軸に、縦軸に鋼片数をとっており、図2に示すように、提案法は従来法と比べて鋼片重量のばらつきを削減することができていることが分かる。   FIG. 2 is a diagram showing a comparative example of the method proposed in the present invention and the conventional method. The added weight, which indicates the appropriateness of the target billet weight as a percentage, is plotted on the horizontal axis and the number of billets on the vertical axis. As shown in FIG. It can be seen that the variation can be reduced.

本発明による補正係数決定方法を示すフローチャートである。3 is a flowchart illustrating a correction coefficient determination method according to the present invention. 本発明で提案する方法と従来法との比較例を示す図である。It is a figure which shows the comparative example of the method proposed by this invention, and the conventional method.

Claims (3)

連続鋳造製造過程において対象とする新規な連鋳鋳造鋼片の切断方法であって、
前記連鋳鋳造鋼片の鋼片重量に影響を与える補正係数を決定するにあたり、
過去の実績操業データベースに収められた操業条件を表す実績入力変数と、前記連鋳鋳造鋼片の新規入力変数との類似度を計算する類似度計算工程と、
計算された類似度が高い所定数のデータを選択し、選択されたデータに対する重み付け係数を計算する重み付け計算工程と、
選択されたデータを用いて、モデルを作成するモデル作成工程と、
作成したモデルから前記補正係数を算出する補正係数算出工程とを、
有することを特徴とする連鋳鋳造鋼片の切断方法。
A novel continuous cast steel slab cutting method targeted in the continuous casting manufacturing process,
In determining the correction coefficient that affects the slab weight of the continuous cast steel slab,
A similarity calculation step for calculating a similarity between a performance input variable representing an operation condition stored in a past performance operation database and a new input variable of the continuous cast steel slab,
A weighting calculation step of selecting a predetermined number of data having a high calculated similarity and calculating a weighting coefficient for the selected data;
A model creation process for creating a model using the selected data;
A correction coefficient calculation step of calculating the correction coefficient from the created model,
A method for cutting continuous cast steel pieces characterized by comprising:
請求項1に記載の連鋳鋳造鋼片の切断方法において、
前記入力変数は、少なくとも鋳込速度、比水量、鋼片表面速度、およびモールドから2次冷却帯までの鋼片通過時間のいずれかを含むことを特徴とする連鋳鋳造鋼片の切断方法。
In the cutting method of the continuous casting cast steel piece of Claim 1,
The input variable includes at least any one of a casting speed, a specific water amount, a steel slab surface speed, and a steel slab passing time from a mold to a secondary cooling zone.
請求項1または請求項2のいずれか1項に記載の連鋳鋳造鋼片の切断方法において、
前記データ選択には、対象とする新規な連鋳鋳造鋼片の新規入力変数および前記実績操業データベースに収められた実績入力変数を、前記実績操業データベースに収められた実績入力変数の統計量でそれぞれ正規化し、
この正規化された、新規入力変数と実績入力変数との差のノルムを算出して、この算出されたノルムが小さい所定数の実績操業データを類似度の高いデータとして選択することを特徴とする連鋳鋳造鋼片の切断方法。
In the cutting method of the continuous casting cast steel piece of any one of Claim 1 or Claim 2,
In the data selection, a new input variable of a new continuous cast steel slab to be processed and an actual input variable stored in the actual operation database are respectively statistics of the actual input variable stored in the actual operation database. Normalize,
The normalized norm of the difference between the new input variable and the actual input variable is calculated, and a predetermined number of actual operation data having a small calculated norm are selected as data having high similarity. Cutting method of continuous cast steel pieces.
JP2006351853A 2006-12-27 2006-12-27 Cutting method of continuous cast steel pieces Expired - Fee Related JP4882735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006351853A JP4882735B2 (en) 2006-12-27 2006-12-27 Cutting method of continuous cast steel pieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006351853A JP4882735B2 (en) 2006-12-27 2006-12-27 Cutting method of continuous cast steel pieces

Publications (2)

Publication Number Publication Date
JP2008161888A JP2008161888A (en) 2008-07-17
JP4882735B2 true JP4882735B2 (en) 2012-02-22

Family

ID=39692052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006351853A Expired - Fee Related JP4882735B2 (en) 2006-12-27 2006-12-27 Cutting method of continuous cast steel pieces

Country Status (1)

Country Link
JP (1) JP4882735B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560992B2 (en) * 2010-07-23 2014-07-30 Jfeスチール株式会社 Billet cutting method

Also Published As

Publication number Publication date
JP2008161888A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
RU2245214C2 (en) Method and apparatus for making cast metallic billets
JP4882735B2 (en) Cutting method of continuous cast steel pieces
JP2010029899A (en) Continuous casting method of billet
JP5825084B2 (en) Continuous casting method of high carbon steel slab
JP6652095B2 (en) Method of rolling steel sheet and method of manufacturing steel sheet
JP2007275987A (en) Light rolling method of cast steel slab in continuous casting
JP6904157B2 (en) Operation schedule creation method, equipment and programs
JP2009020807A (en) Production lot arranging method of steel product, arrangement device, and computer program therefor
JP4648067B2 (en) Operation mode determination method, operation mode determination device, and program
JP4998734B2 (en) Manufacturing method of continuous cast slab
KR101204946B1 (en) Device for predicting surface defect of products in continuous casting process and method therefor
JP5712577B2 (en) Billet cutting plan creation device and billet cutting plan creation method
JP5338269B2 (en) Slab sampling control method
JP6041765B2 (en) Production schedule decision support system
JP2009233703A (en) Continuous casting method
JP7031350B2 (en) How to estimate the casting time in the steelmaking process
JP6528756B2 (en) Hot water level control device and hot water level control method
CN113134587A (en) Method for judging water gap blockage and dissolution loss through stopper rod opening degree variation trend
KR101400041B1 (en) Device for estimating carbon-increasing of molten steel and method thereof
JP3820961B2 (en) Steel continuous casting method
JP5900380B2 (en) Target rolling length determination method, method of manufacturing thick steel plate, and target rolling length determination device
JP7063309B2 (en) Continuous casting method of molten metal
JP7196663B2 (en) Control device, method and program for continuous casting process
JP5195636B2 (en) Manufacturing method of continuous cast slab
JP4111704B2 (en) Slab manufacturing planning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees