JP4881307B2 - X-ray fluorescence analysis method - Google Patents

X-ray fluorescence analysis method Download PDF

Info

Publication number
JP4881307B2
JP4881307B2 JP2007529265A JP2007529265A JP4881307B2 JP 4881307 B2 JP4881307 B2 JP 4881307B2 JP 2007529265 A JP2007529265 A JP 2007529265A JP 2007529265 A JP2007529265 A JP 2007529265A JP 4881307 B2 JP4881307 B2 JP 4881307B2
Authority
JP
Japan
Prior art keywords
ray
sample
region
analysis
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007529265A
Other languages
Japanese (ja)
Other versions
JPWO2007015472A1 (en
Inventor
陽介 上田
則生 笹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2007529265A priority Critical patent/JP4881307B2/en
Publication of JPWO2007015472A1 publication Critical patent/JPWO2007015472A1/en
Application granted granted Critical
Publication of JP4881307B2 publication Critical patent/JP4881307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、試料の表面情報を分析するX線分析装置及びその方法に関する。   The present invention relates to an X-ray analysis apparatus and method for analyzing surface information of a sample.

半導体、電子部品の環境対策として実装基板の鉛フリー化が進められている。当該の品質管理の現場においては、基板上の微小部の極薄めっき膜厚測定(数〜数十nmの金属膜測定)と、鉛フリー半田中の微量の鉛の濃度測定を行う要求がある。分析対象によってはφ0.1mm以下の微小部の分析が要求される場合もある。   Lead-free mounting boards are being promoted as environmental measures for semiconductors and electronic components. In the field of the quality control concerned, there is a demand to measure a very thin plating film thickness of a minute part on a substrate (a metal film measurement of several to several tens of nanometers) and to measure a trace amount of lead in lead-free solder. . Depending on the analysis target, analysis of a minute part of φ0.1 mm or less may be required.

試料の構成元素に関する詳細な情報を得ることができる分析装置として、蛍光X線分析装置がある。この分析技術では、試料表面にX線を照射することにより発生する蛍光X線のエネルギーを測定することにより、試料の構成元素を分析することができる。   An X-ray fluorescence analyzer is an analyzer that can obtain detailed information on the constituent elements of a sample. In this analysis technique, constituent elements of a sample can be analyzed by measuring the energy of fluorescent X-rays generated by irradiating the sample surface with X-rays.

X線発生源の多くは、比較的大きな焦点を有するX線ビームを生じるため、上記のような微小部の分析を行うためにはビーム照射径を狭く抑えることが必要である。照射径を狭い範囲に抑えつつ、X線ビームの強度を強く保つために集光レンズとしてX線集束鏡やキャピラリーレンズなどを用いる事例がある(例えば、特許文献1参照)。
特表2002−521676
Since many X-ray generation sources generate an X-ray beam having a relatively large focal point, it is necessary to keep the beam irradiation diameter narrow in order to analyze the minute part as described above. There is an example in which an X-ray focusing mirror, a capillary lens, or the like is used as a condensing lens in order to keep the intensity of the X-ray beam strong while suppressing the irradiation diameter in a narrow range (see, for example, Patent Document 1).
Special table 2002-521676

従来、X線発生源から放射されるX線を分析領域まで範囲を絞る手段としてコリメーターが用いられてきた。さらに複数のコリメーターを切り替えることによって、分析領域の変更が可能であった。しかしながら、集光レンズを用いた集光X線ビームの照射径は、その集光レンズ特有のある一定値に固定されてしまう。また、集光X線ビームの照射径自体が従来のコリメーターのピンホール径以下に集光されているため、コリメーターの切り替えによる分析領域の変更をすることができない。   Conventionally, a collimator has been used as means for narrowing the range of X-rays emitted from an X-ray generation source to an analysis region. Furthermore, the analysis region can be changed by switching a plurality of collimators. However, the irradiation diameter of the condensed X-ray beam using the condensing lens is fixed to a certain fixed value peculiar to the condensing lens. In addition, since the irradiation diameter of the focused X-ray beam itself is focused below the pinhole diameter of the conventional collimator, the analysis region cannot be changed by switching the collimator.

本発明は上記の問題点を解決するためのものであり、集光X線ビームによる分析において、分析領域の変更と拡大を可能とした装置及びその方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an apparatus and method capable of changing and expanding an analysis region in analysis using a focused X-ray beam.

上記課題を解決するために、本発明の蛍光X線分析方法は、X線発生手段からのX線を試料上に集光したX線ビームの照射スポットを、試料表面から発生する蛍光X線を検出するにあたり、試料を載置するための試料ステージの駆動によりそのX線ビームの照射スポットの領域よりも広い分析領域を対象とし走査するものであって実際の走査領域と分析領域の差分を考慮して検出した蛍光X線のデータを分析することを特徴とする。 In order to solve the above problem, a fluorescent X-ray analysis method of the present onset Ming, the irradiation spot of the X-ray beam was focused X-rays of the X-ray generation hands stage or found on a sample, generated from the sample surface per the detecting fluorescent X-rays, there is the targeted scan a wider analytical range than the irradiation spot of the area of the X-ray beam by driving the sample stage for mounting a sample, the actual scanning region The fluorescent X-ray data detected in consideration of the difference in the analysis region is analyzed .

また、本発明における蛍光X線分析方法は、試料ステージの駆動方法に関して、分析条件により様々な方法が考えられる。矩形領域が指定された場合は、試料上でX線照射スポットがX、Y軸方向に領域をうめるようにX線を照射しながらステージを駆動することにより指定領域の分析を実現する。さらに、円形領域が指定された場合は、試料上で同心円状や渦巻状にX線を照射しながらステージを駆動することにより指定領域に均一に集光したX線を照射できる。ステージの駆動上、指定領域外にX線が照射される場合は、指定領域外で取得したデータを破棄することにより必要なデータのみを取得することができる。 The fluorescent X-ray analysis how the present invention is relates to a drive method of the sample stage can be considered various methods the analytical conditions. When a rectangular region is designated, analysis of the designated region is realized by driving the stage while irradiating the X-ray so that the X-ray irradiation spot fills the region in the X and Y axis directions on the sample. Furthermore, when a circular region is designated, X-rays uniformly focused on the designated region can be irradiated by driving the stage while irradiating X-rays concentrically or spirally on the sample. When X-rays are irradiated outside the designated area for driving the stage, only necessary data can be obtained by discarding the data obtained outside the designated area.

試料ステージを駆動することにより、集光X線ビームの照射径以上の領域の分析が行えるだけでなく、駆動方法や分析領域を設定することで、分析領域内でのX線照射量が均一になるようにすることができ、走査する領域と分析する領域の設定により、任意の形状の分析領域の蛍光X線分析を可能とするBy driving the sample stage, not only it allows the analysis of areas on the irradiation diameter or condensing X-ray beam, by setting the driving dynamic method and the analysis region, X-ray irradiation dose in the analysis region is uniform Ki de be made to be in, the setting of a region to be analyzed with scanning region, to allow X-ray fluorescence analysis of the analysis region of arbitrary shape.

以下本発明を図面に基づき具体的に説明する。図1は本発明の実施例を示すシステム構成図を示す。X線発生源1から放出されたX線2は集光レンズ3を通り試料4上に集光、照射される。X線2が試料4に照射されることにより放出される蛍光X線または光電子は粒子検出器7により検出され、計数回路9により計測されたデータが取得データとして制御装置11に入力される。また、X線発生源1及び集光レンズ3の下部に試料ステージ5を設ける。ステージ制御部6は、制御装置11からの信号により試料ステージ5を駆動する。試料表面を観察するために、カメラ8と撮像回路10を設置する。制御装置の情報はモニタ12において表示される。また、取得されたデータにより試料4の構成元素比率または試料4表面の薄膜の厚みが制御装置11により算出され、モニタ12において表示される。   The present invention will be specifically described below with reference to the drawings. FIG. 1 is a system configuration diagram showing an embodiment of the present invention. The X-ray 2 emitted from the X-ray generation source 1 passes through the condenser lens 3 and is condensed and irradiated on the sample 4. The fluorescent X-rays or photoelectrons emitted by irradiating the sample 4 with the X-ray 2 are detected by the particle detector 7, and the data measured by the counting circuit 9 is input to the control device 11 as acquired data. A sample stage 5 is provided below the X-ray generation source 1 and the condenser lens 3. The stage control unit 6 drives the sample stage 5 with a signal from the control device 11. In order to observe the sample surface, a camera 8 and an imaging circuit 10 are installed. Information on the control device is displayed on the monitor 12. Further, the constituent element ratio of the sample 4 or the thickness of the thin film on the surface of the sample 4 is calculated by the control device 11 based on the acquired data and displayed on the monitor 12.

