WO2002059641A1 - Distance measuring equipment and object detector - Google Patents

Distance measuring equipment and object detector Download PDF

Info

Publication number
WO2002059641A1
WO2002059641A1 PCT/JP2002/000471 JP0200471W WO02059641A1 WO 2002059641 A1 WO2002059641 A1 WO 2002059641A1 JP 0200471 W JP0200471 W JP 0200471W WO 02059641 A1 WO02059641 A1 WO 02059641A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light beam
light intensity
distance measuring
measured
Prior art date
Application number
PCT/JP2002/000471
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeki Nakase
Shigeyuki Nakamura
Tsuyoshi Ohta
Hiromi Shimano
Hiromichi Tozuka
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2002059641A1 publication Critical patent/WO2002059641A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces

Definitions

  • the present invention relates to a distance measurement device that measures a distance to a measurement target object, and an object detection device that uses the distance measurement device.
  • an irradiation optical system using a light source that generates irradiation light emitted outside, and a reflected light from the object to be measured are used.
  • a distance measuring device including a detection optical system using a photodiode or the like for detection. This distance measuring device detects the presence or absence of an object to be measured in the detection direction based on the presence or absence of incident light, and calculates the distance to the object to be measured based on the time difference and phase difference between irradiation light and reflected light. To detect.
  • Japanese Unexamined Patent Publication No. Hei 7-2525342 discloses a light projection optical system for projecting light emitted from a laser light source, and a light reflected from an object among light detected by a detection optical system. Detecting means for detecting the reflected light and outputting a detection signal; and calculating means for calculating a distance to the object by measuring a round trip time to the object based on a difference between the light projection timing and the detection timing.
  • the disclosed distance measuring device is disclosed.
  • the light projecting optical system has a fly-eye lens, and the light from the laser light source is intensified by the fly-eye lens. The distribution is flattened and emitted, and errors due to the intensity distribution of the light emitted from the light source are reduced, and highly accurate distance measurement becomes possible.
  • the distance measuring device disclosed in Japanese Patent Application Laid-Open No. Hei 7-254642 has the following problems.
  • JP in the distance measuring device disclosed in Japanese Patent Application Laid-Open No. Hei 7-252534 a fly-eye lens is used for a light projection optical system.
  • the emission intensity distribution of the laser light source is a Gaussian distribution (high near the optical axis and low near the periphery)
  • the fly-eye lens only subdivides a light beam having a Gaussian emission intensity.
  • the light reflecting surface is a curved surface. Therefore, when a light beam is irradiated to the central part of the measured object, the irradiated light beam is specularly reflected, and the light intensity of the reflected light beam is high. When illuminated, the edge has a large angle of incidence, so scattering is large and the light intensity of the reflected light beam is sharply reduced.
  • the emission intensity distribution of the laser light is a Gaussian distribution as described above, the light intensity itself at the periphery of the light beam is lower than the light intensity near the optical axis. For these reasons, when only the end of the object to be measured having a curved outer shape enters the irradiation range of the light beam, the light intensity of the reflected light beam is extremely low, and detection becomes difficult.
  • the present invention has been made in view of the above points, and provides a distance measurement device and an object detection device that can reliably detect a reflected light beam from an object to be measured and perform highly accurate distance measurement.
  • the purpose is to do.
  • a distance measuring device comprises: a light projecting optical system for irradiating a light beam output from a light source toward an object to be measured; and a reflection light reflected by the object to be measured.
  • a distance measuring device for measuring a distance to an object to be measured, wherein the light projecting optical system detects a light intensity near an optical axis of the light beam at a predetermined distance. This is characterized in that it also has a light intensity distribution correcting means for increasing the light intensity around the light beam.
  • the light intensity distribution of the light beam output from the light source and applied to the object to be measured is represented by a peripheral portion of the light beam. Is higher than the light intensity near the optical axis of the light beam.
  • the light intensity distribution of the output luminous flux is higher than a Gaussian distribution or a flattened one.
  • the distance measurement device enables highly accurate distance measurement.
  • this light is substantially specularly reflected.
  • the light intensity of the reflected light beam is sufficient for detection.
  • the light intensity distribution correcting means includes an aspherical lens portion and a cylindrical lens portion.
  • the light intensity distribution detecting means includes the aspherical lens portion and the cylindrical lens portion, the light near the optical axis of the light beam output from the light source spreads toward the peripheral portion of the light beam. become.
  • the light intensity distribution correction means capable of increasing the light intensity at the peripheral portion of the light beam at a position separated by a predetermined distance from the light intensity near the optical axis of the light beam can be realized by combining the aspherical lens portion and the cylindrical lens portion. It can be realized with an extremely simple configuration.
  • An object detection device according to the present invention is an object detection device including the above distance measurement device, wherein a plurality of light projecting optical systems are arranged in a direction intersecting the optical axis of the light beam. 3 ⁇ 43 ⁇ 4
  • the object to be measured having a curved outer surface invades a detection zone constituted by light beams output from a plurality of light-projecting optical systems arranged side by side. Even in the case of entering, the distance measurement can be performed with high accuracy, and the detection accuracy of the object to be measured can be improved.
  • FIG. 1 is a block diagram showing the configuration of the distance measuring device according to the present embodiment.
  • FIG. 2A is a top view showing an example of a light projecting lens included in the distance measuring device according to the present embodiment.
  • FIG. 2B is a diagram illustrating an example of a light projecting lens included in the distance measuring device according to the present embodiment, as viewed from the emission side.
  • FIG. 2C is a bottom view showing an example of a light projecting lens included in the distance measuring device according to the present embodiment.
  • FIG. 2D is a diagram illustrating an example of a light projecting lens included in the distance measuring device according to the present embodiment, as viewed from the incident side.
  • FIG. 3 is an explanatory diagram showing a light intensity distribution of a light beam output from the light projecting optical system in the distance measuring device according to the present embodiment.
  • FIG. 4 is a characteristic diagram showing a light intensity distribution of a light beam output from the light projecting optical system in the distance measuring device according to the present embodiment.
  • FIG. 5A is a top view showing an example of a light projecting lens included in the distance measuring device according to the present embodiment.
  • FIG. 5B is a diagram illustrating an example of a light projecting lens included in the distance measuring device according to the present embodiment, as viewed from the emission side.
  • FIG. 5C is a bottom view showing an example of a light projecting lens included in the distance measuring device according to the present embodiment.
  • FIG. 6A is a top view showing an example of a light projecting lens included in the distance measuring device according to the present embodiment.
  • FIG. 6B is a diagram illustrating an example of a light projecting lens included in the distance measuring device according to the present embodiment, as viewed from the emission side.
  • FIG. 6C is a bottom view showing an example of a light projecting lens included in the distance measuring device according to the present embodiment.
  • FIG. 7 is a schematic perspective view showing the configuration of the object detection device according to the present embodiment.
  • FIG. 8 is an explanatory diagram showing a light intensity distribution of a light beam output from the light projecting optical system in the object detection device according to the present embodiment.
  • FIG. 1 is a block diagram showing the configuration of the distance measuring device according to the present embodiment.
  • the distance measuring device 1 includes a light projecting optical system 11 for irradiating the measured object T with a light beam, a detecting optical system 21 for detecting a reflected light beam reflected by the measured object T, It comprises a light projection optical system 11 and a signal processing system 31 for processing various electric signals input / output to / from the detection optical system 21.
  • the light projecting optical system 11 has a light source 12 and a light projecting lens (collimating lens) 13 as a light intensity distribution correcting means.
  • the light source 12 is a laser diode (LD) that generates and outputs a luminous flux according to the drive signal input from the laser diode drive circuit (LD drive circuit) 33.
  • the light intensity distribution of the light beam output from the light source (hereinafter referred to as LD) 12 is a Gaussian distribution (the light intensity near the optical axis of the light beam is higher than the light intensity around the light beam).
  • the light projecting lens 13 emits the light beam output from the LD 12 toward the object T to be measured, and corrects the light intensity distribution of the light beam output from the LD 12.
  • the light projecting lens 13 makes the light intensity at the periphery of the light beam higher than the light intensity near the optical axis of the light beam output from the LD 12 at a position away from the light projecting lens 13 by a predetermined distance.
  • the light projecting lens 13 is positioned at a distance of about 5 m from the light projecting lens It is designed so that the ratio of the light intensity near the optical axis to the light intensity around the light beam is about 1: 2.
  • FIG. 2A is a top view showing an example of the light projecting lens 13
  • FIG. 2B is a view seen from the emission side
  • FIG. 2C is a bottom view
  • FIG. 2D is a view seen from the incidence side.
  • the projection lens 13 includes an aspheric lens portion 14 and a cylindrical lens portion 15, and the aspheric lens portion 14 and the cylindrical lens portion 15 are integrally formed.
  • the light projecting lens 13 has the aspheric lens part 14 positioned on the incident (LD 12) side of the light projecting lens 13 and the cylindrical lens part 15 positioned on the emitting (measurement object T) side. It is arranged in the state where it was made to be.
  • the exit surface of the cylindrical lens portion 15 is concavely curved to have a cylindrical side surface.
  • the light projecting lens 13 may be provided with the cylindrical lens portion 15 positioned on the incident side of the light projecting lens 13 and the aspherical lens portion 14 positioned on the light emitting side.
  • the light beam output from the LD 12 enters the light projecting lens 13, and is collimated by the aspheric lens portion 14 of the light projecting lens 13.
  • the width of the collimated light beam is set to about 50 mm.
  • the cylindrical lens portion 15 of the light projecting lens 13 causes light near the optical axis of the light beam to spread toward the peripheral portion of the light beam.
  • the light intensity distribution of the light beam output from the LD 12 becomes higher from the Gaussian distribution than the light intensity near the optical axis of the light beam. It becomes an intensity distribution.
  • the beam shape S of the light beam emitted from the light projecting lens 13 has a substantially rectangular shape when viewed in a plane perpendicular to the optical axis L of the light beam.
  • the light intensity distribution 0 ⁇ 0 2 along two mutually perpendicular straight lines passing through the optical axis L of the light beam is smaller than the light intensity near the optical axis L of the light beam.
  • the distribution of light intensity is high.
  • the ratio of the light intensity near the optical axis L of the light beam to the light intensity around the light beam is about 1: 2 as described above.
  • the light intensity distribution is not necessarily the distribution described above. ⁇ i and distribution o 2 need not be the same, and distribution or distribution o 2 may be unidirectional depending on the application.
  • FIGS. 5A to 5C and FIGS. 6A to 6C are diagrams showing an example of the light projecting lenses 16 and 18 as in FIGS. 2A to 2D.
  • FIGS. 5A and 6A are top views
  • FIGS. 5B and 6B are views from the emission side
  • FIGS. 5C and 6C are bottom views.
  • the light projecting lens 16 shown in FIGS. 5A to 5C includes an aspheric lens part 14 and a cylindrical aspheric lens part 17 as shown.
  • the light projecting lens 16 is disposed with the aspheric lens part 14 positioned on the incident side of the light projecting lens 13 and the cylindrical aspheric lens part 17 positioned on the output side.
  • the light projecting lens 18 shown in FIGS. 6A to 6C includes an aspheric lens part 14 and a roof prism 19.
  • the light projecting lens 13 is disposed with the aspheric lens part 14 positioned on the incident side of the light projecting lens 13 and the roof prism 19 positioned on the light emitting side.
  • the detection optical system 21 includes a lens 22 and a photodetector 23.
  • the lens 22 causes the reflected light flux, which is reflected and returned from the object T to be measured, of the light flux emitted through the light projecting lens 13 to be incident on the photodetector 23.
  • the photodetector 23 is a photodiode (PD) that outputs a signal obtained by performing photoelectric conversion corresponding to the incident reflected light beam to the amplifier 34.
  • PD photodiode
  • Signal processing system 3 1 includes a pulse generator circuit 3 2, an LD driving circuit 3 3, an amplifier 3 4, a comparator 35, a clock generation circuit 3 6, and the time difference measuring circuit 3 7, distance output section 3 Includes 8 and.
  • the pulse generation circuit 32 generates a pulse signal of a predetermined cycle and outputs the pulse signal to the LD drive circuit 33 and the time difference measurement circuit 37.
  • the LD drive circuit 33 operates with the pulse signal input from the pulse generation circuit 32 as a lighting trigger, and outputs a drive signal to the LD 12.
  • the amplifier 34 converts the electric output input from the photodetector (hereinafter referred to as PD) 23 into The amplified output is output to the comparator 35 as an analog output.
  • the comparator 35 converts the analog output from the amplifier 34 into a pulse output of a digital square wave, and converts the output to the time difference measurement circuit 37.
  • the time difference measurement circuit 37 is composed of a pulse signal from the pulse generation circuit 32 and a comparator.
  • the time difference between the projection timing of the light beam from LD 12 and the incident timing of the reflected light beam at PD 23, that is, the light beam output from LD 12 is the object to be measured. Measure the time until the reflected light flux is reflected at T and enters the PD 23 (the reciprocating flight time of the light flux).
  • the clock signal from the clock generation circuit 36 is input to the time difference measurement circuit 37, and the time difference measurement circuit 37 determines the input timing of the pulse signal (for example, the rising timing of the pulse signal) from the comparator 3.
  • the clock signal up to the output timing of 5 (for example, the rising edge of the output of the comparator 35) is counted, and the number of counted clock signals is multiplied by the period of the clock signal, whereby the reciprocation of the luminous flux described above is performed. Measure and calculate flight time.
  • the reciprocating flight time of the light beam measured and calculated by the time difference measurement circuit 37 is output to the distance output unit 38 as time information.
  • the distance output unit 38 calculates the distance from the distance measuring device 1 to the measured object T based on the time information from the time difference measurement circuit 37, and outputs the distance as distance information.
  • the light projecting optical system 11 since the light projecting optical system 11 has the light projecting lens 13, the light is output from the LD 12 and irradiates the object T to be measured.
  • the light intensity distribution of the light beam is such that the light intensity at the periphery of the light beam is higher than the light intensity near the optical axis of the light beam.
  • the end of the measured object T when light at the periphery of the luminous flux enters the end of the measured object T whose outer shape is a curved surface as shown in FIG. 3, the end of the measured object T
  • the light intensity of the reflected light beam from the light source is higher than that of the light beam output from the light source whose light intensity distribution is Gaussian distribution or flattened. It becomes. Therefore, even when the end of the object to be measured ⁇ having a curved outer shape slightly enters the irradiation range (detection area) of the light beam, the object to be measured is
  • the light intensity of the reflected light beam from ⁇ increases, and the light intensity necessary for detecting the reflected light beam at the PD 23 (detection optical system 21) is obtained.
  • the reflected light beam is transmitted to the PD 23 (detection optical system 21). It can be detected properly.
  • highly accurate distance measurement can be performed.
  • the light is substantially specularly reflected. Therefore, for example, light near the optical axis of the light flux (light intensity is lower than that of the peripheral part of the light flux).
  • the light intensity of the reflected light flux is an intensity necessary for detection.
  • the output of the LD 12 By increasing the output of the LD 12, the light intensity not only near the optical axis of the light beam but also at the periphery is increased, and the light intensity of the reflected light beam from the end of the object to be measured, which has a curved outer shape, is also increased. Become. As described above, increasing the output of the LD 12 causes deterioration of the life of the LD 12 earlier.
  • lasers are classified into safety classes “1”, “2”, “3 ⁇ ”, “3 ⁇ ”, and “4” according to the Japanese Industrial Standards (JIS).
  • JIS Japanese Industrial Standards
  • the distance measuring device 1 even when the LD 12 having a class 1 output is used, the reflected light beam can be appropriately detected by the PD 23 (detection optical system 21).
  • the PD 23 detection optical system 21
  • the light projecting lens 13 includes an aspherical lens portion 14 and a cylindrical lens portion 15 so that light near the optical axis of the light beam output from the LD 12 spreads toward the peripheral portion of the light beam. become. This makes it possible to increase the light intensity at the periphery of the light beam at a position separated by a predetermined distance from the light intensity near the optical axis of the light beam. 3 (light intensity distribution correcting means) can be realized with an extremely simple configuration of a combination of the aspherical lens portion 14 and the cylindrical lens portion 15.
  • FIG. 7 is a schematic perspective view showing the configuration of the object detection device according to the embodiment of the present invention
  • FIG. 8 is a diagram showing the light intensity of the light beam output from the light projecting optical system in the object detection device according to this embodiment. It is explanatory drawing which shows distribution.
  • the object detection device shown in FIG. 7 is a vehicle detection device used for ETC and the like.
  • the vehicle detection device (object detection device) 41 is installed on the vehicle entry side of the tollgate island 51, and a plurality of distance measurement devices 1 are provided at predetermined intervals (for example, 4 mm pitch) (for example, 38 ch) It is juxtaposed. As shown in FIG. 7, the distance measuring device 1 is in the vehicle vertical direction in a direction intersecting (for example, orthogonally) with the optical axis of the light beam emitted from the light projecting optical system 11 of the distance measuring device 1. It is juxtaposed in the direction.
  • the vehicle detection device 41 irradiates a light beam from the plurality of distance measuring devices 1 arranged in parallel in an area, and the reflected light beam is incident on the distance measuring device 1, whereby the reciprocating flight time of the light beam is measured. It detects whether or not the vehicle is present based on the round-trip flight time (time information).
  • the towing drive vehicle V1 and the towing vehicle V2 are connected by a towing rod V3.
  • Such towing vehicles are generally treated as one vehicle in total for toll payment.
  • Aluminum or iron cylindrical pipe material (diameter of about 40 mm) may be used as towbar V3.
  • the light intensity distribution of the light beam emitted from the light projecting optical system 11 of each distance measuring device 1 is such that the light intensity around each light beam is smaller than the light intensity near the optical axis of the light beam. Also has a high intensity distribution. For this reason, when the end of the towbar V3 (cylindrical pipe material) is irradiated with a light beam, the light intensity of the reflected light beam from the end of the towbar V3 is the light intensity of the light beam output from the light source.
  • the distribution is gaseous or flat It is higher than Therefore, even when the end of the tow rod V3 is slightly intruding into the detection area of the distance measuring device 1 (the irradiation range of the light beam from the light emitting optical system 11), The light intensity of the reflected light beam is increased, and a light intensity necessary for detecting the reflected light beam by the distance measuring device 1 is obtained.
  • the vehicle detection device 41 of the present embodiment highly accurate distance measurement can be performed, and the towing vehicle can be correctly detected as one vehicle.
  • the present invention is not limited to the above-described embodiment, and the light projecting lens 13 also has a light intensity distribution of the light beam at a position away from the light projecting lens 13 by a predetermined distance than the light intensity near the optical axis.
  • the configuration is not limited to the configuration described above as long as the light intensity distribution in the peripheral portion is increased. Note that the value of the “predetermined distance” described above is appropriately set in consideration of the detection range of the distance measuring device 1.
  • the distance measurement device according to the present invention can be applied to an object detection device other than the above-described vehicle detection device.
  • the object detection device according to the present invention is particularly suitable for detecting an object to be measured having a curved surface portion.
  • the distance measuring device measures the distance based on the time until the light beam emitted from the light projecting optical system is reflected by the object to be measured and returns, and the reflected light beam is detected by the detection optical system.
  • the measurement target is based on the phase difference between the light beam emitted from the light projection optical system and the reflected light beam detected by the detection optical system. Configured to measure distance to object

Abstract

A projection optical system (11) comprises a light source (12) and a light intensity distribution correcting means, i.e. a projection lens (collimate lens) (13). The light source (12) is a laser diode (LD) outputting a light beam in response to a drive signal inputted from a laser diode drive circuit (LD drive circuit) (33). The projection lens (13) projects a light beam emitted from an LD (12) toward an object T being measured and corrects the light intensity distribution of a light beam emitted from the LD (12). The projection lens (13) corrects the light intensity distribution of a light beam emitted from the LD (12) such that the light intensity of the light beam in the vicinity of the optical axis is higher than the light intensity at the peripheral part thereof at a position separated by a specified distance from the projection lens (13). The projection lens (13) includes an aspherical lens part and a cylindrical lens part.

Description

距離計測装置及び物体検知装置 技術分野  Technical field of distance measurement device and object detection device
本発明は、 被測定対象物体までの距離を測定する距離計測装置、 及び距離計測 装置を用いた物体検知装置に関する。  The present invention relates to a distance measurement device that measures a distance to a measurement target object, and an object detection device that uses the distance measurement device.
背景技術 Background art
従来、 たとえば E T C (Electronic ToU Collection System) における車両検 知装置として、 外部に出射される照射光を発生させる光源 (レーザダイオード等 ) を用いた照射光学系と、 被測定対象物体からの反射光を検出するフォトダイォ 一ド等を用いた検出光学系とを有して構成された距離計測装置が知られている。 この距離計測装置は、 入射光の有無によつて検出方向における被測定対象物体の 有無を検出し、 また、 照射光と反射光との時間差 ·位相差などから被測定対象物 体までの距離を検出する。  Conventionally, for example, as a vehicle detection device in the ETC (Electronic ToU Collection System), an irradiation optical system using a light source (laser diode, etc.) that generates irradiation light emitted outside, and a reflected light from the object to be measured are used. 2. Description of the Related Art There is known a distance measuring device including a detection optical system using a photodiode or the like for detection. This distance measuring device detects the presence or absence of an object to be measured in the detection direction based on the presence or absence of incident light, and calculates the distance to the object to be measured based on the time difference and phase difference between irradiation light and reflected light. To detect.
たとえば、 特開平 7— 2 5 3 4 6 2号公報には、 レーザ光源から出射した光を 投光する投光光学系と、 検出光学系から検出された光のうち、 対象物から反射し 戻った光を検出し、 検出信号を出力する検出手段と、 光の投光タイミングと検出 タイミングの差から対象物までの往復時間を計測して対象物までの距離を演算す る演算手段とを具備した距離測定装置が開示されている。 この特開平 7— 2 5 3 4 6 2号公報に開示された距離測定装置にあっては、 投光光学系がフライアイレ ンズを具備しており、 このフライアイレンズによりレーザ光源からの光は強度分 布が平坦化されて投光されて、 光源から出射する光の強度分布に起因する誤差は 減少し高精度の距離測定が可能となる。  For example, Japanese Unexamined Patent Publication No. Hei 7-2525342 discloses a light projection optical system for projecting light emitted from a laser light source, and a light reflected from an object among light detected by a detection optical system. Detecting means for detecting the reflected light and outputting a detection signal; and calculating means for calculating a distance to the object by measuring a round trip time to the object based on a difference between the light projection timing and the detection timing. The disclosed distance measuring device is disclosed. In the distance measuring device disclosed in Japanese Patent Application Laid-Open No. Hei 7-253534, the light projecting optical system has a fly-eye lens, and the light from the laser light source is intensified by the fly-eye lens. The distribution is flattened and emitted, and errors due to the intensity distribution of the light emitted from the light source are reduced, and highly accurate distance measurement becomes possible.
発明の開示 Disclosure of the invention
本発明者等の調査研究の結果、 特開平 7— 2 5 3 4 6 2号公報に開示された距 離測定装置においては、 以下のような問題点を有していることが判明した。 特開 平 7— 2 5 3 4 6 2号公報に開示された距離測定装置では、 投光光学系にフライ アイレンズが用いられている。 しかしながら、 レーザ光源の発光強度分布はガウ ス分布 (光軸付近が高く、 周辺付近が低い) であることから、 フライアイレンズ では、 ガウス分布の発光強度を有する光束が細分化されるだけであり、 光束全体 の発光強度分布を平坦化することは困難である。 As a result of the investigation and research by the present inventors, it has been found that the distance measuring device disclosed in Japanese Patent Application Laid-Open No. Hei 7-254642 has the following problems. JP In the distance measuring device disclosed in Japanese Patent Application Laid-Open No. Hei 7-252534, a fly-eye lens is used for a light projection optical system. However, since the emission intensity distribution of the laser light source is a Gaussian distribution (high near the optical axis and low near the periphery), the fly-eye lens only subdivides a light beam having a Gaussian emission intensity. However, it is difficult to flatten the emission intensity distribution of the entire luminous flux.
また、 光束全体の発光強度分布が平坦化されたとしても、 光源から出射された 光束の照射範囲に円柱形状の被測定対象物体の一部のみ侵入した状態では、 被測 定対象物体からの反射光量が少なくなり反射光束そのものの検出が困難となり、 検出精度及び確度が劣る惧れがある。 円柱形状の被測定対象物体では、 光反射面 が曲面となる。 このため、 被測定対象物体の中央部に光束が照射されると、 照射 された光束は正反射されて反射光束の光強度は高いが、 被測定対象物体の端部 ( 周辺部) に光束が照射されると、 端部は入射角が大きいため散乱が大きく反射光 束の光強度は激減する。 更に、 レーザ光 の発光強度分布は、 上述したようにガ ウス分布であることから、 光束の周辺部の光強度そのものも、 光軸付近の光強度 に比べて低くなつている。 これらのことから、 外側形状が曲面である被測定対象 物体の端部のみが光束の照射範囲に侵入している状態では、 反射光束の光強度が 極めて低く、 検出が困難となる。  Even if the luminous intensity distribution of the entire luminous flux is flattened, if only part of the cylindrical object to be measured enters the irradiation range of the luminous flux emitted from the light source, the As the amount of light decreases, it becomes difficult to detect the reflected light flux itself, and the detection accuracy and accuracy may be inferior. In a cylindrical object to be measured, the light reflecting surface is a curved surface. Therefore, when a light beam is irradiated to the central part of the measured object, the irradiated light beam is specularly reflected, and the light intensity of the reflected light beam is high. When illuminated, the edge has a large angle of incidence, so scattering is large and the light intensity of the reflected light beam is sharply reduced. Further, since the emission intensity distribution of the laser light is a Gaussian distribution as described above, the light intensity itself at the periphery of the light beam is lower than the light intensity near the optical axis. For these reasons, when only the end of the object to be measured having a curved outer shape enters the irradiation range of the light beam, the light intensity of the reflected light beam is extremely low, and detection becomes difficult.
本発明は上述の点に鑑みてなされたもので、 被測定対象物体からの反射光束を 確実に検出することができ、 高精度な距離計測が可能となる距離計測装置及び物 体検知装置を提供することを目的とする。  The present invention has been made in view of the above points, and provides a distance measurement device and an object detection device that can reliably detect a reflected light beam from an object to be measured and perform highly accurate distance measurement. The purpose is to do.
上記目的を達成するために、 本発明に係る距離計測装置は、 光源から出力され た光束を被測定対象物体に向けて照射するための投光光学系と、 被測定对象物体 により反射された反射光束を検出する検出光学系とを備え、 被測定対象物体まで の距離を測定する距離計測装置であって、 投光光学系は、 所定の距離離れた位置 において光束の光軸付近の光強度よりも光束の周辺部の光強度を高くする光強度 分布補正手段を有していることを特徴としている。 本発明に係る距離計測装置では、 投光光学系が光強度分布補正手段を有してい るので、 光源から出力され被測定対象物体に照射される光束の光強度分布は、 光 束の周辺部の光強度が光束の光軸付近の光強度よりも高い強度分布となる。 これ により、 外側形状が曲面である被測定対象物体の端部に対して光束の周辺部の光 が入射する場合、 この被測定対象物体の端部からの反射光束の光強度は、 光源か ら出力される光束の光強度分布がガウス分布である、 あるいは平坦化されている ものに比して、 高くなる。 したがって、 外側形状が曲面である被測定対象物体の 端部のみが光束の照射範囲に侵入している状態においても、 被測定対象物体から の反射光束の光強度が高くなり、 この反射光束を適切に検出することができる。 この結果、 本発明に係る距離計測装置によれば、 高精度な距離計測が可能となる 。 なお、 外側形状が曲面である被測定対象物体の中央部に対して光が入射すると この光は略正反射するので、 たとえ光束の光軸付近の光 (光束の周辺部よりも光 強度が低い) が被測定対象物体の中央部に入射するとしても、 反射光束の光強度 は検出に必要相当な強度となる。 In order to achieve the above object, a distance measuring device according to the present invention comprises: a light projecting optical system for irradiating a light beam output from a light source toward an object to be measured; and a reflection light reflected by the object to be measured. A distance measuring device for measuring a distance to an object to be measured, wherein the light projecting optical system detects a light intensity near an optical axis of the light beam at a predetermined distance. This is characterized in that it also has a light intensity distribution correcting means for increasing the light intensity around the light beam. In the distance measuring device according to the present invention, since the light projecting optical system has the light intensity distribution correcting means, the light intensity distribution of the light beam output from the light source and applied to the object to be measured is represented by a peripheral portion of the light beam. Is higher than the light intensity near the optical axis of the light beam. As a result, when light at the periphery of the light beam enters the end of the measured object having a curved outer surface, the light intensity of the reflected light from the end of the measured object is changed from the light source. The light intensity distribution of the output luminous flux is higher than a Gaussian distribution or a flattened one. Therefore, even when only the end of the object to be measured having a curved outer surface enters the irradiation range of the light beam, the light intensity of the light beam reflected from the object to be measured increases, and this reflected light beam is Can be detected. As a result, the distance measurement device according to the present invention enables highly accurate distance measurement. When light is incident on the central part of the object to be measured having a curved outer surface, this light is substantially specularly reflected. ) Is incident on the center of the object to be measured, the light intensity of the reflected light beam is sufficient for detection.
また、 光強度分布補正手段は、 非球面レンズ部分とシリンドリカルレンズ部分 とを含んでいることが好ましい。 このように、 光強度分布捕正手段が非球面レン ズ部分とシリンドリカルレンズ部分とを含むことにより、 光源から出力された光 束のうち光軸付近の光が光束の周辺部に向けて広がることになる。 これにより、 所定の距離離れた位置において光束の光軸付近の光強度よりも光束の周辺部の光 強度を高くし得る光強度分布補正手段を、 非球面レンズ部分とシリンドリカルレ ンズ部分との組み合わせという極めて簡易な構成にて実現することができる。 そして、 本発明に係る物体検知装置は、 上記の距離計測装置を備えた物体検知 装置であって、 投光光学系が、 光束の光軸と交差する方向に複数並設されている ことを特¾¾としている。  Further, it is preferable that the light intensity distribution correcting means includes an aspherical lens portion and a cylindrical lens portion. As described above, since the light intensity distribution detecting means includes the aspherical lens portion and the cylindrical lens portion, the light near the optical axis of the light beam output from the light source spreads toward the peripheral portion of the light beam. become. Thus, the light intensity distribution correction means capable of increasing the light intensity at the peripheral portion of the light beam at a position separated by a predetermined distance from the light intensity near the optical axis of the light beam can be realized by combining the aspherical lens portion and the cylindrical lens portion. It can be realized with an extremely simple configuration. An object detection device according to the present invention is an object detection device including the above distance measurement device, wherein a plurality of light projecting optical systems are arranged in a direction intersecting the optical axis of the light beam. ¾¾
本発明に係る物体検知装置では、 外側形状が曲面である被測定対象物体が、 複 数個並設された投光光学系から出力される光束により構成される検知ゾーンに侵 入した場合においても、 高精度な距離計測が可能となり、 被測定対象物体の検知 精度を向上することができる。 In the object detection device according to the present invention, the object to be measured having a curved outer surface invades a detection zone constituted by light beams output from a plurality of light-projecting optical systems arranged side by side. Even in the case of entering, the distance measurement can be performed with high accuracy, and the detection accuracy of the object to be measured can be improved.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本実施形態に係る距離計測装置の構成を示すプロック図である。 図 2 Aは、 本実施形態に係る距離計測装置に含まれる投光レンズの一例を示す 上面図である。  FIG. 1 is a block diagram showing the configuration of the distance measuring device according to the present embodiment. FIG. 2A is a top view showing an example of a light projecting lens included in the distance measuring device according to the present embodiment.
図 2 Bは、 本実施形態に係る距離計測装置に含まれる投光レンズの一例を示す 出射側から見た図である。  FIG. 2B is a diagram illustrating an example of a light projecting lens included in the distance measuring device according to the present embodiment, as viewed from the emission side.
図 2 Cは、 本実施形態に係る距離計測装置に含まれる投光レンズの一例を示す 下面図である。  FIG. 2C is a bottom view showing an example of a light projecting lens included in the distance measuring device according to the present embodiment.
図 2 Dは、 本実施形態に係る距離計測装置に含まれる投光レンズの一例を示す 入射側から見た図である。  FIG. 2D is a diagram illustrating an example of a light projecting lens included in the distance measuring device according to the present embodiment, as viewed from the incident side.
図 3は、 本実施形態に係る距離計測装置において投光光学系から出力される光 束の光強度分布を示す説明図である。  FIG. 3 is an explanatory diagram showing a light intensity distribution of a light beam output from the light projecting optical system in the distance measuring device according to the present embodiment.
図 4は、 本実施形態に係る距離計測装置において投光光学系から出力される光 束の光強度分布を示す特性図である。  FIG. 4 is a characteristic diagram showing a light intensity distribution of a light beam output from the light projecting optical system in the distance measuring device according to the present embodiment.
図 5 Aは、 本実施形態に係る距離計測装置に含まれる投光レンズの一例を示す 上面図である。  FIG. 5A is a top view showing an example of a light projecting lens included in the distance measuring device according to the present embodiment.
図 5 Bは、 本実施形態に係る距離計測装置に含まれる投光レンズの一例を示す 出射側から見た図である。  FIG. 5B is a diagram illustrating an example of a light projecting lens included in the distance measuring device according to the present embodiment, as viewed from the emission side.
図 5 Cは、 本実施形態に係る距離計測装置に含まれる投光レンズの一例を示す 下面図である。  FIG. 5C is a bottom view showing an example of a light projecting lens included in the distance measuring device according to the present embodiment.
図 6 Aは、 本実施形態に係る距離計測装置に含まれる投光レンズの一例を示す 上面図である。  FIG. 6A is a top view showing an example of a light projecting lens included in the distance measuring device according to the present embodiment.
図 6 Bは、 本実施形態に係る距離計測装置に含まれる投光レンズの一例を示す 出射側から見た図である。 図 6 Cは、 本実施形態に係る距離計測装置に含まれる投光レンズの一例を示す 下面図である。 FIG. 6B is a diagram illustrating an example of a light projecting lens included in the distance measuring device according to the present embodiment, as viewed from the emission side. FIG. 6C is a bottom view showing an example of a light projecting lens included in the distance measuring device according to the present embodiment.
図 7は、 本実施形態に係る物体検知装置の構成を示す概略斜視図である。 図 8は、 本実施形態に係る物体検知装置において投光光学系から出力される光 束の光強度分布を示す説明図である。  FIG. 7 is a schematic perspective view showing the configuration of the object detection device according to the present embodiment. FIG. 8 is an explanatory diagram showing a light intensity distribution of a light beam output from the light projecting optical system in the object detection device according to the present embodiment.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しながら本発明による距離測定装置の好適な実施形態につい て詳細に説明する。 なお、 説明において、 同一要素又は同一機能を有する要素に は、 同一符号を用いることとし、 重複する説明は省略する。  Hereinafter, preferred embodiments of a distance measuring device according to the present invention will be described in detail with reference to the drawings. In the description, the same elements or elements having the same functions will be denoted by the same reference symbols, without redundant description.
まず、 図 1に基づいて、 本発明の実施形態に係る距離測定装置の構成について 説明する。 図 1は、 本実施形態に係る距離計測装置の構成を示すプロック図であ る。 距離計測装置 1は、 被測定対象物体 Tに光束を照射するための投光光学系 1 1と、 この被測定対象物体 Tで反射した反射光束を検出するための検出光学系 2 1と、 これら投光光学系 1 1及ぴ検出光学系 2 1に入出力する各種の電気信号を 処理する信号処理系 3 1とから構成されている。  First, a configuration of a distance measuring device according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing the configuration of the distance measuring device according to the present embodiment. The distance measuring device 1 includes a light projecting optical system 11 for irradiating the measured object T with a light beam, a detecting optical system 21 for detecting a reflected light beam reflected by the measured object T, It comprises a light projection optical system 11 and a signal processing system 31 for processing various electric signals input / output to / from the detection optical system 21.
投光光学系 1 1は、 光源 1 2と、 光強度分布補正手段としての投光レンズ (コ リメ一トレンズ) 1 3とを有している。 光源 1 2は、 レーザダイオード駆動回路 ( L D駆動回路) 3 3から入力された駆動信号に対応して、 光束を発生、 出力す るレーザダイオード ( L D ) である。 光源 (以下、 L Dと称する) 1 2から出力 された光束の光強度分布はガウス分布 (光束の光軸付近の光強度が光束の周辺部 の光強度より高い) となっている。 投光レンズ 1 3は、 L D 1 2から出力された 光束を被測定対象物体 Tに向けて出射すると共に、 L D 1 2から出力された光束 の光強度分布を補正するためのものである。 この投光レンズ 1 3は、 投光レンズ 1 3から所定の距離離れた位置において、 L D 1 2から出力された光束の光軸付 近の光強度よりも光束の周辺部の光強度を高くする。 本実施形態においては、 投 光レンズ 1 3は、 この投光レンズ 1 3から 5 m程度離れた位置において、 光束の 光軸付近の光強度と光束の周辺部の光強度との比が 1 : 2程度となるように設計 されている。 The light projecting optical system 11 has a light source 12 and a light projecting lens (collimating lens) 13 as a light intensity distribution correcting means. The light source 12 is a laser diode (LD) that generates and outputs a luminous flux according to the drive signal input from the laser diode drive circuit (LD drive circuit) 33. The light intensity distribution of the light beam output from the light source (hereinafter referred to as LD) 12 is a Gaussian distribution (the light intensity near the optical axis of the light beam is higher than the light intensity around the light beam). The light projecting lens 13 emits the light beam output from the LD 12 toward the object T to be measured, and corrects the light intensity distribution of the light beam output from the LD 12. The light projecting lens 13 makes the light intensity at the periphery of the light beam higher than the light intensity near the optical axis of the light beam output from the LD 12 at a position away from the light projecting lens 13 by a predetermined distance. . In the present embodiment, the light projecting lens 13 is positioned at a distance of about 5 m from the light projecting lens It is designed so that the ratio of the light intensity near the optical axis to the light intensity around the light beam is about 1: 2.
次に、 図 2 A〜Dに基づいて、 投光レンズ 1 3の構成について説明する。 図 2 Aは、 投光レンズ 1 3の一例を示す上面図であり、 図 2 Bは出射側から見た図、 図 2 Cは下面図、 図 2 Dは入射側から見た図である。 投光レンズ 1 3は、 非球面 レンズ部分 1 4とシリンドリカノレレンズ部分 1 5とを含んでおり、 これらの非球 面レンズ部分 1 4とシリンドリカルレンズ部分 1 5とは一体形成されている。 こ の投光レンズ 1 3は、 非球面レンズ部分 1 4を投光レンズ 1 3の入射 (L D 1 2 ) 側に位置させ、 シリンドリカルレンズ部分 1 5を出射 (被測定対象物体 T ) 側 に位置させた状態で配設されている。 シリンドリカルレンズ部分 1 5は、 出射面 が円筒側面状に湾曲して凹んでいる。 なお、 投光レンズ 1 3は、 シリンドリカノレ レンズ部分 1 5を投光レンズ 1 3の入射側に位置させ、 非球面レンズ部分 1 4を 出射側に位置させた状態で配設させてもよい。  Next, the configuration of the light projecting lens 13 will be described with reference to FIGS. FIG. 2A is a top view showing an example of the light projecting lens 13, FIG. 2B is a view seen from the emission side, FIG. 2C is a bottom view, and FIG. 2D is a view seen from the incidence side. The projection lens 13 includes an aspheric lens portion 14 and a cylindrical lens portion 15, and the aspheric lens portion 14 and the cylindrical lens portion 15 are integrally formed. . The light projecting lens 13 has the aspheric lens part 14 positioned on the incident (LD 12) side of the light projecting lens 13 and the cylindrical lens part 15 positioned on the emitting (measurement object T) side. It is arranged in the state where it was made to be. The exit surface of the cylindrical lens portion 15 is concavely curved to have a cylindrical side surface. The light projecting lens 13 may be provided with the cylindrical lens portion 15 positioned on the incident side of the light projecting lens 13 and the aspherical lens portion 14 positioned on the light emitting side.
L D 1 2から出力された光束は、 投光レンズ 1 3に入射し、 投光レンズ 1 3の 非球面レンズ部分 1 4により平行光化される。 平行光化された光束の幅は、 5 0 mm程度に設定されている。 そして、 投光レンズ 1 3のシリンドリカルレンズ部 分 1 5により、 光束のうち光軸付近の光が光束の周辺部に向けて広がることにな る。 これにより、 L D 1 2から出力された光束の光強度分布が、 図 3に示される ように、 ガウス分布から光束の光軸付近の光強度よりも光束の周辺部の光強度を 高くされた光強度分布になる。  The light beam output from the LD 12 enters the light projecting lens 13, and is collimated by the aspheric lens portion 14 of the light projecting lens 13. The width of the collimated light beam is set to about 50 mm. Then, the cylindrical lens portion 15 of the light projecting lens 13 causes light near the optical axis of the light beam to spread toward the peripheral portion of the light beam. As a result, as shown in FIG. 3, the light intensity distribution of the light beam output from the LD 12 becomes higher from the Gaussian distribution than the light intensity near the optical axis of the light beam. It becomes an intensity distribution.
投光レンズ 1 3から出射した光束のビーム形状 Sは、 図 4に示されるように、 光束の光軸 Lに直交する面で見て、 略矩形形状を呈している。 また、 図示のよう に、 光束の光軸 Lを通る互いに直交する 2つの直線に沿った光強度の分布 0ぃ 0 2は、 いずれも光束の光軸 L付近の光強度よりも光束の周辺部の光強度が高い 分布となっている。 光束の光軸 L付近の光強度と光束の周辺部の光強度との比は 、 上述したように 1 : 2程度となっている。 光強度分布が必ずしも上述した分布 〇iと分布 o 2になっている必要はなく、 用途によって、 分布 または分布 o 2 の一方向のみの分布でもよい。 As shown in FIG. 4, the beam shape S of the light beam emitted from the light projecting lens 13 has a substantially rectangular shape when viewed in a plane perpendicular to the optical axis L of the light beam. Further, as shown in the figure, the light intensity distribution 0 ぃ 0 2 along two mutually perpendicular straight lines passing through the optical axis L of the light beam is smaller than the light intensity near the optical axis L of the light beam. The distribution of light intensity is high. The ratio of the light intensity near the optical axis L of the light beam to the light intensity around the light beam is about 1: 2 as described above. The light intensity distribution is not necessarily the distribution described above. 〇i and distribution o 2 need not be the same, and distribution or distribution o 2 may be unidirectional depending on the application.
図 2 A〜Dに示された投光レンズ 1 3を用いる代わりに、 図 5 A〜C及ぴ図 6 A〜Cに示されるような投光レンズ 1 6, 1 8を用いてもよい。 図 5 A〜C及ぴ 図 6 A〜Cは、 図 2 A〜Dと同様に、 投光レンズ 1 6, 1 8の一例を示す図であ る。 図 5 A及ぴ図 6 Aは上面図、 図 5 B及び図 6 Bは出射側から見た図、 図 5 C 及ぴ図 6 Cは下面図である。 図 5 A〜Cに示された投光レンズ 1 6は、 図示のよ うに、 非球面レンズ部分 1 4とシリンドリカル非球面レンズ部分 1 7とを含んで いる。 この投光レンズ 1 6は、 非球面レンズ部分 1 4を投光レンズ 1 3の入射側 に位置させ、 シリンドリカル非球面レンズ部分 1 7を出射側に位置させた状態で 配設される。 また、 図 6 A〜Cに示された投光レンズ 1 8は、 非球面レンズ部分 1 4と屋根型プリズム 1 9とを含んでいる。 この投光レンズ 1 3は、 非球面レン ズ部分 1 4を投光レンズ 1 3の入射側に位置させ、 屋根型プリズム 1 9を出射側 に位置させた状態で配設される。  Instead of using the light projecting lens 13 shown in FIGS. 2A to 2D, light projecting lenses 16 and 18 as shown in FIGS. 5A to 5C and 6A to 6C may be used. FIGS. 5A to 5C and FIGS. 6A to 6C are diagrams showing an example of the light projecting lenses 16 and 18 as in FIGS. 2A to 2D. FIGS. 5A and 6A are top views, FIGS. 5B and 6B are views from the emission side, and FIGS. 5C and 6C are bottom views. The light projecting lens 16 shown in FIGS. 5A to 5C includes an aspheric lens part 14 and a cylindrical aspheric lens part 17 as shown. The light projecting lens 16 is disposed with the aspheric lens part 14 positioned on the incident side of the light projecting lens 13 and the cylindrical aspheric lens part 17 positioned on the output side. The light projecting lens 18 shown in FIGS. 6A to 6C includes an aspheric lens part 14 and a roof prism 19. The light projecting lens 13 is disposed with the aspheric lens part 14 positioned on the incident side of the light projecting lens 13 and the roof prism 19 positioned on the light emitting side.
再び、 図 1を参照する。 検出光学系 2 1は、 レンズ 2 2と、 光検出器 2 3とを 含んでいる。 レンズ 2 2は、 投光レンズ 1 3を介して出射された光束のうち被測 定対象物体 Tから反射し戻った反射光束を光検出器 2 3に入射させる。 光検出器 2 3は、 入射した反射光束に対応して光電変換した信号を、 増幅器 3 4に出力す るフォトダイオード (P D ) である。  Referring again to FIG. The detection optical system 21 includes a lens 22 and a photodetector 23. The lens 22 causes the reflected light flux, which is reflected and returned from the object T to be measured, of the light flux emitted through the light projecting lens 13 to be incident on the photodetector 23. The photodetector 23 is a photodiode (PD) that outputs a signal obtained by performing photoelectric conversion corresponding to the incident reflected light beam to the amplifier 34.
信号処理系 3 1は、 パルス発生回路 3 2と、 L D駆動回路 3 3と、 増幅器 3 4 と、 コンパレータ 3 5と、 クロック発生回路 3 6と、 時間差測定回路 3 7と、 距 離出力部 3 8とを含んでいる。 パルス発生回路 3 2は、 所定の周期のパルス信号 を発生させ、 L D駆動回路 3 3及び時間差測定回路 3 7に出力するものである。 L D駆動回路 3 3は、 パルス発生回路 3 2から入力されるパルス信号が点灯トリ ガとなって動作し、 駆動信号を L D 1 2に出力する。 Signal processing system 3 1 includes a pulse generator circuit 3 2, an LD driving circuit 3 3, an amplifier 3 4, a comparator 35, a clock generation circuit 3 6, and the time difference measuring circuit 3 7, distance output section 3 Includes 8 and. The pulse generation circuit 32 generates a pulse signal of a predetermined cycle and outputs the pulse signal to the LD drive circuit 33 and the time difference measurement circuit 37. The LD drive circuit 33 operates with the pulse signal input from the pulse generation circuit 32 as a lighting trigger, and outputs a drive signal to the LD 12.
増幅器 3 4は光検出器 (以下、 P Dと称する) 2 3から入力された電気出力を 増幅するものであり、 増幅された出力はアナログ出力としてコンパレータ 3 5に 出力される。 コンパレータ 3 5は増幅器 3 4からのアナログ出力をディジタル矩 形波のパルス出力に変換するものであり、 変換して時間差測定回路 3 7に出力し ている。 The amplifier 34 converts the electric output input from the photodetector (hereinafter referred to as PD) 23 into The amplified output is output to the comparator 35 as an analog output. The comparator 35 converts the analog output from the amplifier 34 into a pulse output of a digital square wave, and converts the output to the time difference measurement circuit 37.
時間差測定回路 3 7は、 パルス発生回路 3 2からのパルス信号とコンパレータ The time difference measurement circuit 37 is composed of a pulse signal from the pulse generation circuit 32 and a comparator.
3 5からの出力とに基づいて、 L D 1 2からの光束の投光タイミングと P D 2 3 での反射光束の入射タイミングとの時間差、 すなわち L D 1 2から出力された光 束が被測定対象物体 Tにて反射し反射光束が P D 2 3に入射するまでの時間 (光 束の往復飛翔時間) を測定する。 時間差測定回路 3 7には、 クロック発生回路 3 6からのクロック信号が入力されており、 時間差測定回路 3 7は、 パルス信号の 入カタイミング (たとえば、 パルス信号の立ち上がりタイミング) からコンパレ ータ 3 5の出カタイミング (たとえば、 コンパレータ 3 5の出力の立ち上がりタ イミング) までのクロック信号を計数し、 計数されたクロック信号の数にクロッ ク信号の周期を乗算することにより、 上述した光束の往復飛翔時間を測定、 演算 する。 Based on the output from 35, the time difference between the projection timing of the light beam from LD 12 and the incident timing of the reflected light beam at PD 23, that is, the light beam output from LD 12 is the object to be measured. Measure the time until the reflected light flux is reflected at T and enters the PD 23 (the reciprocating flight time of the light flux). The clock signal from the clock generation circuit 36 is input to the time difference measurement circuit 37, and the time difference measurement circuit 37 determines the input timing of the pulse signal (for example, the rising timing of the pulse signal) from the comparator 3. The clock signal up to the output timing of 5 (for example, the rising edge of the output of the comparator 35) is counted, and the number of counted clock signals is multiplied by the period of the clock signal, whereby the reciprocation of the luminous flux described above is performed. Measure and calculate flight time.
時間差測定回路 3 7にて測定、 演算された光束の往復飛翔時間は、 時間情報と して距離出力部 3 8に出力される。 距離出力部 3 8は、 時間差測定回路 3 7から の時間情報に基づいて距離計測装置 1から被測定対象物体 Tまでの距離を演算し 、 距離情報として出力する。  The reciprocating flight time of the light beam measured and calculated by the time difference measurement circuit 37 is output to the distance output unit 38 as time information. The distance output unit 38 calculates the distance from the distance measuring device 1 to the measured object T based on the time information from the time difference measurement circuit 37, and outputs the distance as distance information.
このように、 本実施形態に係る距離計測装置 1では、 投光光学系 1 1が投光レ ンズ 1 3を有しているので、 L D 1 2から出力され被測定対象物体 Tに照射され る光束の光強度分布は、 光束の周辺部の光強度が光束の光軸付近の光強度よりも 高い強度分布となる。 これにより、 たとえば図 3に示されるように外側形状が曲 面である被測定対象物体 Tの端部に対して光束の周辺部の光が入射する場合、 こ の被測定対象物体 Tの端部からの反射光束の光強度は、 光源から出力される光束 の光強度分布がガウス分布である、 あるいは平坦化されているものに比して、 高 くなる。 したがって、 外側形状が曲面である被測定対象物体 τの端部がわずかに 光束の照射範囲 (検知エリア) に侵入している状態においても、 被測定対象物体As described above, in the distance measuring device 1 according to the present embodiment, since the light projecting optical system 11 has the light projecting lens 13, the light is output from the LD 12 and irradiates the object T to be measured. The light intensity distribution of the light beam is such that the light intensity at the periphery of the light beam is higher than the light intensity near the optical axis of the light beam. Thus, for example, when light at the periphery of the luminous flux enters the end of the measured object T whose outer shape is a curved surface as shown in FIG. 3, the end of the measured object T The light intensity of the reflected light beam from the light source is higher than that of the light beam output from the light source whose light intensity distribution is Gaussian distribution or flattened. It becomes. Therefore, even when the end of the object to be measured τ having a curved outer shape slightly enters the irradiation range (detection area) of the light beam, the object to be measured is
Τからの反射光束の光強度が高くなり、 PD 23 (検出光学系 21) での反射光 束の検知に必要相当の光強度が得られ、 反射光束を PD23 (検出光学系 2 1) にて適切に検出することができる。 この結果、 本実施形態の距離計測装置 1によ れば、 高精度な距離計測が可能となる。 なお、 外側形状が曲面である被測定対象 物体 Τの中央部に対して光が入射するとこの光は略正反射するので、 たとえ光束 の光軸付近の光 (光束の周辺部よりも光強度が低い) が被測定対象物体 τの中央 部に入射するとしても、 反射光束の光強度は検出に必要相当な強度となる。 ところで、 反射光束の光強度を高めるための手法として、 LD 1 2の出力を上 げることが考えられる。 LD 12の出力を上げることにより、 光束の光軸付近の みならず周辺部の光強度も高められ、 外側形状が曲面である被測定対象物体丁の 端部からの反射光束の光強度も高くなる。 このように、 LD 1 2の出力を上げる ことは、 LD 12寿命の劣化を早める原因になる。 また、 レーザは、 日本工業規 格 (J I S) にて、 安全性に関して 「1」、 「2」、 「3Α」、 「3 Β」、 「4」 といつ たクラスが定められており、 反射光束の検知に必要相当の光強度を得るためには 、 クラス 3 Β程度の LD 1 2を用いる必要があり、 安全性の面で問題が生じる。 しかしながら、 本実施形態に係る距離計測装置 1によれば、 クラス 1程度の出力 の LD 12を用いた場合でも、 反射光束を PD 23 (検出光学系 21 ) にて適切 に検出することができるために、 LD 12の早期劣化、 安全性等に関する問題が 生じることはない。 また、 LD 1 2そのものの低コス ト化、 消費電力低下に伴う ランニングコストの低下等のコスト削減が可能となる。 The light intensity of the reflected light beam from Τ increases, and the light intensity necessary for detecting the reflected light beam at the PD 23 (detection optical system 21) is obtained.The reflected light beam is transmitted to the PD 23 (detection optical system 21). It can be detected properly. As a result, according to the distance measurement device 1 of the present embodiment, highly accurate distance measurement can be performed. When light is incident on the central part of the object to be measured あ る having a curved outer surface, the light is substantially specularly reflected. Therefore, for example, light near the optical axis of the light flux (light intensity is lower than that of the peripheral part of the light flux). (Low) is incident on the central part of the object to be measured τ, the light intensity of the reflected light flux is an intensity necessary for detection. By the way, as a technique for increasing the light intensity of the reflected light flux, it is conceivable to increase the output of the LD 12. By increasing the output of the LD 12, the light intensity not only near the optical axis of the light beam but also at the periphery is increased, and the light intensity of the reflected light beam from the end of the object to be measured, which has a curved outer shape, is also increased. Become. As described above, increasing the output of the LD 12 causes deterioration of the life of the LD 12 earlier. In addition, lasers are classified into safety classes “1”, “2”, “3Α”, “3Β”, and “4” according to the Japanese Industrial Standards (JIS). In order to obtain the necessary light intensity for detection of the laser beam, it is necessary to use an LD 12 of class 3 mm, which causes a problem in terms of safety. However, according to the distance measuring device 1 according to the present embodiment, even when the LD 12 having a class 1 output is used, the reflected light beam can be appropriately detected by the PD 23 (detection optical system 21). In addition, there will be no problems regarding early deterioration of LD 12, safety, etc. In addition, it is possible to reduce the cost of the LD 12 itself, such as lowering the running cost due to lower power consumption.
また、 投光レンズ 1 3は、 非球面レンズ部分 14とシリンドリカルレンズ部分 1 5とを含んでおり、 LD 12から出力された光束のうち光軸付近の光が光束の 周辺部に向けて広がることになる。 これにより、 所定の距離離れた位置において 光束の光軸付近の光強度よりも光束の周辺部の光強度を高くし得る投光レンズ 1 3 (光強度分布補正手段) を、 非球面レンズ部分 1 4とシリンドリカルレンズ部 分 1 5との組み合わせという極めて簡易な構成にて実現することができる。 The light projecting lens 13 includes an aspherical lens portion 14 and a cylindrical lens portion 15 so that light near the optical axis of the light beam output from the LD 12 spreads toward the peripheral portion of the light beam. become. This makes it possible to increase the light intensity at the periphery of the light beam at a position separated by a predetermined distance from the light intensity near the optical axis of the light beam. 3 (light intensity distribution correcting means) can be realized with an extremely simple configuration of a combination of the aspherical lens portion 14 and the cylindrical lens portion 15.
次に、 図 7及び図 8に基づいて、 上述した距離計測装置 1を用いた物体検知装 置について説明する。 図 7は、 本発明の実施形態に係る物体検知装置の構成を示 す概略斜視図であり、 図 8は、 本実施形態に係る物体検知装置において投光光学 系から出力される光束の光強度分布を示す説明図である。 なお、 図 7に示された 物体検知装置は、 E T C等に用いられる車両検知装置である。  Next, an object detection device using the above-described distance measurement device 1 will be described with reference to FIGS. FIG. 7 is a schematic perspective view showing the configuration of the object detection device according to the embodiment of the present invention, and FIG. 8 is a diagram showing the light intensity of the light beam output from the light projecting optical system in the object detection device according to this embodiment. It is explanatory drawing which shows distribution. The object detection device shown in FIG. 7 is a vehicle detection device used for ETC and the like.
車両検知装置 (物体検知装置) 4 1は、 料金所アイランド 5 1の車両進入側に 設置されており、 距離計測装置 1が所定間隔 (たとえば、 4 O mmピッチ) にて 複数 (たとえば、 3 8 c h ) 並設されている。 距離計測装置 1は、 図 7に示され るように、 距離計測装置 1の投光光学系 1 1から出射される光束の光軸と交差 ( たとえば、 直交) する方向で、 車両上下方向となる方向に並設されている。 車両 検知装置 4 1は、 複数並設された距離計測装置 1から光束をエリア的に照射し、 距離計測装置 1に反射光束が入射することにより、 光束の往復飛翔時間が測定さ れ、 この光束の往復飛翔時間 (時間情報) に基づいて車両が存在するか否かを検 知する。  The vehicle detection device (object detection device) 41 is installed on the vehicle entry side of the tollgate island 51, and a plurality of distance measurement devices 1 are provided at predetermined intervals (for example, 4 mm pitch) (for example, 38 ch) It is juxtaposed. As shown in FIG. 7, the distance measuring device 1 is in the vehicle vertical direction in a direction intersecting (for example, orthogonally) with the optical axis of the light beam emitted from the light projecting optical system 11 of the distance measuring device 1. It is juxtaposed in the direction. The vehicle detection device 41 irradiates a light beam from the plurality of distance measuring devices 1 arranged in parallel in an area, and the reflected light beam is incident on the distance measuring device 1, whereby the reciprocating flight time of the light beam is measured. It detects whether or not the vehicle is present based on the round-trip flight time (time information).
ところで、 図 7に示されるように、 被測定対象物体 Tとなる車両が、 たとえば 、 牽引車の場合には、 牽引駆動車 V 1と牽引台車 V 2との間が牽引棒 V 3で連結 されている。 このような牽引車は、 通行料金の支払いに関しては、 通常、 全体で 一台分の車両として取り扱われる。 牽引棒 V 3としては、 アルミニウム製あるい は鉄製の円筒パイプ材 (直径が 4 0 mm程度) が用いられることがある。  By the way, as shown in FIG. 7, when the vehicle to be measured T is, for example, a towing vehicle, the towing drive vehicle V1 and the towing vehicle V2 are connected by a towing rod V3. ing. Such towing vehicles are generally treated as one vehicle in total for toll payment. Aluminum or iron cylindrical pipe material (diameter of about 40 mm) may be used as towbar V3.
各距離計測装置 1の投光光学系 1 1から照射される光束の光強度分布は、 図 8 に示されるように、 夫々の光束の周辺部の光強度が光束の光軸付近の光強度より も高い強度分布となる。 このため、 牽引棒 V 3 (円筒パイプ材) の端部に光束が 照射された場合、 この牽引棒 V 3の端部からの反射光束の光強度は、 光源から出 力される光束の光強度分布がガゥス分布である、 あるいは平坦化されている場合 に比して、 高くなる。 したがって、 牽引棒 V 3の端部がわずかに距離計測装置 1 の検知エリア (投光光学系 1 1からの光束の照射範囲) に侵入している状態にお いても、 牽引棒 V 3からの反射光束の光強度が高くなり、 距離計測装置 1での反 射光束の検知に必要相当の光強度が得られる。 この結果、 本実施形態の車両検知 装置 4 1によれば、 高精度な距離計測が可能となり、 牽引車を一台分の車両とし て正しく検知することができる。 As shown in Fig. 8, the light intensity distribution of the light beam emitted from the light projecting optical system 11 of each distance measuring device 1 is such that the light intensity around each light beam is smaller than the light intensity near the optical axis of the light beam. Also has a high intensity distribution. For this reason, when the end of the towbar V3 (cylindrical pipe material) is irradiated with a light beam, the light intensity of the reflected light beam from the end of the towbar V3 is the light intensity of the light beam output from the light source. If the distribution is gaseous or flat It is higher than Therefore, even when the end of the tow rod V3 is slightly intruding into the detection area of the distance measuring device 1 (the irradiation range of the light beam from the light emitting optical system 11), The light intensity of the reflected light beam is increased, and a light intensity necessary for detecting the reflected light beam by the distance measuring device 1 is obtained. As a result, according to the vehicle detection device 41 of the present embodiment, highly accurate distance measurement can be performed, and the towing vehicle can be correctly detected as one vehicle.
本発明は、 前述した実施形態に限定されるものではなく、 投光レンズ 1 3も、 光束の光強度分布が投光レンズ 1 3から所定の距離離れた位置において光軸付近 の光強度よりも周辺部の光強度が高くされた光強度分布となるものであれば、 上 述した構成のものに限られない。 なお、 上述した 「所定の距離」 の値は、 距離計 測装置 1の検知範囲を考慮して適宜設定されることになる。  The present invention is not limited to the above-described embodiment, and the light projecting lens 13 also has a light intensity distribution of the light beam at a position away from the light projecting lens 13 by a predetermined distance than the light intensity near the optical axis. The configuration is not limited to the configuration described above as long as the light intensity distribution in the peripheral portion is increased. Note that the value of the “predetermined distance” described above is appropriately set in consideration of the detection range of the distance measuring device 1.
また、 本発明による距離計測装置は、 上述した車両検知装置以外の物体検知装 置に適用することができる。 そして、 本発明による物体検知装置は、 特に、 曲面 部分を有する被測定対象物体の検知に好適である。  Further, the distance measurement device according to the present invention can be applied to an object detection device other than the above-described vehicle detection device. The object detection device according to the present invention is particularly suitable for detecting an object to be measured having a curved surface portion.
本実施形態による距離計測装置は、 投光光学系から出射された光束が被測定対 象物体にて反射して戻り、 反射光束が検出光学系にて検出されるまでの時間に基 づいて距離を計測するように構成しているが、 これに限られることなく、 投光光 学系から出射された光束と検出光学系にて検出された反射光束との位相差に基づ いて被測定対象物体までの距離を計測するように構成  The distance measuring device according to the present embodiment measures the distance based on the time until the light beam emitted from the light projecting optical system is reflected by the object to be measured and returns, and the reflected light beam is detected by the detection optical system. The measurement target is based on the phase difference between the light beam emitted from the light projection optical system and the reflected light beam detected by the detection optical system. Configured to measure distance to object
産業上の利用可能性 Industrial applicability
本発明は、 E T Cにおける車両検知装置に利用できる。  INDUSTRIAL APPLICATION This invention can be utilized for the vehicle detection apparatus in ETC.

Claims

請求の範囲 The scope of the claims
1 . 光源から出力された光束を被測定対象物体に向けて照射するための投 光光学系と、 前記被測定対象物体により反射された反射光束を検出する検出光学 系とを備え、 前記被測定対象物体までの距離を測定する距離計測装置であって、 前記投光光学系は、 所定の距離離れた位置において前記光束の光軸付近の光強 度よりも前記光束の周辺部の光強度を高くする光強度分布補正手段を有している ことを特徴とする距離計測装置。 1. A light projection optical system for irradiating a light beam output from a light source toward the object to be measured, and a detection optical system for detecting a light beam reflected by the object to be measured, A distance measuring device for measuring a distance to a target object, wherein the light projecting optical system measures a light intensity at a peripheral portion of the light beam more than a light intensity near an optical axis of the light beam at a position separated by a predetermined distance. A distance measuring device comprising light intensity distribution correcting means for increasing the height.
2 . 前記光強度分布補正手段は、 非球面レンズ部分とシリンドリカルレン ズ部分とを含んでいることを特徴とする請求の範囲第 1項に記載の距離計測装置。  2. The distance measuring device according to claim 1, wherein the light intensity distribution correcting means includes an aspherical lens portion and a cylindrical lens portion.
3 . 請求の範囲第 1項又は請求の範囲第 2項に記載の距離計測装置を備え た物体検知装置であって、 前記投光光学系が、 前記光束の光軸と交差する方向に 複数並設されていることを特徴とする物体検知装置。  3. An object detection device provided with the distance measurement device according to claim 1 or claim 2, wherein a plurality of the light projecting optical systems are arranged in a direction intersecting an optical axis of the light beam. An object detection device, which is provided.
PCT/JP2002/000471 2001-01-23 2002-01-23 Distance measuring equipment and object detector WO2002059641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001014800A JP4878080B2 (en) 2001-01-23 2001-01-23 Object detection device
JP2001-14800 2001-01-23

Publications (1)

Publication Number Publication Date
WO2002059641A1 true WO2002059641A1 (en) 2002-08-01

Family

ID=18881443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000471 WO2002059641A1 (en) 2001-01-23 2002-01-23 Distance measuring equipment and object detector

Country Status (2)

Country Link
JP (1) JP4878080B2 (en)
WO (1) WO2002059641A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624809B2 (en) 2018-03-08 2023-04-11 Panasonic Intellectual Property Management Co., Ltd. Laser radar

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1410755A4 (en) 2001-06-15 2009-01-28 Sumitomo Osaka Cement Co Ltd Monitoring apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273210A (en) * 1991-02-28 1992-09-29 Nec Corp Laser beam shaping optical device
JPH05273492A (en) * 1992-03-25 1993-10-22 Rohm Co Ltd Semiconductor laser beam source
JPH07253462A (en) * 1994-03-14 1995-10-03 Nikon Corp Distance measuring instrument
JPH0962983A (en) * 1995-08-28 1997-03-07 Mitsubishi Heavy Ind Ltd Vehicle type discriminating device
US5706140A (en) * 1993-09-06 1998-01-06 Kansei Corp. Optical distance measuring equipment
JPH11258544A (en) * 1998-03-09 1999-09-24 Fujitsu Ltd Light intensity transducing element, optical device, and optical disk device
EP0957376A2 (en) * 1998-05-13 1999-11-17 Olympus Optical Co., Ltd. Distance measuring apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772311A (en) * 1993-09-06 1995-03-17 Kansei Corp Light transmitting lens of laser hrad
JPH07159519A (en) * 1993-12-08 1995-06-23 Kansei Corp Optical range finding apparatus
JPH0875857A (en) * 1994-09-07 1996-03-22 Mazda Motor Corp Obstacle detecting device
JPH11142112A (en) * 1997-11-13 1999-05-28 Olympus Optical Co Ltd Distance measuring apparatus
JPH11160431A (en) * 1997-11-27 1999-06-18 Olympus Optical Co Ltd Range finder instrument
JP2000206448A (en) * 1999-01-13 2000-07-28 Hitachi Ltd Beam converting device and laser range-finding device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273210A (en) * 1991-02-28 1992-09-29 Nec Corp Laser beam shaping optical device
JPH05273492A (en) * 1992-03-25 1993-10-22 Rohm Co Ltd Semiconductor laser beam source
US5706140A (en) * 1993-09-06 1998-01-06 Kansei Corp. Optical distance measuring equipment
JPH07253462A (en) * 1994-03-14 1995-10-03 Nikon Corp Distance measuring instrument
JPH0962983A (en) * 1995-08-28 1997-03-07 Mitsubishi Heavy Ind Ltd Vehicle type discriminating device
JPH11258544A (en) * 1998-03-09 1999-09-24 Fujitsu Ltd Light intensity transducing element, optical device, and optical disk device
EP0957376A2 (en) * 1998-05-13 1999-11-17 Olympus Optical Co., Ltd. Distance measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624809B2 (en) 2018-03-08 2023-04-11 Panasonic Intellectual Property Management Co., Ltd. Laser radar

Also Published As

Publication number Publication date
JP4878080B2 (en) 2012-02-15
JP2002214327A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
US9316495B2 (en) Distance measurement apparatus
US6897465B2 (en) System and method for determining a distance of an object using emitted light pulses
US11125876B2 (en) Lidar system and method for ascertaining a system state of a lidar system
US8891068B2 (en) Optical distance measuring device with calibration device
US7095490B2 (en) Electric distance meter
US7068367B2 (en) Arrangement for the optical detection of a moving target flow for a pulsed energy beam pumped radiation
US10048376B2 (en) Distance measuring device and photodetector
US7532312B2 (en) Radar apparatus
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
EP1607766A1 (en) Light wave distance measuring method and light wave distance measuring system
US11703571B2 (en) Optical device
JP5135131B2 (en) Light projecting unit and object detection device
US10996407B2 (en) Excitation light irradiation device and excitation light irradiation method
EP3789787A1 (en) Solid-state lidar system for determining distances to a scene
US7764358B2 (en) Distance measuring system
WO2002059641A1 (en) Distance measuring equipment and object detector
JP2018040748A (en) Laser range measuring device
KR101604867B1 (en) Sensing appratus for using diffraction grating
US6859266B2 (en) Optical movement detecting device and transport system using the same
JPH10122811A (en) Position detection element and distance sensor
US5719663A (en) Range finder apparatus
KR0148447B1 (en) Measuring equipment and method of distance using laser beam scanner
EP1258701B1 (en) A process for reading fractions of an interval between contiguous photo-sensitive elements in a linear optical sensor
JPH0534437A (en) Laser distance measuring apparatus
CN114114214A (en) Light reaches system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase