JP4879861B2 - Charcoal-containing fiber and method for producing the same - Google Patents

Charcoal-containing fiber and method for producing the same Download PDF

Info

Publication number
JP4879861B2
JP4879861B2 JP2007264761A JP2007264761A JP4879861B2 JP 4879861 B2 JP4879861 B2 JP 4879861B2 JP 2007264761 A JP2007264761 A JP 2007264761A JP 2007264761 A JP2007264761 A JP 2007264761A JP 4879861 B2 JP4879861 B2 JP 4879861B2
Authority
JP
Japan
Prior art keywords
charcoal
fiber
powder
mass
viscose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007264761A
Other languages
Japanese (ja)
Other versions
JP2008179931A (en
Inventor
裕行 鍛治畑
誠 林
義孝 河尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwabo Rayon Co Ltd
Daiwabo Holdings Co Ltd
Original Assignee
Daiwabo Rayon Co Ltd
Daiwabo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwabo Rayon Co Ltd, Daiwabo Holdings Co Ltd filed Critical Daiwabo Rayon Co Ltd
Priority to JP2007264761A priority Critical patent/JP4879861B2/en
Publication of JP2008179931A publication Critical patent/JP2008179931A/en
Application granted granted Critical
Publication of JP4879861B2 publication Critical patent/JP4879861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)

Description

本発明は、トルエンなどのVOC吸着性にも優れる炭含有繊維およびその製造方法に関する。   The present invention relates to a charcoal-containing fiber excellent in VOC adsorption such as toluene and a method for producing the same.

炭を、合成樹脂などの化合材料に混合したり、紙を抄造するためのパルプなどの紙スラリーに混合したりして、炭の吸放湿性、脱臭性などの特性を製品に付与することが一般的に行なわれている。
そのような従来技術として、特定条件を満たす有機溶剤を吸着させた活性炭微粒子を用いる機能性再生セルロース組成物の製法(特許文献1参照)、炭を微粉砕した炭パウダーが繊維中に分散された炭含有繊維(特許文献2参照)などがある。
しかしながら、前記特許文献1の技術では、有機溶剤が必須であり、前記有機溶剤が繊維化を阻害する原因となる点で問題がある。前記特許文献2の技術の如く、単に炭を微粉砕した炭パウダーを分散含有させた炭含有繊維では、該繊維が発揮する諸性能が、炭単独が有する諸性能よりも劣ってしまう場合がある。これは、炭の多孔質構造が繊維原料の合成樹脂などで覆われてしまったりすることなどによる。
Charcoal can be mixed with compound materials such as synthetic resin or mixed with paper slurry such as pulp for papermaking to give charcoal moisture absorption and deodorization properties to products. Generally done.
As such a conventional technique, a method for producing a functional regenerated cellulose composition using activated carbon fine particles adsorbed with an organic solvent satisfying specific conditions (see Patent Document 1), charcoal powder obtained by finely pulverizing charcoal is dispersed in fibers. There are charcoal-containing fibers (see Patent Document 2).
However, in the technique of Patent Document 1, an organic solvent is essential, and there is a problem in that the organic solvent causes fiber formation. In the charcoal-containing fiber in which charcoal powder obtained by simply pulverizing charcoal is dispersed as in the technique of Patent Document 2, the performance exhibited by the fiber may be inferior to the performance of charcoal alone. . This is because the porous structure of charcoal is covered with synthetic resin or the like as a fiber raw material.

そこで、前記問題を解決するための炭含有繊維が種々提案されている。具体的には、例えば、レーヨン繊維の母体内に、その表面が滑らかな球形ではなく、凹凸をもった不定形である備長炭を粉砕してなる多数の微粒子を埋入させることによって、備長炭微粒子を繊維表面に露出させ、その多孔質構造が繊維原料の合成樹脂などで覆われてしまうことがないよう工夫した、消臭性レーヨン繊維(特許文献3参照)が知られている。また、平均粒子径0.01〜1.0μmの木炭粉をレーヨン繊維に担持させてなり、木炭粉が1〜60質量%含まれるという構成を採用することによって、繊維中の木炭の表面積を増やすことを工夫した、木炭担持繊維(特許文献4参照)も知られている。
特公平6−99595号公報 特開2000−290826号公報 特開2001−98412号公報 特開2001−262431号公報
Therefore, various charcoal-containing fibers for solving the above problems have been proposed. Specifically, for example, by incorporating a large number of fine particles formed by pulverizing Bincho charcoal, which is irregular in shape with irregularities, into the matrix of rayon fibers, instead of a smooth spherical surface, Bincho charcoal A deodorant rayon fiber (see Patent Document 3) is known in which fine particles are exposed on the fiber surface so that the porous structure is not covered with a synthetic resin as a fiber raw material. Moreover, the surface area of the charcoal in a fiber is increased by employ | adopting the structure that charcoal powder with an average particle diameter of 0.01-1.0 micrometer is carry | supported by rayon fiber, and 1-60 mass% of charcoal powder is contained. A charcoal-carrying fiber (see Patent Document 4) that devises this is also known.
Japanese Examined Patent Publication No. 6-99595 JP 2000-290826 A JP 2001-98412 A JP 2001-262431 A

前記特許文献3、特許文献4に記載の繊維に関し、本発明者が追試したところによると、炭の有する諸性能(ガス吸着性、マイナスイオン効果、電磁波遮蔽性、遠赤外線による温室効果、調湿効果)が殆ど阻害されることなく付与された、良好な繊維ではあるが、ガス吸着性のうち、VOC(Volatile Organic Compound:揮発性有機化合物)の吸着性に関しては、乏しかったり、不安定であったりして、いまだ改良の余地のあることが分かった。
そこで、本発明の解決しようとする課題は、VOC吸着性にも優れる炭含有繊維およびその製造方法を提供することにある。
Regarding the fibers described in Patent Document 3 and Patent Document 4, the inventors have made additional trials and found that charcoal performances (gas adsorption, negative ion effect, electromagnetic wave shielding, greenhouse effect by far infrared rays, humidity control, etc.) (Effect) is a good fiber with almost no hindrance, but among the gas adsorption properties, the adsorption properties of VOC (Volatile Organic Compound) are poor or unstable. I found that there was still room for improvement.
Therefore, the problem to be solved by the present invention is to provide a charcoal-containing fiber excellent in VOC adsorption and a method for producing the same.

本発明者らは、上記課題を解決するべく鋭意検討を行った。その過程において、前記特許文献3や前記特許文献4に記載の技術を用いても十分なVOC吸着能が安定して発揮されないのは、粗大粒子が繊維から脱落することがあり、この脱落を十分に抑制できていないためであることが分かった。すなわち、前記従来技術でも、粒子径の小さな木炭粉は繊維中に強固に担持され、脱落することは殆どないが、粗大粒子は繊維から脱落しやすく、しかも、粒子径が大きいために、脱落した粗大粒子が数として少ない場合であっても、体積としては大きく脱落することとなるため、繊維中の木炭粉量の絶対値が低下し、結果として、VOCを吸着するために十分な量の木炭粉が、繊維内に確保されない、ということが分かったのである。そして、平均粒子径および最大粒子径のいずれが大きい場合であっても、繊維から木炭などの炭の粉が脱落することを防止できず、そのために、初期性能に優れる炭含有繊維であっても、経時安定性が低く、期待される性能を徐々に発揮し得なくなることが分かった。   The present inventors have intensively studied to solve the above problems. In the process, even if the techniques described in Patent Document 3 and Patent Document 4 are used, sufficient VOC adsorption ability is not stably exhibited because coarse particles may fall off from the fibers. It was found that this was because it was not suppressed. That is, even in the prior art, the charcoal powder having a small particle size is firmly supported in the fiber and hardly falls off, but the coarse particle is easily dropped from the fiber, and further, the particle size is large, so it has fallen off. Even if the number of coarse particles is small, the volume will drop off greatly, and the absolute value of the amount of charcoal powder in the fiber will decrease, resulting in a sufficient amount of charcoal to adsorb VOC. It was found that the powder was not secured in the fiber. And even if any of the average particle size and the maximum particle size is large, it is not possible to prevent charcoal powder such as charcoal from falling off from the fiber, and therefore, even if it is a charcoal-containing fiber excellent in initial performance It was found that the stability over time was low and the expected performance could not be exhibited gradually.

かかる知見に基づき、十分なVOC吸着能を経時的にも安定して発揮させるためには、繊維中の炭の粉がVOC吸着能に優れ、かつ、その多くが繊維内に確保されるように、炭の粉の平均粒子径や最大粒子径、セルロース分に対する割合を工夫すれば良いことを見出し、それを確認して、本発明を完成するに至った。加えて、炭が木炭である場合には、平均粒子径や最大粒子径の工夫により、炭の粉が繊維から脱落するのが防止され、炭含有繊維の経時安定性が向上するだけでなく、VOCに対する初期吸着性能も顕著に高まるということも分かった。
すなわち、本発明にかかる炭含有繊維は、炭の粉を含有させてなるレーヨン繊維において、前記炭の粉は、平均粒子径が1.2μm以下であり、最大粒子径が2.2μm以下であり、その80%以上が粒子径1μm以下の粒子であり、かつ、セルロース分に対する割合が15質量%以上である、VOC吸着性にも優れる繊維である。
Based on such knowledge, in order to stably exhibit sufficient VOC adsorption ability over time, charcoal powder in the fiber is excellent in VOC adsorption ability, and most of it is ensured in the fiber. The present inventors have found that the average particle size and the maximum particle size of charcoal powder and the ratio to the cellulose content can be devised, and have confirmed that to complete the present invention. In addition, when the charcoal is charcoal, by devising the average particle size and the maximum particle size, the powder of charcoal is prevented from falling off the fiber, not only the stability over time of the charcoal-containing fiber is improved, It has also been found that the initial adsorption performance for VOC is significantly increased.
That is, the charcoal-containing fiber according to the present invention is a rayon fiber containing charcoal powder, and the charcoal powder has an average particle size of 1.2 μm or less and a maximum particle size of 2.2 μm or less. 80% or more of the particles are particles having a particle diameter of 1 μm or less, and the ratio to the cellulose content is 15% by mass or more.

本発明にかかる炭含有繊維の好ましい第1の実施形態では、前記炭が木炭であり、前記炭の粉は、平均粒子径が0.65μm以下である。
本発明にかかる炭含有繊維の好ましい第2の実施形態では、前記炭が活性炭である。
本発明にかかる炭含有繊維の製造方法は、平均粒子径が1.2μm以下、最大粒子径が2.2μm以下である炭の粉を水に分散させて5〜25質量%の水分散液とし、前記水分散液とビスコースを、セルロース分に対する前記炭の粉の割合が15質量%以上となるようにして混合して、この混合液を紡糸する、ことを特徴とする。
In a preferred first embodiment of the charcoal-containing fiber according to the present invention, the charcoal is charcoal, and the charcoal powder has an average particle size of 0.65 μm or less.
In a second preferred embodiment of the charcoal-containing fiber according to the present invention, the charcoal is activated carbon.
In the method for producing charcoal-containing fibers according to the present invention, a charcoal powder having an average particle size of 1.2 μm or less and a maximum particle size of 2.2 μm or less is dispersed in water to obtain a 5 to 25 mass% aqueous dispersion. The aqueous dispersion and viscose are mixed so that the ratio of the charcoal powder to the cellulose content is 15% by mass or more, and the mixture is spun.

本発明によれば、炭の有する諸性能が良好に発揮され、VOC吸着性にも優れる炭含有繊維およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the various characteristics which charcoal has are exhibited favorably, and the charcoal containing fiber which is excellent also in VOC adsorptivity, and its manufacturing method can be provided.

以下、本発明にかかる炭含有繊維およびその製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。
〔炭〕
ガス吸着性や吸放湿性、脱臭性、帯電防止性、イオン交換機能など、炭が有する各種の機能を発揮できるものであれば、原材料や製造方法などは特に限定されないが、木炭(特に後述する製造方法で得られる活性化木炭)や活性炭が好ましい。
炭を粉砕して微細な粉にすることで、表面積が増大し、吸着機能などがより高まるとともに、レーヨン繊維に対する担持処理が行い易くなる。
Hereinafter, the charcoal-containing fiber and the method for producing the same according to the present invention will be described in detail. However, the scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention is not impaired. Changes can be made as appropriate.
[Charcoal]
The raw materials and production methods are not particularly limited as long as they can exhibit various functions of charcoal such as gas adsorption, moisture absorption / desorption, deodorization, antistatic property, and ion exchange function, but charcoal (particularly described later) Activated charcoal obtained by the production method) and activated carbon are preferred.
By pulverizing the charcoal into a fine powder, the surface area is increased, the adsorption function and the like are further increased, and the support for the rayon fibers is facilitated.

炭の粉は、平均粒子径1.2μm以下であることが必要である。平均粒子径が1.2μmを超えると、炭の粉が繊維から脱落する。一方、平均粒子径が小さいほど、単位質量当たりの表面積が大きくなり、表面性状に基づく諸機能が向上する。具体的には、例えば、炭の粉の平均粒子径が0.65μm以下であることが好ましい。特に、木炭を用いる場合、その粉の平均粒子径が0.65μm以下であると、VOC吸着能が顕著に向上する。ただし、炭の粉の平均粒子径が小さい場合には、比表面積が向上するという点では利点となるが、後述の如く炭の粉を水に分散させる際に、水分散液の濃度をかなり低下させないと充分な流動性が得られず、この水分散液をビスコースに添加混合することが困難となるおそれがあるので、0.2μm以上であることが好ましい。平均粒子径0.3〜0.6μmのものが特に好ましい。   The charcoal powder needs to have an average particle size of 1.2 μm or less. When the average particle diameter exceeds 1.2 μm, charcoal powder falls off the fibers. On the other hand, the smaller the average particle size, the larger the surface area per unit mass and the various functions based on the surface properties are improved. Specifically, for example, the average particle diameter of the charcoal powder is preferably 0.65 μm or less. In particular, when using charcoal, the VOC adsorption ability is significantly improved when the average particle size of the powder is 0.65 μm or less. However, when the average particle size of the charcoal powder is small, it is advantageous in that the specific surface area is improved. However, when the charcoal powder is dispersed in water as described later, the concentration of the aqueous dispersion is considerably reduced. Otherwise, sufficient fluidity cannot be obtained, and it may be difficult to add and mix this aqueous dispersion into the viscose. Therefore, the thickness is preferably 0.2 μm or more. An average particle diameter of 0.3 to 0.6 μm is particularly preferable.

活性化木炭を使用する場合、活性化木炭、さらに、これを粉砕した活性化木炭粉には、低温炭化部分と高温炭化部分とが混在する。個々の活性化木炭粉に低温炭化部分と高温炭化部分が存在することが好ましいが、低温炭化部分からなる活性化木炭粉と高温炭化部分からなる活性化木炭粉とが均一に分散していてもよい。
前記炭の粉は、最大粒子径が2.2μm以下であり、好ましくは2.0μm以下である。最大粒子径が2.2μmを超えると後述する紡糸工程以降における、繊維からの炭の粉末の脱落が多くなってしまい、十分なVOC吸着能が得られない。粒子径2.0μm以下の占める割合が90%以上であることが好ましく、より好ましくは95%以上、特に好ましくは100%である。粒子径2.0μm以下の占める割合が少なくなるほど、最大粒子径が2.2μm以下の炭の粉が得られ難くなる。
When the activated charcoal is used, the activated charcoal and further the activated charcoal powder obtained by pulverizing the activated charcoal include a low temperature carbonized portion and a high temperature carbonized portion. It is preferable that each activated charcoal powder has a low temperature carbonized portion and a high temperature carbonized portion, but even if the activated charcoal powder composed of the low temperature carbonized portion and the activated charcoal powder composed of the high temperature carbonized portion are uniformly dispersed. Good.
The charcoal powder has a maximum particle size of 2.2 μm or less, preferably 2.0 μm or less. If the maximum particle diameter exceeds 2.2 μm, the powder of charcoal will drop off from the fiber after the spinning step described later, and sufficient VOC adsorption capacity cannot be obtained. The proportion of the particle size of 2.0 μm or less is preferably 90% or more, more preferably 95% or more, and particularly preferably 100%. As the proportion of the particle size of 2.0 μm or less decreases, it becomes difficult to obtain charcoal powder having a maximum particle size of 2.2 μm or less.

粒子径1.0μm以下の占める割合が80%以上であることがより好ましく、90%以上であることがさらに好ましく、特に好ましくは95%以上、最も好ましくは100%である。粒子径1.0μm以下の占める割合が80%以上であると、繊維中に含有させても、繊維からの脱落や繊維強度の低下を招き難いため、繊維中に炭の粉を多く含有させることができ、その結果、炭の粉の有する諸性能をより顕著に発揮させることができる。
粉砕装置および粉砕条件は、基本的には通常の炭の粉の製造技術が適用できる。粉砕装置として、ジェットミルなどの乾式粉砕装置や、トロンミルなどの湿式粉砕装置、旋回渦流式粉砕装置などが用いられる。旋回渦流式粉砕装置は、回転ローター等で発生させた旋回渦流中で原料が衝撃破砕や磨砕作用を繰り返すことで微細な粉砕物が得られる装置であり、原料がカッターや磨砕具に対して直接に接触せずに粉砕されるために、粉砕物に金属などの異物が混入することが少ないという利点がある。本発明では、まず、乾式粉砕装置によってある程度粉砕し、次いで、湿式粉砕装置によって微細に粉砕する方法が、特に好ましい。第1段階目の粉砕、すなわち、乾式粉砕によって、例えば平均粒径を6μm以下となるように粉砕し、粗大粒子を予め取り除いておくことにより、第2段階目の粉砕、すなわち、湿式粉砕での粉砕効率が向上する。そして、前記湿式粉砕を行う段階では、粗大粒子が存在しないために、非常に効率良く均一に粉砕され、表面に凹凸の少ない炭の粉が得られる。また、湿式粉砕では、分散媒である水と分散質である炭の粉が十分に接触して、両者がよくなじむため、そのまま水分散液として用い、後述するようにビスコースへ添加すれば、炭の粉がビスコース中、さらに、繊維化後のレーヨン繊維中でも安定して存在することとなるため、好ましい。この場合には、湿式粉砕の段階で、分散剤を添加しておくと良い。水分散液や分散剤に関しては、後に詳述する。
The proportion of the particle size of 1.0 μm or less is more preferably 80% or more, further preferably 90% or more, particularly preferably 95% or more, and most preferably 100%. When the proportion of the particle size of 1.0 μm or less is 80% or more, even if it is contained in the fiber, it is difficult to cause dropout from the fiber or a decrease in fiber strength, so that a large amount of charcoal powder is contained in the fiber. As a result, various performances of the charcoal powder can be exhibited more remarkably.
For the pulverizing apparatus and the pulverizing conditions, basically, ordinary charcoal powder manufacturing technology can be applied. As the pulverizer, a dry pulverizer such as a jet mill, a wet pulverizer such as a tron mill, or a swirl vortex pulverizer is used. A swirling vortex crusher is a device that obtains a finely pulverized material by repeating impact crushing and grinding in a swirling vortex generated by a rotating rotor, etc. Therefore, there is an advantage that foreign matters such as metal are hardly mixed in the pulverized product. In the present invention, a method of first pulverizing to some extent by a dry pulverizer and then finely pulverizing by a wet pulverizer is particularly preferable. By pulverization in the first stage, that is, dry pulverization, for example, the average particle diameter is pulverized to 6 μm or less, and coarse particles are removed in advance, so that the second stage pulverization, that is, wet pulverization. The grinding efficiency is improved. In the wet pulverization stage, since coarse particles are not present, the powder is pulverized very efficiently and uniformly, and a charcoal powder with less unevenness is obtained on the surface. In addition, in wet grinding, water as a dispersion medium and charcoal powder as a dispersoid are sufficiently in contact with each other, so both are used well, so as it is used as an aqueous dispersion, and added to viscose as described later, It is preferable because charcoal powder is stably present in the viscose and also in the rayon fiber after fiberization. In this case, it is preferable to add a dispersant at the stage of wet grinding. The aqueous dispersion and the dispersant will be described in detail later.

<木炭>
木炭とは、木材を炭化して得られる炭素を主成分とする固体生成物のことであり、例えば、活性化木炭や備長炭などが挙げられる。中でも、以下に詳しく述べる活性化木炭を用いることが好ましい。
(活性化木炭)
活性化木炭とは、木炭の原料、炭化処理条件などを適切に設定することによって、物理的および化学的に活性化した木炭であり、前記したガス吸着性などの機能が格段に向上する。活性化木炭の製造方法は、木材チップを450〜550℃で熱処理して炭化させる低温炭化工程と、低温炭化工程に引き続いて、木材チップの炭化物を800〜900℃で、好ましくは3〜60分、さらに好ましくは5〜15分熱処理して、さらに炭化させる高温炭化工程と、高温炭化工程の終了時点で、炭化物に水を接触させる活性化工程とを含む。
<Charcoal>
Charcoal is a solid product mainly composed of carbon obtained by carbonizing wood, and examples thereof include activated charcoal and bincho charcoal. Among them, it is preferable to use activated charcoal described in detail below.
(Activated charcoal)
Activated charcoal is charcoal that is physically and chemically activated by appropriately setting the raw materials of charcoal, carbonization conditions, and the like, and the functions such as gas adsorption described above are remarkably improved. The activated charcoal manufacturing method includes a low-temperature carbonization step in which wood chips are carbonized by heat treatment at 450 to 550 ° C., followed by a low-temperature carbonization step, and carbide of wood chips at 800 to 900 ° C., preferably 3 to 60 minutes. More preferably, it includes a high-temperature carbonization step in which heat treatment is further performed for 5 to 15 minutes to further carbonize, and an activation step in which water is brought into contact with the carbide at the end of the high-temperature carbonization step.

前記木材チップとは、木材の細片すなわちチップである。木材チップの原木としては、主に、杉材、ヒマラヤ杉材、赤松材等の針葉樹材が用いられ、特に赤松材が好ましい。木材製品として利用し難く安価な細い木材や廃材を利用することができる。パルプ製造やボード建材の原料として大量に工業生産されている木材チップ製品を用いることもできる。
木材チップの形状および寸法は特に限定されないが、木材チップの差し渡し径を測ったときに、その最大径が10〜60mmのものが好ましい。大き過ぎる木材チップは十分な炭化を行い難く、小さ過ぎる木材チップは取扱い難く、製造歩留りも悪い。
前記低温炭化工程では、基本的には、通常の木炭製造装置および製造処理条件を採用すればよい。熱処理の温度を450〜550℃に設定する。熱処理時間は、木材チップの全体が十分に炭化される程度で良く、木材チップあるいは製造装置の条件によっても異なるが、通常は100〜120時間をかけて処理される。
The wood chip is a piece of wood or chip. As raw wood for wood chips, mainly coniferous materials such as cedar, Himalayan cedar and red pine are used, and red pine is particularly preferable. It is possible to use thin wood and waste materials that are difficult to use as wood products and inexpensive. Wood chip products that are industrially produced in large quantities can also be used as raw materials for pulp production and board building materials.
The shape and size of the wood chip are not particularly limited, but when the passing diameter of the wood chip is measured, the maximum diameter is preferably 10 to 60 mm. Wood chips that are too large are difficult to carbonize sufficiently, and wood chips that are too small are difficult to handle and have poor production yields.
In the low-temperature carbonization step, basically, an ordinary charcoal production apparatus and production process conditions may be employed. The temperature of heat processing is set to 450-550 degreeC. The heat treatment time may be such that the entire wood chip is sufficiently carbonized, and usually varies depending on the conditions of the wood chip or the manufacturing apparatus, but usually takes 100 to 120 hours.

熱処理雰囲気は、空気の流入を遮断した状態で行う。モミ殻やオガクズで木材チップを覆った状態で処理することができる。
前記高温炭化工程では、基本的には、通常の木炭製造装置および製造処理条件を採用し、熱処理の温度を800〜900℃、熱処理時間を好ましくは3〜60分、さらに好ましくは5〜15分に設定する。高温炭化工程では、前工程で低温炭化された木材チップ炭化物の表面に近い一部分のみを高温炭化し、木材チップ炭化物の中心部分には低温炭化部分を残しておく。
処理時間によって、得られる活性化木炭に含まれる高温炭化部分と低温炭化部分との比率が調整される。処理時間が短すぎたり長すぎたりすると、高温炭化部分と低温炭化部分とのそれぞれの特性が十分に発揮できない。前記低温炭化工程と同じ装置で、熱処理温度を上昇させることで、低温炭化された木材チップ炭化物をそのまま高温炭化させることが好ましい。熱処理雰囲気は、酸素を供給した状態にする。
The heat treatment atmosphere is performed in a state where the inflow of air is blocked. It can be treated with wood chips covered with fir shells and sawdust.
In the high-temperature carbonization step, basically, a normal charcoal production apparatus and production treatment conditions are adopted, the heat treatment temperature is 800 to 900 ° C., the heat treatment time is preferably 3 to 60 minutes, more preferably 5 to 15 minutes. Set to. In the high-temperature carbonization step, only a portion near the surface of the wood chip carbide that has been low-temperature carbonized in the previous step is high-temperature carbonized, and the low-temperature carbonization portion is left in the central portion of the wood chip carbide.
The ratio of the high temperature carbonization part and the low temperature carbonization part contained in the activated charcoal obtained is adjusted by processing time. If the treatment time is too short or too long, the respective characteristics of the high temperature carbonized portion and the low temperature carbonized portion cannot be sufficiently exhibited. It is preferable that the wood chip carbide that has been carbonized at low temperature is carbonized as it is by increasing the heat treatment temperature in the same apparatus as the low-temperature carbonization step. The heat treatment atmosphere is in a state where oxygen is supplied.

高温炭化工程で熱処理を行った炭化物に水を接触させると、炭化物は急速に冷却されて消火する。その際に、水の化学的および物理的な作用によって、炭化物に複雑な形状の微細孔が形成されたり、炭化物の表面が改質されて吸着能などが向上したりする活性化が行われる。
なお、水は液体状態であってもよいが、通常は水蒸気状態で炭化物に接触することになる。活性化工程の具体的処理装置や処理条件は、既知の活性炭製造技術において行われている水との接触処理と同様でよい。但し、活性化木炭を得るための活性化工程における炭化物への水の接触は、活性炭製造技術において行なわれるいわゆる水蒸気賦活とは異なる。すなわち、活性炭製造における水蒸気賦活では、一次炭といわれる原料炭素に水蒸気を通じ、1000℃付近で反応させることにより、一次炭中に残存または吸着されていた不純物や一部の炭素がガス化して除去され、内部表面積が大きくなっているものであって、上述の活性化炭素製造における炭化物への水の作用(炭化物の急速な冷却による水の化学的および物理的な作用)とは明らかに異なる。
When water is brought into contact with the carbide that has been heat-treated in the high-temperature carbonization process, the carbide is rapidly cooled and extinguished. At that time, activation is performed by chemical and physical action of water such that fine pores having a complicated shape are formed in the carbide, or the surface of the carbide is modified to improve the adsorption ability.
Although water may be in a liquid state, it usually comes into contact with the carbide in a water vapor state. The specific treatment apparatus and treatment conditions of the activation step may be the same as the contact treatment with water that is performed in a known activated carbon production technique. However, the contact of water with the carbide in the activation process for obtaining activated charcoal is different from so-called steam activation performed in the activated carbon production technology. That is, in steam activation in activated carbon production, impurities or part of carbon remaining or adsorbed in the primary coal is gasified and removed by reacting raw carbon called primary coal with water vapor at around 1000 ° C. It has a large internal surface area and is clearly different from the action of water on the carbides in the above-mentioned activated carbon production (chemical and physical action of water by rapid cooling of the carbides).

活性化木炭は、内部に多数の微細孔を有する多孔質構造であり、この微細孔による物理的な吸着作用を有するとともに、微細孔の表面が化学的あるいは物理的に活性化されていて高い吸着能を発揮する。備長炭との比較において具体的に以下に説明する。
電子スピン共鳴法により、活性化木炭と備長炭を分析したところ、活性化木炭では1重項のシグナルが検出され、備長炭ではシグナルは検出されなかった。そして、前記活性化木炭において検出されたシグナルのg値は、2.00であり、自由電子に近い値であった。このことから、前記シグナルは、水素と結合していない炭素のダングリングボンドに由来する不対電子が原因であると推測される。他方、X線回折により、活性化木炭と備長炭を分析したところ、活性化木炭は非晶質に特有の幅の広いピークのみが得られ、備長炭は非晶質に特有のピークに加えて結晶質による鋭いピークも得られたことから、活性化木炭は非晶質からなり、備長炭は非晶質と結晶質からなることが分かった。
Activated charcoal has a porous structure with a large number of micropores inside, and has a physical adsorption action due to the micropores, and the surface of the micropores is chemically or physically activated to provide high adsorption. Demonstrate the ability. This will be specifically described below in comparison with Bincho charcoal.
When activated charcoal and Bincho charcoal were analyzed by the electron spin resonance method, a singlet signal was detected in the activated charcoal, and no signal was detected in Bincho charcoal. And the g value of the signal detected in the said activated charcoal was 2.00, and was a value close | similar to a free electron. This suggests that the signal is caused by unpaired electrons derived from dangling bonds of carbon that are not bonded to hydrogen. On the other hand, when activated charcoal and Bincho charcoal were analyzed by X-ray diffraction, activated charcoal obtained only a wide peak peculiar to amorphous. A sharp peak due to crystallinity was also obtained, indicating that activated charcoal was amorphous and Bincho charcoal was amorphous and crystalline.

木炭が非晶質であると、炭素の結合に欠陥が多くなり、その結果、自由電子様の不対電子が存在することになって、他の物質との反応性が生じる。活性化木炭は、非晶質部分が多いため、備長炭などよりも優れた吸着能を発揮するものと推測される。
なお、X線光電子分光法により分析したところ、活性化炭素の原子組成は、炭素89.1%、酸素10.9%であり、官能基としてヒドロキシル基(−OH)、カルボキシル基あるいはエステル基(−COOR:RはHあるいはアルキル基)を有することが推測された。また、活性化木炭を水中に分散させて、ラジカル発生の有無を調べた結果、ラジカルが生じなかったことから、活性化木炭中の不対電子は、吸着能の向上に寄与するものの、水と反応してラジカルを生じるほどの反応性まではもたないことが分かる。これらの実験事実から、吸着性を発揮する原因となる活性化木炭表面の官能基は、過酸化物ラジカルなどのように反応性の高い遊離基ではなく、不対電子をもつ炭素原子(有機ラジカル)や炭素に結合し、かつ、不対電子をもつヒドロキシル基、酸素原子などであると推測される。
If the charcoal is amorphous, there will be many defects in the carbon bonds, and as a result, there will be free electron-like unpaired electrons, resulting in reactivity with other substances. Since activated charcoal has many amorphous parts, it is presumed that the activated charcoal exhibits better adsorption ability than Bincho charcoal.
As a result of analysis by X-ray photoelectron spectroscopy, the atomic composition of activated carbon is 89.1% carbon and 10.9% oxygen, and a hydroxyl group (—OH), carboxyl group or ester group ( -COOR: R is presumed to have H or an alkyl group. In addition, the activated charcoal was dispersed in water and examined for the presence or absence of radicals. As a result, radicals were not generated.Unpaired electrons in the activated charcoal contributed to the improvement of adsorption capacity, It can be seen that there is no reactivity enough to react to generate radicals. From these experimental facts, the functional group on the activated charcoal surface that causes adsorptive properties is not a highly reactive free radical such as a peroxide radical, but a carbon atom having an unpaired electron (organic radical ) And carbon, and it is presumed to be a hydroxyl group or oxygen atom having an unpaired electron.

前記製造方法から判るように、活性化木炭は、原料となる木材チップ以外の添加剤や活性化処理剤を使用する必要がない。
活性化木炭は、吸着能に優れ、吸放湿性、脱臭性、防黴性、遠赤外線放射性、導電性、電磁波吸収性、イオン調整機能などに優れている。活性化木炭の吸着能は、吸着物質と接触したときの立ち上がり速度が大きい。また、吸着物質を分解する作用があるため、活性化木炭の微細孔に吸着物質が詰まって吸着能が低下することが防げ、長期間にわたって安定した吸着能を発揮できる。活性化木炭には、低温炭化工程で炭化された低温炭化部分と、高温炭化工程でさらに炭化された高温炭化部分とが混在している。通常は、中心側に低温炭化部分、外周側に高温炭化部分が存在する。
As can be seen from the above production method, activated charcoal does not require the use of additives or activation treatment agents other than wood chips as raw materials.
Activated charcoal is excellent in adsorptive capacity, and is excellent in moisture absorption / desorption, deodorization, mildew resistance, far-infrared radiation, conductivity, electromagnetic wave absorption, ion adjustment function, and the like. The activated charcoal adsorbing ability has a large rising speed when it comes into contact with the adsorbing substance. Moreover, since it has the effect | action which decomposes | disassembles an adsorbent substance, it can prevent that an adsorbent substance clogs into the micropore of activated charcoal, and adsorbability falls, and can exhibit stable adsorbability over a long period of time. The activated charcoal contains a mixture of a low temperature carbonized portion carbonized in the low temperature carbonization step and a high temperature carbonized portion further carbonized in the high temperature carbonization step. Usually, there is a low-temperature carbonized portion on the center side and a high-temperature carbonized portion on the outer peripheral side.

低温炭化部分は、酢酸やアンモニアなどの比較的高分子量の化合物に対する吸着性が優れている。高温炭化部分は、ホルムアルデヒド、アセトアルデヒド、エチレンなどの比較的低分子量の化合物に対する吸着性に優れている。活性化木炭は、低温炭化部分と高温炭化部分の機能や役目を相乗的に発揮させることができる。
<活性炭>
活性炭は、気体または溶液中の溶質などに対して強い吸着能を示す炭素質の物質であって、木炭などを賦活することにより得られるものである。賦活方法としては、例えば、水蒸気賦活、薬品賦活その他の方法が挙げられるが、特に、水蒸気賦活が好ましい。
The low-temperature carbonized portion has excellent adsorptivity to relatively high molecular weight compounds such as acetic acid and ammonia. The high-temperature carbonized portion is excellent in adsorptivity to relatively low molecular weight compounds such as formaldehyde, acetaldehyde, and ethylene. The activated charcoal can synergistically exhibit the functions and roles of the low temperature carbonized portion and the high temperature carbonized portion.
<Activated carbon>
Activated carbon is a carbonaceous substance that exhibits a strong adsorbing ability for gases or solutes in a solution, and is obtained by activating charcoal or the like. Examples of the activation method include steam activation, chemical activation, and other methods, and steam activation is particularly preferable.

活性炭の原料としては、木炭、果実炭、石炭、ピッチコークスなどの公知の原料が使用できるが、特に針葉樹由来の木炭を原料とする活性炭は、比表面積が大きく、VOC吸着特性に優れる炭含有繊維を得ることができるため、好ましい。
水蒸気賦活は、例えば、1000〜1200℃において木炭などの原料に水蒸気を通じて行う。
薬品賦活は、例えば、木炭などの原料を乾燥後粉砕し、塩化亜鉛、リン酸、亜硫酸、アルカリなどの溶液に浸し、次いで、焼成、炭化して行う。不純物は水洗、除去しても良い。
As a raw material of activated carbon, known raw materials such as charcoal, fruit charcoal, coal, pitch coke can be used. In particular, activated carbon made from charcoal derived from charcoal has a large specific surface area and has excellent VOC adsorption characteristics. Is preferable.
The steam activation is performed through steam at a raw material such as charcoal at 1000 to 1200 ° C., for example.
The chemical activation is performed, for example, by drying a raw material such as charcoal and pulverizing it, immersing it in a solution of zinc chloride, phosphoric acid, sulfurous acid, alkali, etc., followed by firing and carbonization. Impurities may be washed and removed.

その他の方法としては、例えば、木炭などの原料を、空気、二酸化炭素、塩素ガス中で加熱し、原料の一部を酸化する方法、炭を減圧下に強熱する方法、赤熱した炭を水、硝酸中に浸す方法などが挙げられる。
〔炭含有繊維の製造〕
本発明にかかる炭含有繊維を製造する場合は、上述した、平均粒子径が1.2μm以下、最大粒子径が2.2μm以下であり、かつ、その80%以上が粒子径1μm以下の粒子である炭の粉を用い、前記条件を満たす炭の粉とビスコースを混合分散して、この混合液を紡糸する。
まず、レーヨン繊維の原料であるビスコースに上述の条件を満たした炭の粉を分散させる。ビスコースは、セルロースを含む溶液であり、通常のビスコース製造工程を経て製造されたものが用いられる。ビスコースと炭の粉を撹拌混合して、炭の粉分散ビスコースを調製する。炭の粉の分散は、ビスコースの製造工程の何れの段階でも可能であるが、硫化工程や熟成工程などを終えたビスコースが紡糸工程に入る直前に行うのが好ましい。
Other methods include, for example, heating a raw material such as charcoal in air, carbon dioxide or chlorine gas to oxidize a part of the raw material, a method in which the charcoal is ignited under reduced pressure, or a red hot charcoal in water. And soaking in nitric acid.
[Manufacture of charcoal-containing fibers]
When producing a carbon-containing fibers according to the present invention, described above, an average particle diameter of 1.2μm or less, the maximum particle diameter of Ri der less 2.2 .mu.m, and particle 80% or more of the following particle size 1μm with powder der Ru charcoal, said a satisfies charcoal powder and viscose are mixed and dispersed, and spinning the mixture.
First, charcoal powder satisfying the above conditions is dispersed in viscose, which is a raw material for rayon fibers. Viscose is a solution containing cellulose, and one manufactured through a normal viscose manufacturing process is used. Viscose and charcoal powder are mixed with stirring to prepare charcoal powder-dispersed viscose. The charcoal powder can be dispersed at any stage of the viscose production process, but it is preferably performed immediately before the viscose that has undergone the sulfidation process or the aging process enters the spinning process.

予め、炭の粉を水に分散させて5〜25質量%の水分散液とし、これをビスコースに添加することが好ましい。上述したように、炭を湿式粉砕する場合には、湿式粉砕後の水分散液をそのまま用いても良いし、さらに水で希釈して用いても良い。25質量%を超えると、前記分散液がチキソトロピーを有し、静置すると流動性を失ってしまうおそれがあるため、ビスコースへの連続的な添加・混合が困難となる。5質量%未満であると、ビスコースに添加・混合した際に、粘度が低くなり過ぎ、水分散液の添加・混合後のビスコースが有する曳糸性が低下し、ビスコース再生時に再生途中の糸条が切れ、繊維化が困難となるおそれがある。また、木炭を用いる場合、5〜25質量%の水分散液をビスコースに添加することで得られうる繊維は、繊維表面に皺を有し、表面積が増加することによって、VOC吸着性が向上するということが分かった。好ましくは7〜22質量%、さらに好ましくは8〜16質量%、特に好ましくは9〜12質量%である。9〜12質量%の水分散液をビスコースに添加・混合したものを紡糸して得られる木炭含有繊維は、繊維表面の皺が大きく、深い溝を形成し、VOC吸着性が顕著に向上することが分かった。   It is preferable to preliminarily disperse charcoal powder in water to obtain a 5 to 25% by mass aqueous dispersion, which is added to the viscose. As described above, when wet pulverizing charcoal, the aqueous dispersion after wet pulverization may be used as it is, or further diluted with water. If the amount exceeds 25% by mass, the dispersion has thixotropy and may lose fluidity when allowed to stand, so that it is difficult to continuously add and mix into viscose. If it is less than 5% by mass, the viscosity becomes too low when added to and mixed with the viscose, and the spinnability of the viscose after the addition and mixing of the aqueous dispersion is lowered, and during the regeneration during viscose regeneration There is a risk that the yarn will be cut and fiberization will be difficult. Moreover, when using charcoal, the fiber which can be obtained by adding 5-25 mass% aqueous dispersion to viscose has wrinkles on the fiber surface, and the surface area increases, thereby improving VOC adsorption. I found out that Preferably it is 7-22 mass%, More preferably, it is 8-16 mass%, Most preferably, it is 9-12 mass%. The charcoal-containing fiber obtained by spinning a 9-12 mass% aqueous dispersion added and mixed with viscose has large wrinkles on the fiber surface, forms deep grooves, and significantly improves VOC adsorption. I understood that.

前記分散は、セルロース分に対する前記炭の粉の割合が15質量%以上となるように行う。50質量%以下であることが好ましい。前記割合が15質量%未満では、VOC吸着性が十分に発揮されない。一方、50質量%を超えると、紡糸性が低下したり、得られたレーヨン繊維から炭の粉が脱落しやすくなったり、レーヨン繊維の強度や伸度などの性能が低下したりすることがある。木炭を用いる場合、前記割合が40質量%以下であることが好ましい。より好ましくは20〜38質量%、さらに好ましくは25〜35質量%である。活性炭を用いる場合、前記割合が50質量%以下であることが好ましい。より好ましくは17〜45質量%、さらに好ましくは20〜43質量%である。   The dispersion is performed so that the ratio of the charcoal powder to the cellulose content is 15% by mass or more. It is preferable that it is 50 mass% or less. If the said ratio is less than 15 mass%, VOC adsorptivity will not fully be exhibited. On the other hand, if it exceeds 50% by mass, the spinnability may deteriorate, the charcoal powder may easily fall off from the obtained rayon fiber, and the properties such as the strength and elongation of the rayon fiber may decrease. . When using charcoal, it is preferable that the said ratio is 40 mass% or less. More preferably, it is 20-38 mass%, More preferably, it is 25-35 mass%. When using activated carbon, it is preferable that the said ratio is 50 mass% or less. More preferably, it is 17-45 mass%, More preferably, it is 20-43 mass%.

また、本発明にかかる炭の粉は粒子径が小さく、凝集し易いので、分散剤を添加することが好ましい。前記分散剤としては、アニオン系の界面活性剤が有効であり、特に限定するわけではないが、例えば、ポリスチレンスルホン酸ナトリウム塩などが挙げられる。前記分散剤の添加量としては、特に限定されないが、例えば、分散液に対して2〜10質量%の割合とすることができる。
次に、炭の粉が分散された前記ビスコースを紡糸して、炭の粉が含有されたレーヨン繊維を得る。紡糸工程は、セルロース再生工程や凝固工程などからなる。
製造された炭含有繊維は、レーヨン繊維に特有の多孔質構造の内部に、炭の粉が担持された状態になっている。炭の粉はレーヨン繊維内に強固に捉えられていて容易に脱落し難くなっている。しかも、レーヨン繊維は、一般的な合成繊維とは違って、ビスコースに含まれていたセルロースが本来の繊維状態に再生することによって形成されるので、炭の粉の微細な多孔質構造が高分子などで埋められてしまうことはない。ビスコースおよびレーヨン繊維の製造過程における種々の処理は、炭の粉の表面の化学的性状を変化させることがないので、炭の粉の表面が有する化学的な機能が損なわれることもない。
In addition, since the charcoal powder according to the present invention has a small particle size and easily aggregates, it is preferable to add a dispersant. As the dispersant, an anionic surfactant is effective and is not particularly limited, and examples thereof include polystyrene sulfonate sodium salt. Although it does not specifically limit as addition amount of the said dispersing agent, For example, it can be set as the ratio of 2-10 mass% with respect to a dispersion liquid.
Next, the viscose in which the charcoal powder is dispersed is spun to obtain rayon fibers containing the charcoal powder. The spinning process includes a cellulose regeneration process and a coagulation process.
The produced charcoal-containing fiber is in a state where charcoal powder is supported inside a porous structure unique to rayon fiber. Charcoal powder is firmly captured in the rayon fiber and is not easily removed. In addition, unlike general synthetic fibers, rayon fibers are formed by regenerating cellulose contained in viscose into its original fiber state, so that the fine porous structure of charcoal powder is high. It will not be filled with molecules. Various treatments in the process of producing viscose and rayon fibers do not change the chemical properties of the surface of the charcoal powder, so that the chemical function of the surface of the charcoal powder is not impaired.

紡糸された炭含有繊維は、必要に応じて、延伸、切断、乾燥その他の加工工程を経て製品となる。炭含有繊維の繊維径は、5〜50μm程度のものが用いられる。炭含有繊維は、一定の長さに切断された短繊維(ステープル)と、実質的に無限長の長繊維(フィラメント)の形態の何れでも提供できる。短繊維の繊維長は、利用目的や要求性能によって適宜に設定できるが通常、130mm以下程度のものが使用される。
〔使用用途〕
炭含有繊維は、単独あるいは別の材料と組み合わせて各種製品を製造することができる。
The spun carbon-containing fiber is turned into a product through drawing, cutting, drying and other processing steps as necessary. The fiber diameter of the carbon-containing fiber is about 5 to 50 μm. The charcoal-containing fibers can be provided either in the form of short fibers (staples) cut to a certain length or in the form of long fibers (filaments) of virtually infinite length. The fiber length of the short fiber can be appropriately set depending on the purpose of use and the required performance, but usually a fiber length of about 130 mm or less is used.
〔Use applications〕
Charcoal-containing fibers can be used to produce various products alone or in combination with other materials.

炭含有繊維を集積させれば炭含有綿が得られる。炭含有繊維あるいは炭含有綿から炭含有糸を製造することができる。炭含有糸は、炭含有繊維のみからなるもののほか、他の繊維と混紡することもできる。例えば、レーヨン繊維に比べて強度や耐久性に優れる合成繊維を組み合わせることで炭含有糸の強度や耐久性を向上させることができる。通常、黒色を呈する炭含有繊維に白色その他の別の色を有する繊維を組み合わせれば、黒色以外の炭含有糸を得ることができる。炭含有糸は、各種布製品の縫製や刺繍などに利用することができる。
炭含有糸を用いて編織布を製造することができる。編織布を構成する糸として、炭含有糸と通常の繊維糸とを組み合わせることができる。炭含有繊維を集積させた不織布を製造することができる。炭含有繊維を、紙の抄造原料の一部に加えておけば、炭含有紙が得られる。炭含有繊維を、合成樹脂に混合して、炭含有繊維が配合された繊維含有合成樹脂製品を得ることができる。炭含有繊維を、セメントや石膏その他の建築材料に含有させておくことができる。
Charcoal-containing cotton can be obtained by accumulating charcoal-containing fibers. Charcoal-containing yarn can be produced from charcoal-containing fibers or charcoal-containing cotton. The charcoal-containing yarn can be blended with other fibers in addition to the charcoal-containing fiber alone. For example, the strength and durability of the charcoal-containing yarn can be improved by combining synthetic fibers that are superior in strength and durability compared to rayon fibers. Usually, when charcoal-containing fibers exhibiting black are combined with fibers having other colors such as white, charcoal-containing yarns other than black can be obtained. The charcoal-containing yarn can be used for sewing or embroidery of various fabric products.
A woven fabric can be produced using charcoal-containing yarn. As a yarn constituting the knitted fabric, a charcoal-containing yarn and a normal fiber yarn can be combined. A nonwoven fabric in which charcoal-containing fibers are accumulated can be produced. Charcoal-containing paper can be obtained by adding charcoal-containing fibers to a part of the paper-making raw material. The fiber-containing synthetic resin product in which the charcoal-containing fibers are blended can be obtained by mixing the charcoal-containing fibers with the synthetic resin. Charcoal-containing fibers can be included in cement, gypsum and other building materials.

炭含有繊維あるいは炭含有繊維を含む材料を用いて製造される具体的製品を例示すると、農園芸用シート、マット材、保温シートなどが挙げられる。VOC吸着性に優れ、中でも、他の炭含有製品では吸着が非常に困難なトルエンなどの非極性のVOCに対しても良好な吸着性を示すことから、そのような非極性VOCの除去を目的とした用途に使用できる。また、本発明にかかる炭含有繊維は、VOC吸着性だけでなく、通常炭が発揮する性能も良好に発揮することができるため、調湿材料として、建築用、工業用、農業用に利用できる。防臭特性に優れていることから消臭用シートにも利用できる。野菜、果物、切り花などの鮮度保持シート、鮮度保持用成形品にも利用できる。帯電(静電気)防止用成形品としても利用できる。電磁波遮蔽特性に優れていることから、電子機器の誤動作防止対策やテレビやラジオなどへの干渉予防対策、携帯電話からの電磁波の放出防止対策などに利用する電磁波シールド材に利用したり、半導体分野で利用したりすることもできる。各種衣料品や寝装品、家庭用品に利用することができる。   Examples of specific products manufactured using charcoal-containing fibers or materials containing charcoal-containing fibers include agricultural and horticultural sheets, mat materials, and heat insulating sheets. Excellent removal of nonpolar VOCs because of its excellent VOC adsorption properties, and especially good adsorption properties for nonpolar VOCs such as toluene, which are very difficult to adsorb in other charcoal-containing products. Can be used for Moreover, since the charcoal-containing fiber according to the present invention can exhibit not only the VOC adsorptivity but also the performance normally exhibited by charcoal, it can be used as a humidity control material for construction, industrial use, and agricultural use. . Since it has excellent deodorizing properties, it can also be used in deodorizing sheets. It can also be used for freshness-keeping sheets such as vegetables, fruits and cut flowers, and molded products for keeping freshness. It can also be used as a molded product for preventing electrification (static electricity). Because of its excellent electromagnetic shielding properties, it can be used as an electromagnetic shielding material used to prevent malfunctions in electronic devices, prevent interference with televisions, radios, etc., and prevent electromagnetic waves from being emitted from mobile phones. You can also use it. It can be used for various clothing, bedding and household items.

以下に、実施例によって本発明の炭含有繊維の製造方法をより具体的に説明するが、本発明はこれらに限定されるものではない。
実施例および比較例における測定方法および評価方法を以下に示す。
<炭の粒子径の測定>
後述する各実施例、比較例における、湿式粉砕後の各水分散液(但し、湿式粉砕を行わない場合には、乾式粉砕後の炭の粉を水に分散させたもの)を、堀場製作所社製の精製粒度分布径測定器LA−920に通過させることにより、前記各水分散液に含まれる各炭の粒子の粒子径を測定した。
Hereinafter, the method for producing the charcoal-containing fiber of the present invention will be described more specifically by way of examples, but the present invention is not limited to these.
Measurement methods and evaluation methods in Examples and Comparative Examples are shown below.
<Measurement of particle size of charcoal>
Each aqueous dispersion after wet pulverization in each of Examples and Comparative Examples described later (however, when wet pulverization is not performed, dry pulverized charcoal powder is dispersed in water) The particle diameter of each charcoal particle contained in each aqueous dispersion was measured by passing it through a refined particle size distribution measuring instrument LA-920.

<繊維物性の測定>
JIS L 1015に準じて、繊度、乾強度、湿強度、乾伸度、湿伸度を測定した。 <繊維中の炭の粉の粒子数の測定>
測定対象となる繊維を束ね、1mmφのスリットに差し込んだ後、カミソリ刃でスリット表面に沿って切断した。この切断面を顕微鏡で観察して、任意の繊維20本あたりに存在する、粒子径が1.0μm以上または2.2μmを超える粒子の個数を計測した。
<VOC吸着性の測定>
5リットルのテドラーバックに測定試料を3.0g入れ、さらに所定の濃度に調整した測定対象ガスを3リットル注入し、ガス濃度の経時的な変化を検知管により測定した。
<Measurement of fiber properties>
In accordance with JIS L 1015, the fineness, dry strength, wet strength, dry elongation, and wet elongation were measured. <Measurement of the number of particles of charcoal powder in the fiber>
The fibers to be measured were bundled, inserted into a 1 mmφ slit, and then cut along the slit surface with a razor blade. This cut surface was observed with a microscope, and the number of particles present per 20 arbitrary fibers and having a particle diameter of 1.0 μm or more or exceeding 2.2 μm was counted.
<Measurement of VOC adsorption>
3.0 g of a measurement sample was placed in a 5 liter Tedlar bag, and 3 liters of a measurement target gas adjusted to a predetermined concentration was injected, and the change in gas concentration over time was measured with a detector tube.

<脱落試験>
測定対象となる繊維を20g採取し、500mmφセミランダムカード(大和機工社製)に3回通した後、前記VOC吸着性の測定方法と同様にして、初発濃度40ppmのトルエンを測定対称ガスとし、24時間経過後のトルエン濃度を測定することにより、そのVOC吸着性を測定した。また、前記した繊維中の炭の粉の粒子数の測定と同様の方法で、セミランダムカードに通す前と後の繊維について、同一の断面を顕微鏡で観察・比較し、炭の粉の脱落の有無を観察した。
−木炭を用いた実施例、比較例−
〔実施例1〕
<活性化木炭の製造>
赤松材をチップ化(最大差し渡し径10〜50mm、厚さ3〜5mm)して炭材を得た。
<Dropping test>
After collecting 20 g of the fiber to be measured and passing it through a 500 mmφ semi-random card (manufactured by Yamato Kiko Co., Ltd.) three times, in the same manner as in the VOC adsorptivity measurement method, toluene having an initial concentration of 40 ppm is used as a symmetric gas, The VOC adsorptivity was measured by measuring the toluene concentration after 24 hours. In addition, in the same manner as the measurement of the number of particles of charcoal powder in the fiber described above, the same cross-section is observed and compared with the microscope for the fibers before and after passing through the semi-random card, and the charcoal powder is removed. The presence or absence was observed.
-Examples using charcoal, comparative examples-
[Example 1]
<Manufacture of activated charcoal>
Red pine wood was chipped (maximum span diameter 10-50 mm, thickness 3-5 mm) to obtain a charcoal material.

前記炭材を100m平窯に入れ、500℃で約140時間かけて炭材を炭化させた(低温炭化工程)。
前記低温炭化工程の終了後、窯全体の炭材を撹拌することで急激に酸素を与え、次いで温度を850℃に上昇させて40分間かけて十分に精錬を行った(高温炭化工程)。
前記高温炭化工程の終了後、水をかけて消火させた。この処理によって活性化が行われ、活性化木炭が得られた(活性化工程)。このようにして得られた活性化木炭は、組織の結着密度が高く、固いものであった。炭素率は85%以上であった。
<木炭含有繊維の製造>
前記操作で得られた活性化木炭を、乾式粉砕機(セイシン社製)を用いて乾式粉砕することにより、1〜60μmレベルとした。前記乾式粉砕後の木炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダ(商品名「デモールT」、花王社製)を、木炭粉の濃度が20質量%となるように水に分散させ、この分散液を湿式粉砕機(三井鉱山社製)を用いて2時間湿式粉砕処理することにより、下記木炭含有繊維の製造に用いる水分散液とした。
The carbon material was placed in a 100 m 3 flat kiln and carbonized at 500 ° C. for about 140 hours (low temperature carbonization step).
After completion of the low temperature carbonization step, oxygen was rapidly given by stirring the charcoal of the entire kiln, and then the temperature was raised to 850 ° C. and sufficiently refined over 40 minutes (high temperature carbonization step).
After completion of the high temperature carbonization step, water was applied to extinguish the fire. Activation was performed by this treatment, and activated charcoal was obtained (activation step). The activated charcoal thus obtained had a high tissue binding density and was hard. The carbon ratio was 85% or more.
<Manufacture of charcoal-containing fibers>
The activated charcoal obtained by the above operation was dry pulverized using a dry pulverizer (manufactured by Seishin Co., Ltd.) to a level of 1 to 60 μm. The dry-pulverized charcoal powder and naphthalenesulfonic acid / formalin condensate soda (trade name “Demol T”, manufactured by Kao Corporation) are dispersed in water so that the charcoal powder concentration is 20% by mass. Was subjected to a wet pulverization treatment for 2 hours using a wet pulverizer (manufactured by Mitsui Mining Co., Ltd.) to obtain an aqueous dispersion used for the production of the following charcoal-containing fibers.

上記水分散液とは別に、レーヨン繊維の原料パルプを、約18%の苛性ソーダに浸漬し、圧搾・粉砕によりアルカリセルロースを得た。次に、アルカリセルロースを老成し、二硫化炭素を反応させて、セルロースザンテートを得た。さらに、セルロースザンテートを希釈苛性ソーダで溶解し、ビスコースを得た。ビスコースを得るために用いた、セルロース、水酸化ナトリウム、二硫化炭素の割合は、セルロース8.5質量%、水酸化ナトリウム5.7質量%、二硫化炭素2.7質量%であった。
ビスコースを紡糸する直前に、前記工程で得られた水分散液を、インジェクションポンプを用いて、セルロース分に対する木炭粉の割合が33.3質量%となるように、定量的かつ連続的に添加して、ビスコースと活性化木炭粉とを均一に混合した。活性化木炭粉が配合されたビスコースを、2浴緊張紡糸法により、繊維化した。このとき、ノズル径0.09mm、孔数4000の紡糸口金から紡糸速度50m/分で紡糸して凝固・再生浴に送った。凝固・再生浴は、硫酸:100g/リットル、硫酸亜鉛:15g/リットル、硫酸ナトリウム:350g/リットルの組成を有するミューラー浴(50℃)を用いた。
Apart from the aqueous dispersion, rayon fiber raw pulp was immersed in caustic soda of about 18%, and alkali cellulose was obtained by pressing and grinding. Next, alkali cellulose was aged and carbon disulfide was reacted to obtain cellulose xanthate. Further, cellulose xanthate was dissolved with diluted caustic soda to obtain viscose. The proportions of cellulose, sodium hydroxide and carbon disulfide used to obtain viscose were 8.5% by mass of cellulose, 5.7% by mass of sodium hydroxide and 2.7% by mass of carbon disulfide.
Immediately before spinning the viscose, the aqueous dispersion obtained in the above step is added quantitatively and continuously using an injection pump so that the ratio of charcoal powder to cellulose content is 33.3 mass%. Then, viscose and activated charcoal powder were mixed uniformly. Viscose blended with activated charcoal powder was fiberized by a two-bath tension spinning method. At this time, spinning was performed from a spinneret having a nozzle diameter of 0.09 mm and a hole number of 4000 at a spinning speed of 50 m / min, and sent to a coagulation / regeneration bath. As the coagulation / regeneration bath, a Mueller bath (50 ° C.) having a composition of sulfuric acid: 100 g / liter, zinc sulfate: 15 g / liter, sodium sulfate: 350 g / liter was used.

ビスコースを繊維化して得られたビスコースレーヨンの糸条を、51mmに切断して、熱水処理、水流化処理、水洗処理を順次施して精練した。精練後、圧縮ローラーで余分な水分を繊維から落とした後、60℃で7時間乾燥して、繊維Aを得た。
〔実施例2〕
ビスコースへの水分散液添加を、セルロース分に対する木炭粉の割合が25.0質量%となるように行った点以外は、実施例1と同様にして、繊維Bを得た。
〔実施例3〕
ビスコースへの水分散液添加を、セルロース分に対する木炭粉の割合が17.6質量%となるように行った点以外は、実施例1と同様にして、繊維Cを得た。
A viscose rayon yarn obtained by fiberizing viscose was cut into 51 mm and subjected to hot water treatment, water flow treatment, and water washing treatment in order, and scoured. After scouring, excess water was removed from the fiber with a compression roller and then dried at 60 ° C. for 7 hours to obtain fiber A.
[Example 2]
Fiber B was obtained in the same manner as in Example 1, except that the aqueous dispersion was added to the viscose so that the ratio of charcoal powder to the cellulose content was 25.0% by mass.
Example 3
Fiber C was obtained in the same manner as in Example 1 except that the aqueous dispersion was added to the viscose so that the ratio of the charcoal powder to the cellulose content was 17.6% by mass.

〔実施例4〕
ビスコースに添加する水分散液中の木炭粉の濃度を10.0質量%とした点以外は、実施例1と同様にして、繊維Dを得た。得られた繊維Dは他の繊維と比べて大きくて深い皺を多数有するものであった。
〔実施例5〕
ビスコースに添加する水分散液として、木炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、木炭粉の濃度が10質量%となるように水に分散させた後、湿式粉砕機(Dyno Mill KDL−PILOT、シンマルエンタープライゼス社製)を用いて、20リットル/分の流量で6回湿式粉砕機を通過させたものを用いた点以外は、実施例1と同様にして、繊維Eを得た。得られた繊維Eは、繊維Dと同様、他の繊維と比べて大きくて深い皺を多数有するものであった。
Example 4
A fiber D was obtained in the same manner as in Example 1 except that the concentration of the charcoal powder in the aqueous dispersion added to the viscose was 10.0% by mass. The obtained fiber D had many large and deep wrinkles as compared with other fibers.
Example 5
As an aqueous dispersion to be added to the viscose, charcoal powder and naphthalenesulfonic acid / formalin condensate soda are dispersed in water so that the concentration of charcoal powder becomes 10% by mass, and then wet mill (Dyno Mill KDL- Fiber E was obtained in the same manner as in Example 1 except that PILOT (manufactured by Shinmaru Enterprises Co., Ltd.) was used and the wet mill was passed 6 times at a flow rate of 20 liters / minute. . The obtained fiber E, like the fiber D, had many large and deep wrinkles as compared with other fibers.

〔実施例6〕
ビスコースに添加する水分散液として、木炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、木炭粉の濃度が18質量%となるように水に分散させた後、湿式粉砕機(Dyno Mill KDL−PILOT、シンマルエンタープライゼス社製)を用いて、20リットル/分の流量で3回湿式粉砕機を通過させたものを用いた点以外は、実施例1と同様にして、繊維Fを得た。
〔比較例1〕
ビスコースに添加する水分散液として、湿式粉砕の操作を実施例6と同様に変更した点と、この木炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、木炭粉の濃度が10質量%となるように水に分散させたものを用いた点と、ビスコースへの水分散液添加をセルロース分に対する木炭粉の割合が10.0質量%となるように行った点以外は、実施例1と同様にして、繊維Gを得た。
Example 6
As an aqueous dispersion to be added to the viscose, charcoal powder and naphthalenesulfonic acid / formalin condensate soda are dispersed in water so that the concentration of charcoal powder becomes 18% by mass, and then wet mill (Dyno Mill KDL- The fiber F was obtained in the same manner as in Example 1 except that a PILOT (manufactured by Shinmaru Enterprises Co., Ltd.) was used and the wet mill was passed three times at a flow rate of 20 liters / minute. .
[Comparative Example 1]
As an aqueous dispersion to be added to the viscose, the wet pulverization operation was changed in the same manner as in Example 6, and this charcoal powder and naphthalenesulfonic acid / formalin condensate soda had a charcoal powder concentration of 10% by mass. Thus, Example 1 and the point which used what was disperse | distributed to water, and the point which performed the aqueous dispersion addition to viscose so that the ratio of the charcoal powder with respect to a cellulose content might be 10.0 mass%. Similarly, fiber G was obtained.

〔比較例2〕
ビスコースに添加する水分散液として、湿式粉砕機(Dyno Mill KDL−PILOT、シンマルエンタープライゼス社製)を用いて、20リットル/分の流量で1回湿式粉砕機を通過させたものを用いた点と、この木炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、木炭粉の濃度が18質量%となるように水に分散させたものを用いた点以外は、実施例1と同様にして、繊維Hを得た。
〔比較例3〕
ビスコースに添加する水分散液として、旋回渦流式粉砕装置を用いて粉砕した木炭粉を用いた点と、この木炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、木炭粉の濃度が18質量%となるように水に分散させたものを用いた点以外は、実施例1と同様にして、繊維Iを得た。
[Comparative Example 2]
As a water dispersion to be added to the viscose, a wet pulverizer (Dyno Mill KDL-PILOT, manufactured by Shinmaru Enterprises Co., Ltd.) was used, and the liquid was passed through the wet pulverizer once at a flow rate of 20 liters / minute. In the same manner as in Example 1, except that this charcoal powder and naphthalenesulfonic acid / formalin condensate soda were dispersed in water so that the charcoal powder concentration was 18% by mass. Fiber H was obtained.
[Comparative Example 3]
As the aqueous dispersion added to the viscose, charcoal powder pulverized using a swirl vortex crusher and this charcoal powder and naphthalenesulfonic acid / formalin condensate soda were used, and the charcoal powder concentration was 18% by mass. A fiber I was obtained in the same manner as in Example 1 except that a material dispersed in water was used.

〔比較例4〕
ビスコースに添加する水分散液として、乾式粉砕のみで湿式粉砕を行っていない木炭粉を用いた点と、この木炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、木炭粉の濃度が25質量%となるように水に分散させたものを用いた点以外は、実施例1と同様にして、繊維Jを得た。
〔比較例5〕
何も添加することなく、単に実施例1と同様の方法でビスコースを紡糸することにより、繊維Kを得た。
[Comparative Example 4]
As the aqueous dispersion added to the viscose, charcoal powder that is dry-grinded but not wet-milled is used, and this charcoal powder and naphthalenesulfonic acid / formalin condensate soda have a charcoal powder concentration of 25% by mass. A fiber J was obtained in the same manner as in Example 1 except that a material dispersed in water was used.
[Comparative Example 5]
Without adding anything, fiber K was obtained by simply spinning viscose in the same manner as in Example 1.

〔各繊維の性能〕
<繊維物性の評価>
各実施例、比較例にかかる各繊維A〜Kについて、上述の測定方法に従って、繊維物性を測定した。繊度については、各繊維とも5.6dtexであった。その他の繊維物性についての結果を、各繊維に含有される木炭粉の粒子径、繊維中の木炭粒子数、用いた水分散液の濃度および繊維中の木炭粉の含有割合とともに表1に示す。
<VOC吸着性の評価>
次に、各繊維A〜Kについて、上述の測定方法に従って、トルエン吸着性(初期性能)と、脱落試験における脱落の有無および脱落試験後のトルエン吸着性を測定した。結果を、表1に併せて示す。
[Performance of each fiber]
<Evaluation of fiber properties>
About each fiber AK concerning each Example and a comparative example, the fiber physical property was measured according to the above-mentioned measuring method. Regarding the fineness, each fiber was 5.6 dtex. The results of other fiber properties are shown in Table 1 together with the particle diameter of charcoal powder contained in each fiber, the number of charcoal particles in the fiber, the concentration of the aqueous dispersion used, and the content of charcoal powder in the fiber.
<Evaluation of VOC adsorption>
Next, about each fiber AK, according to the above-mentioned measuring method, toluene adsorptivity (initial performance), the presence or absence of the drop-off in the drop-off test, and the toluene adsorbability after the drop-off test were measured. The results are also shown in Table 1.

Figure 0004879861
Figure 0004879861

さらに、トルエン以外のVOC吸着性能を見るために、実施例1における繊維の紡糸条件のみを変更して、繊度が1.7dtexの繊維Lを得た。また、実施例2における繊維の紡糸条件のみを変更して、繊度が1.7dtexの繊維Mを得た。これら繊維L,Mと比較例4にかかる繊維Kを用いて、ホルムアルデヒドについても吸着性を測定した。結果を表2に示す。   Furthermore, in order to see the VOC adsorption performance other than toluene, only the fiber spinning conditions in Example 1 were changed to obtain a fiber L having a fineness of 1.7 dtex. Further, only the fiber spinning conditions in Example 2 were changed to obtain a fiber M having a fineness of 1.7 dtex. Using these fibers L and M and the fiber K according to Comparative Example 4, the adsorptivity of formaldehyde was also measured. The results are shown in Table 2.

Figure 0004879861
Figure 0004879861

<混綿フェルトの評価>
前記繊維Lを用いて、常法により木炭含有繊維と他の繊維材料からなる混綿フェルトを作成し、アセトアルデヒド吸着性を評価した。表中の混綿について、用いた繊維とその混綿比は、以下のとおりである。
混綿X:カネカロン/繊維L/レーヨン=50/30/20
混綿Y:カネカロン/繊維L/レーヨン=60/30/10
混綿Z:カネカロン/繊維L=70/30
結果を表3に示す。
<Evaluation of blended felt>
Using the fiber L, a mixed cotton felt made of charcoal-containing fibers and other fiber materials was prepared by a conventional method, and acetaldehyde adsorptivity was evaluated. About the blended cotton in a table | surface, the used fiber and the blended cotton ratio are as follows.
Blended cotton X: Kanekalon / fiber L / rayon = 50/30/20
Blended Y: Kanekalon / Fiber L / Rayon = 60/30/10
Blended cotton Z: Kanekalon / fiber L = 70/30
The results are shown in Table 3.

Figure 0004879861
Figure 0004879861

<反復的な吸着性の評価>
前記繊維L,Mを用いて、該繊維の反復的な吸着性を評価した。具体的には、上述の測定方法に従って、アセトアルデヒドおよびホルムアルデヒドの吸着性を、次のように繰り返し測定した。すなわち、吸着性の測定を行った後、9時から16時まで天日乾燥させて、再度吸着性を測定する、という一連の操作を繰り返し行った。結果を表4に示す。
<Repeated adsorptive evaluation>
Using the fibers L and M, the repeated adsorptivity of the fibers was evaluated. Specifically, the adsorptivity of acetaldehyde and formaldehyde was repeatedly measured as follows according to the measurement method described above. That is, after measuring the adsorptivity, a series of operations of repeatedly drying the sun from 9:00 to 16:00 and measuring the adsorptivity again was repeated. The results are shown in Table 4.

Figure 0004879861
Figure 0004879861

〔考察〕
(1)表1を見ると、実施例にかかる各繊維A〜Fは、繊維断面に含まれる粒子径2.2μmを超える粒子の数が0個であったことから、繊維化前に最大粒子径が2.2μm以下であっただけでなく、繊維化後においても、二次粒子化などによって最大粒子径が2.2μmを超えてしまう、といったことはないことが実証されている。
(2)表1から、実施例の各繊維A〜Fのいずれについてみても、繊維が実用上耐え得る繊維能力を有していることが分かった。
(3)また、表1から、実施例の各繊維A〜Fが比較例の繊維G,I,Jと比べて良好なトルエン吸着性を発揮していることも分かる。特に、水分散液濃度が10.0質量%で、大きくて深い皺を多数有する実施例4,5にかかる繊維D,Eは、吸着性が極めて優れていることが分かる。
[Discussion]
(1) Looking at Table 1, each of the fibers A to F according to the examples had 0 particles before the fiberization because the number of particles having a particle diameter exceeding 2.2 μm included in the fiber cross section was zero. It has been demonstrated that not only the diameter was 2.2 μm or less, but even after fiberization, the maximum particle diameter did not exceed 2.2 μm due to secondary particle formation.
(2) From Table 1, it was found that any of the fibers A to F in the examples had a fiber capacity that the fibers could withstand practically.
(3) Moreover, it can also be seen from Table 1 that each of the fibers A to F of the example exhibits better toluene adsorptivity than the fibers G, I, and J of the comparative example. In particular, it can be seen that the fibers D and E according to Examples 4 and 5 having an aqueous dispersion concentration of 10.0% by mass and a large number of large and deep wrinkles have extremely excellent adsorptivity.

(4)一方、繊維中のセルロース分に対する木炭粉の割合が10.0質量%である比較例1にかかる繊維Gでは、トルエン吸着能が実施例にかかる各繊維A〜Fよりも著しく劣っていることが分かった。また、木炭粉の最大粒子径は本発明の範囲内にあるが、平均粒子径が本発明の範囲外にある、比較例2にかかる繊維Hについて見ると、トルエン吸着能が実施例にかかる各繊維A〜Fよりも著しく劣っていることが分かった。これは、木炭粉の平均粒子径が1.31μmと大きいため、繊維Hを得るまでの段階で、繊維から粗大粒子が脱落したためと考えられる。脱落試験によっても、繊維Iは木炭粉が脱落しやすく、この脱落により、トルエン吸着性がさらに低下していることが分かる。   (4) On the other hand, in the fiber G concerning the comparative example 1 whose ratio of the charcoal powder with respect to the cellulose content in a fiber is 10.0 mass%, toluene adsorption ability is remarkably inferior to each fiber AF concerning an Example. I found out. Moreover, when the maximum particle diameter of charcoal powder is within the range of the present invention but the average particle diameter is outside the range of the present invention and the fiber H according to Comparative Example 2 is used, each of the toluene adsorption capacities according to the examples. It was found to be significantly inferior to fibers A to F. This is probably because the average particle diameter of the charcoal powder is as large as 1.31 μm, so that coarse particles dropped out of the fiber until the fiber H was obtained. Also from the drop-off test, it can be seen that the charcoal powder tends to drop off from the fiber I, and the toluene adsorbability is further lowered due to this drop-out.

(5)木炭粉の平均粒子径は本発明の範囲内にあるが、最大粒子径が本発明の範囲外にある、比較例3にかかる繊維Iについて見ると、トルエン吸着能が実施例にかかる各繊維A〜Fよりも著しく劣っていることが分かった。これは、木炭粉の最大粒子径が2.5μmと大きいため、繊維Iを得るまでの段階で、繊維から粗大粒子が脱落したためと考えられる。脱落試験によっても、繊維Iは木炭粉が脱落しやすく、この脱落により、トルエン吸着性がさらに低下していることが分かる。
(6)木炭粉の平均粒子径が2.62μmであり、最大粒子径が12μmである、比較例4にかかる繊維Jについては、表面積が他の繊維よりも小さいために、トルエン吸着性も実施例にかかる各繊維A〜Fより著しく劣っており、さらに、脱落試験において、脱落が多く見られたうえに、トルエン吸着性能も低下していることが分かった。
(5) Although the average particle size of the charcoal powder is within the range of the present invention, when the fiber I according to Comparative Example 3 whose maximum particle size is out of the range of the present invention is seen, toluene adsorption capacity is applied to the example. It was found to be significantly inferior to each fiber A-F. This is probably because the maximum particle diameter of the charcoal powder is as large as 2.5 μm, so that coarse particles dropped out of the fiber until the fiber I was obtained. Also from the drop-off test, it can be seen that the charcoal powder tends to drop off from the fiber I, and the toluene adsorbability is further lowered due to this drop-out.
(6) The average particle diameter of charcoal powder is 2.62 μm, and the maximum particle diameter is 12 μm. The fiber J according to Comparative Example 4 has a smaller surface area than other fibers, so toluene adsorption is also performed. It was remarkably inferior to each of the fibers A to F according to the examples. Further, in the dropout test, it was found that a large amount of dropout was observed and the toluene adsorption performance was also lowered.

(7)表2から、本発明にかかる木炭含有繊維が、トルエンのみならず、アセトアルデヒドなどの他のVOCについても吸着性に優れることが分かる。表3から、本発明にかかる木炭含有繊維を他の繊維と組み合わせて用いても、VOC吸着性に優れることが分かる。
(8)表4からは、本発明にかかる木炭含有繊維を複数回にわたって繰り返し使用しても優れたVOC吸着性を発揮することが分かった。
−活性炭を用いた実施例、比較例−
〔実施例7〕
ヤシガラ由来の活性炭(フタムラ化学社製)を、トルネードミルを用いて粉砕し、さらにジェットミルで微粉化した(乾式粉砕)。前記乾式粉砕後の活性炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダ(商品名「デモールT」、花王社製)を、活性炭粉の濃度が20質量%となるように水に分散させ、この分散液を湿式粉砕機(三井鉱山社製)を用いて2時間湿式粉砕処理することにより、下記活性炭含有繊維の製造に用いる水分散液とした。
(7) From Table 2, it can be seen that the charcoal-containing fiber according to the present invention is excellent in adsorptivity not only for toluene but also for other VOCs such as acetaldehyde. From Table 3, it can be seen that even if the charcoal-containing fiber according to the present invention is used in combination with other fibers, the VOC adsorptivity is excellent.
(8) From Table 4, it was found that even if the charcoal-containing fiber according to the present invention was repeatedly used over a plurality of times, excellent VOC adsorptivity was exhibited.
-Examples using activated carbon, comparative examples-
Example 7
Coconut shell-derived activated carbon (Futamura Chemical Co., Ltd.) was pulverized using a tornado mill and further pulverized with a jet mill (dry pulverization). The activated carbon powder after dry pulverization and sodium phthalene sulfonic acid / formalin condensate soda (trade name “Demol T”, manufactured by Kao Corporation) are dispersed in water so that the concentration of the activated carbon powder is 20% by mass. Was subjected to wet pulverization for 2 hours using a wet pulverizer (manufactured by Mitsui Mining Co., Ltd.) to obtain an aqueous dispersion for use in the production of the following activated carbon-containing fibers.

上記水分散液とは別に、レーヨン繊維の原料パルプを、約18%の苛性ソーダに浸漬し、圧搾・粉砕によりアルカリセルロースを得た。次に、アルカリセルロースを老成し、二硫化炭素を反応させて、セルロースザンテートを得た。さらに、セルロースザンテートを希釈苛性ソーダで溶解し、ビスコースを得た。ビスコースを得るために用いた、セルロース、水酸化ナトリウム、二硫化炭素の割合は、セルロース8.5質量%、水酸化ナトリウム5.7質量%、二硫化炭素2.8質量%であった。
ビスコースを紡糸する直前に、前記工程で得られた水分散液を、インジェクションポンプを用いて、セルロース分に対する活性炭粉の割合が33.3質量%となるように、定量的かつ連続的に添加して、ビスコースと活性炭粉とを均一に混合した。活性炭粉が配合されたビスコースを、2浴緊張紡糸法により、繊維化した。このとき、ノズル径0.09mm、孔数4000の紡糸口金から紡糸速度50m/分で紡糸して凝固・再生浴に送った。凝固・再生浴は、硫酸:100g/リットル、硫酸亜鉛:15g/リットル、硫酸ナトリウム:350g/リットルの組成を有するミューラー浴(50℃)を用いた。
Apart from the aqueous dispersion, rayon fiber raw pulp was immersed in caustic soda of about 18%, and alkali cellulose was obtained by pressing and grinding. Next, alkali cellulose was aged and carbon disulfide was reacted to obtain cellulose xanthate. Further, cellulose xanthate was dissolved with diluted caustic soda to obtain viscose. The proportions of cellulose, sodium hydroxide, and carbon disulfide used to obtain viscose were 8.5% by mass of cellulose, 5.7% by mass of sodium hydroxide, and 2.8% by mass of carbon disulfide.
Immediately before spinning viscose, the aqueous dispersion obtained in the above step is added quantitatively and continuously using an injection pump so that the ratio of the activated carbon powder to the cellulose content is 33.3 mass%. Then, the viscose and the activated carbon powder were uniformly mixed. Viscose blended with activated carbon powder was fiberized by a two-bath tension spinning method. At this time, spinning was performed from a spinneret having a nozzle diameter of 0.09 mm and a hole number of 4000 at a spinning speed of 50 m / min, and sent to a coagulation / regeneration bath. As the coagulation / regeneration bath, a Mueller bath (50 ° C.) having a composition of sulfuric acid: 100 g / liter, zinc sulfate: 15 g / liter, sodium sulfate: 350 g / liter was used.

ビスコースを繊維化して得られたビスコースレーヨンの糸条を、51mmに切断して、熱水処理、水流化処理、水洗処理を順次施して精練した。精練後、圧縮ローラーで余分な水分を繊維から落とした後、60℃で7時間乾燥して、実施例7にかかる繊維A2を得た。
〔実施例8〕
ビスコースへの水分散液添加を、セルロース分に対する活性炭粉の割合が25.0質量%となるように行った点以外は、実施例7と同様にして、実施例8にかかる繊維B2を得た。
A viscose rayon yarn obtained by fiberizing viscose was cut into 51 mm and subjected to hot water treatment, water flow treatment, and water washing treatment in order, and scoured. After scouring, excess water was removed from the fiber with a compression roller, and then dried at 60 ° C. for 7 hours to obtain fiber A2 according to Example 7.
Example 8
A fiber B2 according to Example 8 is obtained in the same manner as in Example 7, except that the aqueous dispersion is added to the viscose so that the ratio of the activated carbon powder to the cellulose content is 25.0% by mass. It was.

〔実施例9〕
ビスコースへの水分散液添加を、セルロース分に対する活性炭粉の割合が17.6質量%となるように行った点以外は、実施例7と同様にして、実施例9にかかる繊維C2を得た。
〔実施例10〕
ビスコースに添加する水分散液中の活性炭粉の濃度を10.0質量%とした点以外は、実施例7と同様にして、実施例10にかかる繊維D2を得た。
〔実施例11〕
ビスコースに添加する水分散液として、活性炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、活性炭粉の濃度が10質量%となるように水に分散させた後、湿式粉砕機(Dyno Mill KDL−PILOT、シンマルエンタープライゼス社製)を用いて、20リットル/分の流量で10回湿式粉砕機を通過させたものを用いた点以外は、実施例7と同様にして、実施例11にかかる繊維E2を得た。
Example 9
A fiber C2 according to Example 9 is obtained in the same manner as in Example 7 except that the addition of the aqueous dispersion to the viscose is performed so that the ratio of the activated carbon powder to the cellulose content is 17.6% by mass. It was.
Example 10
A fiber D2 according to Example 10 was obtained in the same manner as in Example 7 except that the concentration of the activated carbon powder in the aqueous dispersion added to the viscose was 10.0% by mass.
Example 11
As an aqueous dispersion to be added to the viscose, activated carbon powder and naphthalenesulfonic acid / formalin condensate soda are dispersed in water so that the concentration of the activated carbon powder becomes 10% by mass, and then wet mill (Dyno Mill KDL- Example 11 is the same as Example 7 except that PILOT (manufactured by Shinmaru Enterprises Co., Ltd.) was used and the wet mill was passed 10 times at a flow rate of 20 liters / minute. Fiber E2 was obtained.

〔実施例12〕
ビスコースへの水分散液添加を、セルロース分に対する活性炭粉の割合が17.6質量%となるように行った点以外は、実施例11と同様にして、実施例12にかかる繊維F2を得た。
〔実施例13〕
活性炭として赤松を原料とする活性炭を用い、ビスコースに添加する水分散液として、活性炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、活性炭粉の濃度が18質量%となるように水に分散させた後、湿式粉砕機(Dyno Mill KDL−PILOT、シンマルエンタープライゼス社製)を用いて、20リットル/分の流量で15回湿式粉砕機を通過させたものを用いた点以外は、実施例7と同様にして、実施例13にかかる繊維G2を得た。
Example 12
A fiber F2 according to Example 12 is obtained in the same manner as in Example 11 except that the aqueous dispersion is added to the viscose so that the ratio of the activated carbon powder to the cellulose content is 17.6% by mass. It was.
Example 13
Activated carbon made from Akamatsu is used as the activated carbon, and activated carbon powder and naphthalene sulfonic acid / formalin condensate soda are dispersed in water as an aqueous dispersion to be added to the viscose so that the concentration of the activated carbon powder is 18% by mass. Then, using the wet pulverizer (Dyno Mill KDL-PILOT, manufactured by Shinmaru Enterprises Co., Ltd.), except that the sample was passed through the wet pulverizer 15 times at a flow rate of 20 liters / min. In the same manner as in Example 7, a fiber G2 according to Example 13 was obtained.

〔実施例14〕
活性炭として赤松を原料とする活性炭を用い、ビスコースに添加する水分散液として、活性炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、活性炭粉の濃度が18質量%となるように水に分散させた後、湿式粉砕機(Dyno Mill KDL−PILOT、シンマルエンタープライゼス社製)を用いて、20リットル/分の流量で15回湿式粉砕機を通過させたものを用いた点と、ビスコースへの水分散液添加をセルロース分に対する活性炭粉の割合が50.0質量%となるように行った点以外は、実施例7と同様にして、実施例14にかかる繊維H2を得た。
Example 14
Activated carbon made from Akamatsu is used as the activated carbon, and activated carbon powder and naphthalene sulfonic acid / formalin condensate soda are dispersed in water as an aqueous dispersion to be added to the viscose so that the concentration of the activated carbon powder is 18% by mass. After that, using a wet pulverizer (Dyno Mill KDL-PILOT, manufactured by Shinmaru Enterprises Co., Ltd.), using a pulverizer that has been passed through the wet pulverizer 15 times at a flow rate of 20 liters / minute, to viscose A fiber H2 according to Example 14 was obtained in the same manner as in Example 7, except that the aqueous dispersion was added so that the ratio of the activated carbon powder to the cellulose content was 50.0% by mass.

〔実施例15〕
活性炭として赤松を原料とする活性炭を用い、ビスコースに添加する水分散液として、活性炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、活性炭粉の濃度が18質量%となるように水に分散させた後、湿式粉砕機(Dyno Mill KDL−PILOT、シンマルエンタープライゼス社製)を用いて、20リットル/分の流量で20回湿式粉砕機を通過させたものを用いた点と、ビスコースへの水分散液添加をセルロース分に対する活性炭粉の割合が42.9質量%となるように行った点以外は、実施例7と同様にして、実施例15にかかる繊維I2を得た。
Example 15
Activated carbon made from Akamatsu is used as the activated carbon, and activated carbon powder and naphthalene sulfonic acid / formalin condensate soda are dispersed in water as an aqueous dispersion to be added to the viscose so that the concentration of the activated carbon powder is 18% by mass. After that, using a wet pulverizer (Dyno Mill KDL-PILOT, manufactured by Shinmaru Enterprises Co., Ltd.), using a pulverizer that has been passed through the wet pulverizer 20 times at a flow rate of 20 liters / minute, to viscose A fiber I2 according to Example 15 was obtained in the same manner as in Example 7, except that the aqueous dispersion was added so that the ratio of the activated carbon powder to the cellulose content was 42.9% by mass.

〔実施例16〕
活性炭として赤松を原料とする活性炭を用い、ビスコースに添加する水分散液として、活性炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、活性炭粉の濃度が18質量%となるように水に分散させた後、湿式粉砕機(Dyno Mill KDL−PILOT、シンマルエンタープライゼス社製)を用いて、20リットル/分の流量で8回湿式粉砕機を通過させたものを用いた点と、ビスコースへの水分散液添加をセルロース分に対する活性炭粉の割合が42.9質量%となるように行った点以外は、実施例7と同様にして、実施例16にかかる繊維J2を得た。
Example 16
Activated carbon made from Akamatsu is used as the activated carbon, and activated carbon powder and naphthalene sulfonic acid / formalin condensate soda are dispersed in water as an aqueous dispersion to be added to the viscose so that the concentration of the activated carbon powder is 18% by mass. After that, using a wet pulverizer (Dyno Mill KDL-PILOT, manufactured by Shinmaru Enterprises Co., Ltd.), using a material that was passed through the wet pulverizer 8 times at a flow rate of 20 liters / minute, to viscose A fiber J2 according to Example 16 was obtained in the same manner as in Example 7, except that the aqueous dispersion was added so that the ratio of the activated carbon powder to the cellulose content was 42.9% by mass.

〔比較例6〕
ビスコースに添加する水分散液として、活性炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、活性炭粉の濃度が10質量%となるように水に分散させた後、湿式粉砕機(Dyno Mill KDL−PILOT、シンマルエンタープライゼス社製)を用いて、20リットル/分の流量で10回湿式粉砕機を通過させたものを用いた点と、ビスコースへの水分散液添加をセルロース分に対する活性炭粉の割合が10.0質量%となるように行った点以外は、実施例7と同様にして、比較例6にかかる繊維K2を得た。
〔比較例7〕
ビスコースに添加する水分散液として、活性炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、活性炭粉の濃度が18質量%となるように水に分散させた後、湿式粉砕機(Dyno Mill KDL−PILOT、シンマルエンタープライゼス社製)を用いて、20リットル/分の流量で15回湿式粉砕機を通過させたものを用いた点以外は、実施例7と同様にして、比較例7にかかる繊維L2を得た。
[Comparative Example 6]
As an aqueous dispersion to be added to the viscose, activated carbon powder and naphthalenesulfonic acid / formalin condensate soda are dispersed in water so that the concentration of the activated carbon powder becomes 10% by mass, and then wet mill (Dyno Mill KDL- PILOT (manufactured by Shinmaru Enterprises Co., Ltd.) using activated pulverized water for 10 minutes at a flow rate of 20 liters / minute, and addition of water dispersion to viscose activated carbon powder for cellulose The fiber K2 concerning the comparative example 6 was obtained like Example 7 except having performed so that the ratio might be 10.0 mass%.
[Comparative Example 7]
As an aqueous dispersion to be added to the viscose, activated carbon powder and naphthalenesulfonic acid / formalin condensate soda are dispersed in water so that the activated carbon powder has a concentration of 18% by mass, and then wet mill (Dyno Mill KDL- Comparative Example 7 was performed in the same manner as Example 7 except that PILOT (manufactured by Shinmaru Enterprises Co., Ltd.) was used and a wet pulverizer was passed 15 times at a flow rate of 20 liters / minute. Fiber L2 was obtained.

〔比較例8〕
ビスコースに添加する水分散液として、活性炭粉とナフタリンスルホン酸・ホルマリン縮合物ソーダを、活性炭粉の濃度が18質量%となるように水に分散させた後、湿式粉砕機(Dyno Mill KDL−PILOT、シンマルエンタープライゼス社製)を用いて、20リットル/分の流量で3回湿式粉砕機を通過させたものを用いた点以外は、実施例7と同様にして、比較例8にかかる繊維M2を得た。
〔各繊維の性能〕
<繊維物性の評価>
各実施例、比較例にかかる各繊維A2〜M2について、上述の測定方法に従って、繊維物性を測定した。各繊維の繊維物性についての結果を、各繊維に含有される活性炭粉の粒子径、繊維中の活性炭粒子数、用いた水分散液の濃度および繊維中の活性炭粉の含有割合とともに表5に示す。
[Comparative Example 8]
As an aqueous dispersion to be added to the viscose, activated carbon powder and naphthalenesulfonic acid / formalin condensate soda are dispersed in water so that the activated carbon powder has a concentration of 18% by mass, and then wet mill (Dyno Mill KDL- Comparative example 8 is applied in the same manner as in Example 7 except that a PILOT (manufactured by Shinmaru Enterprises Co., Ltd.) is used and a wet pulverizer is passed three times at a flow rate of 20 liters / minute. Fiber M2 was obtained.
[Performance of each fiber]
<Evaluation of fiber properties>
About each fiber A2-M2 concerning each Example and a comparative example, the fiber physical property was measured according to the above-mentioned measuring method. The results of the fiber physical properties of each fiber are shown in Table 5 together with the particle diameter of the activated carbon powder contained in each fiber, the number of activated carbon particles in the fiber, the concentration of the aqueous dispersion used, and the content ratio of the activated carbon powder in the fiber. .

<VOC吸着性の評価>
次に、各繊維A2〜M2について、上述の測定方法に従って、トルエン吸着性(初期性能)と、脱落試験における脱落の有無および脱落試験後のトルエン吸着性を測定した。結果を、表5に併せて示す。
<Evaluation of VOC adsorption>
Next, about each fiber A2-M2, according to the above-mentioned measuring method, toluene adsorptivity (initial performance), the presence or absence of dropout in the dropout test, and the toluene adsorptivity after the dropout test were measured. The results are also shown in Table 5.

Figure 0004879861
Figure 0004879861

〔考察〕
(1)表5を見ると、実施例にかかる各繊維A2〜J2は、繊維断面に含まれる粒子径2.2μmを超える粒子の数が0個であったことから、繊維化前に最大粒子径が2.2μm以下であっただけでなく、繊維化後においても、二次粒子化などによって最大粒子径が2.2μmを超えてしまう、といったことはないことが実証されている。
(2)表5から、実施例の各繊維A2〜J2のいずれについてみても、繊維が実用上耐え得る繊維能力を有していることが分かった。
(3)また、表5から、繊維中のセルロース分に対する活性炭粉の割合が10.0質量%である比較例5にかかる繊維K2では、トルエン吸着能が実施例にかかる各繊維A2〜J2よりも著しく劣っていることが分かった。
[Discussion]
(1) Looking at Table 5, each of the fibers A2 to J2 according to the example had 0 particles with a particle diameter exceeding 2.2 μm included in the fiber cross section. It has been demonstrated that not only the diameter was 2.2 μm or less, but even after fiberization, the maximum particle diameter did not exceed 2.2 μm due to secondary particle formation.
(2) From Table 5, it was found that any of the fibers A2 to J2 of the examples had a fiber capacity that the fibers could withstand practically.
(3) Moreover, from Table 5, in the fiber K2 concerning the comparative example 5 whose ratio of the activated carbon powder with respect to the cellulose content in a fiber is 10.0 mass%, toluene adsorption capacity is from each fiber A2-J2 concerning an Example. Was found to be significantly inferior.

(4)活性炭粉の平均粒子径は本発明の範囲内にあるが、最大粒子径が本発明の範囲外にある、比較例6にかかる繊維L2、および、活性炭粉の最大粒子径は本発明の範囲内にあるが、平均粒子径が本発明の範囲外にある、比較例7にかかる繊維M2について、粒子径に関する条件以外はほぼ同等の条件で作製した実施例7にかかる繊維A2と比較すると、上述の活性化木炭における実施例と比較例の間に見られる差ほど顕著な差ではないが、やはり、繊維A2よりも繊維L2、繊維M2の方が初期性能に劣っていることが分かる。また、これらの繊維L2および繊維M2は、脱落試験において、脱落が多く見られたうえ、トルエン吸着性能も低下していることが分かった。そのため、脱落を防止して経時的に安定したVOC吸着性能を有する活性炭含有繊維を得るためには、活性炭粉の平均粒子径と最大粒子径がともに本願発明の条件を満たしている必要のあることが分かった。   (4) The average particle size of the activated carbon powder is within the range of the present invention, but the maximum particle size is outside the range of the present invention, the fiber L2 according to Comparative Example 6, and the maximum particle size of the activated carbon powder is the present invention. Although the average particle diameter is outside the range of the present invention, the fiber M2 according to Comparative Example 7 is compared with the fiber A2 according to Example 7 manufactured under substantially the same conditions except for the conditions related to the particle diameter. Then, although it is not a remarkable difference as the difference seen between the Example and the comparative example in the above-mentioned activated charcoal, it turns out that fiber L2 and fiber M2 are still inferior to initial performance rather than fiber A2. . Further, it was found that these fibers L2 and fibers M2 were frequently dropped in the dropout test, and the toluene adsorption performance was also lowered. Therefore, in order to obtain an activated carbon-containing fiber having a VOC adsorption performance that is stable over time by preventing dropout, both the average particle size and the maximum particle size of the activated carbon powder must satisfy the conditions of the present invention. I understood.

本発明にかかる炭の含有繊維およびその製造方法は、例えば、炭の有する各種性能、特に、VOC吸着性にも優れる各種衣料品や寝装品、家庭用品として、好適に利用できる。   The charcoal-containing fiber and the method for producing the charcoal according to the present invention can be suitably used as, for example, various performances possessed by charcoal, in particular, various clothing items, bedding products, and household items that are also excellent in VOC adsorption.

Claims (10)

炭の粉を含有させてなるレーヨン繊維において、前記炭の粉は、平均粒子径が1.2μm以下であり、最大粒子径が2.2μm以下であり、その80%以上が粒子径1μm以下の粒子であり、かつ、セルロース分に対する割合が15質量%以上である、VOC吸着性にも優れる、炭含有繊維。 In the rayon fiber containing charcoal powder, the charcoal powder has an average particle size of 1.2 μm or less, a maximum particle size of 2.2 μm or less, and 80% or more of which has a particle size of 1 μm or less. A charcoal-containing fiber that is particles and has a VOC adsorptivity that is 15% by mass or more with respect to the cellulose content. 前記炭の粉のセルロース分に対する割合が50質量%以下である、請求項1に記載の炭含有繊維。   The charcoal-containing fiber according to claim 1, wherein a ratio of the charcoal powder to a cellulose content is 50% by mass or less. 前記炭の粉のセルロース分に対する割合が38質量%以下である、請求項1に記載の炭含有繊維。  The charcoal-containing fiber according to claim 1, wherein a ratio of the charcoal powder to a cellulose content is 38% by mass or less. 前記炭の粉の平均粒子径が0.2μm以上である、請求項1から3までのいずれかに記載の炭含有繊維。 The charcoal-containing fiber according to any one of claims 1 to 3 , wherein an average particle size of the charcoal powder is 0.2 µm or more. 前記炭の粉の最大粒子径が2.0μm以下である、請求項1からまでのいずれかに記載の炭含有繊維。 The charcoal-containing fiber according to any one of claims 1 to 4 , wherein a maximum particle size of the charcoal powder is 2.0 µm or less. 前記炭が木炭であり、その粉の平均粒子径が0.65μm以下である、請求項1から5までのいずれかに記載の炭含有繊維。   The charcoal-containing fiber according to any one of claims 1 to 5, wherein the charcoal is charcoal, and an average particle diameter of the powder is 0.65 µm or less. 前記木炭が活性化木炭である、請求項6に記載の炭含有繊維。   The charcoal-containing fiber according to claim 6, wherein the charcoal is activated charcoal. 前記炭が活性炭である、請求項1から5までのいずれかに記載の炭含有繊維。   The charcoal-containing fiber according to any one of claims 1 to 5, wherein the charcoal is activated carbon. 平均粒子径が1.2μm以下、最大粒子径が2.2μm以下であり、かつ、その80%以上が粒子径1μm以下の粒子である炭の粉を水に分散させて5〜25質量%の水分散液とし、前記水分散液とビスコースを、セルロース分に対する前記炭の粉の割合が15質量%以上となるようにして混合し、この混合液を紡糸する、請求項1から8までのいずれかに記載の炭含有繊維の製造方法。 Average particle diameter of 1.2μm or less, the maximum particle diameter of Ri der less 2.2 .mu.m, and 5 to 25 mass flour Oh Ru charcoal 80% or more of the following particle diameter 1μm dispersed in water The aqueous dispersion and viscose are mixed so that the ratio of the charcoal powder to the cellulose content is 15% by mass or more, and the mixture is spun. The manufacturing method of the charcoal containing fiber in any one of to. 前記炭の粉が、炭を乾式粉砕し、次いで、湿式粉砕することにより得られたものである、請求項9に記載の炭含有繊維の製造方法。   The method for producing charcoal-containing fibers according to claim 9, wherein the charcoal powder is obtained by dry-pulverizing charcoal and then wet-pulverizing the charcoal.
JP2007264761A 2006-12-28 2007-10-10 Charcoal-containing fiber and method for producing the same Active JP4879861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007264761A JP4879861B2 (en) 2006-12-28 2007-10-10 Charcoal-containing fiber and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006356028 2006-12-28
JP2006356028 2006-12-28
JP2007264761A JP4879861B2 (en) 2006-12-28 2007-10-10 Charcoal-containing fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008179931A JP2008179931A (en) 2008-08-07
JP4879861B2 true JP4879861B2 (en) 2012-02-22

Family

ID=39724036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007264761A Active JP4879861B2 (en) 2006-12-28 2007-10-10 Charcoal-containing fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP4879861B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT511746B1 (en) 2011-08-10 2013-12-15 Chemiefaser Lenzing Ag ACTIVATED CARBON-CONTAINING CELLULOSIC MAN-MADE FIBER AND METHOD FOR THE PRODUCTION AND USE THEREOF
CN103541035B (en) * 2013-10-31 2015-08-19 宜宾海丝特纤维有限责任公司 A kind of Aromaticity bamboo charcoal fiber and production technology thereof
JP2020114794A (en) * 2020-03-25 2020-07-30 株式会社Lixil Granulated active carbon
JP2020105070A (en) * 2020-03-25 2020-07-09 株式会社Lixil Granulated active carbon

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3277704B2 (en) * 1994-07-21 2002-04-22 東レ株式会社 Polyester fiber having good abrasion resistance and method for producing the same
JPH1025663A (en) * 1996-07-11 1998-01-27 Asahi Chem Ind Co Ltd Deodorant fiber product
JP2001098412A (en) * 1999-10-04 2001-04-10 Minabegawamura Shinrin Kumiai Deodorizing viscose rayon fiber and production of the same
JP2001262431A (en) * 2000-03-14 2001-09-26 Hinomaru Carbo Techno Co Ltd Fiber supporting charcoal and method for producing the same

Also Published As

Publication number Publication date
JP2008179931A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP6790095B2 (en) Graphene adsorbent, its manufacturing method and its application, and tobacco filter and tobacco
CN106000316B (en) A kind of graphene adsorbent material, preparation method and its application and cigarette filter
CN105040165B (en) Biomass coke tar/Nano Silver/PAN is combined carbon fibre material and preparation method
CN105506765B (en) A kind of functional regenerated cellulose fibre and its preparation method and application
JP4879861B2 (en) Charcoal-containing fiber and method for producing the same
CN105525377B (en) A kind of functional regenerated cellulose fibre and its preparation method and application
CN108442179B (en) Paper-based air filtering material prepared from plant fiber loaded graphene and preparation method thereof
JPS6353294B2 (en)
CN107537439B (en) A kind of graphene adsorbent material, preparation method and its application and cigarette filter
KR102033268B1 (en) Functional Regenerated Cellulose Fibers and Manufacturing Method and Application thereof
JP6484656B2 (en) Activated carbon fiber for removing free chlorine and method for treating water containing free chlorine using the same
KR101918652B1 (en) Activated carbon for removal of formaldehyde gas and the method thereof
JP7106390B2 (en) activated carbon fiber material
JP3953671B2 (en) Method for producing activated charcoal
JP7229788B2 (en) activated carbon fiber material
JP7202285B2 (en) Method for producing activated carbon
JP2001262431A (en) Fiber supporting charcoal and method for producing the same
Ramı́rez et al. Adding a micropore framework to a parent activated carbon by carbon deposition from methane or ethylene
JP2007131529A (en) Method for producing activated charcoal
CN113976086A (en) MOFs @ nano-cellulose/non-woven fabric composite aerogel and preparation method and application thereof
US6482514B1 (en) Deodorant rayon fibers and method for producing the same
JP2003253557A (en) Fiber material having excellent deodorization and absorption of far infrared ray and organic chlorine compound, its fiber product and method for producing the same
JP7204026B1 (en) NONWOVEN FABRIC AND METHOD FOR MANUFACTURING SAME, METHOD FOR COLLECTING ORGANIC SOLVENT USING SAME, AND ORGANIC SOLVENT COLLECTION APPARATUS
KR101647966B1 (en) Method of making composite fiber filter for degasing and elemination of dilute hamful gas
JP2004149998A (en) Ligneous charcoal-kneaded synthetic fiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Ref document number: 4879861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250