今、集光レンズ3を通った集光X線ビームは集光レンズ固有の照射径に絞られている。試料ステージ5上の試料4にはその照射径でX線2が照射される。X線2の試料上の照射位置は、X線2の照射中に試料ステージ5を駆動させることにより移動させる事ができる。分析領域によりそのX線2の移動量を求め、またこの移動量と分析時間によりその移動速度を制御装置11において演算して求める。求められたX線2の移動量と移動速度をステージ制御部6に入力することによりステージ駆動を制御し分析を行う。   Now, the condensed X-ray beam that has passed through the condenser lens 3 is narrowed down to the irradiation diameter unique to the condenser lens. The sample 4 on the sample stage 5 is irradiated with X-rays 2 with the irradiation diameter. The irradiation position of the X-ray 2 on the sample can be moved by driving the sample stage 5 during the X-ray 2 irradiation. The movement amount of the X-ray 2 is obtained from the analysis region, and the movement speed is calculated by the control device 11 based on the movement amount and the analysis time. By inputting the obtained movement amount and movement speed of the X-ray 2 to the stage control unit 6, the stage drive is controlled and analyzed.

図2(a)〜(d)は、本発明における試料ステージの駆動方法を示す図であり、試料ステージ5上の試料4を上面(X線源側)から見たものである。図2(a)はステージ駆動前の状態であり、X線照射スポット14は分析領域13内の点Pの位置にある。X線照射スポット径の定義には複数の種類があるが、ここでは以下のように定義する。XY平面内に2次元的に分布する照射X線の強度分布を1次元(例えばX方向)で扱えるように一方向(Y方向)の強度を全て積分する。積分後の1次元の強度分布において、最大強度に対して半分の強度になる幅(半値幅)を照射スポット径と定義する。   2A to 2D are diagrams showing a method for driving the sample stage in the present invention, in which the sample 4 on the sample stage 5 is viewed from the upper surface (X-ray source side). FIG. 2A shows a state before the stage is driven, and the X-ray irradiation spot 14 is at the position of the point P in the analysis region 13. There are a plurality of types of definition of the X-ray irradiation spot diameter, but here they are defined as follows. All the intensities in one direction (Y direction) are integrated so that the intensity distribution of irradiated X-rays distributed two-dimensionally in the XY plane can be handled in one dimension (for example, the X direction). In the one-dimensional intensity distribution after integration, a width (half-value width) that is half the maximum intensity is defined as an irradiation spot diameter.

ここで、例えばX方向にα、Y方向にβの大きさの矩形領域Aの分析範囲が入力されたとする。すると、X線が照射された状態で、試料ステージ5は図2(a)に示される矢印の方向へαの大きさだけ移動され、X線照射スポット14は図2(b)のQの位置に移動する。これにより試料4上の点Pから点Qの間の分析が行える。X線照射スポット14が、図2(b)の分析領域13内のQの位置に移動した後、図2(b)に示される矢印の方向へγの大きさだけ試料ステージ5を移動する。これにより、X線照射スポット14は図2(c)の分析領域13内のRの位置に移動する。X線照射スポット14が、図2(c)の分析領域13内のRの位置に移動した後、図2(c)に示される矢印の方向へαの大きさだけ試料ステージ5を移動する。   Here, for example, it is assumed that an analysis range of a rectangular area A having a size of α in the X direction and β in the Y direction is input. Then, in the state irradiated with X-rays, the sample stage 5 is moved by the magnitude of α in the direction of the arrow shown in FIG. 2A, and the X-ray irradiation spot 14 is positioned at Q in FIG. 2B. Move to. Thereby, the analysis between the points P and Q on the sample 4 can be performed. After the X-ray irradiation spot 14 has moved to the position Q in the analysis region 13 in FIG. 2B, the sample stage 5 is moved in the direction of the arrow shown in FIG. Thereby, the X-ray irradiation spot 14 moves to the position R in the analysis region 13 of FIG. After the X-ray irradiation spot 14 has moved to the position R in the analysis region 13 in FIG. 2C, the sample stage 5 is moved in the direction of the arrow shown in FIG.

上記のように、X軸方向へαの大きさだけ試料ステージ5を移動した後、Y軸方向へγの大きさだけ試料ステージ5を移動することを繰り返す。このγとして、X線照射スポット径、あるいはそれより短い長さを設定し、X線照射量が極端に少ない領域が発生しないようにする。これにより、領域AをうめるようにX線照射スポット14が移動することになる。X線照射スポット14が、図2(d)の分析領域13内のSの位置まで移動した時点で、Y軸方向への試料ステージ5の移動量がβとなり、領域A内にX線2が照射されたことになる。   As described above, after moving the sample stage 5 by the magnitude of α in the X-axis direction, the sample stage 5 is repeatedly moved by the magnitude of γ in the Y-axis direction. As this γ, an X-ray irradiation spot diameter or a shorter length is set so that a region with an extremely small amount of X-ray irradiation does not occur. As a result, the X-ray irradiation spot 14 moves so as to fill the region A. When the X-ray irradiation spot 14 moves to the position S in the analysis region 13 in FIG. 2D, the amount of movement of the sample stage 5 in the Y-axis direction becomes β, and the X-ray 2 is in the region A. It was irradiated.

また、図2(b)から図2(c)へ移動する際には、X線を照射したまま移動し移動中に取得したデータを破棄する方法と、移動中はX線の照射を停止することによりデータを取得しない方法と、移動中に取得したデータも区別無く蓄積する方法が考えられる。これらの駆動方法と分析方法により領域Aの範囲の分析を行うことができる。   In addition, when moving from FIG. 2B to FIG. 2C, a method of moving while irradiating X-rays and discarding data acquired during movement, and stopping X-ray irradiation during movement. Thus, there are a method of not acquiring data and a method of storing data acquired during movement without distinction. The range A can be analyzed by these driving methods and analysis methods.

上述の矩形のステージ駆動に関して、図3(a)〜(c)のような駆動方法が考えられる。まず図2(a)〜(d)の駆動方法におけるX線照射位置の移動を図3(a)に矢印で示す。試料4上のX線照射スポット14は、領域AをX方向、Y方向に指定領域をなぞるように移動する。この際、X線を照射しながら移動するため、ステージの駆動方向が変化する領域角部においてはX線照射時間の差が出てしまう。その差を減らすために、図3(b)のような駆動方法が考えられる。図3(b)では、領域外において折り返しを行う。これにより、試料上にX線が照射される時間をほぼ一定にすることができる。この際、領域外において取得したデータに関しては破棄する。図3(a)、(b)では、X方向を基準にステージを駆動しているが、Y方向を基準にしても構わない。さらに図3(c)のようにX方向を基準にして駆動したあと、Y方向を基準にして駆動しても構わない。図3(c)の方法を用いれば、試料4にさらに均一にX線が照射されることになる。   Regarding the above-described rectangular stage driving, driving methods as shown in FIGS. First, the movement of the X-ray irradiation position in the driving method of FIGS. 2A to 2D is indicated by an arrow in FIG. The X-ray irradiation spot 14 on the sample 4 moves so as to trace the designated area in the X direction and the Y direction in the area A. At this time, since the X-ray is moved while being irradiated, a difference in X-ray irradiation time is produced at the corner of the region where the stage drive direction changes. In order to reduce the difference, a driving method as shown in FIG. In FIG. 3B, folding is performed outside the area. Thereby, the time for which the sample is irradiated with X-rays can be made substantially constant. At this time, the data acquired outside the area is discarded. In FIGS. 3A and 3B, the stage is driven based on the X direction, but the Y direction may be used as a reference. Furthermore, after driving with reference to the X direction as shown in FIG. 3C, driving may be performed with reference to the Y direction. If the method of FIG.3 (c) is used, X-ray will be irradiated to the sample 4 more uniformly.

