JP4877722B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4877722B2
JP4877722B2 JP2005337897A JP2005337897A JP4877722B2 JP 4877722 B2 JP4877722 B2 JP 4877722B2 JP 2005337897 A JP2005337897 A JP 2005337897A JP 2005337897 A JP2005337897 A JP 2005337897A JP 4877722 B2 JP4877722 B2 JP 4877722B2
Authority
JP
Japan
Prior art keywords
conductive layer
conductive
film
insulating film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005337897A
Other languages
Japanese (ja)
Other versions
JP2006186328A (en
JP2006186328A5 (en
Inventor
敏行 伊佐
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2005337897A priority Critical patent/JP4877722B2/en
Publication of JP2006186328A publication Critical patent/JP2006186328A/en
Publication of JP2006186328A5 publication Critical patent/JP2006186328A5/ja
Application granted granted Critical
Publication of JP4877722B2 publication Critical patent/JP4877722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は集積回路を有する半導体装置およびその作製方法に関する。特に埋込配線を有する半導体素子を部品として搭載した電子機器に関する。   The present invention relates to a semiconductor device having an integrated circuit and a manufacturing method thereof. In particular, the present invention relates to an electronic device in which a semiconductor element having embedded wiring is mounted as a component.

なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。   Note that in this specification, a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics, and an electro-optical device, a semiconductor circuit, and an electronic device are all semiconductor devices.

近年、半導体素子に多層配線を形成する場合、配線を積層することにより、上層になるほど段差が増大し、配線の加工が困難となっている。そこで、一般的に絶縁膜に形成された配線溝や孔等のような配線開口部内にダマシン法と称する配線形成技術によって、配線材料を埋め込んでいる。   In recent years, when a multilayer wiring is formed on a semiconductor element, by stacking the wiring, a step is increased as the upper layer is formed, and it is difficult to process the wiring. Therefore, generally, a wiring material is embedded in a wiring opening such as a wiring groove or hole formed in an insulating film by a wiring forming technique called a damascene method.

ダマシン法とは、金属配線を形成するために、まず、絶縁膜に溝を形成し、全面に金属材料を塗布し、次にCMP(化学的機械研磨)法などで、全面研磨をすることである。この際、金属配線の下方に、さらに下層の金属配線や半導体領域とのコンタクトを取るための孔を形成しておくことを含めたものをデュアルダマシン法と呼んでいる。デュアルダマシン法は、下層配線との接続孔と配線溝とを形成した後、配線材料を堆積し、CMP法により配線部分以外の配線材料を除去する工程などを含んでいる。   The damascene method is to form a metal wiring by first forming a groove in the insulating film, applying a metal material to the entire surface, and then polishing the entire surface by a CMP (Chemical Mechanical Polishing) method or the like. is there. At this time, a method including forming a hole for making contact with a lower metal wiring or a semiconductor region below the metal wiring is called a dual damascene method. The dual damascene method includes a step of forming a connection hole and a wiring groove with a lower layer wiring, depositing a wiring material, and removing a wiring material other than the wiring portion by a CMP method.

デュアルダマシン法を用いた金属配線は、電解めっき法による銅(Cu)が多く用いられている。電解めっき法では接続孔に銅(Cu)を完全に埋め込むため、めっき液や、印加する電界を複雑に調整する必要がある。また、銅(Cu)はエッチャントやエッチングガスを用いたエッチングプロセスで加工することが困難であり、銅(Cu)の加工には研磨を行うための特殊なCMP法が必要とされている。   For metal wiring using the dual damascene method, copper (Cu) by electrolytic plating is often used. In the electrolytic plating method, since copper (Cu) is completely embedded in the connection hole, it is necessary to adjust the plating solution and the applied electric field in a complicated manner. Further, it is difficult to process copper (Cu) by an etching process using an etchant or an etching gas, and a special CMP method for polishing is required for processing copper (Cu).

電解めっき法やCMP法は、配線形成にかかる製造コストの増加を招くという問題があった。 The electrolytic plating method and the CMP method have a problem in that the manufacturing cost for wiring formation is increased.

また、高速動作が可能で高性能な半導体デバイスを実現するために、銅よりも電気抵抗率の低い配線材料とし、さらに配線開口部が形成される絶縁膜の材料として誘電率の低い絶縁膜を使用する構造が今後さらに求められる。   In order to realize a high-performance semiconductor device capable of high-speed operation, a wiring material having a lower electrical resistivity than copper is used, and an insulating film having a low dielectric constant is used as a material for the insulating film in which the wiring opening is formed. The structure to be used is further required in the future.

そこで、本発明者らは、銅よりも電気抵抗率の低い銀や銀を主成分とする合金を配線とするため、銀のナノ粒子を用いることを検討している。ところが、従来の層間絶縁膜に用いられている二酸化シリコン膜や窒化シリコン膜では、膜が緻密なため、銀のナノ粒子との接触面積が小さく、密着性が乏しいという課題を本発明者らは見いだした。   In view of this, the present inventors are studying the use of silver nanoparticles in order to use silver having a lower electrical resistivity than copper or an alloy containing silver as a main component. However, in the conventional silicon dioxide film and silicon nitride film used for the interlayer insulating film, the present inventors have a problem that since the film is dense, the contact area with the silver nanoparticles is small and the adhesion is poor. I found it.

また、従来の層間絶縁膜に用いられている二酸化シリコン膜(ε=4.1〜3.7)では比誘電率が高く、さらに誘電率の低い絶縁膜が求められている。   Further, a silicon dioxide film (ε = 4.1 to 3.7) used for a conventional interlayer insulating film is required to have an insulating film having a high relative dielectric constant and a low dielectric constant.

そこで、本発明ではこのような実情に鑑みて提案されたものであり、半導体デバイスの更なる高速化に必要な電気抵抗率の低い配線と、比誘電率の低い層間絶縁膜とを有した半導体デバイスの作製方法を提供する事を課題としている。   Therefore, the present invention has been proposed in view of such circumstances, and a semiconductor having a low electrical resistivity wiring required for further speeding up of a semiconductor device and an interlayer insulating film having a low relative dielectric constant. It is an object to provide a device manufacturing method.

本発明の半導体装置の作製方法は、層間絶縁膜の接続孔を介して層間絶縁膜の下方に形成された配線に導通する銀配線を層間絶縁膜に埋め込むように形成するものである。その形成工程は、下層配線上に層間絶縁膜を形成する工程と、下層配線に接続する接続孔及び配線溝を層間絶縁膜に形成するとともに、上層配線の形成のための配線溝を層間絶縁膜に形成するパターニング工程と、液滴吐出法(代表的にはインクジェット法)により液状の導電物質(代表的にはAg)を接続孔及び配線溝に滴下する工程と、滴下された導電物質を選択的に焼成して第1導電層とする焼成工程と、第1導電層の導電物質の拡散を防ぐために第1導電層上面を覆う第2導電層を形成して第1導電層と第2導電層からなる上層配線を形成する工程と、を少なくとも有することを特徴の一つとしている。   According to the method for manufacturing a semiconductor device of the present invention, a silver wiring that conducts to a wiring formed under an interlayer insulating film through a connection hole of the interlayer insulating film is formed so as to be embedded in the interlayer insulating film. The formation process includes forming an interlayer insulating film on the lower layer wiring, forming a connection hole and a wiring groove connected to the lower layer wiring in the interlayer insulating film, and forming a wiring groove for forming the upper layer wiring in the interlayer insulating film. A patterning step to be formed on the substrate, a step of dropping a liquid conductive material (typically Ag) into the connection hole and the wiring groove by a droplet discharge method (typically an ink jet method), and a selection of the dropped conductive material A first conductive layer and a second conductive layer covering the upper surface of the first conductive layer in order to prevent diffusion of the conductive material of the first conductive layer, thereby forming the first conductive layer and the second conductive layer. And a step of forming an upper layer wiring composed of layers.

即ち、本明細書で開示する半導体装置の作製方法に関する発明の構成1は、複数の配線層を有する半導体装置の作製方法であり、絶縁膜を形成する工程と、選択的にエッチングして前記絶縁膜に開口部(接続孔及び配線溝)を形成する工程と、液滴吐出法により開口部に導電材料を含む液滴を滴下する工程と、レーザー光を選択的に照射して開口部の導電材料を加熱して前記絶縁膜の開口部に埋め込まれた第1の導電層を形成する工程と、前記第1の導電層上面を覆う第2の導電層を形成する工程と、を有することを特徴とする半導体装置の作製方法である。   That is, Structure 1 of the invention relating to a method for manufacturing a semiconductor device disclosed in this specification is a method for manufacturing a semiconductor device having a plurality of wiring layers, and includes a step of forming an insulating film, and selective etching to form the insulating film. A step of forming an opening (a connection hole and a wiring groove) in the film, a step of dropping a droplet containing a conductive material into the opening by a droplet discharge method, and a conductive treatment of the opening by selectively irradiating a laser beam. Heating a material to form a first conductive layer embedded in the opening of the insulating film, and forming a second conductive layer covering the top surface of the first conductive layer. This is a feature of a method for manufacturing a semiconductor device.

上記構成1において、第1導電層の導電物質の拡散を防ぐためのバリア膜として機能する前記第2導電層は、スパッタ法により得られるW、Mo、Ti、Cr、またはTaから選ばれる一種または複数種を含む金属層であることを特徴としている。   In the configuration 1, the second conductive layer functioning as a barrier film for preventing diffusion of the conductive material of the first conductive layer is one selected from W, Mo, Ti, Cr, or Ta obtained by sputtering. It is characterized by being a metal layer containing a plurality of species.

また、液滴吐出法により開口部(接続孔及び配線溝)に導電材料を含む液滴を滴下する前に導電物質(Ag)の拡散を防ぐためのバリア膜を形成することが望ましく、半導体装置の作製方法に関する本発明の他の構成2は、集積回路と複数の配線層を有する半導体装置の作製方法であり、絶縁膜を形成する工程と、前記絶縁膜上にマスクを形成する工程と、選択的にエッチングして前記絶縁膜に開口部(接続孔及び配線溝)を形成する工程と、前記マスクおよび前記開口部に第1導電層を形成する工程と、
液滴吐出法により開口部に導電材料を含む液滴を滴下する工程と、レーザー光を選択的に照射して開口部の導電材料を加熱して前記絶縁膜の開口部に埋め込まれた第2導電層を形成する工程と、前記マスクおよび前記第2導電層上に第3導電層を形成する工程と、前記マスクを除去すると同時に前記マスク上に形成された第1導電層および第3導電層を除去して開口部に形成された第3導電層を残存させる工程と、を有することを特徴とする半導体装置の作製方法である。
In addition, it is desirable to form a barrier film for preventing diffusion of the conductive material (Ag) before dropping a droplet containing a conductive material into the opening (connection hole and wiring groove) by a droplet discharge method. Another structure 2 of the present invention relating to the manufacturing method of the present invention is a method of manufacturing a semiconductor device having an integrated circuit and a plurality of wiring layers. The step of forming an insulating film, the step of forming a mask on the insulating film, Selectively etching to form openings (connection holes and wiring grooves) in the insulating film; forming a first conductive layer in the mask and the openings;
A step of dropping a droplet containing a conductive material into the opening by a droplet discharge method; and a second method in which the conductive material in the opening is heated by selectively irradiating laser light to be embedded in the opening of the insulating film. A step of forming a conductive layer; a step of forming a third conductive layer on the mask and the second conductive layer; and a first conductive layer and a third conductive layer formed on the mask simultaneously with the removal of the mask And a step of leaving the third conductive layer formed in the opening by removing the semiconductor device.

また、上記構成2において、比誘電率の低い層間絶縁膜とするために、前記絶縁膜を多孔質絶縁膜とすることが好ましい。本明細書中で多孔質絶縁膜とは、膜中に微細な空孔を有した絶縁膜を指しており、好ましくは空孔率が20%以上90%未満の範囲の無機絶縁膜、有機絶縁膜、または有機無機複合体膜から選ばれる膜である。この空孔率の範囲より小さいと誘電率を十分に低減することができない。また、この空孔率の範囲より大きいと膜の機械的強度が不足する。   Moreover, in the said structure 2, in order to set it as an interlayer insulation film with a low dielectric constant, it is preferable that the said insulation film is a porous insulation film. In this specification, a porous insulating film refers to an insulating film having fine pores in the film, and preferably an inorganic insulating film or organic insulating film having a porosity of 20% or more and less than 90%. It is a film selected from a film or an organic-inorganic composite film. If the porosity is smaller than this range, the dielectric constant cannot be sufficiently reduced. On the other hand, if the porosity is larger than the range, the mechanical strength of the film is insufficient.

また、本発明は、レーザー光で選択的に導電層を焼成することに限定されず、半導体装置の作製方法に関する本発明の他の構成3は、集積回路と複数の配線層を有する半導体装置の作製方法であり、絶縁膜を形成する工程と、選択的にエッチングして前記絶縁膜に開口部(接続孔及び配線溝)を形成する工程と、第1導電膜を形成する工程と、液滴吐出法により開口部および開口部周辺に導電材料を含む液滴を滴下し、焼成して導電膜を形成する工程と、該導電膜を選択的にエッチングして第2導電層を形成する工程と、前記第2導電層上に第3導電膜を形成する工程と、前記第1導電膜及び前記第3導電膜を同じマスクを用いてエッチングして第1導電層と第3導電層を形成する工程と、を有し、前記液滴を滴下する前に滴下する液滴の接触角を小さくする表面処理を前記第1導電膜表面に行うことを特徴とする半導体装置の作製方法である。   Further, the present invention is not limited to the selective firing of the conductive layer with laser light, and another configuration 3 of the present invention relating to a method for manufacturing a semiconductor device is a semiconductor device having an integrated circuit and a plurality of wiring layers. A method for forming an insulating film; a step of selectively etching to form openings (connection holes and wiring grooves) in the insulating film; a step of forming a first conductive film; and a droplet A step of dropping a droplet including a conductive material around the opening and the periphery of the opening by a discharge method and baking to form a conductive film; a step of selectively etching the conductive film to form a second conductive layer; Forming a third conductive film on the second conductive layer, and etching the first conductive film and the third conductive film using the same mask to form the first conductive layer and the third conductive layer. A step of contacting a droplet to be dropped before dropping the droplet. A method for manufacturing a semiconductor device, which comprises carrying out the surface treatment to reduce the angular to the first conductive surface.

表面処理を行った領域は、接触角が小さい領域となり、ぬれ性の高い領域(以下、高ぬれ性領域ともいう)となる。接触角が大きいと、流動性を有する液状の組成物は、領域表面上で広がらず、組成物をはじくので、表面をぬらさないが、接触角が小さいと、表面上で流動性を有する組成物は広がり、よく表面をぬらす。本発明においては、ぬれ性の高い領域の接触角は10度以下であるとよい。この表面処理としては、例えば、光により選択的にぬれ性を高める処理を行えばよい。具体的には、パターンの被形成領域近傍にぬれ性が低い物質を形成し、ぬれ性が低い物質が分解する程度の光を照射し、処理領域のぬれ性が低い物質を分解、除去することにより、処理領域のぬれ性を向上させ、高ぬれ性領域を形成する。   The surface-treated region is a region having a small contact angle and a region with high wettability (hereinafter also referred to as a high wettability region). When the contact angle is large, the liquid composition having fluidity does not spread on the surface of the region and repels the composition, so that the surface is not wetted. However, when the contact angle is small, the composition has fluidity on the surface. Spreads out and wets the surface well. In the present invention, the contact angle of the region with high wettability is preferably 10 degrees or less. As this surface treatment, for example, a treatment for selectively increasing wettability with light may be performed. Specifically, a substance with low wettability is formed in the vicinity of the pattern formation region, and light with a degree of decomposition of the substance with low wettability is irradiated to decompose and remove the substance with low wettability in the processing region. As a result, the wettability of the processing region is improved and a high wettability region is formed.

上記構成3のように表面処理を行うことで、導電材料を含む液滴を滴下した際に、接続孔や配線溝をぬれ広がるようにして満たすことができる。ぬれ広がるようにして導電材料を含む液滴を滴下する事により、表面処理を行わずにインクジェット法を用いて接続孔や配線溝をなぞりながら塗布する方法と比較して、塗布工程のタクトタイムを短縮させる事が可能となる。また、スピンオンコート法で塗布する方式よりも材料の消費を少なくする事が可能となる。   By performing the surface treatment as in the configuration 3, when the droplet containing the conductive material is dropped, the connection hole and the wiring groove can be filled so as to spread. By dropping droplets containing conductive material so that it spreads wet, the tact time of the coating process is reduced compared to the method of coating while tracing the connection holes and wiring grooves using the inkjet method without surface treatment. It can be shortened. In addition, it is possible to reduce the consumption of materials compared to a method of applying by spin-on coating.

また、上記構成2の作製方法により得られる半導体デバイスも本発明の一つであり、その構成4は、集積回路と複数の配線層を有する半導体装置であり、多孔質絶縁膜と、前記多孔質絶縁膜に形成された配線溝またはコンタクトホール(接続孔とも呼ぶ)の底面及び内壁に接する第1導電層と、該第1導電層上に接する第2導電層と、該第2導電層の上面及び前記第1導電層に接する第3導電層との積層からなる配線層とを有し、前記第2導電層は、前記第1導電層と前記第3導電層とで囲まれており、前記多孔質絶縁膜の上面を含む第1面と、前記第3導電層の上面を含む第2面との間に段差を有することを特徴とする半導体装置である。   Further, a semiconductor device obtained by the manufacturing method of Configuration 2 is also one aspect of the present invention, and Configuration 4 is a semiconductor device having an integrated circuit and a plurality of wiring layers, and includes a porous insulating film and the porous device. A first conductive layer in contact with the bottom and inner walls of a wiring groove or contact hole (also referred to as a connection hole) formed in the insulating film, a second conductive layer in contact with the first conductive layer, and an upper surface of the second conductive layer And a wiring layer composed of a laminate with a third conductive layer in contact with the first conductive layer, the second conductive layer being surrounded by the first conductive layer and the third conductive layer, A semiconductor device comprising a step between a first surface including an upper surface of a porous insulating film and a second surface including an upper surface of the third conductive layer.

また、上記構成4において、前記多孔質絶縁膜は、酸化シリコンを含む材料であることを特徴としている。   In the configuration 4, the porous insulating film is a material containing silicon oxide.

また、本発明は、多孔質絶縁膜に特に限定されず、その構成5は、集積回路と複数の配線層を有する半導体装置であり、絶縁膜と、前記絶縁膜に形成された配線溝またはコンタクトホールの底面及び内壁に接する第1導電層と、該第1導電層上に接する第2導電層と、該第2導電層の上面及び前記第1導電層に接する第3導電層との積層からなる配線層とを有し、前記第2導電層は、前記第1導電層と前記第3導電層とで囲まれており、前記絶縁膜の上面を含む第1面と、前記第3導電層の上面を含む第2面との間に段差を有することを特徴とする半導体装置である。   The present invention is not particularly limited to the porous insulating film, and the configuration 5 is a semiconductor device having an integrated circuit and a plurality of wiring layers, and the insulating film and a wiring groove or contact formed in the insulating film. A stack of a first conductive layer in contact with the bottom and inner walls of the hole, a second conductive layer in contact with the first conductive layer, and a third conductive layer in contact with the top surface of the second conductive layer and the first conductive layer. And the second conductive layer is surrounded by the first conductive layer and the third conductive layer, and includes a first surface including an upper surface of the insulating film, and the third conductive layer. And a second surface including a top surface of the semiconductor device.

また、上記構成2乃至5のいずれか一において、前記集積回路は、コントローラ、CPU、またはメモリのうち少なくとも一つを含むことを特徴の一つとしている。さらにはアンテナを有していてもよい。   In any one of the structures 2 to 5, the integrated circuit includes at least one of a controller, a CPU, and a memory. Further, an antenna may be provided.

また、上記構成2乃至5のいずれか一において、前記第1導電層と前記第3導電層は、スパッタ法により得られるW、Mo、Ti、Cr、またはTaから選ばれる一種または複数種を含む金属層であることを特徴の一つとしている。なお、前記第1導電層と前記第3導電層は同じ材料を用いてもよいし、異なる材料を用いてもよい。   In any one of the above configurations 2 to 5, the first conductive layer and the third conductive layer include one or more selected from W, Mo, Ti, Cr, or Ta obtained by sputtering. One of the features is that it is a metal layer. The first conductive layer and the third conductive layer may be made of the same material or different materials.

また、上記構成2乃至5のいずれか一に前記第2導電層は、銀を含む材料であることを特徴の一つとしている。液滴吐出法を用いて導電層などのパターン形成方法では、粒子状に加工されたパターン形成材料を吐出し、焼成によって融合や融着接合させ固化することでパターンを形成する。よって、そのパターンは、スパッタ法などで形成したパターンが、多くは柱状構造を示すのに対し、多くの粒界を有する多結晶状態を示すことが多い。   One of the structures 2 to 5 is that the second conductive layer is a material containing silver. In a pattern forming method such as a conductive layer using a droplet discharge method, a pattern is formed by discharging a pattern forming material processed into particles, and fusing or fusion bonding by baking to solidify. Therefore, the pattern formed by sputtering or the like often shows a columnar structure, whereas it often shows a polycrystalline state having many grain boundaries.

また、上記構成2乃至5のいずれか一に前記第2導電層は、樹脂を含む材料であることを特徴の一つとしている。この樹脂は導電材料を含む液滴に含まれるバインダーなどの材料であり、この樹脂と、溶媒と、銀のナノ粒子とを混合させることによってインクジェット法で吐出可能なものとしている。   One of the structures 2 to 5 is that the second conductive layer is a material containing a resin. This resin is a material such as a binder contained in droplets containing a conductive material, and can be ejected by an ink jet method by mixing this resin, a solvent, and silver nanoparticles.

本発明により、選択的に配線を形成することで従来よりも工程数を減らし、さらに液状の導電物質を利用する事で、高アスペクト比を有する層間絶縁膜に対して、導電膜を完全に埋め込むことが可能である。   According to the present invention, the number of steps can be reduced as compared with the conventional method by selectively forming wiring, and the conductive film is completely embedded in the interlayer insulating film having a high aspect ratio by using a liquid conductive material. It is possible.

また、本発明により、層間絶縁膜に多孔質絶縁膜を用いる事で、層間絶縁膜の比誘電率を低減させるとともに、Agを含むペーストとの密着性を向上させることができる。   In addition, according to the present invention, by using a porous insulating film as the interlayer insulating film, it is possible to reduce the relative dielectric constant of the interlayer insulating film and improve the adhesion with the paste containing Ag.

本発明の実施形態について、以下に説明する。   Embodiments of the present invention will be described below.

(実施の形態1)
本実施の形態では、層間絶縁膜に埋め込まれた銀配線を形成する本発明の一形態について図1(A)〜図1(E)、および図2(A)〜図2(C)を用いて説明する。ここでは簡略化のため、半導体素子や集積回路は図示せず、埋め込まれた銀配線と下層配線の接続部分のみを図示することとする。
(Embodiment 1)
In this embodiment mode, FIGS. 1A to 1E and FIGS. 2A to 2C are used with respect to one embodiment of the present invention for forming a silver wiring embedded in an interlayer insulating film. I will explain. Here, for the sake of simplification, a semiconductor element and an integrated circuit are not shown, and only a connection portion between a buried silver wiring and a lower layer wiring is shown.

まず、トランジスタ等の素子(図示せず)が形成された半導体基板上に設けられた絶縁膜101上に1層目の配線(下層配線)102を形成し、この配線102を覆うように層間絶縁膜103を形成する(図1(A))。   First, a first layer wiring (lower layer wiring) 102 is formed on an insulating film 101 provided on a semiconductor substrate on which an element (not shown) such as a transistor is formed, and an interlayer insulation is formed so as to cover the wiring 102. A film 103 is formed (FIG. 1A).

半導体基板は、単結晶シリコン基板または化合物半導体基板であり、代表的には、N型またはP型の単結晶シリコン基板、GaAs基板、InP基板、GaN基板、SiC基板、サファイヤ基板、又はZnSe基板である。また、絶縁層と単結晶半導体層とが積層されたSOI(silicon on insulator)基板を用いてもよい。SOI基板としては、例えば、SIMOX(separation by implanted oxygen)基板が挙げられる。SIMOX基板は、単結晶半導体層の表面からわずかに深い部分に酸素分子を埋め込み、それを高熱で酸化させることにより、絶縁層とその絶縁層上に単結晶半導体層を作製した基板であり、第1の単結晶半導体層と、絶縁層と、第2の単結晶半導体層とが積層された基板である。   The semiconductor substrate is a single crystal silicon substrate or a compound semiconductor substrate, and is typically an N-type or P-type single crystal silicon substrate, GaAs substrate, InP substrate, GaN substrate, SiC substrate, sapphire substrate, or ZnSe substrate. is there. Alternatively, an SOI (silicon on insulator) substrate in which an insulating layer and a single crystal semiconductor layer are stacked may be used. As an SOI substrate, for example, a SIMOX (separation by implied oxygen) substrate can be cited. A SIMOX substrate is a substrate in which a single crystal semiconductor layer is formed on an insulating layer and the insulating layer by embedding oxygen molecules in a portion slightly deep from the surface of the single crystal semiconductor layer and oxidizing it with high heat. A substrate in which one single crystal semiconductor layer, an insulating layer, and a second single crystal semiconductor layer are stacked.

層間絶縁膜103には静電容量による信号の遅延を防ぐため、比誘電率の低いものが選ばれる。層間絶縁膜103として、多孔質絶縁膜を用いる事で上記の目的を達成する事ができる。本実施の形態では層間絶縁膜103に多孔質絶縁膜を使用することで低誘電率化と、後に形成する配線材料との密着性を向上させている。ポーラス低誘電率層間絶縁膜と配線材料との密着性が向上する理由については後述して説明する。   The interlayer insulating film 103 is selected to have a low relative dielectric constant in order to prevent signal delay due to capacitance. By using a porous insulating film as the interlayer insulating film 103, the above object can be achieved. In this embodiment mode, the use of a porous insulating film for the interlayer insulating film 103 reduces the dielectric constant and improves the adhesion with a wiring material to be formed later. The reason why the adhesion between the porous low dielectric constant interlayer insulating film and the wiring material is improved will be described later.

層間絶縁膜103を形成した後、フォトリソグラフィーによりパターニングを行い、フォトレジストからなる第1のマスク104aを形成する。その後、層間絶縁膜103を異方性エッチングして、図1(B)に示すように第1の開口部(トレンチとも呼ぶ)105を形成する。   After the interlayer insulating film 103 is formed, patterning is performed by photolithography to form a first mask 104a made of a photoresist. After that, the interlayer insulating film 103 is anisotropically etched to form a first opening (also referred to as a trench) 105 as shown in FIG.

第1のマスク104aを除去した後、新たにマスクを形成するため、フォトリソグラフィーによりパターニングを行う。こうして、図1(C)に示すようにフォトレジストからなる第2のマスク104bを形成する。その後、再び層間絶縁膜103を異方性エッチングし、接続孔106aと配線溝106bとからなる第2の開口部を形成する。   After the first mask 104a is removed, patterning is performed by photolithography in order to form a new mask. Thus, a second mask 104b made of a photoresist is formed as shown in FIG. Thereafter, the interlayer insulating film 103 is anisotropically etched again to form a second opening made of the connection hole 106a and the wiring groove 106b.

その後、フォトレジストからなる第2のマスク104bを除去することなく、図1(D)に示すようにスパッタリング法によってバリア膜107を全面に形成する。図1(D)に示すように、接続孔106aの内壁および配線溝106bの内壁にも薄く形成されるが、膜厚の厚い第2のマスク104bの内壁にはほとんど形成されないように形成することが望ましい。   After that, without removing the second mask 104b made of photoresist, a barrier film 107 is formed over the entire surface by sputtering as shown in FIG. As shown in FIG. 1D, the inner wall of the connection hole 106a and the inner wall of the wiring groove 106b are formed thin, but are formed so as to be hardly formed on the inner wall of the thick second mask 104b. Is desirable.

ここでは、バリア膜107としてTiN膜を用いる。なお、バリア膜107は第1の導電層と呼べる。バリア膜107は後に液滴吐出法で吐出する配線材料が層間絶縁膜103の内部にまで拡散しておこるリークなどの不良を抑制するための拡散防止膜として用いる。なお、バリア膜107の成膜はスパッタリング法によるものだけとは限らず、CVD法で成膜する事も可能である。   Here, a TiN film is used as the barrier film 107. Note that the barrier film 107 can be referred to as a first conductive layer. The barrier film 107 is used as a diffusion preventive film for suppressing defects such as leaks that are caused by diffusion of a wiring material to be discharged later by the droplet discharge method into the interlayer insulating film 103. Note that the barrier film 107 is not limited to be formed by a sputtering method, but can also be formed by a CVD method.

次に、図1(E)に示すようにAgを含むペースト108をインクジェット法により開口部のみに滴下する。インクジェット法では吐出された液滴が基板に着弾したとき、着弾した液滴の位置精度が低いため(例えば±10μm)本実施の形態ではフォトレジストからなる第2のマスク104bを隔壁として用いる事で着弾精度を補っている。これにより、10μm以下のプロセスルールでもインクジェット法を用いる事ができる。   Next, as shown in FIG. 1E, a paste 108 containing Ag is dropped only on the opening by an inkjet method. In the inkjet method, when the ejected droplets land on the substrate, the positional accuracy of the landed droplets is low (for example, ± 10 μm). In this embodiment, the second mask 104b made of a photoresist is used as a partition wall. Compensates for landing accuracy. Thereby, the ink jet method can be used even with a process rule of 10 μm or less.

インクジェットで吐出するAgを含むペースト108はAgのナノ粒子が含まれており、従来の配線材料として用いられるCuよりも抵抗率を低減する事が可能である。また、液状であるため下地がどのような形状であっても被覆することができ、下地の形状にとらわれない配線の形成が可能となる。   The paste 108 containing Ag discharged by inkjet contains Ag nanoparticles, and the resistivity can be reduced as compared with Cu used as a conventional wiring material. In addition, since it is liquid, it can be covered with any shape of the base, and wiring can be formed without being bound by the shape of the base.

また、Agを含むペースト108のAgのナノ粒子の大きさは3nm〜5nm程度である。よって、Agを含むペーストを多孔質絶縁膜の層間絶縁膜103上あるいは層間絶縁膜103上に成膜されたバリア膜107上に塗布すると、Ag粒子が層間絶縁膜103の空孔や凹部あるいは層間絶縁膜103の上に成膜されたバリア膜107の凹部に入り込み、いわゆるアンカー効果によって密着力が強化される。   Moreover, the size of the Ag nanoparticles of the paste 108 containing Ag is about 3 nm to 5 nm. Therefore, when a paste containing Ag is applied on the interlayer insulating film 103 of the porous insulating film or on the barrier film 107 formed on the interlayer insulating film 103, Ag particles are formed in the pores, recesses or interlayers of the interlayer insulating film 103. The barrier film 107 formed on the insulating film 103 enters the recess and the adhesion is enhanced by the so-called anchor effect.

Agを含むペースト108は300℃程度の焼成を行わなければ、十分な導電率を得る事ができない。そのため、本実施の形態ではレーザー装置を用いてAgを含むペースト108のみを選択的に加熱焼成する。ここで、レーザー装置を用いる理由は後述して説明する。   If the paste 108 containing Ag is not baked at about 300 ° C., sufficient conductivity cannot be obtained. Therefore, in this embodiment mode, only the paste 108 containing Ag is selectively heated and fired using a laser device. Here, the reason for using the laser device will be described later.

なお、本実施の形態では、Agを含むペーストを焼成した後の形成物もAgを含むペースト108と呼んでいる。実際は、焼成によって融合や融着接合させ固化された導電体であり、第2の導電層とも呼べる。   Note that in this embodiment mode, a formed product after baking a paste containing Ag is also called a paste 108 containing Ag. Actually, it is a conductor solidified by fusion or fusion bonding by firing, and can also be called a second conductive layer.

次に、図2(A)に示すように、Agを含むペースト108を覆うように、スパッタリング法によって導電膜109を全面に形成する。図2(A)に示すように、膜厚の厚い第2のマスク104bの内壁にはほとんど形成されないように形成することが望ましい。なお、図2(A)では、接続孔106aの内壁および配線溝106bの内壁にも形成されないようにしているが、成膜してもよい。導電膜109はAgを含むペースト108が焼成された後、Agを含むペースト108が層間絶縁膜103へ拡散しておこるリークなどのデバイス不良を防ぐためのバリアとして用いる。   Next, as illustrated in FIG. 2A, a conductive film 109 is formed over the entire surface by a sputtering method so as to cover the paste 108 containing Ag. As shown in FIG. 2A, it is desirable that the second mask 104b having a large thickness is hardly formed on the inner wall. In FIG. 2A, although not formed on the inner wall of the connection hole 106a and the inner wall of the wiring groove 106b, a film may be formed. The conductive film 109 is used as a barrier for preventing a device failure such as a leak that occurs when the paste 108 containing Ag is baked and then the paste 108 containing Ag diffuses into the interlayer insulating film 103.

また、Agを含むペースト108はエッチングガスにより腐食し、導電率が低下する問題がある。図2(C)のような構造を製作する場合を想定して説明する。この構造では層間絶縁膜112に接続孔114形成し、導電性Agペースト111と上部電極113が導通している。接続孔114を形成するにあたりドライエッチングで層間絶縁膜112をエッチングすると、励起されたエッチングガスが導電性Agペースト111を腐食させ、導電率を著しく低下させてしまう。   Further, the paste 108 containing Ag is corroded by the etching gas, and there is a problem that the conductivity is lowered. Description will be made assuming that a structure as shown in FIG. In this structure, a connection hole 114 is formed in the interlayer insulating film 112, and the conductive Ag paste 111 and the upper electrode 113 are electrically connected. When the interlayer insulating film 112 is etched by dry etching to form the connection hole 114, the excited etching gas corrodes the conductive Ag paste 111, and the conductivity is significantly reduced.

このような腐食を防ぐためには、図2(A)に示すように導電膜109を用いてバリアすることが有効である。なお、導電膜109は、第3の導電層とも呼べる。   In order to prevent such corrosion, it is effective to use a conductive film 109 as a barrier as shown in FIG. Note that the conductive film 109 can also be referred to as a third conductive layer.

以上のような理由から、導電膜109は低抵抗であること、導電性Agペースト108の拡散を抑えるバリア性があること、ドライエッチングにおいて珪素系層間絶縁膜との選択比が十分大きいこと、を少なくとも備えた材料である事が好ましい。例えば導電膜109はW、Mo、Ti、Cr、Taから選ばれる1種または複数種を含む材料を用いればよい。   For the above reasons, the conductive film 109 has a low resistance, has a barrier property to suppress the diffusion of the conductive Ag paste 108, and has a sufficiently large selection ratio with the silicon-based interlayer insulating film in dry etching. It is preferable that the material is provided at least. For example, the conductive film 109 may be formed using a material including one or more selected from W, Mo, Ti, Cr, and Ta.

上記導電膜109を成膜した後、図2(B)に示すようにフォトレジストとして機能する第2のマスク104bを除去する。このときフォトレジストからなる第2のマスク104b上に堆積しているバリア膜107及び導電膜109はフォトレジストからなる第2のマスク104bとともに除去され、層間絶縁膜103に埋め込まれた配線110を形成することができる。埋め込まれた配線110は、バリア膜107と導電膜109によってAgを囲んでいる構造となっている。   After the conductive film 109 is formed, the second mask 104b functioning as a photoresist is removed as shown in FIG. At this time, the barrier film 107 and the conductive film 109 deposited on the second mask 104b made of photoresist are removed together with the second mask 104b made of photoresist, and a wiring 110 embedded in the interlayer insulating film 103 is formed. can do. The embedded wiring 110 has a structure in which Ag is surrounded by the barrier film 107 and the conductive film 109.

ここで、上記導電性Agペースト108の焼成にレーザー装置を使用する理由を説明する。フォトレジスト上の堆積物をフォトレジストごと除去する方法をリフトオフ法という。この方法を用いるためにはフォトレジストが基板から剥離できること、フォトレジスト上の堆積物と基板上の堆積物が断絶していること等が必要条件となる。本発明の作製工程において、もし、オーブン等の加熱器具を用いた場合、基板全体が加熱されるとともにレジストも数百度に加熱される。通常フォトレジストは高温で加熱されると剥離性が低下するため、リフトオフ法を用いる事ができなくなる。このため、本実施の形態では配線焼成工程後にリフトオフ法を用いる事を可能とするため、レーザー装置を用いて配線を選択的に焼成するものである。   Here, the reason why a laser device is used for firing the conductive Ag paste 108 will be described. A method of removing the deposit on the photoresist together with the photoresist is called a lift-off method. In order to use this method, it is necessary that the photoresist can be peeled from the substrate, and that the deposit on the photoresist and the deposit on the substrate are cut off. In the manufacturing process of the present invention, if a heating instrument such as an oven is used, the entire substrate is heated and the resist is heated to several hundred degrees. Usually, when the photoresist is heated at a high temperature, the peelability is lowered, so that the lift-off method cannot be used. For this reason, in this embodiment, in order to make it possible to use the lift-off method after the wiring baking process, the wiring is selectively baked using a laser device.

また、トランジスタ等の素子が形成された半導体基板上に設けられた絶縁膜101を用いた例を示したが、特に限定されず、ガラス基板上に設けられた絶縁膜でもよく、例えば、ガラス基板上に設けられたTFTの層間絶縁膜上に下層配線を形成し、該下層配線と接続する埋め込み配線を形成してもよい。   Moreover, although the example using the insulating film 101 provided on the semiconductor substrate on which an element such as a transistor is formed is shown, the insulating film provided on the glass substrate may be used without any particular limitation. For example, the glass substrate A lower layer wiring may be formed on the interlayer insulating film of the TFT provided thereon, and a buried wiring connected to the lower layer wiring may be formed.

(実施の形態2)
本実施の形態では、上述した実施の形態1とは工程が一部異なる本発明の一形態について図3(A)〜図3(F)を用いて説明する。ここでも簡略化のため、半導体素子や集積回路は図示せず、埋め込まれた銀配線と下層配線の接続部分のみを図示することとする。
(Embodiment 2)
In this embodiment, one embodiment of the present invention, in which steps are partly different from those of Embodiment 1 described above, will be described with reference to FIGS. Here again, for the sake of simplification, the semiconductor element and the integrated circuit are not shown, and only the connection portion between the embedded silver wiring and the lower layer wiring is shown.

まず、実施の形態1と同様にして、図1(A)から図1(C)の工程までを行う。そしてマスクを除去して図3(A)の状態を得る。図3(A)では、トランジスタ等の素子(図示せず)が形成された半導体基板上に設けられた絶縁膜201上に形成された下層配線202と、層間絶縁膜203と、層間絶縁膜に設けられた接続孔204a及び配線溝204bが示されている。   First, similarly to Embodiment Mode 1, steps from FIG. 1A to FIG. 1C are performed. Then, the mask is removed to obtain the state of FIG. In FIG. 3A, a lower wiring 202 formed on an insulating film 201 provided over a semiconductor substrate on which an element (not shown) such as a transistor is formed, an interlayer insulating film 203, and an interlayer insulating film The provided connection hole 204a and wiring groove 204b are shown.

次いで、図3(B)に示すようにスパッタ法あるいはCVD法によりバリア膜205を全面に形成する。なお、開口部の内壁にもバリア膜を形成する。また、バリア膜205は第1の導電層と呼べる。   Next, as shown in FIG. 3B, a barrier film 205 is formed over the entire surface by sputtering or CVD. A barrier film is also formed on the inner wall of the opening. The barrier film 205 can be referred to as a first conductive layer.

次いで、後に滴下する液滴のぬれ性向上のため、紫外線照射によりバリア膜205の表面処理を行う。ここで、ぬれ性向上のための表面処理とは、液滴との接触角が10°以下になるような処理を行うことで、紫外線照射のほかに酸素、アルゴン、水素、ヘリウム、等のガスを用いたプラズマ処理あるいはコロナ放電処理がある。   Next, surface treatment of the barrier film 205 is performed by ultraviolet irradiation in order to improve the wettability of the droplets dropped later. Here, the surface treatment for improving the wettability is a treatment such that the contact angle with the droplet is 10 ° or less, and in addition to ultraviolet irradiation, a gas such as oxygen, argon, hydrogen, helium, etc. There is plasma processing using corona or corona discharge processing.

次に、図3(C)に示すようにインクジェット法を用いて接続孔204aと配線溝204bをAgを含むペースト206で満たす。ここで、上記の表面改質処理によりAgを含むペースト206は塗れ広がる。接続孔204aと配線溝204bから溢れ出たAgを含むペースト206は、接続孔204aと配線溝204bの周辺に形成された隣接する接続孔や配線溝などの開口部(図示せず)にも塗れ広がるようにして満たす。   Next, as shown in FIG. 3C, the connection hole 204a and the wiring groove 204b are filled with a paste 206 containing Ag by an ink jet method. Here, the paste 206 containing Ag spreads and spreads by the surface modification treatment. The paste 206 containing Ag overflowing from the connection hole 204a and the wiring groove 204b can also be applied to openings (not shown) such as adjacent connection holes and wiring grooves formed around the connection hole 204a and the wiring groove 204b. Fill to spread.

上記のように、塗れ広がるようにしてAgを含むペースト206を滴下することにより、同じようにインクジェット法を用いて接続孔204aや配線溝204bをなぞりながら滴下する方法と比較して、滴下工程のタクトタイムを短縮させることが可能となる。また、スピンオンコート法で塗布する方式よりも材料の消費を少なくすることが可能となる。   As described above, by dropping the paste 206 containing Ag so as to spread and spread, the dropping process is compared with the method of dropping the connection hole 204a and the wiring groove 204b using the inkjet method. It is possible to shorten the tact time. Further, the consumption of material can be reduced as compared with a method of applying by spin-on coating.

次に、オーブン等の加熱装置を用いて300℃、1時間の焼成を行う。なお、本実施の形態では、Agを含むペーストを焼成して含まれる溶媒を気化させた後の形成物もAgを含むペースト206と呼んでいる。実際は、焼成によって融合や融着接合させ固化された導電体であり、第2の導電層とも呼べる。   Next, baking is performed at 300 ° C. for 1 hour using a heating apparatus such as an oven. Note that in this embodiment mode, a formed product obtained by baking a paste containing Ag and evaporating a solvent contained therein is also referred to as a paste 206 containing Ag. Actually, it is a conductor solidified by fusion or fusion bonding by firing, and can also be called a second conductive layer.

次に、図3(D)に示すようにフォトリソグラフィーを用いてパターニングを行い、シュウ酸とリン酸と酢酸との混酸水溶液によりウェットエッチングを施し、Ag配線207を形成する。   Next, as shown in FIG. 3D, patterning is performed using photolithography, and wet etching is performed with a mixed acid aqueous solution of oxalic acid, phosphoric acid, and acetic acid to form an Ag wiring 207.

次に、図3(E)に示すように、導電膜208をスパッタ法により形成する。なお、導電膜208は、第3の導電層とも呼べる。   Next, as shown in FIG. 3E, a conductive film 208 is formed by a sputtering method. Note that the conductive film 208 can also be referred to as a third conductive layer.

次に、図3(F)に示すように、バリア膜205と導電膜208を異方性エッチングによりエッチングする。こうして層間絶縁膜203に埋め込まれた配線を得ることができる。埋め込まれた配線は、バリア膜205と導電膜208によってAgを囲んでいる構造となっている。   Next, as shown in FIG. 3F, the barrier film 205 and the conductive film 208 are etched by anisotropic etching. In this way, a wiring embedded in the interlayer insulating film 203 can be obtained. The embedded wiring has a structure in which Ag is surrounded by the barrier film 205 and the conductive film 208.

また、本実施の形態は、実施の形態1と自由に組み合わせることができる。   Further, this embodiment mode can be freely combined with Embodiment Mode 1.

以上の構成でなる本発明について、以下に示す実施例でもってさらに詳細な説明を行うこととする。   The present invention having the above-described configuration will be described in more detail with the following examples.

以下に本発明を用いたFETの作製手順を簡略に図4を用いて示す。ここではFETの不純物領域に接続された配線を下層配線として、下層配線を覆う多孔質絶縁膜に埋め込み配線を形成する例を示す。   Hereinafter, a manufacturing procedure of an FET using the present invention will be briefly described with reference to FIG. Here, an example is shown in which a wiring connected to the impurity region of the FET is used as a lower layer wiring and a buried wiring is formed in a porous insulating film covering the lower layer wiring.

まず、単結晶シリコンからなるシリコン基板301を用意する。そして、シリコン基板の主面(素子形成面または回路形成面)の第1の素子形成領域にn型ウェル302を、第2の素子形成領域にp型ウェル303をそれぞれ選択的に形成する。   First, a silicon substrate 301 made of single crystal silicon is prepared. Then, the n-type well 302 and the p-type well 303 are selectively formed in the first element formation region and the second element formation region of the main surface (element formation surface or circuit formation surface) of the silicon substrate, respectively.

次いで、第1の素子形成領域と第2の素子形成領域とを区画するための素子分離領域となるフィールド酸化膜306を形成する。フィールド酸化膜306は厚い熱酸化膜であり、公知のLOCOS法を用いて形成すればよい。なお、素子分離法は、LOCOS法に限定されず、例えば素子分離領域はトレンチ分離法を用いてトレンチ構造を有していてもよいし、LOCOS構造とトレンチ構造の組み合わせであってもよい。   Next, a field oxide film 306 serving as an element isolation region for partitioning the first element formation region and the second element formation region is formed. The field oxide film 306 is a thick thermal oxide film and may be formed using a known LOCOS method. The element isolation method is not limited to the LOCOS method. For example, the element isolation region may have a trench structure using the trench isolation method, or may be a combination of the LOCOS structure and the trench structure.

次いで、シリコン基板の表面を、例えば熱酸化させることによってゲート絶縁膜を形成する。ゲート絶縁膜は、CVD法を用いて形成してもよく、酸化窒化珪素膜や酸化珪素膜や窒化珪素膜やそれらの積層膜を用いることができる。例えば、熱酸化により得られる膜厚5nmの酸化珪素膜とCVD法で得られる膜厚10nm〜15nmの酸化窒化珪素膜の積層膜を形成する。   Next, a gate insulating film is formed by thermally oxidizing the surface of the silicon substrate, for example. The gate insulating film may be formed by a CVD method, and a silicon oxynitride film, a silicon oxide film, a silicon nitride film, or a stacked film thereof can be used. For example, a stacked film of a silicon oxide film having a thickness of 5 nm obtained by thermal oxidation and a silicon oxynitride film having a thickness of 10 nm to 15 nm obtained by a CVD method is formed.

次いで、ポリシリコン層311a、317aとシリサイド層311b、317bとの積層膜を全面に形成し、リソグラフィ技術およびドライエッチング技術に基づき積層膜をパターニングすることによってゲート絶縁膜上にポリサイド構造を有するゲート電極311、317を形成する。ポリシリコン層311a、317aは低抵抗化するために予め、1021/cm程度の濃度でリン(P)をドープしておいても良いし、ポリシリコン膜を形成した後で濃いn型不純物を拡散させても良い。また、シリサイド層311b、317bを形成する材料はモリブデンシリサイド(MoSix)、タングステンシリサイド(WSix)、タンタルシリサイド(TaSix)、チタンシリサイド(TiSix)などを適用することが可能であり、公知の方法に従い形成すれば良い。 Next, a laminated film of polysilicon layers 311a and 317a and silicide layers 311b and 317b is formed on the entire surface, and the laminated film is patterned based on a lithography technique and a dry etching technique, thereby forming a gate electrode having a polycide structure on the gate insulating film. 311 and 317 are formed. The polysilicon layers 311a and 317a may be doped in advance with phosphorus (P) at a concentration of about 10 21 / cm 3 in order to reduce the resistance, or after the formation of the polysilicon film, a deep n-type impurity May be diffused. The silicide layers 311b and 317b can be made of molybdenum silicide (MoSix), tungsten silicide (WSix), tantalum silicide (TaSix), titanium silicide (TiSix), or the like. Just do it.

次いで、エクステンション領域を形成するために、ゲート絶縁膜を介してシリコン半導体基板にイオン注入を行う。本実施例においては、各ソース領域およびドレイン領域とチャネル形成領域との間に形成された不純物領域をエクステンション領域と呼ぶ。エクステンション領域307、313の不純物濃度は、ソース領域およびドレイン領域の不純物濃度よりも低い場合もあるし、同等の場合もあるし、高い場合もある。即ち、エクステンション領域の不純物濃度は、半導体装置に要求される特性に基づいて決定すればよい。   Next, in order to form an extension region, ion implantation is performed on the silicon semiconductor substrate through the gate insulating film. In this embodiment, the impurity region formed between each source region and drain region and the channel formation region is called an extension region. The impurity concentration of the extension regions 307 and 313 may be lower than that of the source region and the drain region, may be equal, or may be higher. That is, the impurity concentration in the extension region may be determined based on characteristics required for the semiconductor device.

本実施例は、CMOSを製造する場合であるので、pチャネル型FETを形成すべき第1の素子形成領域をレジスト材料で被覆し、ゲート電極317をマスクとして用いてn型不純物であるヒ素(As)やリン(P)をシリコン基板に注入する。また、nチャネル型FETを形成すべき第2の素子形成領域をレジスト材料で被覆し、ゲート電極をマスクとして用いてp型不純物であるボロン(B)をシリコン基板に注入する。   Since this embodiment is a case of manufacturing a CMOS, a first element formation region in which a p-channel FET is to be formed is covered with a resist material, and an arsenic (n-type impurity) is formed using the gate electrode 317 as a mask. As) or phosphorus (P) is implanted into the silicon substrate. Further, the second element formation region in which the n-channel FET is to be formed is covered with a resist material, and boron (B), which is a p-type impurity, is implanted into the silicon substrate using the gate electrode as a mask.

次いで、イオン注入された不純物の活性化および、イオン注入によって発生したシリコン基板における結晶欠陥を回復するために、第1回目の活性化処理を行う。   Next, a first activation process is performed in order to activate the ion-implanted impurities and recover crystal defects in the silicon substrate generated by the ion implantation.

次いで、ゲート電極の側壁にサイドウォール312、318を形成する。例えば酸化珪素からなる絶縁材料層を全面にCVD法にて堆積させ、かかる絶縁材料層をエッチバックすることによってサイドウォールを形成すればよい。サイドウォールを形成することにより、絶縁膜331の被覆性を向上させ、不純物領域を形成する際にマスクとして用いることができる。また、エッチバックの際に自己整合的にゲート絶縁膜を選択的に除去してもよい。また、エッチバック後にゲート絶縁膜のエッチングを行ってもよい。こうして、ゲート電極の幅と、そのゲート電極の側壁の両側に設けられたサイドウォールの幅とを合計した幅を有するゲート絶縁膜310、316が形成される。ゲート絶縁膜を選択的に除去することにより、後にコンタクトホールを形成することが容易になり、また、絶縁膜331の接する表面積が増大するので、密着性を向上することができる。   Next, sidewalls 312 and 318 are formed on the sidewalls of the gate electrode. For example, an insulating material layer made of silicon oxide may be deposited on the entire surface by a CVD method, and the insulating material layer may be etched back to form the sidewall. By forming the sidewall, the coverage of the insulating film 331 can be improved and used as a mask when the impurity region is formed. Further, the gate insulating film may be selectively removed in a self-aligning manner during the etch back. Further, the gate insulating film may be etched after the etch back. Thus, gate insulating films 310 and 316 having a total width of the width of the gate electrode and the widths of the sidewalls provided on both sides of the side wall of the gate electrode are formed. By selectively removing the gate insulating film, a contact hole can be easily formed later, and the surface area with which the insulating film 331 is in contact is increased, so that adhesion can be improved.

次いで、ソース領域およびドレイン領域を形成するために、露出したシリコン基板にイオン注入を行う。CMOSを製造する場合であるので、pチャネル型FETを形成すべき第1の素子形成領域をレジスト材料で被覆し、ゲート電極317、サイドウォール318をマスクとして用いてn型不純物であるヒ素(As)やリン(P)をシリコン基板に注入してソース領域314及びドレイン領域315を形成する。また、nチャネル型FETを形成すべき第2の素子形成領域をレジスト材料で被覆し、ゲート電極311、サイドウォール312をマスクとして用いてp型不純物であるボロン(B)をシリコン基板に注入してソース領域308及びドレイン領域309を形成する。   Next, ion implantation is performed on the exposed silicon substrate to form a source region and a drain region. Since the CMOS is manufactured, the first element formation region in which the p-channel FET is to be formed is covered with a resist material, and arsenic (As) that is an n-type impurity is formed using the gate electrode 317 and the sidewall 318 as a mask. ) Or phosphorus (P) is implanted into the silicon substrate to form the source region 314 and the drain region 315. Further, the second element formation region in which the n-channel FET is to be formed is covered with a resist material, and boron (B), which is a p-type impurity, is implanted into the silicon substrate using the gate electrode 311 and the sidewall 312 as a mask. Thus, a source region 308 and a drain region 309 are formed.

次いで、イオン注入された不純物の活性化および、イオン注入によって発生したシリコン基板における結晶欠陥を回復するために、第2回目の活性化処理を行う。   Next, a second activation process is performed in order to activate the ion-implanted impurities and recover crystal defects in the silicon substrate generated by the ion implantation.

そして、活性化後に層間絶縁膜やプラグ電極やメタル配線等を形成する。第1の層間絶縁膜331は、プラズマCVD法や減圧CVD法を用いて酸化シリコン膜や酸化窒化シリコン膜などで100〜2000nmの厚さに形成する。さらにその上にリンガラス(PSG)、あるいはボロンガラス(BSG)、もしくはリンボロンガラス(PBSG)の第2の層間絶縁膜332が形成する。第2の層間絶縁膜332は、平坦性を上げるため、スピンコート法や常圧CVD法で作製する。   Then, after activation, an interlayer insulating film, a plug electrode, a metal wiring, and the like are formed. The first interlayer insulating film 331 is formed to a thickness of 100 to 2000 nm using a silicon oxide film, a silicon oxynitride film, or the like by using a plasma CVD method or a low pressure CVD method. Further thereon, a second interlayer insulating film 332 of phosphorus glass (PSG), boron glass (BSG), or phosphorus boron glass (PBSG) is formed. The second interlayer insulating film 332 is formed by spin coating or atmospheric pressure CVD in order to improve flatness.

ソース電極333、335、及びドレイン電極334、336は、第1の層間絶縁膜331および第2の層間絶縁膜332にそれぞれのFETのソース領域及びドレイン領域に達するコンタクトホールを形成した後に形成するもので、低抵抗材料として通常良く用いられるアルミニウム(Al)を用いると良い。また、Alとチタン(Ti)の積層構造としても良い。   The source electrodes 333 and 335 and the drain electrodes 334 and 336 are formed after forming contact holes reaching the source and drain regions of the respective FETs in the first interlayer insulating film 331 and the second interlayer insulating film 332. Therefore, it is preferable to use aluminum (Al) which is usually used as a low resistance material. Alternatively, a stacked structure of Al and titanium (Ti) may be used.

また、ここでは図示していないが、第1の層間絶縁膜331および第2の層間絶縁膜332にゲート電極に達するコンタクトホールが設けられ、第2の層間絶縁膜上に設けられている配線と電気的に接続する電極が第1の層間絶縁膜上に形成される。   Although not shown here, a contact hole reaching the gate electrode is provided in the first interlayer insulating film 331 and the second interlayer insulating film 332, and a wiring provided on the second interlayer insulating film and An electrically connected electrode is formed on the first interlayer insulating film.

次いで、第3の層間絶縁膜となる多孔質絶縁膜342を形成する。多孔質絶縁膜342は、膜中に孤立した微小な空孔が均一に分布している絶縁膜であり、プラズマ反応を含めたCVD法またはスピン塗布法によって得ることができる。   Next, a porous insulating film 342 serving as a third interlayer insulating film is formed. The porous insulating film 342 is an insulating film in which minute pores isolated in the film are uniformly distributed in the film, and can be obtained by a CVD method including a plasma reaction or a spin coating method.

次いで、実施の形態1に示した埋め込み配線形成方法に従って、マスクを用いてエッチングを行い、ソース電極333、335に達する接続孔および配線溝を形成する。   Next, in accordance with the embedded wiring formation method shown in Embodiment Mode 1, etching is performed using a mask to form connection holes and wiring grooves reaching the source electrodes 333 and 335.

次いで、第1の導電層350となるバリア膜を形成し、インクジェット法でAgを含むペーストを吐出する。そして、選択的にレーザ光を照射してAgを含むペーストを焼成して第2の導電層351を形成する。そして第2の導電層351の上面を覆うように第3の導電層352を形成する。そして、マスクを除去することによって、マスク上に設けられたバリア膜と第3導電膜も除去して埋め込み配線を形成する。こうして形成された埋め込み配線は、第3の導電層352の上面を含む面と、多孔質絶縁膜342の上面を含む面とで段差を有している。また、その段差部には第3の導電層352よりも突出した第1の導電層350が設けられている。   Next, a barrier film to be the first conductive layer 350 is formed, and a paste containing Ag is discharged by an inkjet method. Then, a second conductive layer 351 is formed by selectively irradiating laser light and baking a paste containing Ag. Then, a third conductive layer 352 is formed so as to cover the upper surface of the second conductive layer 351. Then, by removing the mask, the barrier film and the third conductive film provided on the mask are also removed to form a buried wiring. The embedded wiring formed in this manner has a step between a surface including the upper surface of the third conductive layer 352 and a surface including the upper surface of the porous insulating film 342. In addition, a first conductive layer 350 protruding from the third conductive layer 352 is provided in the stepped portion.

次いで、第4の層間絶縁膜343を形成する。第4の層間絶縁膜343は有機樹脂材料で1μm〜2μmの厚さに形成する。有機樹脂材料として、ポリイミド、ポリアミド、アクリル、ベンゾシクロブテン(BCB)などを用いることができる。有機樹脂膜を用いることの利点は、膜の形成方法が簡単である点や、比誘電率が低いので寄生容量を低減できる点、平坦化するのに適している点などがある。勿論、上述した以外の有機樹脂膜を用いても良い。   Next, a fourth interlayer insulating film 343 is formed. The fourth interlayer insulating film 343 is formed of an organic resin material with a thickness of 1 μm to 2 μm. As the organic resin material, polyimide, polyamide, acrylic, benzocyclobutene (BCB), or the like can be used. Advantages of using the organic resin film include that the film formation method is simple, that the parasitic capacitance can be reduced because the relative dielectric constant is low, and that it is suitable for planarization. Of course, organic resin films other than those described above may be used.

次いで、第3の導電層352に達するコンタクトホールを形成し、スパッタ法で導電膜の成膜を行った後、パターニングを行って電極353を形成する。   Next, a contact hole reaching the third conductive layer 352 is formed, a conductive film is formed by a sputtering method, and then patterning is performed to form an electrode 353.

最後に、電極353を覆うパッシベーション膜344を形成し、図4の状態を得る。図4において向かって左側がpチャネル型FET401であり、右側がnチャネル型FET402である。これらのFETを相補的に組み合わせればCMOS回路を形成することができる。   Finally, a passivation film 344 that covers the electrode 353 is formed to obtain the state shown in FIG. In FIG. 4, the left side is a p-channel FET 401 and the right side is an n-channel FET 402. If these FETs are combined in a complementary manner, a CMOS circuit can be formed.

CMOS回路は、インバータ回路、NAND回路、AND回路、NOR回路、OR回路、シフトレジスタ回路、サンプリング回路、D/Aコンバータ回路、A/Dコンバータ回路、ラッチ回路、バッファ回路などを構成することができる。加えて、これらのCMOS回路を組み合わせることによってSRAMやDRAMなどのメモリ素子や、CPUや、コントローラ回路や、その他の集積回路を構成することができる。   The CMOS circuit can constitute an inverter circuit, NAND circuit, AND circuit, NOR circuit, OR circuit, shift register circuit, sampling circuit, D / A converter circuit, A / D converter circuit, latch circuit, buffer circuit, and the like. . In addition, by combining these CMOS circuits, a memory element such as SRAM and DRAM, a CPU, a controller circuit, and other integrated circuits can be configured.

また、パッシベーション膜344は、プラズマCVD法で窒化シリコン膜、または酸化シリコン膜、あるいは窒化酸化シリコン膜で形成されている。   The passivation film 344 is formed of a silicon nitride film, a silicon oxide film, or a silicon nitride oxide film by a plasma CVD method.

なお、本実施例ではFETの構造としてトップゲート型の例を示したが、特にFETの構造は限定されず、例えば順スタガ型のFETであってもよい。   In this embodiment, an example of a top gate type is shown as the structure of the FET. However, the structure of the FET is not particularly limited, and, for example, a forward stagger type FET may be used.

本発明により、銅よりも電気抵抗率の低い銀を配線材料とし、且つ、配線開口部が形成される絶縁膜の材料として誘電率の低い多孔質絶縁膜を使用する構造を実現することができる。従って、本発明により、高速動作が可能で高性能な半導体デバイスを実現することができる。   According to the present invention, it is possible to realize a structure in which silver having a lower electrical resistivity than copper is used as a wiring material and a porous insulating film having a low dielectric constant is used as a material for an insulating film in which a wiring opening is formed. . Therefore, according to the present invention, a high-performance semiconductor device capable of high-speed operation can be realized.

また、本発明は、電解めっき法やCMP法を用いることなく埋め込み配線を形成することによって、配線形成にかかる製造コストを低減させることができる。   Further, according to the present invention, the manufacturing cost for forming the wiring can be reduced by forming the embedded wiring without using the electrolytic plating method or the CMP method.

なお、本実施例では、多層配線の一部の配線を埋め込み配線として低抵抗化を図った例を示したが、さらに多くの層に埋め込み配線を設けてもよい。   In the present embodiment, an example is shown in which a part of the multi-layer wiring is used as a buried wiring to reduce the resistance. However, the buried wiring may be provided in more layers.

また、本実施例は、実施の形態1または実施の形態2と自由に組み合わせることができる。   In addition, this embodiment can be freely combined with Embodiment Mode 1 or Embodiment Mode 2.

実施例1に示したFETを有する集積回路は、半導体基板に多数形成され、個々に分離してチップを形成する。チップを個々に分離するためにダイシングを行う。ついで、ウェーハからチップを一つずつピックアップし、リードフレームに搭載する。そして、チップの電極端子とリードフレームのインナリードとの間を、直径約20〜30μmの金ワイヤーで電気的導通できるように繋ぐ。次いで、取り扱いが容易になるようにモールド樹脂層で封止する。次いで、リードをはんだメッキして錆を防ぐ。次いで、リードフレームから個々のパッケージに切り離し、リードを成形する。こうして、パッケージを行う。   A large number of integrated circuits having FETs shown in the first embodiment are formed on a semiconductor substrate and are individually separated to form a chip. Dicing is performed to separate the chips individually. Next, chips are picked up one by one from the wafer and mounted on the lead frame. Then, the electrode terminals of the chip and the inner leads of the lead frame are connected so as to be electrically connected by a gold wire having a diameter of about 20 to 30 μm. Then, it is sealed with a mold resin layer so as to facilitate handling. The leads are then solder plated to prevent rust. Next, the lead frame is cut into individual packages, and the leads are molded. Thus, packaging is performed.

図5に、パッケージが行われたデバイスの断面構造を表す斜視図を示す。図5に示す構造は、ワイヤボンディング法でチップ702がリードフレーム701に接続されている。また、チップ702は、モールド樹脂層703によって封止されている。また、チップ702はリードフレーム701上に、マウント用の接着剤704によりマウントされている。   FIG. 5 is a perspective view showing a cross-sectional structure of a device in which packaging is performed. In the structure shown in FIG. 5, a chip 702 is connected to a lead frame 701 by a wire bonding method. The chip 702 is sealed with a mold resin layer 703. The chip 702 is mounted on the lead frame 701 with a mounting adhesive 704.

また、リードフレーム701は、ソルダーボール705が設けられたボールグリッドアレイ型である。ソルダーボール705は、リードフレーム701のチップ702がマウントされている側とは反対の側に設けられている。そしてリードフレーム701に設けられた配線706は、リードフレームに設けられたコンタクトホールを介して、ソルダーボール705と電気的に接続している。   The lead frame 701 is a ball grid array type provided with solder balls 705. The solder ball 705 is provided on the side of the lead frame 701 opposite to the side on which the chip 702 is mounted. The wiring 706 provided in the lead frame 701 is electrically connected to the solder ball 705 through a contact hole provided in the lead frame.

なお、本実施例では、チップ702とソルダーボール705との電気的な接続をするための配線706を、リードフレーム701のチップがマウントされている面上に設けているが、リードフレームはこれに限定されない。例えば、リードフレームの内部において配線が多層化されて設けられていても良い。   In this embodiment, the wiring 706 for electrical connection between the chip 702 and the solder ball 705 is provided on the surface of the lead frame 701 on which the chip is mounted. It is not limited. For example, the wiring may be provided in multiple layers inside the lead frame.

そして、図4では、チップ702と配線706とが、金ワイヤー707によって電気的に接続されている。チップ702には半導体素子が設けられており、またチップ702のリードフレーム701が設けられている側とは反対側に、パッドが設けられている。パッドは該半導体素子と電気的に接続されている。そしてパッドは、リードフレーム701に設けられた配線706と、金ワイヤー707によって接続されている。   In FIG. 4, the chip 702 and the wiring 706 are electrically connected by a gold wire 707. The chip 702 is provided with a semiconductor element, and a pad is provided on the side of the chip 702 opposite to the side on which the lead frame 701 is provided. The pad is electrically connected to the semiconductor element. The pad is connected to a wiring 706 provided on the lead frame 701 by a gold wire 707.

また、本実施例は実施の形態1、実施の形態2、または実施例1と自由に組み合わせることができる。   Further, this embodiment can be freely combined with Embodiment Mode 1, Embodiment Mode 2, or Embodiment 1.

本発明の埋め込み配線を用いて集積した回路を作り込んだICチップを搭載し、様々な電子機器を完成させることができる。また、FETをスイッチング素子とし、該スイッチング素子に接続する反射電極を設けることによって反射型のアクティブマトリクス基板として電子機器の表示部を構成し、様々な電子機器を完成させることができる。   Various electronic devices can be completed by mounting an IC chip in which an integrated circuit is built using the embedded wiring of the present invention. In addition, by providing a switching element with an FET and providing a reflective electrode connected to the switching element, a display portion of the electronic device can be configured as a reflective active matrix substrate, and various electronic devices can be completed.

例えば、FETをスイッチング素子とし、該スイッチング素子に接続する画素電極と、液晶層と、対向電極とを設けて液晶素子を設けることによってアクティブマトリクス型の液晶表示装置として電子機器の表示部を構成し、様々な電子機器を完成させることもできる。   For example, a display unit of an electronic device is configured as an active matrix type liquid crystal display device by using a FET as a switching element and providing a liquid crystal element by providing a pixel electrode, a liquid crystal layer, and a counter electrode connected to the switching element. Various electronic devices can also be completed.

例えば、FETをスイッチング素子とし、該スイッチング素子に接続する第1の電極と、有機化合物を含む層と、第2の電極とを積層させて発光素子を設けることによってアクティブマトリクス型の発光装置として電子機器の表示部を構成し、様々な電子機器を完成させることもできる。   For example, an electron can be formed as an active matrix light-emitting device by using a FET as a switching element and providing a light-emitting element by stacking a first electrode connected to the switching element, a layer containing an organic compound, and a second electrode. A display unit of the device can be configured to complete various electronic devices.

そのような電子機器としては、パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍等)、ビデオカメラ、デジタルカメラ、反射型プロジェクター、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、記録媒体を備えた画像再生装置(具体的にはDigital Versatile Disc(DVD)等の記録媒体を再生し、その画像を表示しうるディスプレイとICチップを備えた装置)などが挙げられる。   Such electronic devices include personal computers, game devices, portable information terminals (mobile computers, mobile phones, portable game machines, electronic books, etc.), video cameras, digital cameras, reflective projectors, navigation systems, sound playback devices. (Car audio, audio component, etc.), image reproducing apparatus provided with a recording medium (specifically, an apparatus including a display and an IC chip capable of reproducing a recording medium such as a digital versatile disc (DVD) and displaying the image) ) And the like.

本発明の電子機器の1つである携帯電話を例に挙げ、パッケージが実際に電子機器に実装されている様子を図6(A)に示す。   A cellular phone which is one of the electronic devices of the present invention is taken as an example, and FIG. 6A shows a state where a package is actually mounted on the electronic device.

図6(A)に示す携帯電話のモジュールは、プリント配線基板816に、メモリ上に積層されたCPU811、802、電源回路803、音声処理回路829に積層されたコントローラ801、送受信回路804や、その他、抵抗、バッファ、容量素子等の素子が実装されている。また、パネル800がFPC808によってプリント配線基板816に実装されている。パネル800には、画素部805と、該画素部805が有する画素を選択する走査線駆動回路806と、選択された画素にビデオ信号を供給する信号線駆動回路807とが設けられている。   The cellular phone module shown in FIG. 6A includes a printed wiring board 816, CPUs 811 and 802 stacked on a memory, a power supply circuit 803, a controller 801 stacked on an audio processing circuit 829, a transmission / reception circuit 804, and the like. Elements such as a resistor, a buffer, and a capacitor are mounted. Further, the panel 800 is mounted on the printed wiring board 816 by the FPC 808. The panel 800 is provided with a pixel portion 805, a scanning line driver circuit 806 that selects a pixel included in the pixel portion 805, and a signal line driver circuit 807 that supplies a video signal to the selected pixel.

プリント配線基板816への電源電圧及びキーボードなどから入力された各種信号は、複数の入力端子が配置されたプリント配線基板用のインターフェース部809を介して供給される。また、アンテナとの間の信号の送受信を行なうためのアンテナ用ポート810が、プリント配線基板816に設けられている。   The power supply voltage to the printed wiring board 816 and various signals input from a keyboard or the like are supplied via a printed wiring board interface unit 809 on which a plurality of input terminals are arranged. Further, an antenna port 810 for transmitting and receiving signals to and from the antenna is provided on the printed wiring board 816.

なお、図6(A)ではパネル800にプリント配線基板816がFPCを用いて実装されているが、必ずしもこの構成に限定されない。COG(Chip on Glass)方式を用い、コントローラ801、音声処理回路829、メモリ811、CPU802または電源回路803をパネル800に直接実装させるようにしても良い。   Note that in FIG. 6A, the printed wiring board 816 is mounted on the panel 800 using FPC; however, the structure is not necessarily limited thereto. The controller 801, the audio processing circuit 829, the memory 811, the CPU 802, or the power supply circuit 803 may be directly mounted on the panel 800 using a COG (Chip on Glass) method.

また、プリント配線基板816において、引きまわしの配線間に形成される容量や配線自体が有する抵抗等によって、電源電圧や信号にノイズがのったり、信号の立ち上がりが鈍ったりすることがある。そこで、プリント配線基板816に容量素子、バッファ等の各種素子を設けることで、電源電圧や信号にノイズがのったり、信号の立ち上がりが鈍ったりするのを防ぐことができる。   Further, in the printed wiring board 816, noise may occur in the power supply voltage or the signal, or the rise of the signal may become dull due to the capacitance formed between the drawn wirings, the resistance of the wiring itself, or the like. Therefore, by providing various elements such as a capacitor and a buffer on the printed wiring board 816, it is possible to prevent noise from being applied to the power supply voltage and the signal and the rise of the signal from being slowed down.

また、図6(B)は、FPC上に搭載された集積回路が備えられたモジュールの例を示している。   FIG. 6B shows an example of a module provided with an integrated circuit mounted on an FPC.

図6(B)に示すように、FPC908上には、集積回路(コントローラ901、CPU(Central Processing unit)902、メモリ903)が搭載されている。パネル900には、画素部905、および駆動回路(信号線駆動回路907、走査線駆動回路906)が設けられており、これらと外部に設けられた外部電源等(図示せず)を電気的に接続するためのFPC908が、接着剤909によりパネル900上に貼り付けられている。FPC908上に半導体基板を用いた集積回路(コントローラ901、CPU902、メモリ903)を設けることで、電源電圧や信号にノイズがのったり、信号の立ち上がりが鈍ったりするのを防いでいる。   As shown in FIG. 6B, an integrated circuit (controller 901, CPU (Central Processing unit) 902, memory 903) is mounted on the FPC 908. The panel 900 is provided with a pixel portion 905 and a driving circuit (a signal line driving circuit 907 and a scanning line driving circuit 906), and these and an external power supply (not shown) provided outside are electrically connected. An FPC 908 for connection is attached to the panel 900 with an adhesive 909. By providing an integrated circuit (a controller 901, a CPU 902, and a memory 903) using a semiconductor substrate over the FPC 908, it is possible to prevent noise from being applied to a power supply voltage and a signal and a rise of a signal from being slowed down.

また、本実施例は実施の形態1、実施の形態2、実施例1、または実施例2と自由に組み合わせることができる。   In addition, this embodiment can be freely combined with Embodiment Mode 1, Embodiment Mode 2, Embodiment Mode 1, or Example 2.

本発明の埋め込み配線を用いて集積した回路を作り込んだICチップを薄膜集積回路、または非接触型薄膜集積回路装置(無線ICタグ、RFID(無線認証、Radio Frequency Identification)とも呼ばれる)として用いることもできる。   An IC chip in which a circuit integrated using the embedded wiring of the present invention is used as a thin film integrated circuit or a non-contact type thin film integrated circuit device (also referred to as a wireless IC tag, RFID (Radio Frequency Identification)). You can also.

アンテナとして機能する導電層1517が設けられたカード状基板1518に本発明のICチップ1516を貼り付けたIDカードの例を図7に示す。このように、本発明のICチップ1516は、小型、薄型、軽量であり、多種多様の用途が実現し、物品に貼り付けても、その物品のデザイン性を損なうことがない。   FIG. 7 shows an example of an ID card in which the IC chip 1516 of the present invention is attached to a card-like substrate 1518 provided with a conductive layer 1517 functioning as an antenna. As described above, the IC chip 1516 of the present invention is small, thin, and lightweight, realizes a wide variety of uses, and does not impair the design of the article even when attached to the article.

なお、本発明のICチップ1516は、カード状基板1518に貼り付ける形態に制約されず、曲面や様々な形状の物品に貼り付けることもできる。例えば、ICチップを紙幣、硬貨、有価証券類、無記名債券類、証書類(運転免許証や住民票等)、包装用容器類(包装紙やボトル等)、記録媒体(DVDソフトやビデオテープ等)、乗物類(自転車等)、身の回り品(鞄や眼鏡等)、食品類、衣類、生活用品類等に設けて使用することができる。   Note that the IC chip 1516 of the present invention is not limited to the form of being attached to the card-like substrate 1518, and can be attached to a curved surface or an article having various shapes. For example, IC chips are bills, coins, securities, bearer bonds, certificate documents (driver's license, resident's card, etc.), packaging containers (wrapping paper, bottles, etc.), recording media (DVD software, video tape, etc.) ), Vehicles (such as bicycles), personal items (such as bags and glasses), foods, clothing, daily necessities, and the like.

また、本実施の形態は実施の形態1、実施の形態2、実施例1、実施例2、または実施例3と自由に組み合わせることができる。   Further, this embodiment mode can be freely combined with Embodiment Mode 1, Embodiment Mode 2, Example 1, Example 2, or Example 3.

本発明の埋め込み配線を用いて集積した回路を作り込んだICチップを搭載し、様々な電子機器を完成させることができる。その具体例を図8を用いて説明する。 Various electronic devices can be completed by mounting an IC chip in which an integrated circuit is built using the embedded wiring of the present invention. A specific example will be described with reference to FIG.

図8(A)は表示装置であり、筐体1901、支持台1902、表示部1903、スピーカー部1904、ビデオ入力端子1905などを含む。この表示装置は、他の実施例で示した作製方法により形成したFETを駆動ICに用いることにより作製される。なお、表示装置には液晶表示装置、発光装置などがあり、具体的にはコンピュータ用、テレビ受信用、広告表示用などの全ての情報表示用表示装置が含まれる。   FIG. 8A illustrates a display device, which includes a housing 1901, a support base 1902, a display portion 1903, a speaker portion 1904, a video input terminal 1905, and the like. This display device is manufactured by using an FET formed by a manufacturing method shown in another embodiment for a driving IC. The display device includes a liquid crystal display device, a light emitting device, and the like, and specifically includes all information display devices such as a computer, a television receiver, and an advertisement display.

図8(B)はコンピュータであり、筐体1911、表示部1912、キーボード1913、外部接続ポート1914、ポインティングマウス1915などを含む。上述した実施の形態で示した作製方法を用いることにより、表示部の駆動ICや、本体内部のCPU、メモリなどにも適用が可能である。   FIG. 8B illustrates a computer, which includes a housing 1911, a display portion 1912, a keyboard 1913, an external connection port 1914, a pointing mouse 1915, and the like. By using the manufacturing methods described in the above embodiment modes, the present invention can be applied to a driver IC for a display portion, a CPU in a main body, a memory, and the like.

また、図8(C)は携帯電話であり、携帯情報端末の1つの代表例である。この携帯電話は筐体1921、表示部1922、センサ部1924、操作キー1923などを含む。センサ部1924は、光センサ素子を有しており、センサ部1924で得られる照度に合わせて表示部1922の輝度コントロールを行ったり、センサ部1924で得られる照度に合わせて操作キー1923の照明制御を行うことで携帯電話の消費電流を抑えることができる。また、CCDなどの撮像機能を有する携帯電話であれば、光学ファインダーの近くに設けられたセンサ部1924のセンサ受光量が変化することで撮影者が光学ファインダーを覗いたか否かを検出する。撮影者が光学ファインダーを覗いている場合には、表示部1922をオフとすることで消費電力を抑えることができる。 FIG. 8C illustrates a mobile phone, which is a typical example of a portable information terminal. This mobile phone includes a housing 1921, a display portion 1922, a sensor portion 1924, operation keys 1923, and the like. The sensor unit 1924 includes an optical sensor element, and controls the luminance of the display unit 1922 according to the illuminance obtained by the sensor unit 1924 or controls illumination of the operation key 1923 according to the illuminance obtained by the sensor unit 1924. By doing so, the current consumption of the mobile phone can be suppressed. In the case of a mobile phone having an imaging function such as a CCD, it is detected whether or not the photographer has looked into the optical viewfinder by changing the amount of light received by the sensor unit 1924 provided near the optical viewfinder. When the photographer is looking into the optical viewfinder, power consumption can be suppressed by turning off the display portion 1922.

上記の携帯電話を初めとして、PDA(Personal Digital Assistants、情報携帯端末)、デジタルカメラ、小型ゲーム機などの電子機器は携帯情報端末であるため、表示画面が小さい。従って、上述した実施の形態で示したFETを用いてCPU、メモリ、センサなどの機能回路を形成して、小型・軽量化を図ることができる。 Since electronic devices such as PDAs (Personal Digital Assistants, information portable terminals), digital cameras, and small game machines are portable information terminals, the display screen is small. Therefore, functional circuits such as a CPU, a memory, and a sensor can be formed using the FET shown in the above-described embodiment, so that the size and weight can be reduced.

また、ICタグを様々な電子機器に貼り付けることにより、電子機器の流通経路などを明確にすることができる。図8(D)は、パスポート1941に無線ICタグ1942を付けている状態を示している。また、パスポート1941に無線ICタグを埋め込んでもよい。同様にして、運転免許証、クレジットカード、紙幣、硬貨、証券、商品券、チケット、トラベラーズチェック(T/C)、健康保険証、住民票、戸籍謄本などに無線ICタグを付けたり埋め込むことができる。この場合、本物であることを示す情報のみを無線ICタグに入力しておき、不正に情報を読み取ったり書き込んだりできないようにアクセス権を設定する。これは、他の実施例で示したメモリを用いることにより実現できる。このようにタグとして利用することによって、偽造されたものと区別することが可能になる。 In addition, by attaching the IC tag to various electronic devices, the distribution route of the electronic devices can be clarified. FIG. 8D illustrates a state where the wireless IC tag 1942 is attached to the passport 1941. A wireless IC tag may be embedded in the passport 1941. Similarly, you can attach or embed a wireless IC tag to a driver's license, credit card, banknote, coin, securities, gift certificate, ticket, traveler's check (T / C), health insurance card, resident card, family register copy, etc. it can. In this case, only information indicating authenticity is input to the wireless IC tag, and an access right is set so that information cannot be read or written illegally. This can be realized by using the memory shown in the other embodiments. By using it as a tag in this way, it becomes possible to distinguish it from a forged one.

このほかに、無線ICタグをメモリとして用いることも可能である。図8(E)は無線ICタグ1951を野菜の包装に貼り付けるラベルに用いた場合の例を示している。また、包装そのものに無線ICタグを貼り付けたり埋め込んだりしても構わない。無線ICタグ1951には、生産地、生産者、製造年月日、加工方法などの生産段階のプロセスや、商品の流通プロセス、価格、数量、用途、形状、重量、賞味期限、各種認証情報などを記録することが可能になる。無線ICタグ1951からの情報は、リーダ1952のアンテナ部1953で受信して読み取り、リーダ1952の表示部1954に表示することによって、卸売業者、小売業者、消費者が把握することが容易になる。また、生産者、取引業者、消費者のそれぞれに対してアクセス権を設定することによって、アクセス権を有しない場合は読み込み、書き込み、書き換え、消去ができない仕組みになっている。 In addition, a wireless IC tag can be used as a memory. FIG. 8E illustrates an example in which the wireless IC tag 1951 is used as a label attached to a vegetable package. Further, a wireless IC tag may be attached or embedded in the package itself. The wireless IC tag 1951 includes a production stage process such as production place, producer, date of manufacture, processing method, product distribution process, price, quantity, usage, shape, weight, expiration date, various authentication information, etc. Can be recorded. Information from the wireless IC tag 1951 is received and read by the antenna unit 1953 of the reader 1952 and displayed on the display unit 1954 of the reader 1952, so that it is easy for the wholesaler, retailer, and consumer to grasp. In addition, by setting access rights for each of producers, traders, and consumers, a system is incapable of reading, writing, rewriting, and erasing without access rights.

また、無線ICタグは以下のように用いることができる。会計の際に無線ICタグに会計を済ませたことを記入し、出口にチェック手段を設け、会計済みであることを無線ICタグに書き込まれているかをチェックする。会計を済ませていないで店を出ようとすると、警報が鳴る。この方法によって、会計のし忘れや万引きを予防することができる。 The wireless IC tag can be used as follows. At the time of accounting, the fact that accounting has been completed is entered in the wireless IC tag, and a check means is provided at the exit to check whether accounting has been written on the wireless IC tag. If you try to leave the store without checking out, an alarm will sound. This method can prevent forgetting to pay and shoplifting.

さらに、顧客のプライバシー保護を考慮すると、次のような方法にすることも可能である。レジで会計をする段階で、(1)無線ICタグに入力されているデータを暗証番号などでロックする、(2)無線ICタグに入力されているデータそのものを暗号化する、(3)無線ICタグに入力されているデータを消去する、(4)無線ICタグに入力されているデータを破壊する、のいずれかを行う。これらは他の実施例にて挙げたメモリを用いることによって実現することができる。そして、出口にチェック手段を設け、(1)〜(4)のいずれかの処理が行われたか、または無線ICタグのデータに何も処理が行われていない状態であるかをチェックすることによって、会計の有無をチェックする。このようにすると、店内では会計の有無を確認することが可能であり、店外では所有者の意志に反して無線ICタグの情報を読み取られることを防止することができる。 Further, in consideration of customer privacy protection, the following method can be used. At the stage of accounting at the cash register, (1) lock the data input to the wireless IC tag with a password, (2) encrypt the data itself input to the wireless IC tag, (3) wireless Either the data input to the IC tag is deleted, or (4) the data input to the wireless IC tag is destroyed. These can be realized by using the memory described in the other embodiments. Then, by providing a check means at the exit, it is checked whether any of the processes (1) to (4) has been performed, or whether the wireless IC tag data has not been processed. Check for accounting. In this way, it is possible to check whether or not there is a transaction in the store, and it is possible to prevent information on the wireless IC tag from being read outside the store against the will of the owner.

本発明を用いることによって、銅よりも電気抵抗率の低い銀を配線材料とし、且つ、配線開口部が形成される絶縁膜の材料として誘電率の低い多孔質絶縁膜を使用する構造を実現することができ、無線ICタグに設けられたICチップの小型化を実現できる。ICチップはサイズが小さくなればなるほど耐衝撃強度が増すため、信頼性が向上する。また、本発明の埋め込み配線は、電解めっき法やCMP法を用いることなく埋め込み配線を形成することによって、無線ICタグにかかる製造コストを低減することができる。 By using the present invention, a structure in which silver having a lower electrical resistivity than copper is used as a wiring material and a porous insulating film having a low dielectric constant is used as a material for an insulating film in which a wiring opening is formed is realized. Thus, the IC chip provided in the wireless IC tag can be downsized. The smaller the size of the IC chip, the higher the impact resistance, so that the reliability is improved. In addition, the embedded wiring of the present invention can reduce the manufacturing cost of the wireless IC tag by forming the embedded wiring without using an electrolytic plating method or a CMP method.

以上のように、本発明により作製された半導体装置の適用範囲は極めて広く、本発明により作製された半導体装置を様々な分野の電子機器に用いることができる。   As described above, the applicable range of the semiconductor device manufactured according to the present invention is so wide that the semiconductor device manufactured according to the present invention can be used for electronic devices in various fields.

また、本実施例は、実施の形態1、実施の形態2、実施例1、実施例2、実施例3、または実施例4と自由に組み合わせることができる。   This embodiment can be freely combined with Embodiment Mode 1, Embodiment Mode 2, Embodiment 1, Embodiment 2, Embodiment 3, or Embodiment 4.

本発明を半導体デバイスの多層配線の形成に適用する事により、半導体デバイスの多層配線の微細化及び多層化をさらに進める事が可能になり、半導体デバイスの更なる高集積化を図る事ができる。 By applying the present invention to the formation of a multilayer wiring of a semiconductor device, it is possible to further miniaturize and multilayer the multilayer wiring of the semiconductor device, and to further increase the integration of the semiconductor device.

また、本発明は、電界メッキ法やCMP法などを用いずに埋め込み配線を実現することができるため、半導体デバイスの製造コストの低減を実現できる。   In addition, according to the present invention, since embedded wiring can be realized without using an electroplating method, a CMP method, or the like, it is possible to reduce the manufacturing cost of a semiconductor device.

本発明の作製工程を示す図。(実施の形態1)4A to 4D illustrate a manufacturing process of the present invention. (Embodiment 1) 本発明の作製工程を示す図。(実施の形態1)4A to 4D illustrate a manufacturing process of the present invention. (Embodiment 1) 本発明の作製工程を示す図。(実施の形態2)4A to 4D illustrate a manufacturing process of the present invention. (Embodiment 2) 本発明のFETの作製工程の断面図である。It is sectional drawing of the manufacturing process of FET of this invention. パッケージが行われたデバイスの断面構造を表す斜視図。The perspective view showing the cross-section of the device in which the package was performed. パネルモジュールに搭載した例を示す上面図。The top view which shows the example mounted in the panel module. カードに搭載した例を示す上面図。The top view which shows the example mounted in the card | curd. 電子機器の一例を示す図。FIG. 14 illustrates an example of an electronic device.

符号の説明Explanation of symbols

103 層間絶縁膜
105 開口部(トレンチ)
107 バリア膜
108 導電性Agペースト
109 導電膜
110 配線
111 導電性Agペースト
112 層間絶縁膜
113 上部電極
114 接続孔
201 絶縁膜
202 下層配線
203 層間絶縁膜
205 バリア膜
206 導電性Agペースト
207 Ag配線
208 導電膜
301 シリコン基板
302 n型ウェル
303 p型ウェル
306 フィールド酸化膜
307 エクステンション領域
308 ソース領域
309 ドレイン領域
310 ゲート絶縁膜
311 ゲート電極
312 サイドウォール
314 ソース領域
315 ドレイン領域
324 多孔質絶縁膜
331 層間絶縁膜
332 層間絶縁膜
333 ソース電極
334 ドレイン電極
341 パッシベーション膜
342 多孔質絶縁膜
343 層間絶縁膜
344 パッシベーション膜
350 導電層
351 導電層
352 導電層
353 電極
401 pチャネル型FET
402 nチャネル型FET
701 リードフレーム
702 チップ
703 モールド樹脂層
704 接着剤
705 ソルダーボール
706 配線
707 金ワイヤー
800 パネル
801 コントローラ
802 CPU
803 電源回路
804 送受信回路
805 画素部
806 走査線駆動回路
807 信号線駆動回路
808 FPC
809 インターフェース部
810 アンテナ用ポート
811 メモリ
816 プリント配線基板
829 音声処理回路
900 パネル
901 集積回路(コントローラ)
902 CPU(Central Processing unit)
903 メモリ
905 画素部
906 走査線駆動回路
907 駆動回路(信号線駆動回路)
908 FPC
909 接着剤
104a マスク
104b マスク
106a 接続孔
106b 配線溝
1516 ICチップ
1517 導電層
1518 カード状基板
1901 筐体
1902 支持台
1903 表示部
1904 スピーカー部
1905 ビデオ入力端子
1911 筐体
1912 表示部
1913 キーボード
1914 外部接続ポート
1915 ポインティングマウス
1921 筐体
1922 表示部
1923 操作キー
1924 センサ部
1941 パスポート
1942 無線ICタグ
1951 無線ICタグ
1952 リーダ
1953 アンテナ部
1954 表示部
204a 接続孔
204b 配線溝
311a ポリシリコン層
311b シリサイド層
103 Interlayer insulating film 105 Opening (trench)
107 barrier film 108 conductive Ag paste 109 conductive film 110 wiring 111 conductive Ag paste 112 interlayer insulating film 113 upper electrode 114 connection hole 201 insulating film 202 lower layer wiring 203 interlayer insulating film 205 barrier film 206 conductive Ag paste 207 Ag wiring 208 Conductive film 301 Silicon substrate 302 n-type well 303 p-type well 306 Field oxide film 307 Extension region 308 Source region 309 Drain region 310 Gate insulating film 311 Gate electrode 312 Side wall 314 Source region 315 Drain region 324 Porous insulating film 331 Interlayer insulation Film 332 Interlayer insulation film 333 Source electrode 334 Drain electrode 341 Passivation film 342 Porous insulation film 343 Interlayer insulation film 344 Passivation film 350 Conductive layer 351 Conductivity 352 conductive layer 353 electrode 401 p-channel FET
402 n-channel FET
701 Lead frame 702 Chip 703 Mold resin layer 704 Adhesive 705 Solder ball 706 Wiring 707 Gold wire 800 Panel 801 Controller 802 CPU
803 Power supply circuit 804 Transmission / reception circuit 805 Pixel portion 806 Scan line driving circuit 807 Signal line driving circuit 808 FPC
809 Interface unit 810 Antenna port 811 Memory 816 Printed wiring board 829 Audio processing circuit 900 Panel 901 Integrated circuit (controller)
902 CPU (Central Processing unit)
903 Memory 905 Pixel portion 906 Scan line drive circuit 907 Drive circuit (signal line drive circuit)
908 FPC
909 Adhesive 104a Mask 104b Mask 106a Connection hole 106b Wiring groove 1516 IC chip 1517 Conductive layer 1518 Card-like board 1901 Case 1902 Support 1903 Display 1904 Speaker 1905 Video input terminal 1911 Case 1912 Display 1913 Keyboard 1914 External connection Port 1915 Pointing mouse 1921 Case 1922 Display unit 1923 Operation key 1924 Sensor unit 1941 Passport 1942 Wireless IC tag 1951 Wireless IC tag 1952 Reader 1953 Antenna unit 1954 Display unit 204a Connection hole 204b Wiring groove 311a Polysilicon layer 311b Silicide layer

Claims (15)

集積回路と複数の配線層を有する半導体装置において、
多孔質絶縁膜と、前記多孔質絶縁膜に形成された配線溝および接続孔の内壁に接する第1導電層と、
前記第1導電層上に接して形成された第2導電層と、
前記第2導電層上及び前記第1導電層に接して形成された第3導電層との積層からなる配線層とを有し、
前記第2導電層は、前記第1導電層と前記第3導電層とで囲まれており、前記多孔質絶縁膜の上面を含む第1面と、前記第3導電層の上面を含む第2面との間に段差を有し、
前記第1導電層は、前記多孔質絶縁膜のが転写されたを有し、
前記第2導電層は前記転写された孔に入り込み、
前記第2導電層の原料は金属粒子を含むペーストであることを特徴とする半導体装置。
In a semiconductor device having an integrated circuit and a plurality of wiring layers,
A porous insulating film, and a first conductive layer in contact with an inner wall of a wiring groove and a connection hole formed in the porous insulating film;
A second conductive layer formed on and in contact with the first conductive layer;
A wiring layer comprising a laminate with a third conductive layer formed on the second conductive layer and in contact with the first conductive layer;
The second conductive layer is surrounded by the first conductive layer and the third conductive layer, and includes a first surface including an upper surface of the porous insulating film and a second surface including an upper surface of the third conductive layer. Has a step between the surface and
The first conductive layer has a hole with a hole of the porous insulation film has been transferred,
Said second conductive layer is viewed write enters the hole which is the transfer,
2. A semiconductor device according to claim 1, wherein the material of the second conductive layer is a paste containing metal particles .
請求項1において、前記多孔質絶縁膜は、酸化シリコンを含む材料であることを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein the porous insulating film is a material containing silicon oxide. 請求項1または請求項2において、前記第1導電層は、W、Mo、Ti、Cr、またはTaから選ばれる一種または複数種を含む材料であることを特徴とする半導体装置。   3. The semiconductor device according to claim 1, wherein the first conductive layer is a material including one or more selected from W, Mo, Ti, Cr, and Ta. 請求項1乃至請求項3のいずれか一項において、前記第3導電層は、W、Mo、Ti、Cr、またはTaから選ばれる一種または複数種を含む材料であることを特徴とする半導体装置。   4. The semiconductor device according to claim 1, wherein the third conductive layer is a material including one or more selected from W, Mo, Ti, Cr, and Ta. . 請求項1乃至請求項4のいずれか一項において、前記第2導電層は、銀を含む材料であることを特徴とする半導体装置。   5. The semiconductor device according to claim 1, wherein the second conductive layer is made of a material containing silver. 請求項1乃至請求項5のいずれか一項において、前記第2導電層は、樹脂を含む材料であることを特徴とする半導体装置。   6. The semiconductor device according to claim 1, wherein the second conductive layer is a material containing a resin. 請求項1乃至請求項6のいずれか一項において、前記集積回路は、コントローラ、CPU、またはメモリのうち少なくとも一つを含むことを特徴とする半導体装置。   7. The semiconductor device according to claim 1, wherein the integrated circuit includes at least one of a controller, a CPU, and a memory. 多孔質絶縁膜を形成する工程と、
前記多孔質絶縁膜上にマスクを形成する工程と、
選択的にエッチングして前記多孔質絶縁膜に開口部を形成する工程と、
前記マスク上および前記開口部に第1導電膜を形成する工程と、
液滴吐出法により前記開口部の前記第1導電膜上に導電材料を含む液滴を滴下する工程と、
レーザー光を選択的に照射して前記導電材料を加熱して第2導電層を形成する工程と、
前記マスク上および前記第2導電層上に第3導電膜を形成する工程と、
前記マスクを除去すると同時に前記マスク上に形成された前記第1導電膜および前記第3導電膜を除去し、第1導電層および第3導電層を形成する工程とを有する半導体装置の作製方法であって、
前記第1導電膜は、前記多孔質絶縁膜のが転写されたを有し、
前記第2導電層は前記転写された孔に入り込み、
前記導電材料は金属粒子を含むペーストであることを特徴とする半導体装置の作製方法。
Forming a porous insulating film;
Forming a mask on the porous insulating film;
Selectively etching to form an opening in the porous insulating film;
Forming a first conductive film on the mask and in the opening;
Dropping a droplet containing a conductive material on the first conductive film in the opening by a droplet discharge method;
Forming a second conductive layer by selectively irradiating laser light to heat the conductive material;
Forming a third conductive film on the mask and the second conductive layer;
Removing the mask and simultaneously removing the first conductive film and the third conductive film formed on the mask to form a first conductive layer and a third conductive layer. There,
The first conductive film has holes to which the holes of the porous insulating film are transferred,
Said second conductive layer is viewed write enters the hole which is the transfer,
The method for manufacturing a semiconductor device, wherein the conductive material is a paste containing metal particles .
多孔質絶縁膜を形成する工程と、
選択的にエッチングして前記多孔質絶縁膜に開口部を形成する工程と、
前記多孔質絶縁膜上および前記開口部に第1導電膜を形成する工程と、
液滴吐出法により前記開口部および前記開口部周辺の前記第1導電膜上に導電材料を含む液滴を滴下し、焼成して第2導電膜を形成する工程と、
前記第2導電膜を選択的にエッチングして第2導電層を形成する工程と、
前記第1導電膜上および前記第2導電層上に第3導電膜を形成する工程と、
前記第1導電膜及び前記第3導電膜を同じマスクを用いてエッチングして第1導電層と第3導電層を形成する工程とを有する半導体装置の作製方法であって、
前記液滴を滴下する前に前記液滴の接触角を小さくする表面処理を前記開口部および前記開口部周辺の前記第1導電膜に行い、
前記第1導電膜は、前記多孔質絶縁膜のが転写されたを有し、
前記第2導電層は前記転写された孔に入り込み、
前記導電材料は金属粒子を含むペーストであることを特徴とする半導体装置の作製方法。
Forming a porous insulating film;
Selectively etching to form an opening in the porous insulating film;
Forming a first conductive film on the porous insulating film and in the opening;
Dropping a droplet containing a conductive material onto the opening and the first conductive film around the opening by a droplet discharge method, and baking to form a second conductive film;
Selectively etching the second conductive film to form a second conductive layer;
Forming a third conductive film on the first conductive film and on the second conductive layer;
Etching the first conductive film and the third conductive film using the same mask to form a first conductive layer and a third conductive layer;
Performing a surface treatment to reduce the contact angle of the droplet before dropping the droplet on the opening and the first conductive film around the opening;
The first conductive film has holes to which the holes of the porous insulating film are transferred,
Said second conductive layer is viewed write enters the hole which is the transfer,
The method for manufacturing a semiconductor device, wherein the conductive material is a paste containing metal particles .
多孔質絶縁膜を形成する工程と、
前記多孔質絶縁膜上にマスクを形成する工程と、
選択的にエッチングして前記多孔質絶縁膜に開口部を形成する工程と、
前記マスク上および前記開口部に第1導電膜を形成する工程と、
液滴吐出法により前記開口部の前記第1導電膜上に導電材料を含む液滴を滴下する工程と、
レーザー光を選択的に照射して前記導電材料を加熱して第2導電層を形成する工程と、
前記マスク上および前記第2導電層上に第3導電膜を形成する工程と、
前記マスクを除去すると同時に前記マスク上に形成された前記第1導電膜および前記第3導電膜を除去し、第1導電層および第3導電層を形成する工程とを有する半導体装置の作製方法であって、
前記液滴を滴下する前に前記液滴の接触角を小さくする表面処理を前記開口部および前記開口部周辺の前記第1導電膜に行い、
前記第1導電膜は、前記多孔質絶縁膜のが転写されたを有し、
前記第2導電層は前記転写された孔に入り込み、
前記導電材料は金属粒子を含むペーストであることを特徴とする半導体装置の作製方法。
Forming a porous insulating film;
Forming a mask on the porous insulating film;
Selectively etching to form an opening in the porous insulating film;
Forming a first conductive film on the mask and in the opening;
Dropping a droplet containing a conductive material on the first conductive film in the opening by a droplet discharge method;
Forming a second conductive layer by selectively irradiating laser light to heat the conductive material;
Forming a third conductive film on the mask and the second conductive layer;
Removing the mask and simultaneously removing the first conductive film and the third conductive film formed on the mask to form a first conductive layer and a third conductive layer. There,
Performing a surface treatment to reduce the contact angle of the droplet before dropping the droplet on the opening and the first conductive film around the opening;
The first conductive film has holes to which the holes of the porous insulating film are transferred,
Said second conductive layer is viewed write enters the hole which is the transfer,
The method for manufacturing a semiconductor device, wherein the conductive material is a paste containing metal particles .
請求項9または請求項10において、前記表面処理は紫外線照射、または酸素、アルゴン、水素、ヘリウムのガスを用いたプラズマ処理もしくはコロナ放電処理であることを特徴とする半導体装置の作製方法。   11. The method for manufacturing a semiconductor device according to claim 9, wherein the surface treatment is ultraviolet irradiation, plasma treatment using a gas of oxygen, argon, hydrogen, or helium or corona discharge treatment. 請求項8乃至請求項11のいずれか一項において、前記絶縁膜は、酸化シリコンを含む材料からなることを特徴とする半導体装置の作製方法。   12. The method for manufacturing a semiconductor device according to claim 8, wherein the insulating film is made of a material containing silicon oxide. 請求項8乃至請求項12のいずれか一項において、前記第1導電層と前記第3導電層は、スパッタ法により得られるW、Mo、Ti、Cr、またはTaから選ばれる一種または複数種を含む層であることを特徴とする半導体装置の作製方法。   The first conductive layer and the third conductive layer according to any one of claims 8 to 12, wherein the first conductive layer and the third conductive layer are made of one or a plurality selected from W, Mo, Ti, Cr, or Ta obtained by a sputtering method. A method for manufacturing a semiconductor device, comprising: a layer including a semiconductor layer. 請求項8乃至請求項13のいずれか一項において、前記第2導電層は、銀を含む材料であることを特徴とする半導体装置の作製方法。   14. The method for manufacturing a semiconductor device according to claim 8, wherein the second conductive layer is a material containing silver. 請求項8乃至請求項14のいずれか一項において、前記第2導電層は、樹脂を含む材料であることを特徴とする半導体装置の作製方法。   The method for manufacturing a semiconductor device according to claim 8, wherein the second conductive layer is a material containing a resin.
JP2005337897A 2004-11-30 2005-11-23 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4877722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337897A JP4877722B2 (en) 2004-11-30 2005-11-23 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004347898 2004-11-30
JP2004347898 2004-11-30
JP2005337897A JP4877722B2 (en) 2004-11-30 2005-11-23 Semiconductor device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010254389A Division JP5538186B2 (en) 2004-11-30 2010-11-15 wiring

Publications (3)

Publication Number Publication Date
JP2006186328A JP2006186328A (en) 2006-07-13
JP2006186328A5 JP2006186328A5 (en) 2009-01-08
JP4877722B2 true JP4877722B2 (en) 2012-02-15

Family

ID=36739168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337897A Expired - Fee Related JP4877722B2 (en) 2004-11-30 2005-11-23 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4877722B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409369B2 (en) * 2006-10-12 2014-02-05 カンブリオス テクノロジーズ コーポレイション Nanowire-based transparent conductor and its application
JP2019145546A (en) * 2018-02-16 2019-08-29 住友電工デバイス・イノベーション株式会社 Manufacturing method of semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323479A (en) * 1999-05-14 2000-11-24 Sony Corp Semiconductor device and its manufacture
JP2003273041A (en) * 2002-03-15 2003-09-26 Catalysts & Chem Ind Co Ltd Method of manufacturing integrated circuit and substrate with integrated circuit formed by the same
JP2004304021A (en) * 2003-03-31 2004-10-28 Ebara Corp Manufacturing method and manufacturing device of semiconductor device

Also Published As

Publication number Publication date
JP2006186328A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP5538186B2 (en) wiring
US7688272B2 (en) Semiconductor device
US7785947B2 (en) Method for manufacturing semiconductor device comprising the step of forming nitride/oxide by high-density plasma
US7785933B2 (en) Method for manufacturing semiconductor device
CN101064348B (en) Semiconductor device and method for manufacturing the same
KR101258671B1 (en) Manufacturing method of semiconductor device, and IC card, IC tag, RFID, transponder, bill, securities, passport, electronic apparatus, bag, and garment
CN102163546B (en) Semiconductor device and manufacturing method thereof
US20050236623A1 (en) Semiconductor device
US20060115982A1 (en) Method for manufacturing semiconductor device
US7335556B2 (en) Manufacturing method of semiconductor device
JP2007013120A (en) Semiconductor device
US7061118B2 (en) Semiconductor device, stacked semiconductor device, methods of manufacturing the same, circuit board, and electronic instrument
US20070036237A1 (en) Semiconductor device and wireless communication system
US6635915B2 (en) Semiconductor device having trench capacitor formed in SOI substrate
TWI440132B (en) Soi substrate and method for manufacturing soi substrate
KR20090083362A (en) Semiconductor device and manufacturing method thereof
JP2008166744A (en) Semiconductor device and manufacturing method thereof
US7675808B2 (en) Semiconductor device
JP4877722B2 (en) Semiconductor device and manufacturing method thereof
CN101194276A (en) Semiconductor device
US6858491B1 (en) Method of manufacturing the semiconductor device having a capacitor formed in SOI substrate
JP2006279031A (en) Method of manufacturing semiconductor device
JP5352048B2 (en) Method for manufacturing semiconductor device
JP5004537B2 (en) Semiconductor device
CN101330088A (en) Integrated circuit package body and preparation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees