JP4878080B2 - Object detection device - Google Patents

Object detection device Download PDF

Info

Publication number
JP4878080B2
JP4878080B2 JP2001014800A JP2001014800A JP4878080B2 JP 4878080 B2 JP4878080 B2 JP 4878080B2 JP 2001014800 A JP2001014800 A JP 2001014800A JP 2001014800 A JP2001014800 A JP 2001014800A JP 4878080 B2 JP4878080 B2 JP 4878080B2
Authority
JP
Japan
Prior art keywords
light
light beam
light intensity
optical axis
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001014800A
Other languages
Japanese (ja)
Other versions
JP2002214327A (en
Inventor
重樹 仲瀬
重幸 中村
剛 太田
弘己 嶋野
弘倫 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2001014800A priority Critical patent/JP4878080B2/en
Priority to PCT/JP2002/000471 priority patent/WO2002059641A1/en
Publication of JP2002214327A publication Critical patent/JP2002214327A/en
Application granted granted Critical
Publication of JP4878080B2 publication Critical patent/JP4878080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Traffic Control Systems (AREA)

Abstract

A projection optical system (11) comprises a light source (12) and a light intensity distribution correcting means, i.e. a projection lens (collimate lens) (13). The light source (12) is a laser diode (LD) outputting a light beam in response to a drive signal inputted from a laser diode drive circuit (LD drive circuit) (33). The projection lens (13) projects a light beam emitted from an LD (12) toward an object T being measured and corrects the light intensity distribution of a light beam emitted from the LD (12). The projection lens (13) corrects the light intensity distribution of a light beam emitted from the LD (12) such that the light intensity of the light beam in the vicinity of the optical axis is higher than the light intensity at the peripheral part thereof at a position separated by a specified distance from the projection lens (13). The projection lens (13) includes an aspherical lens part and a cylindrical lens part.