領域指定方法として、矩形領域以外に円形領域も考えられる。円形の分析領域が指定された場合のステージ駆動に関して、図4(a)〜(c)のような駆動方法が考えられる。ここで、例えば直径δの円形領域Bの分析範囲が入力されたとする。矩形のステージ駆動で円形領域Bの分析を実現するには、図4(a)のような駆動方法が考えられる。試料4上のX線照射スポット14は、領域BをX方向、Y方向に、円形領域Bに外接する1辺がδの大きさの正方形の領域をうめるように移動する。指定領域が円形のため、正方形駆動を行うと図4(a)上の点線部分での取得データは不要となるため破棄することになる。また、円形領域においては図4(b)のように同心円状に駆動することにより図4(a)に比べて短時間でデータ取得が可能である。また、図4(c)のようにステージを渦巻状に駆動することによりステージ駆動速度を一定に保ちながらX線を試料に照射することができるため、試料4に均一にX線が照射されることになる。   In addition to the rectangular area, a circular area is also conceivable as the area specifying method. With respect to stage driving when a circular analysis region is designated, driving methods as shown in FIGS. 4A to 4C are conceivable. Here, for example, it is assumed that the analysis range of the circular region B having the diameter δ is input. In order to realize the analysis of the circular area B by driving the rectangular stage, a driving method as shown in FIG. The X-ray irradiation spot 14 on the sample 4 moves in the X direction and the Y direction so that the region B fills a square region with one side circumscribing the circular region B having a size of δ. Since the designated area is circular, when square driving is performed, the acquired data in the dotted line portion in FIG. In a circular region, data can be acquired in a shorter time than in FIG. 4A by driving concentrically as shown in FIG. Further, since the sample can be irradiated with X-rays while keeping the stage driving speed constant by driving the stage spirally as shown in FIG. 4C, the sample 4 is uniformly irradiated with X-rays. It will be.

また、図5に示したように、ステージ駆動と分析を領域内で離散的に行う駆動方法も考えられる。分析領域Cが指定されたとき、領域内に複数個のスポット中心15を取り各々のスポット中心にX線照射スポット14を合わせてデータを取得する。各スポット中心の間隔をεとすると、X線照射スポット14をX、Y方向にεずつ移動した後データを取得し、スポット中心を全て網羅していくことにより領域Cの分析を行う。また、各スポット中心位置に移動する際には、X線を照射したまま移動し移動中に取得したデータを破棄する方法と、移動中はX線の照射を停止することによりデータを取得しない方法と、移動中に取得したデータもスポット中心で取得したデータと区別無く蓄積する方法が考えられる。   In addition, as shown in FIG. 5, a driving method in which stage driving and analysis are performed discretely within a region is also conceivable. When the analysis area C is designated, a plurality of spot centers 15 are taken in the area, and the X-ray irradiation spot 14 is aligned with each spot center to acquire data. Assuming that the interval between the centers of the spots is ε, data is acquired after moving the X-ray irradiation spot 14 by ε in the X and Y directions, and the region C is analyzed by covering all the spot centers. Also, when moving to each spot center position, a method of moving while irradiating X-rays and discarding data acquired during movement, and a method of not acquiring data by stopping X-ray irradiation during movement A method of storing data acquired during movement without distinguishing it from data acquired at the center of the spot can be considered.

分析結果表示までの時間を短縮するために、ステージの駆動を間引く方法も考えられる。分析領域が指定された際、Y方向へのステージ駆動を図6(a)のようにζだけ間引き駆動しながらX線を照射する。すなわち、連続的に駆動するステージにより、X線が照射されるX方向の線状の照射領域と隣接するX方向の線状の照射領域を、X線照射スポットの径より長い間隔であるζだけ離す。上記の駆動方法により、分析領域全面を密に駆動する方法に比べて、データの取得時間及び、分析結果の表示までの時間を短縮することができる。この時、試料上では図6(b)の点線で囲まれた領域のようにX線が照射される領域と、点線で囲まれた領域以外のX線が照射されない領域が存在し、分析データとしては不完全である。さらに完全な分析結果を得るためには、次の駆動時に図6(c)のように間引き部分を埋めるようにステージを駆動すれば、分析領域上に平均的にX線を照射することができる。   In order to shorten the time until the analysis result is displayed, a method of thinning the stage drive may be considered. When the analysis region is designated, X-rays are irradiated while the stage drive in the Y direction is thinned by ζ as shown in FIG. In other words, the X-direction linear irradiation area adjacent to the X-direction linear irradiation area irradiated with the X-rays by the stage that is continuously driven is set to an interval longer than the diameter of the X-ray irradiation spot. Release. By the above driving method, it is possible to shorten the data acquisition time and the time until the analysis result is displayed as compared with the method of driving the entire analysis region densely. At this time, there are a region on the sample that is irradiated with X-rays, such as a region surrounded by a dotted line in FIG. 6B, and a region that is not irradiated with X-rays other than the region surrounded by a dotted line. As incomplete. In order to obtain a more complete analysis result, X-rays can be irradiated on the analysis area on average by driving the stage so as to fill in the thinned portion as shown in FIG. .

例えば、指定された分析条件が広い領域のものであった際に、上記の駆動方法は有効活用できる。分析領域全面を密に駆動しながら分析を行うと、データ取得が完了するまでの時間が長くなり、分析結果の表示に時間がかかってしまう。上記のように、間引き駆動することにより分析途中の表示が分析全領域の平均値に近いものとなるので、分析結果の見通しを早く得ることができる。   For example, the above driving method can be effectively utilized when the designated analysis conditions are in a wide area. If the analysis is performed while the entire analysis area is driven densely, it takes a long time to complete the data acquisition, and it takes a long time to display the analysis result. As described above, since the display during the analysis becomes close to the average value of the entire analysis area by thinning driving, the prospect of the analysis result can be obtained quickly.

また、広い領域を粗く測定する場合には間引き駆動をし、狭い領域を漏れなく測定する場合には密に駆動するという使い分けも有効である。   In addition, it is effective to use thinning driving when measuring a wide area roughly, and driving densely when measuring a narrow area without omission.

以上の駆動方法および分析方法により、集光X線ビームによる分析において、分析領域の変更を可能とした装置を提供することができる。   With the above driving method and analysis method, it is possible to provide an apparatus capable of changing the analysis region in the analysis using the condensed X-ray beam.

試料の表面情報を分析するX線分析装置において、微小部のX線分析のために集光X線ビームを用いたX線分析装置においても、集光X線ビームの照射径より広い領域の分析が行える。   In an X-ray analyzer that analyzes the surface information of a sample, even in an X-ray analyzer that uses a focused X-ray beam for X-ray analysis of a minute part, an analysis of a region wider than the irradiation diameter of the focused X-ray beam Can be done.

本発明の実施例を示す装置構成図である。It is an apparatus block diagram which shows the Example of this invention. 本発明のステージ駆動の例を示す図である。It is a figure which shows the example of the stage drive of this invention. 本発明における、X線照射スポットの移動の第1の例を示す図である。It is a figure which shows the 1st example of a movement of the X-ray irradiation spot in this invention. 本発明における、X線照射スポットの移動の第2の例を示す図である。It is a figure which shows the 2nd example of a movement of the X-ray irradiation spot in this invention. 本発明における、X線照射スポットの移動の第3の例を示す図である。It is a figure which shows the 3rd example of a movement of the X-ray irradiation spot in this invention. 本発明における、X線照射スポットの移動の第4の例を示す図である。It is a figure which shows the 4th example of a movement of the X-ray irradiation spot in this invention.

符号の説明Explanation of symbols

1 X線発生源
2 X線
3 集光レンズ
4 試料
5 試料ステージ
6 ステージ制御部
7 粒子検出器
8 カメラ
9 計数回路
10 撮像回路
11 制御装置
12 モニタ
13 分析領域
14 X線照射スポット
15 スポット中心
DESCRIPTION OF SYMBOLS 1 X-ray generation source 2 X-ray 3 Condensing lens 4 Sample 5 Sample stage 6 Stage control part 7 Particle detector 8 Camera 9 Count circuit 10 Imaging circuit 11 Control apparatus 12 Monitor 13 Analysis area 14 X-ray irradiation spot 15 Spot center

Claims (4)

X線源からのX線を集光させて得たX線ビームを、測定対象となる試料の表面に照射した際に形成する当該X線ビームのX線照射スポットが、試料の分析領域を走査して、その際に前記試料から発生する蛍光X線を検出する蛍光X線分析方法において、
前記X線照射スポットの領域よりも広い前記試料上の分析領域を入力する工程と、
前記X線照射スポットが走査する、前記分析領域を包含する走査領域を入力する工程と、
前記X線照射スポットが、前記走査領域を走査するように試料を載置した試料ステージの駆動を制御する工程と、
前記X線照射スポットの走査により前記X線ビームが照射されたことにより得られた蛍光X線を検出して積分したデータを取得する工程と、
前記走査領域の蛍光X線の検出データから、前記分析領域以外の領域から得られた蛍光X線のデータを差し引いて破棄する工程と、
を備えることを特徴とする蛍光X線分析方法
The X-ray irradiation spot of the X-ray beam formed when the surface of the sample to be measured is irradiated with the X-ray beam obtained by condensing the X-rays from the X-ray source scans the analysis region of the sample In the fluorescent X-ray analysis method for detecting fluorescent X-rays generated from the sample at that time,
Inputting an analysis region on the sample that is wider than a region of the X-ray irradiation spot;
Inputting a scanning region including the analysis region, which is scanned by the X-ray irradiation spot;
Controlling the driving of the sample stage on which the sample is placed so that the X-ray irradiation spot scans the scanning region;
Detecting the fluorescent X-rays obtained by irradiating the X-ray beam by scanning the X-ray irradiation spot and acquiring integrated data;
Subtracting and discarding fluorescent X-ray data obtained from regions other than the analysis region from the detection data of fluorescent X-rays in the scanning region;
A fluorescent X-ray analysis method comprising:
前記試料ステージの駆動を制御する工程が、
前記X線照射スポットが前記試料表面において、X軸方向とY軸方向への移動を交互に繰り返して矩形形状の軌道を描くよう制御する請求項1に記載の蛍光X線分析方法
Controlling the driving of the sample stage,
The fluorescent X-ray analysis method according to claim 1, wherein the X-ray irradiation spot is controlled so as to draw a rectangular orbit by alternately repeating movement in the X-axis direction and the Y-axis direction on the sample surface .
前記試料ステージの駆動を制御する工程が、
前記X線照射スポットが前記試料表面上において同心円または渦巻状に移動するように制御する請求項1に記載の蛍光X線分析方法
Controlling the driving of the sample stage,
The fluorescent X-ray analysis method according to claim 1, wherein the X-ray irradiation spot is controlled to move concentrically or spirally on the sample surface .
前記試料ステージの駆動を制御する工程が、
前記蛍光X線を検出するための検出位置を前記分析領域内に離散的に複数設定し、前記X線照射スポットが当該位置間を離散的に移動するように制御する請求項1に記載の蛍光X線分析方法
Controlling the driving of the sample stage,
2. The fluorescence according to claim 1, wherein a plurality of detection positions for detecting the fluorescent X-rays are discretely set in the analysis region, and the X-ray irradiation spot is controlled to move discretely between the positions. X-ray analysis method .
JP2007529265A 2005-08-04 2006-08-01 X-ray fluorescence analysis method Active JP4881307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007529265A JP4881307B2 (en) 2005-08-04 2006-08-01 X-ray fluorescence analysis method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005227073 2005-08-04
JP2005227073 2005-08-04
JP2007529265A JP4881307B2 (en) 2005-08-04 2006-08-01 X-ray fluorescence analysis method
PCT/JP2006/315184 WO2007015472A1 (en) 2005-08-04 2006-08-01 X-ray analyzer and analyzing method

Publications (2)

Publication Number Publication Date
JPWO2007015472A1 JPWO2007015472A1 (en) 2009-02-19
JP4881307B2 true JP4881307B2 (en) 2012-02-22

Family

ID=37708752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007529265A Active JP4881307B2 (en) 2005-08-04 2006-08-01 X-ray fluorescence analysis method

Country Status (2)

Country Link
JP (1) JP4881307B2 (en)
WO (1) WO2007015472A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150102682A (en) * 2014-02-28 2015-09-07 헬무트 휘셔 게엠베하 인스티투트 휘어 엘렉트로닉 운트 메쓰테크닉 Method for the measurement of a measurement object by means of X-ray fluorescence
WO2016069523A1 (en) * 2014-10-27 2016-05-06 Kla-Tencor Corporation Automated decision-based energy-dispersive x-ray methodology and apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254545A (en) * 1984-05-31 1985-12-16 Rigaku Denki Kogyo Kk Scanning analyzer
JPH06162986A (en) * 1992-11-13 1994-06-10 Sharp Corp Auger electron spectral analyzer and method for relaxing electrification in x-ray micro analyzer and drift correction method
JPH07270346A (en) * 1994-04-01 1995-10-20 Seiko Instr Inc Method for analyzing minute part
JP2000321225A (en) * 1999-02-23 2000-11-24 Applied Materials Inc System and method for automatically analyzing defect material on semiconductor
JP2004233262A (en) * 2003-01-31 2004-08-19 Horiba Ltd Measuring result displaying method, x-ray device and computer program
JP2005099030A (en) * 2000-02-11 2005-04-14 Muradin Abubekirovich Kumakhov Method for obtaining image of internal structure of object using x-ray irradiation, and apparatus executing the method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436050Y2 (en) * 1985-12-02 1992-08-26
JP4140490B2 (en) * 2003-09-10 2008-08-27 株式会社島津製作所 X-ray analyzer and its focusing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254545A (en) * 1984-05-31 1985-12-16 Rigaku Denki Kogyo Kk Scanning analyzer
JPH06162986A (en) * 1992-11-13 1994-06-10 Sharp Corp Auger electron spectral analyzer and method for relaxing electrification in x-ray micro analyzer and drift correction method
JPH07270346A (en) * 1994-04-01 1995-10-20 Seiko Instr Inc Method for analyzing minute part
JP2000321225A (en) * 1999-02-23 2000-11-24 Applied Materials Inc System and method for automatically analyzing defect material on semiconductor
JP2005099030A (en) * 2000-02-11 2005-04-14 Muradin Abubekirovich Kumakhov Method for obtaining image of internal structure of object using x-ray irradiation, and apparatus executing the method
JP2004233262A (en) * 2003-01-31 2004-08-19 Horiba Ltd Measuring result displaying method, x-ray device and computer program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150102682A (en) * 2014-02-28 2015-09-07 헬무트 휘셔 게엠베하 인스티투트 휘어 엘렉트로닉 운트 메쓰테크닉 Method for the measurement of a measurement object by means of X-ray fluorescence
KR102264842B1 (en) * 2014-02-28 2021-06-16 헬무트 휘셔 게엠베하 인스티투트 휘어 엘렉트로닉 운트 메쓰테크닉 Method for the measurement of a measurement object by means of X-ray fluorescence
WO2016069523A1 (en) * 2014-10-27 2016-05-06 Kla-Tencor Corporation Automated decision-based energy-dispersive x-ray methodology and apparatus
CN106796188A (en) * 2014-10-27 2017-05-31 科磊股份有限公司 Energy Dispersive X-ray method and apparatus based on automated decision-making
US9696268B2 (en) 2014-10-27 2017-07-04 Kla-Tencor Corporation Automated decision-based energy-dispersive x-ray methodology and apparatus
TWI656340B (en) * 2014-10-27 2019-04-11 美商克萊譚克公司 Automated decision-based energy-dispersive x-ray methodology and apparatus

Also Published As

Publication number Publication date
JPWO2007015472A1 (en) 2009-02-19
WO2007015472A1 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
TWI452286B (en) Inspection of small features using x-ray fluorescence
US8891729B2 (en) X-ray analyzer and X-ray analysis method
JP5269521B2 (en) X-ray analyzer and X-ray analysis method
KR102354765B1 (en) X-ray fluorescence analyzer and method of adjusting measurement position thereof
US20080061234A1 (en) Inspection apparatus and method
JP2003297891A (en) X-ray fluorescence analyzer for semiconductors
KR20180008577A (en) Defect determination method, and X-ray inspection apparatus
JP2007093593A (en) Total reflection fluorescent x-ray analysis method and device
JP4881307B2 (en) X-ray fluorescence analysis method
JP6405271B2 (en) Electron spectrometer and measuring method
US20190137422A1 (en) X-ray fluorescence spectrometer
JP5103253B2 (en) Charged particle beam equipment
JP3049313B2 (en) X-ray imaging analysis method and apparatus
JP2009002795A (en) Fluorescent x-ray analyzer
JP6185697B2 (en) X-ray analyzer
CN115427796A (en) Inspection apparatus
JPH0821605B2 (en) X-ray inspection device
JP2008256587A (en) X-ray inspection device and method
JP3257571B2 (en) Foreign object analysis method and foreign object analyzer
JP5895812B2 (en) X-ray analyzer
JP7460197B2 (en) Sample imaging method
JPH1123482A (en) Method for adjusting irradiation position with beam, foreign matter detecting apparatus using laser beam, scanning electron microscope and composition analyzing apparatus
JP4628127B2 (en) Sample surface measurement method and analysis method, and electron beam apparatus
JP2961384B2 (en) Film thickness measurement method using fluorescent X-ray
JP2024089456A (en) X-ray analysis device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090417

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

R150 Certificate of patent or registration of utility model

Ref document number: 4881307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250