Description

【0001】
【発明の属する技術分野】
本発明は、被測定対象物体までの距離を測定する距離計測装置、及び距離計測装置を用いた物体検知装置に関する。
【0002】
【従来の技術】
従来、たとえばETC(Electronic Toll Collection System)における車両検知装置として、外部に出射される照射光を発生させる光源(レーザダイオード等)を用いた照射光学系と、被測定対象物体からの反射光を検出する受光素子等を用いた検出光学系とを有して構成されて、受光の有無によって検出方向における被測定対象物体の有無を、また、照射光と反射光との時間差・位相差などから被測定対象物体までの距離を検出する距離計測装置が知られている。
【0003】
たとえば、特開平7−253462号公報には、レーザ光源から出射した光を送信する送信光学系と、送信光学系から送信された光のうち、対象物から反射し戻った光を受信し、受信信号を出力する受信手段と、受信信号により対象物を検知する検知手段と、光の送信タイミングと受信タイミングの差から対象物までの往復時間を計測して対象物までの距離を演算する演算手段とを具備した距離測定装置が開示されている。この特開平7−253462号公報に開示された距離測定装置にあっては、送信光学系が、並列する複数の主点を有して光の光束強度分布を平坦化するフライアイレンズを具備しており、このフライアイレンズによりレーザ光源からの光は強度分布が平坦化されて送信され、対象物に対して投射された光は測定光束の中央部のものであるか、或いは周辺部のものであるかに拘わらず、強度が異なることがなく、光源から出射する光の強度分布に基因する誤差は減少して高精度の距離測定が可能となる。
【0004】
【発明が解決しようとする課題】
本発明者等の調査研究の結果、特開平7−253462号公報に開示された距離測定装置においては、以下のような問題点を有していることが判明した。特開平7−253462号公報に開示された距離測定装置では、送信光学系にフライアイレンズが用いられている。しかしながら、レーザ光源の発光強度分布はガウス分布(光軸付近が高く、周辺付近が低い)をしていることから、フライアイレンズでは、ガウス分布の発光強度を有する光束が細分化されるだけであり、光束全体の発光強度分布を平坦化することは困難である。
【0005】
また、光束全体の発光強度分布が平坦化されたとしても、光源から出射された光束の照射範囲に円筒あるいは円柱形状の被測定対象物体の一部のみ侵入した状態では、被測定対象物体からの反射光束の反射光量が少なくなり反射光束そのものの検出が困難となり、検出精度及び確度が劣る惧れがある。円筒あるいは円柱形状の被測定対象物体では、光反射面が曲面となる。このため、被測定対象物体の中央部に光束が照射されると、照射された光束は正反射されて反射光束の光強度は高いが、被測定対象物体の端部(周辺部)に光束が照射されると、端部は曲率が大きいため散乱が大きく反射光束の光強度は激減する。更に、レーザ光源の発光強度分布は、上述したようにガウス分布であることから、光束の周辺部の光強度そのものも、光束の光軸付近の光強度に比べて低くなっている。これらのことから、外側形状が曲面である被測定対象物体の端部のみが光束の照射範囲に侵入している状態では、反射光束の光強度が極めて低く、検出が困難となる。
【0006】
本発明は上述の点に鑑みてなされたもので、被測定対象物体からの反射光束を確実に検出することができ、高精度な距離計測が可能となる距離計測装置及び物体検知装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明に係る距離計測装置は、光源から出力された光束を被測定対象物体に向けて照射するための投光光学系と、被測定対象物体により反射された反射光束を検出する検出光学系とを備え、被測定対象物体までの距離を測定する距離計測装置であって、投光光学系は、所定の距離離れた位置において光束の光軸付近の光強度よりも光束の周辺部の光強度を高くする光強度補正手段を有していることを特徴としている。
【0008】
本発明に係る距離計測装置では、投光光学系が光強度補正手段を有しているので、光源から出力され被測定対象物体に照射される光束の光強度分布は、光束の周辺部の光強度が光束の光軸付近の光強度よりも高い強度分布となる。これにより、円筒あるいは円柱形状等の外側形状が曲面である被測定対象物体の端部に対して光束の周辺部の光が入射する場合、この被測定対象物体の端部からの反射光束の光強度は、光源から出力される光束の光強度分布がガウス分布である、あるいは平坦化されているものに比して、高くなる。したがって、外側形状が曲面である被測定対象物体の端部のみが光束の照射範囲に侵入している状態においても、被測定対象物体からの反射光束の光強度が高くなり、この反射光束を適切に検出することができる。この結果、本発明に係る距離計測装置によれば、高精度な距離計測が可能となる。なお、外側形状が曲面である被測定対象物体の中央部に対して光が入射するとこの光は略正反射するので、たとえ光束の光軸付近の光(光束の周辺部よりも光強度が低い)が被測定対象物体の中央部に入射するとしても、反射光束の光強度は検出に必要相当な強度となる。
【0009】
また、光強度補正手段は、非球面レンズ部分とシリンドリカルレンズ部分とを含んでいることが好ましい。このように、光強度補正手段が非球面レンズ部分とシリンドリカルレンズ部分とを含むことにより、光源から出力された光束のうち光軸付近の光が光束の周辺部に向けて広がることになる。これにより、所定の距離離れた位置において光束の光軸付近の光強度よりも光束の周辺部の光強度を高くし得る光強度補正手段を、非球面レンズ部分とシリンドリカルレンズ部分との組み合わせという極めて簡易な構成にて実現することができる。
【0010】
そして、本発明に係る物体検知装置は、上記の距離計測装置を備えた物体検知装置であって、投光光学系が、光束の光軸と交差する方向に複数並設されていることを特徴としている。
【0011】
本発明に係る物体検知装置では、外側形状が曲面である被測定対象物体が、複数個並設された投光光学系から出力される光束により構成される検知ゾーンに侵入した場合においても、高精度な距離計測が可能となり、被測定対象物体の検知精度を向上することができる。
【0012】
【発明の実施の形態】
以下、図面を参照しながら本発明による距離測定装置の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
【0013】
まず、図1に基づいて、本発明の実施形態に係る距離測定装置の構成について説明する。図1は、本実施形態に係る距離計測装置の構成を示すブロック図である。距離計測装置1は、被測定対象物体Tに測定光としての光束を照射するための投光光学系11と、この被測定対象物体Tで反射した反射光束を検出するための検出光学系21と、これら投光光学系11及び検出光学系21に入出力する各種の電気信号を処理する信号処理系31とから構成されている。
【0014】
投光光学系11は、光源12と、光強度補正手段としての投光レンズ(コリメートレンズ)13とを有している。光源12は、レーザダイオード駆動回路(LD駆動回路)33から入力された駆動信号に対応して、光束を発生、出力するレーザダイオード(LD)である。光源(以下、LDと称する)12から出力された光束の光強度分布はガウス分布(光束の光軸付近の光強度が光束の周辺部の光強度より高い)となっている。投光レンズ13は、LD12から出力された光束を被測定対象物体Tに向けて出射すると共に、LD12から出力された光束の光強度分布を補正するためのものであり、投光レンズ13から所定の距離離れた位置において、LD12から出力された光束の光軸付近の光強度よりも光束の周辺部の光強度を高くする。本実施形態においては、投光レンズ13は、この投光レンズ13から5m程度離れた位置において、光束の光軸付近の光強度と光束の周辺部の光強度との比が1:2程度となるように設計されている
【0015】
次に、図2に基づいて、投光レンズ13の構成について説明する。図2は、投光レンズ13の一例を示す図である。同図(a)は上面図、同図(b)は出射側から見た図、同図(c)は下面図、同図(d)は出射側から見た図である。投光レンズ13は、非球面レンズ部分14とシリンドリカルレンズ部分15とを含んでおり、これらの非球面レンズ部分14とシリンドリカルレンズ部分15とは一体形成されている。この投光レンズ13は、非球面レンズ部分14を投光レンズ13の入射(LD12)側に位置させ、シリンドリカルレンズ部分15を出射(被測定対象物体T)側に位置させた状態で配設されている。シリンドリカルレンズ部分15は、出射面がかまぼこ状に凹んでいる。なお、投光レンズ13は、シリンドリカルレンズ部分15を投光レンズ13の入射側に位置させ、非球面レンズ部分14を出射側に位置させた状態で配設させてもよい。
【0016】
LD12から出力された光束は、投光レンズ13に入射し、投光レンズ13の非球面レンズ部分14により平行光化される。平行光化された光束の幅は、50mm程度に設定されている。そして、投光レンズ13のシリンドリカルレンズ部分15により、光束のうち光軸付近の光が光束の周辺部に向けて広がることになる。これにより、LD12から出力された光束の光強度分布が、図3に示されるように、ガウス分布から光束の光軸付近の光強度よりも光束の周辺部の光強度を高くされた光強度分布になる。
【0017】
投光レンズ13から出射した光束のビーム形状は、図4に示されるように、光束の光軸Lに直交する面で見て、略矩形形状を呈している。また、図示のように、光束の光軸Lを通る互いに直交する2つの直線に沿った光強度の分布は、いずれも光束の光軸L付近の光強度よりも光束の周辺部の光強度が高い分布となっている。光束の光軸L付近の光強度と光束の周辺部の光強度との比は、上述したように1:2程度となっている。
【0018】
図2に示された投光レンズ13を用いる代わりに、図5及び図6に示されるような投光レンズ16,18を用いてもよい。図5及び図6は、図2と同様に、投光レンズ16,18の一例を示す図である。同図(a)は上面図、同図(b)は出射側から見た図、同図(c)は下面図である。図5に示された投光レンズ16は、図示のように、非球面レンズ部分14と円筒非球面レンズ部分17とを含んでいる。この投光レンズ16は、非球面レンズ部分14を投光レンズ13の入射側に位置させ、円筒非球面レンズ部分17を出射側に位置させた状態で配設される。また、図6に示された投光レンズ18は、非球面レンズ部分14と屋根型プリズム部分19とを含んでいる。この投光レンズ13は、非球面レンズ部分14を投光レンズ13の入射側に位置させ、屋根型プリズム部分19を出射側に位置させた状態で配設される。
【0019】
再び、図1を参照する。検出光学系21は、受光レンズ22と、光検出器23とを含んでいる。受光レンズ22は、投光レンズ13を介して出射された光束のうち被測定対象物体Tから反射し戻った反射光束を光検出器23に入射させる。光検出器23は、入射した反射光束に対応して光電変換した受光信号を、増幅器34に出力するフォトダイオード(PD)である。
【0020】
信号処理系31は、パルス発生回路32と、LD駆動回路33と、増幅器34と、コンパレータ35と、クロック発生回路36と、時間差測定回路37と、距離出力部38とを含んでいる。パルス発生回路32は、所定の周期のパルス信号を発生させ、LD駆動回路33及び時間差測定回路37に出力するものである。LD駆動回路33は、パルス発生回路32から入力されるパルス信号が点灯トリガとなって動作し、駆動信号をLD12に出力する。
【0021】
増幅器34は光検出器(以下、PDと称する)23から入力された受光信号を増幅するものであり、増幅された受光信号はアナログ出力信号としてコンパレータ35に出力される。コンパレータ35は増幅器34からのアナログ出力信号をディジタル矩形波の受光パルス信号に変換するものであり、変換した受光信号を時間差測定回路37に出力している。
【0022】
時間差測定回路37は、パルス発生回路32からのパルス信号とコンパレータ35からの受光パルス信号とに基づいて、LD12からの光束の投光タイミングとPD23での反射光束の受光(検出)タイミングとの時間差、すなわちLD12から出力された光束が被測定対象物体Tにて反射し反射光束がPD23に入射するまでの時間(光束の往復飛翔時間)を測定する。時間差測定回路37には、クロック発生回路36からのクロック信号が入力されており、時間差測定回路37は、パルス信号の入力タイミング(たとえば、パルス信号の立ち上がりタイミング)から受光パルス信号の入力タイミング(たとえば、受光パルス信号の立ち上がりタイミング)までのクロック信号を計数し、計数されたクロック信号の数にクロック信号の周期を乗算することにより、上述した光束の往復飛翔時間を演算、測定する。
【0023】
時間差測定回路37にて演算、測定された光束の往復飛翔時間は、時間情報として距離出力部38に出力される。距離出力部38は、時間差測定回路37からの時間情報に基づいて距離計測装置1から被測定対象物体Tまでの距離を演算し、距離情報として出力する。
【0024】
このように、本実施形態に係る距離計測装置1では、投光光学系11が投光レンズ13を有しているので、LD12から出力され被測定対象物体Tに照射される光束の光強度分布は、光束の周辺部の光強度が光束の光軸付近の光強度よりも高い強度分布となる。これにより、たとえば図3に示されるように円筒あるいは円柱形状等の外側形状が曲面である被測定対象物体Tの端部に対して光束の周辺部の光が入射する場合、この被測定対象物体Tの端部からの反射光束の光強度は、光源から出力される光束の光強度分布がガウス分布である、あるいは平坦化されているものに比して、高くなる。したがって、外側形状が曲面である被測定対象物体Tの端部がわずかに光束の照射範囲(検知エリア)に侵入している状態においても、被測定対象物体Tからの反射光束の光強度が高くなり、PD23(検出光学系21)での反射光束の検知に必要相当の受光光量が得られ、反射光束をPD23(検出光学系21)にて適切に検出することができる。この結果、本実施形態の距離計測装置1によれば、高精度な距離計測が可能となる。なお、外側形状が曲面である被測定対象物体Tの中央部に対して光が入射するとこの光は略正反射するので、たとえ光束の光軸付近の光(光束の周辺部よりも光強度が低い)が被測定対象物体Tの中央部に入射するとしても、反射光束の光強度は検出に必要相当な強度となる。
【0025】
ところで、反射光束の光強度を高めるための手法として、LD12の出力を上げることが考えられる。LD12の出力を上げることにより、光束の光軸付近のみならず周辺部の光強度も高められ、外側形状が曲面である被測定対象物体Tの端部からの反射光束の光強度も高くなる。このように、LD12の出力を上げることは、LD12寿命の劣化を早める原因になる。また、レーザは、日本工業規格(JIS)にて、安全性に関して1、2、3A、3B、4といったクラスが定められており、反射光束の検知に必要相当の受光光量を得るためには、クラス3B程度のLD12を用いる必要があり、安全性の面で問題が生じる。しかしながら、本実施形態に係る距離計測装置1によれば、クラス1程度の出力のLD12を用いた場合でも、反射光束をPD23(検出光学系21)にて適切に検出することができるために、LD12の早期劣化、安全性等に関する問題が生じることはない。また、LD12そのものの低コスト化、消費電力低下に伴うランニングコストの低下等のコスト削減が可能となる。
【0026】
また、投光レンズ13は、非球面レンズ部分14とシリンドリカルレンズ部分15とを含んでおり、LD12から出力された光束のうち光軸付近の光が光束の周辺部に向けて広がることになる。これにより、所定の距離離れた位置において光束の光軸付近の光強度よりも光束の周辺部の光強度を高くし得る投光レンズ13(光強度補正手段)を、非球面レンズ部分14とシリンドリカルレンズ部分15との組み合わせという極めて簡易な構成にて実現することができる。
【0027】
次に、図7及び図8に基づいて、上述した距離計測装置1を用いた物体検知装置について説明する。図7は、本発明の実施形態に係る物体検知装置の構成を示す概略斜視図であり、図8は、本実施形態に係る物体検知装置において投光光学系から出力される光束の光強度分布を示す説明図である。なお、図7に示された物体検知装置は、ETC等に用いられる車両検知装置である。
【0028】
車両検知装置(物体検知装置)41は、料金所アイランド51の車両進入側に設置されており、距離計測装置1が所定間隔(たとえば、40mmピッチ)にて複数(たとえば、38ch)並設されている。距離計測装置1は、図7に示されるように、距離計測装置1の投光光学系11から出射される光束の光軸と交差(たとえば、直交)する方向で、車両上下方向となる方向に並設されている。車両検知装置41は、複数並設された距離計測装置1から測定光としての光束をエリア的に照射し、距離計測装置1に反射光束が入射することにより、光束の往復飛翔時間が測定され、この光束の往復飛翔時間(時間情報)に基づいて車両が存在するか否かを検知する。
【0029】
ところで、図7に示されるように、被測定対象物体Tとなる車両が、たとえば、牽引車の場合には、牽引駆動車V1と牽引台車V2との間が牽引棒V3で連結されている。このような牽引車は、通行料金の支払いに関しては、通常、全体で一台分の車両として取り扱われる。牽引棒V3としては、アルミニウム製あるいは鉄製の円筒パイプ材(直径が40mm程度)が用いられることがある。
【0030】
各距離計測装置1の投光光学系11から照射される光束の光強度分布は、図8に示されるように、夫々の光束の周辺部の光強度が光束の光軸付近の光強度よりも高い強度分布となる。このため、牽引棒V3(円筒パイプ材)の端部に光束が照射された場合、この牽引棒V3の端部からの反射光束の光強度は、光源から出力される光束の光強度分布がガウス分布である、あるいは平坦化されている場合に比して、高くなる。したがって、牽引棒V3の端部がわずかに距離計測装置1の検知エリア(投光光学系11からの光束の照射範囲)に侵入している状態においても、牽引棒V3からの反射光束の光強度が高くなり、距離計測装置1での反射光束の検知に必要相当の受光光量が得られ、反射光束を適切に検出することができる。この結果、本実施形態の車両検知装置41によれば、高精度な距離計測が可能となり、牽引車を一台分の車両として正しく検知することができ、車両の検知精度を向上することができる。
【0031】
本発明は、前述した実施形態に限定されるものではなく、投光レンズ13も、光束の光強度分布が投光レンズ13から所定の距離離れた位置において光軸付近の光強度よりも周辺部の光強度が高くされた光強度分布となるものであれば、上述した構成のものに限られない。なお、上述した「所定の距離」の値は、距離計測装置1の検知範囲を考慮して適宜設定されることになる。
【0032】
また、本発明による距離計測装置は、上述した車両検知装置以外の物体検知装置に適用することができる。そして、本発明による物体検知装置は、特に、曲面部分を有する被測定対象物体の検知に好適である。
【0033】
本実施形態による距離計測装置は、投光光学系から出射された光束が被測定対象物体にて反射して戻り、反射光束が検出光学系にて検出されるまでの時間に基づいて距離を計測するように構成しているが、これに限られることなく、投光光学系から出射された光束と検出光学系にて検出された反射光束との位相差に基づいて被測定対象物体までの距離を計測するように構成してもよい。
【0034】
【発明の効果】
以上、詳細に説明したとおり、本発明の距離計測装置及び物体検知装置によれば、被測定対象物体からの反射光束を確実に検出することができ、高精度な距離計測が可能となる距離計測装置及び物体検知装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る距離計測装置の構成を示すブロック図である。
【図2】本発明の実施形態に係る距離計測装置に含まれる投光レンズの一例を示す図である。
【図3】本発明の実施形態に係る距離計測装置において投光光学系から出力される光束の光強度分布を示す説明図である。
【図4】本発明の実施形態に係る距離計測装置において投光光学系から出力される光束の光強度分布を示す特性図である。
【図5】本発明の実施形態に係る距離計測装置に含まれる投光レンズの一例を示す図である。
【図6】本発明の実施形態に係る距離計測装置に含まれる投光レンズの一例を示す図である。
【図7】本発明の実施形態に係る物体検知装置の構成を示す概略斜視図である。
【図8】本発明の実施形態に係る物体検知装置において投光光学系から出力される光束の光強度分布を示す説明図である。
【符号の説明】
1…距離計測装置、11…投光光学系、12…光源(LD)、13…投光レンズ、14…非球面レンズ部分、15…シリンドリカルレンズ部分、21…検出光学系、23…光検出器(PD)、31…信号処理系、37…時間差測定回路、38…距離出力部、41…車両検知装置、T…被測定対象物体、V1…牽引駆動車、V2…牽引台車、V3…牽引棒。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a distance measuring device that measures a distance to an object to be measured, and an object detection device that uses the distance measuring device.
[0002]
[Prior art]
Conventionally, for example, as a vehicle detection device in ETC (Electronic Toll Collection System), an irradiation optical system using a light source (laser diode, etc.) that generates irradiation light emitted to the outside, and reflected light from the object to be measured are detected. A detection optical system that uses a light receiving element or the like to detect the presence or absence of an object to be measured in the detection direction according to the presence or absence of light reception, and the time difference or phase difference between irradiated light and reflected light. A distance measuring device that detects a distance to an object to be measured is known.
[0003]
For example, in Japanese Patent Laid-Open No. 7-253462, a transmission optical system that transmits light emitted from a laser light source, and light that is reflected from an object among light transmitted from the transmission optical system is received and received. Receiving means for outputting a signal; detecting means for detecting an object based on the received signal; calculating means for calculating a distance to the object by measuring a round-trip time to the object based on a difference between light transmission timing and reception timing A distance measuring device including the above is disclosed. In the distance measuring apparatus disclosed in Japanese Patent Laid-Open No. 7-253462, the transmission optical system includes a fly-eye lens that has a plurality of parallel principal points and flattens the light flux intensity distribution of light. The light from the laser light source is transmitted by this fly-eye lens with the intensity distribution flattened, and the light projected on the object is in the central part of the measurement light beam or in the peripheral part. Regardless of this, the intensity does not differ, and errors due to the intensity distribution of the light emitted from the light source are reduced, enabling highly accurate distance measurement.
[0004]
[Problems to be solved by the invention]
As a result of investigations by the present inventors, it has been found that the distance measuring device disclosed in Japanese Patent Laid-Open No. 7-253462 has the following problems. In the distance measuring device disclosed in Japanese Patent Laid-Open No. 7-253462, a fly-eye lens is used for the transmission optical system. However, since the light emission intensity distribution of the laser light source is Gaussian distribution (the vicinity of the optical axis is high and the vicinity of the periphery is low), the fly-eye lens only subdivides the luminous flux having the Gaussian distribution emission intensity. It is difficult to flatten the light emission intensity distribution of the entire luminous flux.
[0005]
Even if the emission intensity distribution of the entire light beam is flattened, if only a part of the measurement target object having a cylindrical or cylindrical shape enters the irradiation range of the light beam emitted from the light source, The amount of light reflected from the reflected light beam is reduced, making it difficult to detect the reflected light beam itself, and the detection accuracy and accuracy may be poor. In a cylindrical or cylindrical object to be measured, the light reflecting surface is a curved surface. For this reason, when the central part of the object to be measured is irradiated with the light beam, the irradiated light beam is regularly reflected and the light intensity of the reflected light beam is high, but the light beam is applied to the end (peripheral part) of the object to be measured. When irradiated, since the end portion has a large curvature, scattering is large and the light intensity of the reflected light beam is drastically reduced. Furthermore, since the emission intensity distribution of the laser light source is a Gaussian distribution as described above, the light intensity itself at the periphery of the light beam is also lower than the light intensity near the optical axis of the light beam. For these reasons, in the state where only the end of the object to be measured whose outer shape is a curved surface enters the irradiation range of the light beam, the light intensity of the reflected light beam is extremely low and detection is difficult.
[0006]
The present invention has been made in view of the above points, and provides a distance measurement device and an object detection device that can reliably detect a reflected light beam from an object to be measured and enable highly accurate distance measurement. For the purpose.
[0007]
[Means for Solving the Problems]
A distance measuring device according to the present invention includes a light projecting optical system for irradiating a light beam output from a light source toward a measurement target object, and a detection optical system for detecting a reflected light beam reflected by the measurement target object; The projection optical system is configured to measure the distance to the object to be measured, and the light projecting optical system has a light intensity at a peripheral portion of the light beam that is higher than a light intensity near the optical axis of the light beam at a predetermined distance It is characterized by having a light intensity correction means for increasing.
[0008]
In the distance measuring apparatus according to the present invention, since the light projecting optical system has the light intensity correction means, the light intensity distribution of the light beam output from the light source and applied to the object to be measured is the light at the periphery of the light beam. The intensity distribution is higher than the light intensity near the optical axis of the light beam. As a result, when the light at the periphery of the light beam is incident on the end of the measurement target object having a curved outer shape such as a cylinder or a column, the light of the reflected light beam from the end of the measurement target object The intensity is higher than the light intensity distribution of the light beam output from the light source is a Gaussian distribution or flattened. Therefore, even when only the end of the object to be measured whose outer shape is a curved surface enters the irradiation range of the light beam, the light intensity of the reflected light beam from the object to be measured increases, and this reflected light beam is Can be detected. As a result, the distance measuring device according to the present invention enables highly accurate distance measurement. Note that when light is incident on the central part of the object to be measured whose outer shape is a curved surface, this light is substantially specularly reflected. ) Is incident on the center of the object to be measured, the light intensity of the reflected light beam is sufficiently high for detection.
[0009]
The light intensity correction means preferably includes an aspheric lens portion and a cylindrical lens portion. As described above, the light intensity correction means includes the aspherical lens portion and the cylindrical lens portion, so that the light near the optical axis of the light flux output from the light source spreads toward the peripheral portion of the light flux. As a result, the light intensity correction means that can increase the light intensity at the periphery of the light beam at a position that is a predetermined distance away from the light intensity near the optical axis of the light beam is a combination of an aspheric lens part and a cylindrical lens part. This can be realized with a simple configuration.
[0010]
An object detection apparatus according to the present invention is an object detection apparatus provided with the distance measurement device described above, wherein a plurality of light projecting optical systems are arranged in parallel in a direction intersecting the optical axis of the light beam. It is said.
[0011]
In the object detection device according to the present invention, even when a measurement target object whose outer shape is a curved surface enters a detection zone composed of a light beam output from a plurality of light projecting optical systems, Accurate distance measurement is possible, and detection accuracy of the object to be measured can be improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a distance measuring device according to the present invention will be described in detail with reference to the drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
[0013]
First, based on FIG. 1, the structure of the distance measuring device which concerns on embodiment of this invention is demonstrated. FIG. 1 is a block diagram showing the configuration of the distance measuring apparatus according to the present embodiment. The distance measuring device 1 includes a light projecting optical system 11 for irradiating a measurement target object T with a light beam as measurement light, and a detection optical system 21 for detecting a reflected light beam reflected by the measurement target object T. The light projecting optical system 11 and the detection optical system 21 are composed of a signal processing system 31 for processing various electric signals input and output.
[0014]
The light projecting optical system 11 includes a light source 12 and a light projecting lens (collimating lens) 13 as light intensity correcting means. The light source 12 is a laser diode (LD) that generates and outputs a light beam corresponding to the drive signal input from the laser diode drive circuit (LD drive circuit) 33. The light intensity distribution of the light beam output from the light source (hereinafter referred to as LD) 12 is a Gaussian distribution (the light intensity near the optical axis of the light beam is higher than the light intensity at the periphery of the light beam). The light projecting lens 13 emits the light beam output from the LD 12 toward the measurement target object T and corrects the light intensity distribution of the light beam output from the LD 12. The light intensity in the peripheral part of the light beam is made higher than the light intensity in the vicinity of the optical axis of the light beam output from the LD 12 at a position away from this distance. In the present embodiment, the projection lens 13 has a ratio of the light intensity in the vicinity of the optical axis of the light beam to the light intensity in the periphery of the light beam at a position about 5 m away from the light projection lens 13. Designed to be [0015]
Next, based on FIG. 2, the structure of the light projection lens 13 is demonstrated. FIG. 2 is a diagram illustrating an example of the light projecting lens 13. 4A is a top view, FIG. 2B is a view seen from the emission side, FIG. 3C is a bottom view, and FIG. 4D is a view seen from the emission side. The light projecting lens 13 includes an aspheric lens portion 14 and a cylindrical lens portion 15, and the aspheric lens portion 14 and the cylindrical lens portion 15 are integrally formed. The projection lens 13 is disposed in a state where the aspheric lens portion 14 is positioned on the incident (LD 12) side of the projection lens 13 and the cylindrical lens portion 15 is positioned on the emission (measurement target object T) side. ing. The cylindrical lens portion 15 has an exit surface that is recessed in a semi-cylindrical shape. The light projecting lens 13 may be disposed with the cylindrical lens portion 15 positioned on the incident side of the light projecting lens 13 and the aspheric lens portion 14 positioned on the output side.
[0016]
The light beam output from the LD 12 enters the light projecting lens 13 and is collimated by the aspherical lens portion 14 of the light projecting lens 13. The width of the collimated light beam is set to about 50 mm. Then, the cylindrical lens portion 15 of the light projecting lens 13 causes light in the vicinity of the optical axis of the light beam to spread toward the periphery of the light beam. Thereby, as shown in FIG. 3, the light intensity distribution of the light beam output from the LD 12 is a light intensity distribution in which the light intensity at the periphery of the light beam is made higher than the light intensity near the optical axis of the light beam from the Gaussian distribution. become.
[0017]
As shown in FIG. 4, the beam shape of the light beam emitted from the light projecting lens 13 has a substantially rectangular shape when viewed in a plane orthogonal to the optical axis L of the light beam. Further, as shown in the drawing, the distribution of the light intensity along two orthogonal straight lines passing through the optical axis L of the light beam is such that the light intensity in the peripheral part of the light beam is higher than the light intensity near the optical axis L of the light beam. High distribution. The ratio between the light intensity near the optical axis L of the light beam and the light intensity at the periphery of the light beam is about 1: 2, as described above.
[0018]
Instead of using the projector lens 13 shown in FIG. 2, projector lenses 16 and 18 as shown in FIGS. 5 and 6 may be used. 5 and 6 are diagrams showing an example of the light projecting lenses 16 and 18, as in FIG. FIG. 4A is a top view, FIG. 4B is a view seen from the emission side, and FIG. The light projecting lens 16 shown in FIG. 5 includes an aspheric lens portion 14 and a cylindrical aspheric lens portion 17 as shown. The light projecting lens 16 is disposed with the aspheric lens portion 14 positioned on the incident side of the light projecting lens 13 and the cylindrical aspheric lens portion 17 positioned on the output side. Further, the light projecting lens 18 shown in FIG. 6 includes an aspherical lens portion 14 and a roof prism portion 19. The light projecting lens 13 is arranged with the aspheric lens portion 14 positioned on the incident side of the light projecting lens 13 and the roof prism portion 19 positioned on the output side.
[0019]
Reference is again made to FIG. The detection optical system 21 includes a light receiving lens 22 and a photodetector 23. The light receiving lens 22 causes the reflected light beam reflected from the measurement target object T out of the light beam emitted through the light projecting lens 13 to enter the photodetector 23. The photodetector 23 is a photodiode (PD) that outputs a received light signal photoelectrically converted in response to an incident reflected light beam to an amplifier 34.
[0020]
The signal processing system 31 includes a pulse generation circuit 32, an LD drive circuit 33, an amplifier 34, a comparator 35, a clock generation circuit 36, a time difference measurement circuit 37, and a distance output unit 38. The pulse generation circuit 32 generates a pulse signal having a predetermined period and outputs it to the LD drive circuit 33 and the time difference measurement circuit 37. The LD drive circuit 33 operates using the pulse signal input from the pulse generation circuit 32 as a lighting trigger, and outputs a drive signal to the LD 12.
[0021]
The amplifier 34 amplifies the light reception signal input from the photodetector (hereinafter referred to as PD) 23, and the amplified light reception signal is output to the comparator 35 as an analog output signal. The comparator 35 converts the analog output signal from the amplifier 34 into a light reception pulse signal of a digital rectangular wave, and outputs the converted light reception signal to the time difference measurement circuit 37.
[0022]
The time difference measurement circuit 37 is based on the pulse signal from the pulse generation circuit 32 and the light reception pulse signal from the comparator 35, and the time difference between the light projection timing of the light beam from the LD 12 and the light reception (detection) timing of the reflected light beam at the PD 23. That is, the time (light beam reciprocation flight time) from when the light beam output from the LD 12 is reflected by the measurement target object T and the reflected light beam enters the PD 23 is measured. The time difference measurement circuit 37 receives the clock signal from the clock generation circuit 36, and the time difference measurement circuit 37 receives the input timing of the received light pulse signal (for example, the rising timing of the pulse signal) (for example, the rising timing of the pulse signal). The clock signal until the light reception pulse signal rises) is counted, and the above-mentioned round-trip flight time of the luminous flux is calculated and measured by multiplying the number of counted clock signals by the period of the clock signal.
[0023]
The round-trip flight time of the light beam calculated and measured by the time difference measurement circuit 37 is output to the distance output unit 38 as time information. The distance output unit 38 calculates the distance from the distance measuring device 1 to the measurement target object T based on the time information from the time difference measurement circuit 37, and outputs the distance information.
[0024]
As described above, in the distance measuring apparatus 1 according to the present embodiment, the light projecting optical system 11 includes the light projecting lens 13, and thus the light intensity distribution of the light beam output from the LD 12 and irradiated onto the measurement target object T. Has a higher intensity distribution than the light intensity in the vicinity of the optical axis of the light beam. Thus, for example, when the light in the peripheral portion of the light beam is incident on the end of the measurement target object T having a curved outer shape such as a cylinder or a column as shown in FIG. The light intensity of the reflected light beam from the end of T is higher than that in which the light intensity distribution of the light beam output from the light source is Gaussian or flattened. Therefore, the light intensity of the reflected light beam from the measurement target object T is high even when the end of the measurement target object T whose outer shape is a curved surface slightly enters the light beam irradiation range (detection area). Accordingly, a received light amount equivalent to the detection of the reflected light beam by the PD 23 (detection optical system 21) can be obtained, and the reflected light beam can be appropriately detected by the PD 23 (detection optical system 21). As a result, according to the distance measuring apparatus 1 of the present embodiment, highly accurate distance measurement is possible. Note that when light is incident on the central portion of the measurement target object T whose outer shape is a curved surface, this light is substantially specularly reflected. Therefore, even if the light is near the optical axis of the light beam (the light intensity is higher than the peripheral portion of the light beam Low) is incident on the center portion of the object T to be measured, the light intensity of the reflected light beam becomes an intensity necessary for detection.
[0025]
By the way, as a technique for increasing the light intensity of the reflected light beam, it is conceivable to increase the output of the LD 12. By increasing the output of the LD 12, not only the vicinity of the optical axis of the light beam but also the peripheral light intensity is increased, and the light intensity of the reflected light beam from the end of the measurement target object T whose outer shape is a curved surface is also increased. As described above, increasing the output of the LD 12 causes the deterioration of the life of the LD 12 to be accelerated. In addition, lasers are classified into 1, 2, 3A, 3B, and 4 classes with respect to safety in Japanese Industrial Standards (JIS), and in order to obtain a received light amount equivalent to detection of reflected light flux, It is necessary to use an LD 12 of class 3B, which causes a problem in terms of safety. However, according to the distance measuring apparatus 1 according to the present embodiment, the reflected light beam can be appropriately detected by the PD 23 (detection optical system 21) even when the LD 12 having a class 1 output is used. There will be no problems regarding the early deterioration and safety of the LD 12. Further, it is possible to reduce costs such as a reduction in cost of the LD 12 itself and a reduction in running cost accompanying a reduction in power consumption.
[0026]
The light projecting lens 13 includes an aspherical lens portion 14 and a cylindrical lens portion 15, and light near the optical axis of the light flux output from the LD 12 spreads toward the periphery of the light flux. As a result, the projection lens 13 (light intensity correction means) that can make the light intensity in the peripheral part of the light beam higher than the light intensity in the vicinity of the optical axis of the light beam at a predetermined distance away from the aspherical lens part 14 and the cylindrical lens. This can be realized with a very simple configuration in combination with the lens portion 15.
[0027]
Next, based on FIG.7 and FIG.8, the object detection apparatus using the distance measuring device 1 mentioned above is demonstrated. FIG. 7 is a schematic perspective view showing the configuration of the object detection device according to the embodiment of the present invention, and FIG. 8 is the light intensity distribution of the light beam output from the light projecting optical system in the object detection device according to the embodiment. It is explanatory drawing which shows. Note that the object detection device shown in FIG. 7 is a vehicle detection device used for ETC or the like.
[0028]
The vehicle detection device (object detection device) 41 is installed on the vehicle entrance side of the toll gate island 51, and a plurality of distance measurement devices 1 (for example, 38 ch) are arranged in parallel at a predetermined interval (for example, 40 mm pitch). Yes. As shown in FIG. 7, the distance measuring device 1 is in a direction that intersects (for example, orthogonal to) the optical axis of the light beam emitted from the light projecting optical system 11 of the distance measuring device 1 and that is in the vertical direction of the vehicle. It is installed side by side. The vehicle detection device 41 irradiates a light beam as measurement light from a plurality of the distance measurement devices 1 arranged side by side, and the reflected light beam is incident on the distance measurement device 1, whereby the round-trip flight time of the light beam is measured. It is detected whether or not the vehicle exists based on the round-trip flight time (time information) of the luminous flux.
[0029]
Incidentally, as shown in FIG. 7, when the vehicle to be measured T is, for example, a tow vehicle, the tow drive vehicle V1 and the tow cart V2 are connected by a tow bar V3. Such a tow vehicle is usually handled as one vehicle as a whole for payment of tolls. As the tow bar V3, an aluminum or iron cylindrical pipe material (diameter of about 40 mm) may be used.
[0030]
As shown in FIG. 8, the light intensity distribution of the light beams emitted from the light projecting optical system 11 of each distance measuring device 1 is such that the light intensity at the periphery of each light beam is higher than the light intensity near the optical axis of the light beam. High intensity distribution. For this reason, when the light beam is irradiated to the end of the pulling rod V3 (cylindrical pipe material), the light intensity of the reflected light beam from the end of the pulling rod V3 is such that the light intensity distribution of the light beam output from the light source is Gaussian. It becomes higher than the case of distribution or flattening. Therefore, even when the end of the tow bar V3 slightly enters the detection area of the distance measuring device 1 (the irradiation range of the light beam from the light projecting optical system 11), the light intensity of the reflected light beam from the tow bar V3. As a result, the received light amount corresponding to the detection of the reflected light beam by the distance measuring device 1 can be obtained, and the reflected light beam can be detected appropriately. As a result, according to the vehicle detection device 41 of the present embodiment, highly accurate distance measurement is possible, the tow vehicle can be correctly detected as one vehicle, and the vehicle detection accuracy can be improved. .
[0031]
The present invention is not limited to the above-described embodiment, and the light projecting lens 13 also has a peripheral portion that is lighter than the light intensity near the optical axis at a position where the light intensity distribution of the light beam is a predetermined distance away from the light projecting lens 13. As long as the light intensity distribution of the light intensity is increased, the structure is not limited to that described above. Note that the value of the “predetermined distance” described above is appropriately set in consideration of the detection range of the distance measuring device 1.
[0032]
The distance measuring device according to the present invention can be applied to an object detection device other than the vehicle detection device described above. The object detection apparatus according to the present invention is particularly suitable for detecting a measurement target object having a curved surface portion.
[0033]
The distance measuring device according to the present embodiment measures the distance based on the time until the light beam emitted from the light projecting optical system is reflected by the object to be measured and returned and the reflected light beam is detected by the detection optical system. However, the distance to the object to be measured based on the phase difference between the light beam emitted from the light projecting optical system and the reflected light beam detected by the detection optical system is not limited to this. You may comprise so that it may measure.
[0034]
【Effect of the invention】
As described above in detail, according to the distance measurement device and the object detection device of the present invention, the reflected light beam from the object to be measured can be reliably detected, and distance measurement that enables highly accurate distance measurement is possible. An apparatus and an object detection device can be provided.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a distance measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing an example of a light projecting lens included in the distance measuring device according to the embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a light intensity distribution of a light beam output from a light projecting optical system in the distance measuring apparatus according to the embodiment of the present invention.
FIG. 4 is a characteristic diagram showing a light intensity distribution of a light beam output from a light projecting optical system in the distance measuring apparatus according to the embodiment of the present invention.
FIG. 5 is a diagram showing an example of a light projecting lens included in the distance measuring device according to the embodiment of the present invention.
FIG. 6 is a diagram illustrating an example of a light projecting lens included in the distance measuring device according to the embodiment of the invention.
FIG. 7 is a schematic perspective view showing the configuration of the object detection device according to the embodiment of the present invention.
FIG. 8 is an explanatory diagram showing a light intensity distribution of a light beam output from a light projecting optical system in the object detection apparatus according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Distance measuring device, 11 ... Projection optical system, 12 ... Light source (LD), 13 ... Projection lens, 14 ... Aspherical lens part, 15 ... Cylindrical lens part, 21 ... Detection optical system, 23 ... Photodetector (PD), 31 ... signal processing system, 37 ... time difference measurement circuit, 38 ... distance output unit, 41 ... vehicle detection device, T ... object to be measured, V1 ... traction drive vehicle, V2 ... traction carriage, V3 ... tow bar .

Claims (1)

光源から出力された光束を被測定対象物体に向けて照射するための投光光学系と、前記被測定対象物体により反射された反射光束を検出する検出光学系とを含み、前記被測定対象物体までの距離を測定する距離計測装置を備えており、
前記投光光学系が、非球面レンズ部分とシリンドリカルレンズ部分とを含むと共に、所定の距離離れた位置において、前記光束の光軸に直交する面で見て略矩形形状を呈し、且つ、前記シリンドリカルレンズ部分が前記光束のうち光軸付近の光を前記光束の周辺部に向けて広げることにより前記光束の光軸を通る互いに直交する2つの直線に沿った光強度の分布がいずれもガウス分布から前記光束の光軸付近の光強度よりも前記光束の周辺部の光強度を高くされた光強度分布とする光強度補正手段を有し、前記光束の光軸と交差する方向に複数並設されていることを特徴とする物体検知装置。
A light projecting optical system for irradiating a light beam output from a light source toward the object to be measured; and a detection optical system for detecting a reflected light beam reflected by the object to be measured; Equipped with a distance measuring device that measures the distance to
The light projecting optical system includes an aspherical lens portion and a cylindrical lens portion, and has a substantially rectangular shape when viewed from a plane perpendicular to the optical axis of the light beam at a position separated by a predetermined distance. The lens portion spreads light in the vicinity of the optical axis of the luminous flux toward the peripheral portion of the luminous flux, so that the distribution of light intensity along two orthogonal straight lines passing through the optical axis of the luminous flux are both Gaussian distributions. A light intensity correction unit configured to obtain a light intensity distribution in which the light intensity in the peripheral part of the light beam is higher than the light intensity in the vicinity of the optical axis of the light beam, and a plurality of light intensity correction units are arranged in a direction intersecting the optical axis of the light beam. An object detection device characterized by that.
JP2001014800A 2001-01-23 2001-01-23 Object detection device Expired - Fee Related JP4878080B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001014800A JP4878080B2 (en) 2001-01-23 2001-01-23 Object detection device
PCT/JP2002/000471 WO2002059641A1 (en) 2001-01-23 2002-01-23 Distance measuring equipment and object detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001014800A JP4878080B2 (en) 2001-01-23 2001-01-23 Object detection device

Publications (2)

Publication Number Publication Date
JP2002214327A JP2002214327A (en) 2002-07-31
JP4878080B2 true JP4878080B2 (en) 2012-02-15

Family

ID=18881443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001014800A Expired - Fee Related JP4878080B2 (en) 2001-01-23 2001-01-23 Object detection device

Country Status (2)

Country Link
JP (1) JP4878080B2 (en)
WO (1) WO2002059641A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1410755A4 (en) 2001-06-15 2009-01-28 Sumitomo Osaka Cement Co Ltd Monitoring apparatus
WO2019171727A1 (en) * 2018-03-08 2019-09-12 パナソニックIpマネジメント株式会社 Laser radar

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273210A (en) * 1991-02-28 1992-09-29 Nec Corp Laser beam shaping optical device
JPH05273492A (en) * 1992-03-25 1993-10-22 Rohm Co Ltd Semiconductor laser beam source
JPH07159519A (en) * 1993-12-08 1995-06-23 Kansei Corp Optical range finding apparatus
US5706140A (en) * 1993-09-06 1998-01-06 Kansei Corp. Optical distance measuring equipment
JPH0772311A (en) * 1993-09-06 1995-03-17 Kansei Corp Light transmitting lens of laser hrad
JPH07253462A (en) * 1994-03-14 1995-10-03 Nikon Corp Distance measuring instrument
JPH0875857A (en) * 1994-09-07 1996-03-22 Mazda Motor Corp Obstacle detecting device
JP3150581B2 (en) * 1995-08-28 2001-03-26 三菱重工業株式会社 Vehicle type identification device
JPH11142112A (en) * 1997-11-13 1999-05-28 Olympus Optical Co Ltd Distance measuring apparatus
JPH11160431A (en) * 1997-11-27 1999-06-18 Olympus Optical Co Ltd Range finder instrument
JP3614294B2 (en) * 1998-03-09 2005-01-26 富士通株式会社 Light intensity conversion element, optical device, and information storage device
JPH11325825A (en) * 1998-05-13 1999-11-26 Olympus Optical Co Ltd Distance measuring equipment
JP2000206448A (en) * 1999-01-13 2000-07-28 Hitachi Ltd Beam converting device and laser range-finding device using the same

Also Published As

Publication number Publication date
WO2002059641A1 (en) 2002-08-01
JP2002214327A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
US9316495B2 (en) Distance measurement apparatus
US8891068B2 (en) Optical distance measuring device with calibration device
RU2008103708A (en) METHOD AND SYSTEM FOR IDENTIFICATION OF A MOVING OBJECT AND METHOD AND SYSTEM FOR CHECKING A MOVING OBJECT BY RADIATION IMAGE FORMATION
CN110376573B (en) Laser radar installation and adjustment system and installation and adjustment method thereof
EP1607766A1 (en) Light wave distance measuring method and light wave distance measuring system
JP5135131B2 (en) Light projecting unit and object detection device
JP4878080B2 (en) Object detection device
KR102020038B1 (en) LiDAR sensor module
JP2018040748A (en) Laser range measuring device
US6859266B2 (en) Optical movement detecting device and transport system using the same
US20220196545A1 (en) Moisture sensing device
US20230392924A1 (en) Condenser unit for providing directed lighting of an object to be measured positioned in a measured object position, imaging device and method for recording a silhouette contour of at least one object to be measured in a measuring field using an imaging device and use of an attenuation element
JP3341255B2 (en) Light sensor
JP2000258130A (en) Optical type thickness meter and optical type range finder
JPH11101872A (en) Laser range finder
JP3645413B2 (en) Laser system
JPH07253461A (en) Distance measuring instrument
JPH07191143A (en) Distance measuring device
JPH0642917A (en) Apparatus for measuring displacement of rail
JPH08193810A (en) Device for measuring displacement
JPH10256607A (en) Light projector, optical scanning sensor employing it and vehicle separator
US5719663A (en) Range finder apparatus
CN217820833U (en) Remote detection optical system
EP1258701B1 (en) A process for reading fractions of an interval between contiguous photo-sensitive elements in a linear optical sensor
JPH0534437A (en) Laser distance measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4878080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees