JP2003273041A - Method of manufacturing integrated circuit and substrate with integrated circuit formed by the same - Google Patents

Method of manufacturing integrated circuit and substrate with integrated circuit formed by the same

Info

Publication number
JP2003273041A
JP2003273041A JP2002072525A JP2002072525A JP2003273041A JP 2003273041 A JP2003273041 A JP 2003273041A JP 2002072525 A JP2002072525 A JP 2002072525A JP 2002072525 A JP2002072525 A JP 2002072525A JP 2003273041 A JP2003273041 A JP 2003273041A
Authority
JP
Japan
Prior art keywords
integrated circuit
metal
fine particles
forming
wiring groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002072525A
Other languages
Japanese (ja)
Inventor
Atsushi Tonai
内 篤 藤
Akira Nakajima
島 昭 中
Michio Komatsu
松 通 郎 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2002072525A priority Critical patent/JP2003273041A/en
Publication of JP2003273041A publication Critical patent/JP2003273041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an integrated circuit superior in economy, since conductive minute particles can be deposited efficiently and minutely on a minute wiring groove and a connection hole, wiring resistance is small, a circuit with high density can be formed and high integration is possible, and to provide a substrate with integrated circuit, which is formed by the method. <P>SOLUTION: The manufacturing method of the integrated circuit is formed by means of processes (a) and (b). (a) A process of forming a metal thin film on the surface of the wiring groove formed on the substrate. (b) A process for applying the wiring groove where the metal thin film is formed with application liquid for forming integrated circuit, which comprises a conductive minute particle forming component and/or the conductive minute particles. (c) Application liquid for forming integrated circuit is applied, and an applied face may be planarized. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、配線溝の形成され
た基板に、導電性微粒子形成成分および/または導電性
微粒子を含む集積回路形成用塗布液を塗布して基板に電
気回路を形成する方法において、配線溝表面に金属薄膜
を形成し、ついで超音波を照射しながら、配線溝に集積
回路形成用塗布液を塗布し、必要に応じて塗布面を平坦
化する集積回路の製造方法および該方法により形成され
た集積回路付基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention applies an integrated circuit forming coating liquid containing a conductive fine particle forming component and / or conductive fine particles to a substrate having wiring grooves formed therein to form an electric circuit on the substrate. In the method, a metal thin film is formed on the surface of the wiring groove, and then a coating liquid for forming an integrated circuit is applied to the wiring groove while irradiating ultrasonic waves, and a method for manufacturing an integrated circuit in which the coating surface is flattened as necessary, and The present invention relates to a substrate with an integrated circuit formed by the method.

【0002】[0002]

【発明の技術的背景】コンピューター、各種電子機器に
は各種集積回路が用いられており、これらの小型化、高
性能化に伴い回路の高密度化、高性能化が求められてい
る。これらのうちでも、具体的に半導体集積回路につい
て例示すると、従来、半導体集積回路の集積度を高める
ため、たとえば図5に示すような多層配線回路が使用さ
れていた。図5は、半導体集積回路の概略断面図を示
す。このような集積回路の製造工程について説明する
と、シリコンなどの基板31上に、第1絶縁膜32とし
ての熱酸化膜が形成された後、第1絶縁膜表面にアルミ
ニウム膜などからなる第1配線層33が形成される。つ
いでこの上にCVD法あるいはプラズマCVD法等によ
って、シリカ膜、窒化ケイ素膜などの層間絶縁膜34が
被着され、この層間絶縁膜34上に、この層間絶縁膜3
4を平坦化するためのシリカ絶縁膜(平坦化膜)35が
形成され、このシリカ絶縁膜35上に必要に応じてさら
に第2絶縁膜36が被着された後、第2配線層(図示せ
ず)が形成され、必要に応じてさらに第2配線層の表面
に、層間絶縁膜、平坦化膜、絶縁膜が形成されている。
BACKGROUND OF THE INVENTION Various integrated circuits are used in computers and various electronic devices, and with the miniaturization and higher performance of these circuits, higher circuit density and higher performance are required. Among these, specifically exemplifying a semiconductor integrated circuit, conventionally, in order to increase the integration degree of the semiconductor integrated circuit, for example, a multilayer wiring circuit as shown in FIG. 5 has been used. FIG. 5 is a schematic sectional view of a semiconductor integrated circuit. The manufacturing process of such an integrated circuit will be described. After the thermal oxide film as the first insulating film 32 is formed on the substrate 31 made of silicon or the like, the first wiring made of an aluminum film or the like is formed on the surface of the first insulating film. Layer 33 is formed. Then, an interlayer insulating film 34 such as a silica film or a silicon nitride film is deposited on the interlayer insulating film 34 by the CVD method or the plasma CVD method, and the interlayer insulating film 3 is formed on the interlayer insulating film 34.
A silica insulating film (planarizing film) 35 for flattening 4 is formed, and a second insulating film 36 is further deposited on the silica insulating film 35, if necessary, and then the second wiring layer (see FIG. (Not shown) is formed, and if necessary, an interlayer insulating film, a planarizing film, and an insulating film are further formed on the surface of the second wiring layer.

【0003】しかしながら、アルミニウム膜からなる配
線は、多層配線を形成する際のスパッタリング時に配線
層を構成するアルミニウムが酸化されて抵抗値が増大し
て導電不良を起こすことがあった。また、配線幅を小さ
くすることができないためにより高密度の集積回路を形
成するには限界があった。さらに、近年、クロック線や
データバス線のような長距離配線では、チップサイズ増
大に伴い配線抵抗が増大することに起因して、電気信号
の伝播遅延時間(RC遅延時間=抵抗x容量)が増大す
ることが新たな問題となっている。このため配線層とし
て、より低抵抗の材料を使用する必要が生じている。
However, in the wiring made of an aluminum film, the aluminum constituting the wiring layer is oxidized during the sputtering for forming the multi-layered wiring, and the resistance value may increase to cause a conductive failure. Further, there is a limit to forming a high-density integrated circuit because the wiring width cannot be reduced. Furthermore, in recent years, in long-distance wiring such as clock lines and data bus lines, the propagation delay time (RC delay time = resistance × capacitance) of an electric signal is increased due to an increase in wiring resistance as the chip size increases. Increasing is a new issue. Therefore, it is necessary to use a material having a lower resistance as the wiring layer.

【0004】そこで、従来のAlやAl合金にかえてCu
配線を行うことが提案されており、例えば、基板上の絶
縁膜に予め配線溝を形成した後、電解メッキ法、CVD
法等によりCuを堆積させて配線を形成する方法が提案
されている。しかしながら、この方法では配線を高密度
化させるために、微細な配線溝および接続孔内に、充分
にCuを堆積させることができず、また形成された堆積
膜の平坦性において必ずしも満足のいくものを得られて
いなかった。さらに、堆積膜が緻密な膜とならずホール
が生成することがあった。このため、Cu超微粒子含有
溶液を、配線溝を有する基板上にスピンコート法により
塗布して回路を形成する方法(SOM法)が提案されて
いる(ULVAC TECHNICAL JOURNAL No.51,1999, P.15)。
しかしながら、この方法では、1回の塗布で形成できる
堆積膜の厚さが小さいため配線溝をすべて埋めた配線を
形成するためには繰り返し塗布する必要があった。ま
た、スピンコート法では、Cu超微粒子含有溶液を基板
全面にわたって均一に塗布しようとすると基板の外に塗
布されるCu超微粒子溶液があるので、Cu超微粒子溶液
の利用率が低いといった問題もあった。
Therefore, in place of the conventional Al or Al alloy, Cu
Wiring has been proposed. For example, after forming a wiring groove in an insulating film on a substrate in advance, electrolytic plating, CVD
A method of depositing Cu by a method or the like to form a wiring has been proposed. However, in this method, since the wiring is densified, Cu cannot be sufficiently deposited in the fine wiring groove and the connection hole, and the flatness of the deposited film is not always satisfactory. Was not obtained. Furthermore, the deposited film was not a dense film, and holes were sometimes generated. For this reason, a method of forming a circuit by applying a solution containing Cu ultrafine particles onto a substrate having wiring grooves by a spin coating method (SOM method) has been proposed (ULVAC TECHNICAL JOURNAL No. 51, 1999, P. 15).
However, in this method, since the thickness of the deposited film that can be formed by one coating is small, it is necessary to repeatedly coat the wiring to fill the wiring grooves. Further, in the spin coating method, when the Cu ultrafine particle-containing solution is applied uniformly over the entire surface of the substrate, there is a Cu ultrafine particle solution that is applied to the outside of the substrate, so that there is a problem that the utilization rate of the Cu ultrafine particle solution is low. It was

【0005】さらにCu微粒子のような金属微粒子の堆
積では、金属微粒子の自重によるため金属微粒子が細密
充填しないことがあり、粒界抵抗を小さくできないため
に配線抵抗の充分低い回路が得られないことがあった。
このため、本願出願人は、特許公開2001-208297号公報
において、超音波を照射しながら、配線溝に、導電性微
粒子形成成分および/または導電性微粒子を含んでなる
集積回路形成用塗布液を塗布することにより緻密に導電
性微粒子を堆積することが可能であるとともに、配線抵
抗が小さく高密度の回路が形成できることを提案してい
る。
Further, in the case of depositing metal fine particles such as Cu fine particles, the metal fine particles may not be densely packed due to the weight of the metal fine particles, and the grain boundary resistance cannot be reduced, so that a circuit having a sufficiently low wiring resistance cannot be obtained. was there.
Therefore, the applicant of the present application discloses in Patent Publication No. 2001-208297 that the wiring groove is coated with a coating solution for forming an integrated circuit, which contains a conductive fine particle-forming component and / or conductive fine particles while irradiating ultrasonic waves. It is proposed that the conductive fine particles can be densely deposited by coating and that a circuit having a low wiring resistance and a high density can be formed.

【0006】しかしながら、配線溝との密着性が不充分
なために形成された回路が剥離する問題があった。この
ため、配線溝と金属微粒子の密着性を高めるためにバイ
ンダー成分を用いると導電性を損なうことがあった。ま
た導電性微粒子を配線溝に充填するが、緻密であっても
粒子間隙がボイドとして残ることがあり、抵抗値が高
く、またボイドが回路の断線の原因になることがあっ
た。
However, there is a problem that the formed circuit peels off due to insufficient adhesion to the wiring groove. Therefore, if a binder component is used to improve the adhesion between the wiring groove and the metal fine particles, the conductivity may be impaired. Further, the conductive fine particles are filled in the wiring groove, but even if they are dense, the voids of the particles may remain as voids, the resistance value is high, and the voids may cause the disconnection of the circuit.

【0007】[0007]

【発明の目的】本発明は、前記従来技術における問題点
を解決すべくなされたもので、微細な配線溝および接続
孔に効率よく緻密に導電性微粒子を堆積することが可能
であるとともに、配線抵抗が小さく高密度の回路が形成
可能であり、しかも高集積化が可能であるため経済性に
も優れた集積回路の製造方法および該方法により形成さ
れた集積回路付基板を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems in the prior art. It is possible to efficiently and densely deposit conductive fine particles in fine wiring grooves and connection holes, and An object of the present invention is to provide a method of manufacturing an integrated circuit which is excellent in economical efficiency because it can form a high-density circuit with small resistance and can be highly integrated, and a substrate with an integrated circuit formed by the method. I am trying.

【0008】[0008]

【発明の概要】本発明に係る集積回路の製造方法は、下
記の工程(a)および(b)からなることを特徴として
いる: (a)基板に形成された配線溝表面に金属薄膜を形成す
る工程 (b)ついで、超音波を照射しながら、金属薄膜を形成
した配線溝に、導電性微粒子形成成分および/または導
電性微粒子を含んでなる集積回路形成用塗布液を塗布す
る工程。
SUMMARY OF THE INVENTION The method of manufacturing an integrated circuit according to the present invention comprises the following steps (a) and (b): (a) forming a metal thin film on the surface of a wiring groove formed on a substrate. Then, the step (b) of applying a coating liquid for forming an integrated circuit containing a conductive fine particle forming component and / or conductive fine particles to the wiring groove formed with the metal thin film while irradiating ultrasonic waves.

【0009】本発明では、(c)前記集積回路形成用塗
布液を塗布した後に、さらに塗布面を平坦化することが
好ましい。前記導電性微粒子が、Au、Ag、Pd、Pt、
Rh、Ru、Cu、Fe、Ni、Co、Sn、Ti、In、Al、
SbおよびWからなる群から選ばれる少なくとも1種の
金属を含んでなる金属微粒子であることが好ましく、ま
た、前記導電性微粒子形成成分が、Au、Ag、Pd、P
t、Rh、Ru、Cu、Fe、Ni、Co、Sn、Ti、In、A
l、SbおよびWからなる群から選ばれる少なくとも1種
の金属のイオンを含んでなることが好ましい。
In the present invention, (c) it is preferable to further flatten the coated surface after coating the integrated circuit forming coating liquid. The conductive fine particles are Au, Ag, Pd, Pt,
Rh, Ru, Cu, Fe, Ni, Co, Sn, Ti, In, Al,
It is preferable that the metal fine particles contain at least one metal selected from the group consisting of Sb and W, and the conductive fine particle forming component is Au, Ag, Pd, P.
t, Rh, Ru, Cu, Fe, Ni, Co, Sn, Ti, In, A
It preferably comprises ions of at least one metal selected from the group consisting of l, Sb and W.

【0010】また、前記配線溝の深さ(D)が0.05
〜10μmの範囲にあり、配線溝の幅(WC)が0.0
5〜100μmの範囲にあり、配線溝の深さ(D)と配
線溝の幅(WC)との比(D/WC)が0.1〜20の
範囲にあることが好ましい。基板に形成された集積回路
が、前記記載の方法により形成された集積回路であるこ
とが好ましい。
The depth (D) of the wiring groove is 0.05.
The width (WC) of the wiring groove is within the range of 10 μm to 0.0
It is preferably in the range of 5 to 100 μm, and the ratio (D / WC) of the depth (D) of the wiring groove to the width (WC) of the wiring groove is preferably in the range of 0.1 to 20. The integrated circuit formed on the substrate is preferably the integrated circuit formed by the method described above.

【0011】[0011]

【発明の具体的な説明】以下、本発明について具体的に
説明する。本発明に係る集積回路の製造方法は、下記の
工程(a)〜(c)からなることを特徴としている。 (a)基板に形成された配線溝に金属薄膜を形成する工
程。 (b)ついで、超音波を照射しながら、金属薄膜を形成
した配線溝に、導電性微粒子形成成分および/または導
電性微粒子を含んでなる集積回路形成用塗布液を塗布す
る工程。 (c)必要に応じて、さらに塗布面を平坦化する工程。 本発明に係る集積回路では、例えば、図1に示される配
線溝付基板が使用される。図1は、本発明に係る集積回
路の製造方法で使用される配線溝付基板の概略断面図を
表すものであり、図中添字1は基板、2は絶縁膜、3は
配線溝を示す。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be specifically described below. The method for manufacturing an integrated circuit according to the present invention is characterized by comprising the following steps (a) to (c). (A) A step of forming a metal thin film in the wiring groove formed on the substrate. (B) Next, a step of applying a coating solution for forming an integrated circuit containing a conductive fine particle forming component and / or conductive fine particles to the wiring groove formed with the metal thin film while irradiating with ultrasonic waves. (C) A step of further flattening the coated surface, if necessary. In the integrated circuit according to the present invention, for example, the wiring grooved substrate shown in FIG. 1 is used. FIG. 1 shows a schematic cross-sectional view of a wiring grooved substrate used in a method for manufacturing an integrated circuit according to the present invention. In the figure, a subscript 1 is a substrate, 2 is an insulating film, and 3 is a wiring groove.

【0012】[基板1]本発明に用いる基板1としては、
シリコン、ガラス等からなる基板を用いることができ
る。 [絶縁膜2]この基板の上に、絶縁膜2が形成されてい
る。
[Substrate 1] As the substrate 1 used in the present invention,
A substrate made of silicon, glass or the like can be used. [Insulating Film 2] The insulating film 2 is formed on this substrate.

【0013】絶縁膜としては、絶縁性材料からなるもの
であれば特に制限されるものではなく、たとえば、シリ
カ、アルミナ、チタニア、窒化ケイ素、炭化ケイ素、有
機樹脂ポリマー、およびプラズマTEOS(なお、プラ
ズマTEOSとは、テトラエチルオルソシリケート(TEO
S)をプラズマ蒸着したもの)などからなるものが形成さ
れる。なお、絶縁膜2は、1種からなってもいてもよ
く、また2種以上からなるものであってもよい。さら
に、上下に別の絶縁膜が形成された多層のものであって
もよい。
The insulating film is not particularly limited as long as it is made of an insulating material. For example, silica, alumina, titania, silicon nitride, silicon carbide, organic resin polymer, and plasma TEOS (plasma is used). TEOS is tetraethyl orthosilicate (TEO
(S) plasma-deposited) and the like are formed. The insulating film 2 may be made of one type, or may be made of two or more types. Further, it may be a multi-layered one in which another insulating film is formed on the upper and lower sides.

【0014】このような絶縁膜2は従来公知の方法で形
成され、例えばスピンコート法、CVD法、スパッタリ
ング法等、プラズマCVD法等によって形成することが
できる。また、たとえば本願出願人の出願による特開平
2−237030号公報に開示されたシリカからなる絶
縁膜(SOG膜)はコンタクト抵抗が高く、低誘電率で
さらに平坦性に優れているので好ましい。
Such an insulating film 2 is formed by a conventionally known method, for example, a spin coating method, a CVD method, a sputtering method, a plasma CVD method or the like. Further, for example, an insulating film (SOG film) made of silica disclosed in JP-A-2-237030 filed by the applicant of the present application has a high contact resistance, a low dielectric constant, and further excellent flatness, which is preferable.

【0015】このとき、絶縁膜はこのような絶縁膜は膜
厚が0.1〜6μmの範囲にあることが望ましい。絶縁
膜2の膜厚が0.1μm未満の場合は膜厚が薄すぎて絶
縁性を確保できないことがあり、絶縁膜2の膜厚が6μ
mを越えると、絶縁膜2にクラックが生じることがあ
る。
At this time, the insulating film preferably has a film thickness in the range of 0.1 to 6 μm. When the film thickness of the insulating film 2 is less than 0.1 μm, the film thickness may be too thin to secure the insulating property.
If it exceeds m, the insulating film 2 may be cracked.

【0016】なお、本発明において使用される配線溝付
基板には、図1のように、単層の絶縁膜である必要はな
く、前記したように2種以上の絶縁膜が積層して設けら
れていてもよい。絶縁膜が2種以上からなる場合は最終
的な絶縁膜の膜厚が0.1〜6μmの範囲にあることが
好ましい。 [配線溝3]本発明で使用される配線溝付基板では、絶縁
膜に配線溝が形成されている。
The wiring grooved substrate used in the present invention does not have to be a single-layer insulating film as shown in FIG. 1, and as described above, two or more kinds of insulating films are laminated and provided. It may be. When the insulating film is composed of two or more kinds, it is preferable that the final film thickness of the insulating film is in the range of 0.1 to 6 μm. [Wiring Groove 3] In the wiring grooved substrate used in the present invention, the wiring groove is formed in the insulating film.

【0017】配線溝の深さ(D)は0.05〜10μm
の範囲にあることが好ましく、さらに好ましくは0.1
〜5μmの範囲であることが望ましい。また、配線溝の
幅(WC)は0.05〜100μmの範囲にあることが
好ましく、さらに好ましくは0.1〜20μmの範囲で
あることが望ましい。配線溝の幅(WC)が0.05μ
m未満の場合は、幅が小さすぎて配線溝に選択的に導電
性微粒子を供給することができない場合がある。
The depth (D) of the wiring groove is 0.05 to 10 μm.
It is preferably in the range of 0.1, more preferably 0.1.
It is desirable to be in the range of up to 5 μm. The width (WC) of the wiring groove is preferably in the range of 0.05 to 100 μm, more preferably in the range of 0.1 to 20 μm. Wiring groove width (WC) is 0.05μ
If it is less than m, the width may be too small to selectively supply the conductive fine particles to the wiring groove.

【0018】配線溝の幅(WC)が100μmを越える
と、配線溝の幅が広すぎて高密度の回路を形成すること
ができない場合がある。配線溝の幅が上記範囲にある
と、導電性微粒子形成成分に超音波が照射して生成した
導電性微粒子または予め含まれている導電性微粒子が、
照射された超音波のエネルギーを吸収して、後述する配
線溝あるいは後述するバリアメタル層の形成された配線
溝の底面や側壁に形成された金属薄膜と衝突するととも
に融着しながら、あるいは逐次堆積した導電性微粒子と
衝突しながら導電性微粒子が緻密に堆積される。
If the width (WC) of the wiring groove exceeds 100 μm, the width of the wiring groove may be too wide to form a high-density circuit. When the width of the wiring groove is in the above range, the conductive fine particles formed by irradiation of ultrasonic waves to the conductive fine particle forming component or the conductive fine particles contained in advance,
It absorbs the energy of the applied ultrasonic waves and collides with the metal thin film formed on the bottom surface or side wall of the wiring groove described below or the wiring groove formed with a barrier metal layer described later, and is deposited while being fused. The conductive fine particles are densely deposited while colliding with the conductive fine particles.

【0019】このため導電性微粒子の接合面が増加し、
特に集積回路形成用塗布液に導電性微粒子形成成分が含
まれている場合は粒子間隙によるボイド(空隙)が少な
く、回路抵抗の小さい回路を形成することができる。ま
た、配線溝あるいは後述するバリアメタル層の形成され
た配線溝の底面や側壁との密着性に優れた回路を形成す
ることができる。また、配線溝の深さ(D)が0.05
μm未満の場合は、回路の導電性を確保するために回路
の幅を広くする必要があり、このため高密度の回路を形
成することができない場合がある。
Therefore, the bonding surface of the conductive fine particles increases,
In particular, when the coating liquid for forming an integrated circuit contains the conductive fine particle forming component, voids due to the gaps between the particles are small, and a circuit having a small circuit resistance can be formed. Further, it is possible to form a circuit having excellent adhesion to the bottom surface and side wall of the wiring groove or the wiring groove in which a barrier metal layer described later is formed. In addition, the depth (D) of the wiring groove is 0.05
If the thickness is less than μm, it is necessary to widen the width of the circuit in order to ensure the conductivity of the circuit, and thus it may not be possible to form a high-density circuit.

【0020】また配線溝の深さ(D)が10μmを越え
ると、配線層の厚さが厚すぎて高さ方向に高度に集積し
た集積回路を得ることができない場合がある。前記配線
溝の幅(WC)と配線溝の深さ(D)の比(D/WC)
は0.1〜20の範囲にあることが好ましい。配線溝の
深さ(D)と配線溝の幅(WC)が前記範囲にあって、
アスペクト比D/WCが0.1未満の場合は回路の導電
性を確保できないことがあり、このため回路の幅を広げ
ると高密度の回路を形成することができない場合があ
る。また、アスペクト比D/WCが20を越えると回路
の導電性を確保できないことがあり、このため回路の高
さを高くすると縦方向に高度に集積した回路を形成する
ことができない場合がある。このような配線溝は、基板
上に0.1〜10μmのラインアンドスペースのフォト
レジスト膜(PR膜)を形成し、ついでスパッタリング
により形成することができる。
If the depth (D) of the wiring groove exceeds 10 μm, the wiring layer may be too thick to obtain an integrated circuit highly integrated in the height direction. Ratio (D / WC) of the width (WC) of the wiring groove and the depth (D) of the wiring groove
Is preferably in the range of 0.1 to 20. The depth (D) of the wiring groove and the width (WC) of the wiring groove are within the above range,
If the aspect ratio D / WC is less than 0.1, the conductivity of the circuit may not be ensured, and thus if the width of the circuit is widened, it may not be possible to form a high-density circuit. Further, if the aspect ratio D / WC exceeds 20, the conductivity of the circuit may not be ensured, and therefore, if the height of the circuit is increased, it may not be possible to form a highly integrated circuit in the vertical direction. Such wiring grooves can be formed by forming a photoresist film (PR film) having a line-and-space of 0.1 to 10 μm on the substrate, and then sputtering.

【0021】[バリアメタル層]なお、本発明の集積回路
の製造方法においては、集積回路形成用塗布液を塗布す
る前に、前記配線溝の内面にバリアメタル層を形成して
もよい。このようなバリアメタル層の形成は、従来公知
の方法を採用することができ、例えば、TiN、Ta、T
aN等のスパッタリングによって行うことができる。こ
のときのバリアメタル層の厚さは通常50〜200nm
の範囲にある。バリアメタル層を形成することによっ
て、回路形成用の導電性微粒子成分、後述する有機系安
定剤、イオン等の不純物の絶縁膜への拡散や浸食を防止
することができるとともに、これらの絶縁膜への拡散や
浸食に伴う絶縁膜の絶縁性の低下を抑制することができ
る。
[Barrier Metal Layer] In the method of manufacturing an integrated circuit of the present invention, a barrier metal layer may be formed on the inner surface of the wiring groove before applying the coating liquid for forming an integrated circuit. For forming such a barrier metal layer, a conventionally known method can be adopted. For example, TiN, Ta, T
It can be performed by sputtering aN or the like. At this time, the thickness of the barrier metal layer is usually 50 to 200 nm.
Is in the range. By forming the barrier metal layer, it is possible to prevent the conductive fine particle component for circuit formation, the organic stabilizer described below, and impurities such as ions from diffusing or eroding into the insulating film, and at the same time, to these insulating films. It is possible to suppress the deterioration of the insulating property of the insulating film due to the diffusion and erosion of.

【0022】工程(a) [金属薄膜の形成]本発明では、前記配線溝表面に金属薄
膜を形成する。金属薄膜を構成する成分としては、後述
する導電性微粒子と同様に、Au、Ag、Pd、Pt、R
h、Ru、Cu、Fe、Ni、Co、Sn、Ti、In、Al、S
bおよびWからなる群から選ばれる少なくとも1種の金
属成分が用いられる。このとき、金属薄膜成分は導電性
微粒子成分、導電性微粒子形成成分と異なっていてもよ
いが、同一であると金属薄膜との密着性が高く、前記し
たボイドの少ない回路を形成することができる。
Step (a) [Formation of Metal Thin Film] In the present invention, a metal thin film is formed on the surface of the wiring groove. As the constituents of the metal thin film, Au, Ag, Pd, Pt, R
h, Ru, Cu, Fe, Ni, Co, Sn, Ti, In, Al, S
At least one metal component selected from the group consisting of b and W is used. At this time, the metal thin film component may be different from the conductive fine particle component and the conductive fine particle forming component, but if they are the same, the adhesiveness to the metal thin film is high, and the circuit with few voids described above can be formed. .

【0023】このような金属薄膜の厚さは2〜25n
m、さらには5〜20nmの範囲にあることが好まし
い。金属薄膜の厚さが2nm未満の場合は、配線溝に側
壁および底面の全面に薄膜を形成できないことがあり、
配線溝と回路との密着性に欠けることがある。金属薄膜
の厚さが25nmを越えると、配線溝のサイズによって
は配線溝が狭くなるために、導電性微粒子形成成分およ
び/または導電性微粒子を含む集積回路形成用塗布液塗
布を選択的に配線溝に塗布することが困難となることが
あり、また、超音波を照射しながら塗布液を塗布して回
路を形成する効果が充分発揮できず、さらに金属薄膜の
形成方法によっては、配線溝間の絶縁膜上にも金属薄膜
が形成され、この部分(犠牲層)の研磨などによる除去
が必要であり、この負担が高くなる。
The thickness of such a metal thin film is 2 to 25 n.
m, more preferably 5 to 20 nm. If the thickness of the metal thin film is less than 2 nm, it may not be possible to form the thin film on the entire side wall and bottom surface of the wiring groove.
The adhesion between the wiring groove and the circuit may be lacking. If the thickness of the metal thin film exceeds 25 nm, the wiring groove becomes narrower depending on the size of the wiring groove. Therefore, the application of the coating solution for forming an integrated circuit containing the conductive fine particle forming component and / or the conductive fine particle is selectively performed. It may be difficult to apply it to the groove, and the effect of applying the application liquid while irradiating the ultrasonic wave to form the circuit cannot be sufficiently exerted. A metal thin film is also formed on the insulating film, and this portion (sacrifice layer) needs to be removed by polishing or the like, which increases the burden.

【0024】前記金属薄膜の形成方法は、前記した厚さ
の範囲で均一な薄膜を形成できればとくに制限はなく、
従来公知の方法を採用することができる。例えば、スパ
ッタリング法、CVD法、電解メッキ法、無電解メッキ
法等を挙げることができる。なかでも、上記膜厚範囲の
均一な金属薄膜を形成できる点でCVD法が好ましく用
いられる。
The method for forming the metal thin film is not particularly limited as long as it is possible to form a uniform thin film within the above-mentioned thickness range.
A conventionally known method can be adopted. For example, a sputtering method, a CVD method, an electrolytic plating method, an electroless plating method, etc. can be mentioned. Among them, the CVD method is preferably used because it can form a metal thin film having a uniform thickness within the above range.

【0025】工程(b) ついで、超音波を照射しながら、金属薄膜を形成した配
線溝に、導電性微粒子形成成分および/または導電性微
粒子を含んでなる集積回路形成用塗布液を塗布する。さ
らに、必要に応じて乾燥し、加熱処理することもでき
る。
Step (b) Next, while applying ultrasonic waves, a coating solution for forming an integrated circuit containing a conductive fine particle forming component and / or conductive fine particles is applied to the wiring groove formed with the metal thin film. Furthermore, if necessary, it can be dried and heat-treated.

【0026】集積回路形成用塗布液 本発明に用いる集積回路形成用塗布液は、導電性微粒子
形成成分および/または導電性微粒子と水および/また
は有機溶媒からなるものが使用される。 [導電性微粒子形成成分]導電性微粒子形成成分として
は、後述する単一成分の金属微粒子あるいは2種以上の
金属成分を含む複合金属微粒子などの導電性微粒子を形
成する成分であって、該金属のイオンが挙げられる。具
体的にはAu、Ag、Pd、Pt、Rh、Ru、Cu、Fe、N
i、Co、Sn、Ti、In、Al、SbおよびWなどの金属
のイオンが挙げられる。なかでもAu、Ag、Pd、Pt、
Rh、Cuなどは金属は超音波照射によって容易に金属コ
ロイド微粒子が得られるので好ましい。
Coating Solution for Forming Integrated Circuit The coating solution for forming an integrated circuit used in the present invention is composed of a component for forming conductive fine particles and / or conductive fine particles and water and / or an organic solvent. [Conductive Fine Particle Forming Component] The conductive fine particle forming component is a component for forming conductive fine particles such as a single component metal fine particle described later or a composite metal fine particle containing two or more kinds of metal components. Ion is mentioned. Specifically, Au, Ag, Pd, Pt, Rh, Ru, Cu, Fe, N
Ions of metals such as i, Co, Sn, Ti, In, Al, Sb and W are mentioned. Among them, Au, Ag, Pd, Pt,
Metals such as Rh and Cu are preferable because metal colloid fine particles can be easily obtained by ultrasonic irradiation.

【0027】このような金属イオンを含む化合物として
は、NaAuCl4、AgClO4、AgNO3、PdCl2・2N
aCl、Pd(NO3)2、K2PtCl4、H2PtCl6、CuCl2
などが例示される。これらの導電性微粒子形成成分は超
音波照射によって容易に後述する導電性微粒子と同程度
の粒子径の金属コロイド微粒子を生成する。
Compounds containing such metal ions include NaAuCl 4 , AgClO 4 , AgNO 3 , PdCl 2 .2N
aCl, Pd (NO 3 ) 2 , K 2 PtCl 4 , H 2 PtCl 6 , CuCl 2
Are exemplified. These conductive fine particle-forming components easily generate metal colloidal fine particles having a particle size similar to that of the conductive fine particles to be described later upon irradiation with ultrasonic waves.

【0028】[導電性微粒子]導電性微粒子としては、導
電性を有するものであれば特に制限なく使用することが
可能であり、金属微粒子、金属酸化物微粒子、導電性カ
ーボン、導電性高分子微粒子など挙げられる。本発明で
は、導電性微粒子として、金属微粒子が好ましく使用さ
れる。
[Conductive Fine Particles] The conductive fine particles can be used without particular limitation as long as they have conductivity. Metal fine particles, metal oxide fine particles, conductive carbon, conductive polymer fine particles. Etc. In the present invention, fine metal particles are preferably used as the conductive fine particles.

【0029】金属微粒子としては、従来公知の金属微粒
子を用いることができ、単一成分の金属微粒子であって
もよく、2種以上の金属成分を含む複合金属微粒子であ
ってもよい。また前記複合金属微粒子を構成する2種以
上の金属は、固溶状態にある合金であっても、固溶状態
にない共晶体であってもよく、合金と共晶体が共存して
いてもよい。このような複合金属微粒子は、金属の酸化
やイオン化が抑制されるため、複合金属微粒子の粒子成
長等が抑制され、複合金属微粒子の耐腐食性が高く、導
電性の低下(抵抗値の上昇)が小さいなど信頼性に優れ
ている。このような金属微粒子としてはAu、Ag、P
d、Pt、Rh、Ru、Cu、Fe、Ni、Co、Sn、Ti、I
n、Al、SbおよびWからなる群から選ばれる少なくと
も1種の金属を含んでなる金属微粒子が好ましい。
Conventionally known metal fine particles can be used as the metal fine particles, and may be single component metal fine particles or composite metal fine particles containing two or more kinds of metal components. Further, the two or more kinds of metals forming the composite metal fine particles may be an alloy in a solid solution state, a eutectic body not in a solid solution state, or the alloy and the eutectic body may coexist. . In such composite metal fine particles, since metal oxidation and ionization are suppressed, the particle growth of the composite metal fine particles is suppressed, the corrosion resistance of the composite metal fine particles is high, and the conductivity is lowered (the resistance value is increased). It has excellent reliability such as small size. Such metal fine particles include Au, Ag, P
d, Pt, Rh, Ru, Cu, Fe, Ni, Co, Sn, Ti, I
Metal fine particles containing at least one metal selected from the group consisting of n, Al, Sb and W are preferable.

【0030】金属微粒子としては、Au、Ag、Pd、P
t、Rh、Ru、Cu、Fe、Ni、Co、Sn、Ti、In、A
l、SbおよびWからなる群から選ばれる金属の微粒子が
挙げられる。また、複合金属微粒子としては、Au、A
g、Pd、Pt、Rh、Ru、Cu、Fe、Ni、Co、Sn、T
i、In、Al、SbおよびWからなる群から選ばれる少な
くとも2種以上の金属からなる複合金属微粒子が挙げら
れる。好ましい2種以上の金属の組合せとしては、Au-
Cu、Ag-Pt、Ag-Pd、Au-Pd、Au-Rh、Pt-Pd、
Pt-Rh、Fe-Ni、Ni-Pd、Fe-Co、Cu-Co、Ru-
Ag、Au-Cu-Ag、Ag-Cu-Pt、Ag-Cu-Pd、Ag-A
u-Pd、Au-Rh-Pd、Ag-Pt-Pd、Ag-Pt-Rh、Fe-
Ni-Pd、Fe-Co-Pd、Cu-Co-Pdなどが挙げられ
る。また、Au、Ag、Pd、Pt、Rh、Cu、Co、Sn、
Inなどの金属からなる金属微粒子を用いる場合は、そ
の一部が酸化状態にあってもよく、また金属微粒子は、
その金属の酸化物を含んでいてもよい。さらに、PやB
原子が結合した化合物を含有していてもよい。
The fine metal particles include Au, Ag, Pd and P.
t, Rh, Ru, Cu, Fe, Ni, Co, Sn, Ti, In, A
Examples thereof include fine particles of a metal selected from the group consisting of l, Sb and W. Further, as the composite metal fine particles, Au, A
g, Pd, Pt, Rh, Ru, Cu, Fe, Ni, Co, Sn, T
Examples thereof include fine composite metal particles composed of at least two metals selected from the group consisting of i, In, Al, Sb and W. A preferable combination of two or more metals is Au-
Cu, Ag-Pt, Ag-Pd, Au-Pd, Au-Rh, Pt-Pd,
Pt-Rh, Fe-Ni, Ni-Pd, Fe-Co, Cu-Co, Ru-
Ag, Au-Cu-Ag, Ag-Cu-Pt, Ag-Cu-Pd, Ag-A
u-Pd, Au-Rh-Pd, Ag-Pt-Pd, Ag-Pt-Rh, Fe-
Ni-Pd, Fe-Co-Pd, Cu-Co-Pd and the like can be mentioned. Also, Au, Ag, Pd, Pt, Rh, Cu, Co, Sn,
When using metal fine particles made of a metal such as In, a part thereof may be in an oxidized state.
The metal oxide may be included. Furthermore, P and B
It may also contain compounds with attached atoms.

【0031】このような金属微粒子は、公知の方法(特
開平10−188681号公報参照)によって得ること
ができる。たとえば、アルコール・水混合溶媒中で、1
種の金属塩を還元する方法、あるいは2種以上の金属塩
を同時にあるいは別々に還元する方法によって、金属微
粒子を調製することができる。このとき、必要に応じて
還元剤を添加してもよい。還元剤としては、硫酸第1
鉄、クエン酸3ナトリウム、酒石酸、水素化ホウ素ナト
リウム、次亜リン酸ナトリウムなどが挙げられる。ま
た、圧力容器中で約100℃以上の温度で加熱処理して
もよい。また、単成分金属微粒子または合金微粒子の分
散液に、金属微粒子または合金微粒子よりも標準水素電
極電位が高い金属の微粒子またはイオンを存在させて、
金属微粒子または/および合金微粒子上に標準水素電極
電位が高い金属を析出させる方法によっても金属微粒子
を調製することができる。このとき、得られた複合金属
微粒子上に、さらに標準水素電極電位が高い金属を析出
させてもよい。また、このような標準水素電極電位の最
も高い金属は、複合金属微粒子表面層に多く存在してい
ることが好ましい。このように、標準水素電極電位の最
も高い金属が複合金属微粒子の表面層に多く存在する
と、複合金属微粒子の酸化およびイオン化が抑えられ、
イオンマイグレーション等による粒子成長の抑制が可能
となる。さらに、このような複合金属微粒子は、耐腐食
性が高いので、導電性の低下を抑制することができる。
さらにまた、日本金属学会秋季大会シンポジウム講演概
要集(1997)70頁等に記載された超音波照射直接
還元法によって、金属微粒子を調製することができる。
具体的には、貴金属イオン(Ag+、Au3++、Pd2+、P
t2+、Pt4+等)を含み、必要に応じて界面活性剤等の有
機化合物を添加した溶液に、不活性ガス雰囲気下で超音
波を、たとえば200kHz、6W/cm2の条件で照射
することによって金属微粒子を調製することができる。
このような金属微粒子の平均粒径は200nm以下、好
ましくは70nm以下の範囲にあることが望ましい。
Such metal fine particles can be obtained by a known method (see Japanese Patent Laid-Open No. 10-188681). For example, in an alcohol / water mixed solvent, 1
The fine metal particles can be prepared by a method of reducing one kind of metal salt or a method of simultaneously or separately reducing two or more kinds of metal salts. At this time, a reducing agent may be added if necessary. As a reducing agent, sulfuric acid No. 1
Iron, trisodium citrate, tartaric acid, sodium borohydride, sodium hypophosphite and the like can be mentioned. Alternatively, the heat treatment may be performed in a pressure vessel at a temperature of about 100 ° C. or higher. Further, in the dispersion liquid of single-component metal fine particles or alloy fine particles, the presence of metal fine particles or ions having a standard hydrogen electrode potential higher than that of the metal fine particles or alloy fine particles,
The metal fine particles can also be prepared by a method of depositing a metal having a high standard hydrogen electrode potential on the metal fine particles and / or the alloy fine particles. At this time, a metal having a higher standard hydrogen electrode potential may be deposited on the obtained composite metal fine particles. Further, it is preferable that a large amount of such a metal having the highest standard hydrogen electrode potential is present in the surface layer of the composite metal fine particles. In this way, when the metal having the highest standard hydrogen electrode potential is present in the surface layer of the composite metal fine particles in a large amount, the oxidation and ionization of the composite metal fine particles are suppressed,
Particle growth due to ion migration or the like can be suppressed. Furthermore, since such composite metal fine particles have high corrosion resistance, it is possible to suppress a decrease in conductivity.
Furthermore, the fine metal particles can be prepared by the ultrasonic irradiation direct reduction method described in, for example, the proceedings of the symposium of the Autumn Meeting of the Japan Institute of Metals (1997), page 70.
Specifically, precious metal ions (Ag + , Au 3+ +, Pd 2+ , P
t 2+ , Pt 4+, etc.) and, if necessary, an organic compound such as a surfactant, is irradiated with ultrasonic waves under an inert gas atmosphere under the conditions of, for example, 200 kHz and 6 W / cm 2. By doing so, the fine metal particles can be prepared.
The average particle size of such metal fine particles is preferably 200 nm or less, and more preferably 70 nm or less.

【0032】金属微粒子の平均粒径が200nmを越え
ると、金属微粒子が大きすぎて配線溝に入ることができ
なかったり、入ったとしても緻密に堆積することができ
ず低抵抗値の回路を形成することが困難である。導電性
金属酸化物微粒子の平均粒径が1nm未満のものは得る
ことが困難であり、得られたとしても粒子の配合割合に
よっては粒界抵抗が大きくなり低抵抗の回路が形成でき
ないことがある。
When the average particle size of the metal fine particles exceeds 200 nm, the metal fine particles are too large to enter the wiring groove, or even if they enter, they cannot be densely deposited and a circuit having a low resistance value is formed. Difficult to do. It is difficult to obtain a conductive metal oxide fine particle having an average particle size of less than 1 nm, and even if it is obtained, the grain boundary resistance becomes large and a low resistance circuit may not be formed depending on the mixing ratio of the particles. .

【0033】また、本発明では、前記金属微粒子の代わ
りに導電性金属酸化物微粒子を使用してもよく、また金
属微粒子とともに導電性金属酸化物微粒子を使用しても
よい。導電性金属酸化物としては、酸化錫、Sb、Fま
たはPがドーピングざれた酸化錫、酸化インジウム、S
nまたはFがドーピングされた酸化インジウム、酸化ア
ンチモン、低次酸化チタンが挙げられる。
In the present invention, conductive metal oxide fine particles may be used in place of the metal fine particles, or conductive metal oxide fine particles may be used together with the metal fine particles. Examples of the conductive metal oxide include tin oxide, tin oxide doped with Sb, F or P, indium oxide, and S.
Examples thereof include indium oxide, antimony oxide, and low-order titanium oxide doped with n or F.

【0034】本発明に用いる集積回路形成用塗布液に
は、上記金属微粒子、金属酸化物微粒子以外の導電性微
粒子が含まれていてもよい。さらに、導電性カーボン等
の無機系導電性微粒子、ポリアセチレン、ポリピロー
ル、ポリ-P-フェニレンなどの導電性高分子からなる導
電性微粒子を用いることもできる。これらの導電性微粒
子の平均粒径も1〜200nm、好ましくは2〜70n
mの範囲にあることが望ましい。
The coating liquid for forming an integrated circuit used in the present invention may contain conductive fine particles other than the above metal fine particles and metal oxide fine particles. Further, it is also possible to use inorganic conductive fine particles such as conductive carbon, and conductive fine particles made of a conductive polymer such as polyacetylene, polypyrrole, poly-P-phenylene. The average particle size of these conductive fine particles is also 1 to 200 nm, preferably 2 to 70 n.
It is desirable to be in the range of m.

【0035】有機溶媒 集積回路形成用塗布液に用いられる有機溶媒としては、
メタノール、エタノール、プロパノール、ブタノール、
ジアセトンアルコール、フルフリルアルコール、テトラ
ヒドロフルフリルアルコール、エチレングリコール、ヘ
キシレングリコールなどのアルコール類;酢酸メチルエ
ステル、酢酸エチルエステルなどのエステル類;ジエチ
ルエーテル、エチレングリコールモノメチルエーテル、
エチレングリコールモノエチルエーテル、エチレングリ
コールモノブチルエーテル、ジエチレングリコールモノ
メチルエーテル、ジエチレングリコールモノエチルエー
テルなどのエーテル類;アセトン、メチルエチルケト
ン、アセチルアセトン、アセト酢酸エステルなどのケト
ン類などが挙げられる。これらは単独で使用してもよ
く、また2種以上混合して使用してもよい。集積回路形
成用塗布液中の導電性微粒子形成成分および/または導
電性微粒子の濃度は、塗布液の流動性が確保できれば特
に制限はないが、固形分あるいは金属に換算して0.0
5〜30重量%、好ましくは0.1〜10重量%、特に
好ましくは0.2〜5重量%の量で含まれていることが
望ましい。
Organic Solvent As the organic solvent used in the coating liquid for forming an integrated circuit,
Methanol, ethanol, propanol, butanol,
Alcohols such as diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol; esters such as acetic acid methyl ester, acetic acid ethyl ester; diethyl ether, ethylene glycol monomethyl ether,
Examples thereof include ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether; ketones such as acetone, methyl ethyl ketone, acetylacetone, acetoacetic acid ester, and the like. These may be used alone or in combination of two or more. The concentration of the conductive fine particle-forming component and / or the conductive fine particles in the coating liquid for forming an integrated circuit is not particularly limited as long as the fluidity of the coating liquid can be secured, but is 0.0 in terms of solid content or metal.
It is desirable that it is contained in an amount of 5 to 30% by weight, preferably 0.1 to 10% by weight, particularly preferably 0.2 to 5% by weight.

【0036】集積回路形成用塗布液中に含まれる導電性
微粒子形成成分および/または導電性微粒子の量が固形
分あるいは金属に換算して0.05重量%未満の場合
は、濃度が低すぎて、繰り返し塗布する必要があった
り、溶媒の蒸発に時間を要するので回路形成に長時間を
要することとなるので好ましくない。また、導電性微粒
子形成成分および/または導電性微粒子の量が固形分あ
るいは金属に換算して30重量%を越えると、生成する
粒子が凝集粒子がしていたり、塗布液中で導電性微粒子
が凝集することがあり、このため導電性微粒子が緻密に
堆積できず低抵抗値の回路が得られない場合があり、得
られたとしても長期の使用期間中に導電性が低下したり
回路の断線の原因になることがある。有機系安定剤 また、本発明では、導電性微粒子形成成分あるいは導電
性微粒子として金属微粒子を用いる場合は、金属微粒子
の生成を促進するために、生成する金属微粒子あるいは
金属微粒子の分散性を向上させるために、あるいは分散
液の安定性を高めるために集積回路形成用塗布液中に有
機系安定剤あるいは界面活性剤が含まれていてもよい。
このような有機系安定剤、界面活性剤として具体的に
は、ゼラチン、ポリビニルアルコール、ポリビニルピロ
リドン、シュウ酸、マロン酸、コハク酸、グルタール
酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、
フタル酸、クエン酸などの多価カルボン酸およびその
塩、スルホン酸塩、有機スルホン酸塩、リン酸塩、有機
リン酸塩、複素環化合物、ポリカルボン酸、またはこれ
らの混合物などが挙げられる。このような有機系安定
剤、界面活性剤は、これらの種類、金属微粒子の粒子径
等によっても異なるが、金属微粒子形成成分および/ま
たは金属微粒子を金属に換算し、この金属1重量部に対
し、0.005〜5重量部、好ましくは0.01〜2重量
部の量で含まれていればよい。有機系安定剤、界面活性
剤の量が0.005重量部未満の場合は充分な分散性、
安定性が得られず、5重量部を超えて高い場合は導電性
が阻害されることがある。
When the amount of the conductive fine particle forming component and / or the conductive fine particles contained in the integrated circuit forming coating liquid is less than 0.05% by weight in terms of solid content or metal, the concentration is too low. However, it is not preferable because it is necessary to repeatedly apply the solvent, or it takes time to evaporate the solvent, which requires a long time to form a circuit. Further, when the amount of the conductive fine particle-forming component and / or the conductive fine particles exceeds 30% by weight in terms of solid content or metal, the produced particles are agglomerated particles, or the conductive fine particles are formed in the coating liquid. In some cases, the conductive particles may not be densely deposited and a circuit with a low resistance value may not be obtained.Even if they are obtained, the conductivity may drop or the circuit may be broken during a long period of use. May cause. In the present invention, when metal fine particles are used as the conductive fine particle forming component or conductive fine particles in the present invention, the dispersibility of the generated metal fine particles or the metal fine particles is improved in order to promote the generation of the metal fine particles. In order to improve the stability of the dispersion liquid, an organic stabilizer or a surfactant may be contained in the coating liquid for forming an integrated circuit.
Such organic stabilizers, specifically as a surfactant, gelatin, polyvinyl alcohol, polyvinylpyrrolidone, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, fumaric acid,
Examples thereof include polyvalent carboxylic acids such as phthalic acid and citric acid and salts thereof, sulfonates, organic sulfonates, phosphates, organic phosphates, heterocyclic compounds, polycarboxylic acids, and mixtures thereof. Such organic stabilizers and surfactants vary depending on their types, the particle size of the metal fine particles, etc., but the metal fine particle-forming component and / or the metal fine particles are converted to metal, and 1 part by weight of this metal is used. , 0.005 to 5 parts by weight, preferably 0.01 to 2 parts by weight. When the amount of the organic stabilizer and the surfactant is less than 0.005 part by weight, sufficient dispersibility,
If the stability is not obtained and the amount exceeds 5 parts by weight, the conductivity may be hindered.

【0037】さらに本発明で用いられる集積回路形成用
塗布液は、金属微粒子を水および/または有機溶媒に分
散させて用いる場合は、塗布液中に存在するアルカリ金
属イオン、アンモニウムイオンおよび多価金属イオン、
ならびに鉱酸などの無機陰イオン、酢酸、蟻酸などの有
機陰イオンで、粒子から遊離したイオン濃度の合計量
が、分散液中の固形分100g当たり10ミリモル以下
の量であることが望ましい。特に鉱酸などの無機陰イオ
ンは、金属微粒子の安定性、分散性を阻害するので、分
散液中に含まれる量は低いほど好ましい。イオン濃度が
低くなると、集積回路形成用塗布液中に含まれている金
属微粒子の分散状態が良好となり、凝集粒子をほとんど
含んでいない分散液が得られる。この塗布液中での金属
微粒子の単分散状態は、回路の形成過程でも維持され
る。このため、イオン濃度の低い集積回路形成用塗布液
から集積回路を形成すると、凝集粒子が存在しないため
に緻密で抵抗値の低い回路が形成される。
Furthermore, when the fine metal particles are dispersed in water and / or an organic solvent to be used in the coating liquid for forming an integrated circuit used in the present invention, the alkali metal ion, ammonium ion and polyvalent metal present in the coating liquid are used. ion,
In addition, it is desirable that the total amount of the concentration of ions of inorganic anions such as mineral acid and organic anions such as acetic acid and formic acid, which are liberated from the particles, be 10 mmol or less per 100 g of the solid content in the dispersion liquid. In particular, since inorganic anions such as mineral acids impair the stability and dispersibility of the metal fine particles, the lower the amount contained in the dispersion, the better. When the ion concentration is low, the dispersion state of the fine metal particles contained in the coating liquid for forming an integrated circuit is good, and a dispersion liquid containing almost no aggregated particles can be obtained. The monodispersed state of the metal fine particles in the coating liquid is maintained even during the circuit formation process. Therefore, when an integrated circuit is formed from a coating liquid for forming an integrated circuit having a low ion concentration, a dense circuit having a low resistance value is formed due to the absence of aggregated particles.

【0038】また上記のようなイオン濃度の低い分散液
から形成された回路では金属微粒子などの導電性微粒子
を良好に分散させ配列させることができるので、回路中
で導電性微粒子が凝集している場合に比較して欠陥のな
い信頼性の高い集積回路を提供することが可能である。
上記のようなイオン濃度の低い塗布液を得るための脱イ
オン処理の方法は、最終的に塗布液中に含まれているイ
オン濃度が上記のような範囲になるような方法であれば
特に制限されないが、好ましい脱イオン処理の方法とし
ては、塗布液の原料として用いられる導電性微粒子の分
散液、または前記分散液から調製された集積回路形成用
塗布液を陽イオン交換樹脂および/または陰イオン交換
樹脂と接触させる方法、あるいはこれらの液を、限外濾
過膜を用いて洗浄処理する方法などが挙げられる。
Further, in the circuit formed from the dispersion liquid having a low ion concentration as described above, the conductive fine particles such as metal fine particles can be favorably dispersed and arranged, so that the conductive fine particles are aggregated in the circuit. As compared with the case, it is possible to provide a highly reliable integrated circuit without defects.
The method of deionization treatment for obtaining a coating solution having a low ion concentration as described above is not particularly limited as long as the ion concentration finally contained in the coating solution falls within the above range. However, as a preferable deionization method, a dispersion liquid of conductive fine particles used as a raw material of a coating liquid or a coating liquid for forming an integrated circuit prepared from the dispersion liquid is used as a cation exchange resin and / or an anion. Examples thereof include a method of contacting with an exchange resin, and a method of washing these liquids with an ultrafiltration membrane.

【0039】塗布液の塗布方法 本発明では、集積回路形成用塗布液の塗布方法は、前記
配線溝に集積回路形成用塗布液を塗布できれば特に制限
はないが、容器に装着したノズル等から塗布する際の塗
布液に均一に超音波を照射することができ、かつ配線溝
に選択的に塗布できることが好ましい。
Coating Method of Coating Liquid In the present invention, the coating method of the coating liquid for forming an integrated circuit is not particularly limited as long as the coating liquid for forming an integrated circuit can be coated in the wiring groove, but it is coated from a nozzle or the like mounted in a container. It is preferable that the coating liquid at the time of irradiation can be uniformly irradiated with ultrasonic waves and can be selectively applied to the wiring groove.

【0040】本発明では、集積回路形成用塗布液を塗布
しながら超音波を照射するが、超音波の照射は前記ノズ
ル等から滴下・流出する際の塗布液および/または配線
溝に堆積した塗布液に行う。超音波の照射条件は、集積
回路形成用塗布液中の金属微粒子形成成分の金属に換算
した濃度、あるいは集積回路形成用塗布液中の導電性微
粒子の濃度、平均粒子径あるいは溶媒の沸点や塗布液の
塗布速度等によって異なり、導電性微粒子を配線溝に選
択に塗布できれば特に制限はないが、20〜400kH
z、5〜400Wの範囲で選択することができる。
In the present invention, ultrasonic waves are applied while applying the coating liquid for forming an integrated circuit. However, the ultrasonic waves are applied to the coating liquid and / or the coating deposited on the wiring groove when the liquid drops or flows out from the nozzle or the like. Perform on liquid. The ultrasonic irradiation conditions are the metal-concentrated concentration of the metal fine particle forming component in the coating liquid for forming an integrated circuit, the concentration of conductive fine particles in the coating liquid for forming an integrated circuit, the average particle size, the boiling point of the solvent, and the coating. There is no particular limitation as long as the conductive fine particles can be selectively applied to the wiring groove depending on the coating speed of the liquid, etc., but 20 to 400 kH
It can be selected in the range of z and 5 to 400 W.

【0041】集積回路形成用塗布液中に金属微粒子形成
成分を含む場合は、超音波の照射によって塗布液が加熱
されるとともに金属微粒子が生成し、溶媒の蒸発に伴っ
て塗布液が濃縮・乾燥しながら配線溝に入り、導電性微
粒子が堆積して導電性微粒子層が配線溝に形成されて、
回路が形成される。また、集積回路形成用塗布液中に導
電性微粒子を含む場合は、超音波の照射によって塗布液
が加熱され、溶媒の蒸発に伴って塗布液が濃縮・乾燥し
ながら配線溝に入り、導電性微粒子が堆積して導電性微
粒子層が配線溝に形成されて、回路が形成される。
When the coating liquid for forming an integrated circuit contains a component for forming fine metal particles, the coating liquid is heated by irradiation of ultrasonic waves and fine metal particles are generated, and the coating liquid is concentrated and dried as the solvent evaporates. While entering the wiring groove, conductive fine particles are deposited and a conductive fine particle layer is formed in the wiring groove,
A circuit is formed. If the coating liquid for forming an integrated circuit contains conductive fine particles, the coating liquid is heated by the irradiation of ultrasonic waves, and the coating liquid enters the wiring groove while being concentrated and dried as the solvent evaporates, and the conductivity is increased. The fine particles are deposited and the conductive fine particle layer is formed in the wiring groove to form a circuit.

【0042】また、生成した金属微粒子を含む導電性微
粒子は超音波によるエネルギーを吸収し、配線溝内に入
った導電性微粒子は配線溝の底面、側壁あるいは導電性
微粒子同士の衝突により、配線構内の下部から順次導電
性微粒子が緻密に堆積して回路が形成される。配線溝内
を充分に満たして回路が形成された後、必要に応じてさ
らに超音波を照射(第2の超音波の照射)することもで
きる。
Further, the conductive fine particles including the generated metal fine particles absorb the energy due to ultrasonic waves, and the conductive fine particles that have entered the wiring groove are collided with each other on the bottom surface, the side wall of the wiring groove or between the conductive fine particles, so that the wiring premises The conductive fine particles are densely deposited in sequence from the lower part of the to form a circuit. After the circuit is formed by sufficiently filling the wiring groove, it is possible to further irradiate ultrasonic waves (irradiation of second ultrasonic waves) as necessary.

【0043】あるいは、第2の超音波の照射前に前記集
積回路形成用塗布液をスピナー法により塗布した後、第
2の超音波の照射を行うこともできる。このような第2
の超音波の照射により、回路形成後の基板の上面が平坦
化でき、回路形成後に必要に応じて行う平坦化処理(例
えば、化学機械研磨(CMP)処理)が容易となる。本
発明の集積回路の形成方法によれば、配線溝内に選択的
に導電性微粒子が緻密に堆積して、配線溝内が導電性微
粒子で満たされ、配線溝の上端面と導電性微粒子層の上
端面がほぼ一致するように回路を形成することができる
ので、従来のメッキ法、CVD法、PVD法や前述した
SOM法のように配線溝の上端面を越えて高く導電層
(犠牲層)が形成されることが少ないの、実質的には絶
縁膜上に形成された金属薄膜を除去すればよく、平坦化
処理は極めて容易であり、処理後の端面は平坦性に優れ
ている。このため集積回路形成の経済性にも優れてい
る。
Alternatively, it is also possible to apply the second ultrasonic wave after applying the integrated circuit forming coating solution by a spinner method before the second ultrasonic wave is applied. Such a second
By irradiating the ultrasonic wave, the upper surface of the substrate after the circuit formation can be flattened, and the flattening treatment (for example, chemical mechanical polishing (CMP) treatment) performed as necessary after the circuit formation becomes easy. According to the method for forming an integrated circuit of the present invention, the conductive fine particles are selectively and densely deposited in the wiring groove to fill the wiring groove with the conductive fine particles, and the upper end surface of the wiring groove and the conductive fine particle layer are formed. Since the circuit can be formed so that the upper end surfaces of the wiring grooves substantially coincide with each other, a conductive layer (sacrificial layer) higher than the upper end surface of the wiring groove can be formed as in the conventional plating method, CVD method, PVD method, and SOM method described above. ) Is rarely formed, it suffices to remove the metal thin film formed on the insulating film, the planarization process is extremely easy, and the end face after the process has excellent flatness. Therefore, the economical efficiency of forming an integrated circuit is excellent.

【0044】前記集積回路形成用塗布液を、超音波を照
射しながら塗布した後、必要に応じて酸化および/また
は還元雰囲気あるいは不活性ガス雰囲気下、約200〜
400℃の温度で加熱処理(キュアリング)を行う。こ
の加熱処理によって回路中に不純物が存在する場合はこ
れを除去できるとともに、導電性微粒子同士の接合がよ
り促進され、配線溝との密着性に優れた低抵抗値の回路
が得られる。
The coating solution for forming an integrated circuit is applied while irradiating ultrasonic waves, and then, if necessary, in an oxidizing and / or reducing atmosphere or an inert gas atmosphere, about 200 to about
Heat treatment (curing) is performed at a temperature of 400 ° C. By this heat treatment, when impurities are present in the circuit, the impurities can be removed, the bonding of the conductive fine particles to each other is further promoted, and a circuit having a low resistance value excellent in adhesion to the wiring groove can be obtained.

【0045】ついで、形成された導電性微粒子層の平坦
化処理を行うことが望ましい。平坦化処理は、図2に示
されるようにして行われる。図2は平坦化処理の概略を
示す模式図であり、添字11は基板、12は絶縁膜、1
3は形成された導電性微粒子層、14はバリアメタル
層、15は金属薄膜層を示す。図2(1)に示されよう
に、形成直後の導電性微粒子層は、金属薄膜が形成され
た配線溝の上部および絶縁膜表面に形成されている。こ
の導電性微粒子層が、図2(2)に示すように絶縁膜の上
端面と研磨後の導電性微粒子層の上端面が、水平、かつ
平坦に一致するように平坦化処理が行われる。このよう
な平坦化処理は、例えば、化学機械研磨(CMP)処理
などによって行われる。
Next, it is desirable to perform a flattening treatment on the formed conductive fine particle layer. The flattening process is performed as shown in FIG. FIG. 2 is a schematic view showing an outline of the flattening process, wherein the subscript 11 is a substrate, 12 is an insulating film, and 1
3 is the formed conductive fine particle layer, 14 is a barrier metal layer, and 15 is a metal thin film layer. As shown in FIG. 2A, the conductive fine particle layer immediately after formation is formed on the upper part of the wiring groove in which the metal thin film is formed and on the surface of the insulating film. As shown in FIG. 2B, the conductive fine particle layer is flattened so that the upper end surface of the insulating film and the polished upper end surface of the conductive fine particle layer are aligned horizontally and flatly. Such a flattening process is performed by, for example, a chemical mechanical polishing (CMP) process.

【0046】こうして集積回路を形成した後、回路表面
に絶縁膜(第2絶縁膜)を形成してもよい。第2絶縁膜
の形成方法は、前記絶縁膜の形成方法と同様である。こ
の第2絶縁膜を形成した後、必要に応じてこの第2絶縁
膜の所定の位置に、形成した回路と電気的に接続するた
めのスルーホール(接続溝)を設ける。接続溝は、例え
ばドライエッチング等に形成され、通常1.5μm程度
の径である。
After forming the integrated circuit in this way, an insulating film (second insulating film) may be formed on the circuit surface. The method of forming the second insulating film is the same as the method of forming the insulating film. After forming the second insulating film, a through hole (connection groove) for electrically connecting to the formed circuit is provided at a predetermined position of the second insulating film as needed. The connection groove is formed by dry etching or the like, for example, and usually has a diameter of about 1.5 μm.

【0047】この後、前述した絶縁膜を形成し、配線溝
を形成し、さらに配線溝および接続溝に回路形成用塗布
液を塗布した後、第2絶縁膜を形成する一連の工程を繰
り返すことによって多層の集積回路付基板を作製するこ
とができる。 [集積回路付基板]次に、本発明の集積回路の製造方法に
よって得られる集積回路付基板について以下に示す図面
を参照しながら説明する。図3は本発明に係る集積回路
付基板の一実施例を示す概略断面図である。図3中、添
字21は基板、22は第1絶縁膜、23は配線層、24
は第2絶縁膜を示す。
After that, the above-mentioned insulating film is formed, the wiring groove is formed, the circuit forming coating liquid is applied to the wiring groove and the connection groove, and then a series of steps for forming the second insulating film is repeated. Thus, a multilayer substrate with an integrated circuit can be manufactured. [Substrate with Integrated Circuit] Next, a substrate with an integrated circuit obtained by the method for manufacturing an integrated circuit of the present invention will be described with reference to the drawings shown below. FIG. 3 is a schematic sectional view showing an embodiment of the substrate with integrated circuit according to the present invention. In FIG. 3, a subscript 21 is a substrate, 22 is a first insulating film, 23 is a wiring layer, and 24
Indicates a second insulating film.

【0048】本発明の集積回路付基板は、基板21上に
第1絶縁膜22が積層され、この絶縁膜内に上記した方
法によって配線層23が形成され、さらに絶縁膜22お
よび回路上に第2絶縁膜24が形成されている。(これ
らを第1配線層という)さらに第2絶縁膜24の上に第
1配線層と同一の構成の第2配線層(図示せず)が形成
されている。第1配線層と第2配線層はスルーホール
(接続溝、図示せず)を通じて接続されている。同様に
して第3配線層,,,,,第n配線層が形成されている。
In the substrate with integrated circuit of the present invention, the first insulating film 22 is laminated on the substrate 21, and the wiring layer 23 is formed in the insulating film by the method described above. The two insulating films 24 are formed. A second wiring layer (not shown) having the same structure as the first wiring layer is formed on the second insulating film 24 (these are referred to as a first wiring layer). The first wiring layer and the second wiring layer are connected through a through hole (connection groove, not shown). Similarly, the third wiring layer, ..., The nth wiring layer are formed.

【0049】また、本発明の多層の集積回路付基板で
は、上下各配線層はスルーホール(接続溝、図示せず)
を通じて接続されている。上記の接続は、絶縁膜に例え
ばRIE(Reactive Ion Etching)法によるドライエッ
チングにより所望の径(通常約1.5μm)のスルーホ
ール(接続溝)を設け、スパッタリングにより接続する
ことができる。また上層の回路を形成する際に、前記し
た回路の形成と同様に集積回路形成用塗布液を塗布しな
がら超音波を照射して配線溝と接続溝に導電性微粒子を
緻密に堆積させることにより接続することもできる。集
積回路形成用塗布液を用いて接続するときは、前記回路
の形成と同様に、スルーホール(接続溝)内壁に金属薄
膜を形成することが好ましい。
In the multi-layered substrate with integrated circuit of the present invention, the upper and lower wiring layers have through holes (connection grooves, not shown).
Are connected through. The above-mentioned connection can be made by forming a through hole (connection groove) having a desired diameter (usually about 1.5 μm) in the insulating film by dry etching using the RIE (Reactive Ion Etching) method, and making a connection by sputtering. Further, when forming the circuit of the upper layer, by applying the ultrasonic wave while applying the coating liquid for forming an integrated circuit as in the case of forming the circuit described above, the conductive fine particles are densely deposited in the wiring groove and the connection groove. You can also connect. When connecting using the coating liquid for forming an integrated circuit, it is preferable to form a metal thin film on the inner wall of the through hole (connection groove) as in the case of forming the circuit.

【0050】本発明のように、超音波を照射しながら配
線溝に集積回路形成用塗布液を塗布すると、塗布液が金
属微粒子形成成分を含む場合は、超音波照射によって金
属微粒子が生成し、塗布液が高温となり分散媒が蒸発し
て濃縮しながら塗布液が塗布され、しかも超音波の振動
エネルギーが導電性粒子に伝達されるため、該導電性粒
子が配線項の壁と衝突し、その衝撃により粒子が緻密に
配列し、このため配線溝の幅が狭い場合であっても配線
溝に選択的かつ緻密に導電性粒子を積層可能となる。
As in the present invention, when the coating liquid for forming an integrated circuit is applied to the wiring groove while irradiating with ultrasonic waves, when the coating liquid contains a metal fine particle forming component, the fine particles of metal are generated by the ultrasonic irradiation, The coating liquid is heated and the dispersion medium evaporates and concentrates, and the coating liquid is applied while being concentrated. Further, since the vibration energy of ultrasonic waves is transferred to the conductive particles, the conductive particles collide with the wall of the wiring item, The particles are densely arranged by the impact, so that even when the width of the wiring groove is narrow, the conductive particles can be selectively and densely stacked in the wiring groove.

【0051】また、塗布液が金属微粒子を含む場合は、
超音波照射によって塗布液が高温となり分散媒が蒸発し
て濃縮しながら塗布液が塗布され、しかも超音波の振動
エネルギーが導電性粒子に伝達されるため、該導電性粒
子が金属薄膜の形成された配線溝の壁と衝突し、その衝
撃により粒子が緻密に配列し、このため配線溝の幅が狭
い場合であっても配線溝に選択的かつ緻密に導電性粒子
を積層可能となる。
When the coating liquid contains fine metal particles,
The ultrasonic irradiation causes the coating liquid to reach a high temperature and evaporates and concentrates the dispersion medium so that the coating liquid is applied and the vibration energy of the ultrasonic waves is transmitted to the conductive particles, so that the conductive particles form a metal thin film. Further, the particles collide with the wall of the wiring groove, and the particles are densely arranged by the impact. Therefore, even when the width of the wiring groove is narrow, the conductive particles can be selectively and densely laminated in the wiring groove.

【0052】また配線溝には金属薄膜が形成されている
ので、導電性微粒子を緻密かつ密着性よく配線溝に堆積
させることができ、その結果少ない回数の塗布で配線溝
との密着性に優れ高度に集積した回路を得ることが可能
となる。
Further, since the metal thin film is formed in the wiring groove, the conductive fine particles can be deposited in the wiring groove densely and with good adhesiveness, and as a result, the adhesiveness with the wiring groove is excellent with a small number of coatings. It is possible to obtain a highly integrated circuit.

【0053】[0053]

【発明の効果】本発明の集積回路の製造方法によれば、
前記した金属薄膜が設けられており、配線溝の幅が狭い
場合においても導電性微粒子を緻密に金属薄膜の形成さ
れた配線溝に堆積させることができ、このため低抵抗値
で、また高密度でボイドが少なく、かつ配線溝との密着
性に優れた高集積度の回路を形成することができる。ま
た、チップサイズが大きい場合においても電気信号の伝
播遅延時間が増大することもない。
According to the method of manufacturing an integrated circuit of the present invention,
Since the above-mentioned metal thin film is provided, even if the width of the wiring groove is narrow, the conductive fine particles can be densely deposited in the wiring groove in which the metal thin film is formed. Thus, it is possible to form a highly integrated circuit with few voids and excellent adhesion to the wiring groove. Further, even when the chip size is large, the propagation delay time of the electric signal does not increase.

【0054】さらに、配線溝の上端面と導電性微粒子層
の上端面がほぼ一致するように回路を形成することがで
きるので、配線溝の上端面を越えて高く導電層が形成さ
れることが少なく、このため平坦化処理は極めて容易で
あり、処理後の端面は平坦性に優れている。したがっ
て、本発明に係る方法は集積回路付基板製造における経
済性にも優れている。
Further, since the circuit can be formed so that the upper end surface of the wiring groove and the upper end surface of the conductive fine particle layer are substantially aligned with each other, the conductive layer may be formed higher than the upper end surface of the wiring groove. Therefore, the flattening process is extremely easy and the end face after the process has excellent flatness. Therefore, the method according to the present invention is also excellent in economical efficiency in manufacturing a substrate with an integrated circuit.

【0055】また得られる集積回路付基板は、縦方向と
ともに横方向にも高度に集積した回路が形成されている
ので、伝播遅延時間が短縮されており、信頼性にも優れ
ている。
The obtained substrate with integrated circuit has a highly integrated circuit formed in the horizontal direction as well as in the vertical direction, so that the propagation delay time is shortened and the reliability is excellent.

【0056】[0056]

【実施例】以下、実施例により説明するが、本発明はこ
れらの実施例により限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0057】[0057]

【調製例】導電性微粒子分散液の調製 本実施例および比較例で用いた金属微粒子および導電性
微粒子の分散液の組成を表1に示す。金属微粒子(Q-1、
Q-2、Q-3)の分散液は、以下の方法で調製した。
Preparation Example Preparation of Conductive Fine Particle Dispersion Liquids Table 1 shows the compositions of the dispersion liquids of the metal fine particles and the conductive fine particles used in the examples and comparative examples. Metal fine particles (Q-1,
The dispersions of Q-2 and Q-3) were prepared by the following method.

【0058】純水100gに、あらかじめクエン酸3ナ
トリウムを金属微粒子1重量部当たり0.01重量部と
なるように加え、これに金属換算で濃度が10重量%と
なり、金属種が表1の重量比となるように硝酸銀、硝酸
パラジウム、塩化銅水溶液を加え、さらに硝酸銀、硝酸
パラジウム、塩化銅の合計モル数と等モル数の硫酸第一
鉄の水溶液を添加し、窒素雰囲気下で1時間攪拌して金
属微粒子の分散液を得た。得られた分散液は遠心分離器
により水洗して不純物を除去した後、水に分散させ、つ
いで表1に示した溶媒(1−エトキシ−2プロパノー
ル)を混合した後ロータリーエバポレーターにて水分を
除去するとともに濃縮して表(1)に示す固形分濃度の
金属微粒子分散液(S-1、S-2、S-3)を調製した。
Trisodium citrate was added in advance to 100 g of pure water so as to be 0.01 parts by weight per 1 part by weight of metal fine particles, and the concentration was 10% by weight in terms of metal, and the weight of the metal species was as shown in Table 1. Silver nitrate, palladium nitrate, and copper chloride aqueous solution are added so that the ratio becomes equal, and further an aqueous solution of ferrous sulfate having the same mole number as the total mole number of silver nitrate, palladium nitrate, and copper chloride is added, and the mixture is stirred for 1 hour under a nitrogen atmosphere. Thus, a dispersion liquid of fine metal particles was obtained. The obtained dispersion is washed with water by a centrifuge to remove impurities, dispersed in water, and then mixed with the solvent (1-ethoxy-2 propanol) shown in Table 1 and then water is removed by a rotary evaporator. And then concentrated to prepare metal fine particle dispersions (S-1, S-2, S-3) having the solid content concentrations shown in Table (1).

【0059】[0059]

【表1】 [Table 1]

【0060】b)集積回路形成用塗布液の調製 b-1)金属微粒子を含む集積回路形成用塗布液の調製 上記で調製した各金属微粒子分散液(S-1、S-2、S-3)
に、エタノールと1-エトキシ-2-プロパノールの重量
比がエタノール/1-エトキシ-2-プロパノール=3/
1の混合溶媒を加えて希釈し各々濃度が0.5重量%の
集積回路形成用塗布液(SC-1、SC-2、SC-3)を調製し
た。
B) Preparation of coating liquid for forming integrated circuit b-1) Preparation of coating liquid for forming integrated circuit containing fine metal particles Each of the metal fine particle dispersions (S-1, S-2, S-3) prepared above )
In addition, the weight ratio of ethanol to 1-ethoxy-2-propanol is ethanol / 1-ethoxy-2-propanol = 3 /
The mixed solvent of No. 1 was added and diluted to prepare coating solutions (SC-1, SC-2, SC-3) for forming integrated circuits each having a concentration of 0.5% by weight.

【0061】b-2)金属微粒子形成成分を含む集積回路
形成用塗布液の調製 純水100gに、あらかじめクエン酸3ナトリウムを金
属微粒子形成成分を金属に換算して1重量部当たり0.
01重量部となるように加え、これに金属換算で濃度が
0.5重量%となり、金属種が表2の重量比となるよう
に硝酸銀、硝酸パラジウム、塩化銅を溶解し、さらに各
溶液に界面活性剤としてドデシル硫酸ナトリウムを金属
微粒子形成成分を金属に換算して1重量部当たり1重量
部となるように加え、窒素雰囲気下で30分間撹拌して
金属微粒子形成成分を含む集積回路形成用塗布液(SB-
1、SB-2、SB-3)を調製した。
B-2) Integrated circuit containing metal fine particle forming component
Preparation of coating liquid for formation In 100 g of pure water, trisodium citrate was previously converted into metal for forming fine metal particles, and the amount was 0.1 part by weight.
In addition to 01 parts by weight, the concentration was 0.5% by weight in terms of metal, and silver nitrate, palladium nitrate, and copper chloride were dissolved so that the metal species had the weight ratio shown in Table 2. For forming an integrated circuit containing a metal fine particle forming component by adding sodium dodecylsulfate as a surfactant so that the metal fine particle forming component is converted to metal in an amount of 1 part by weight per 1 part by weight and stirring for 30 minutes in a nitrogen atmosphere. Coating liquid (SB-
1, SB-2, SB-3) were prepared.

【0062】[0062]

【表2】 [Table 2]

【0063】b-3)金属微粒子形成成分と金属微粒子を
含む集積回路形成用塗布液の調製 上記集積回路形成用塗布液(SB-1)と集積回路形成用塗
布液(SC-1)を重量比1:1で混合して金属微粒子形成
成分と金属微粒子を含む集積回路形成用塗布液(SD-1)
を調製した。
B-3) The metal fine particle forming component and the metal fine particles are
Preparation of Coating Solution for Forming Integrated Circuit Containing the Coating Solution for Forming Integrated Circuit (SB-1) and the Coating Solution for Forming Integrated Circuit (SC-1) at a Weight Ratio of 1: 1 Coating solution for forming integrated circuits (SD-1)
Was prepared.

【0064】[0064]

【実施例1】[集積回路付基板の作成]絶縁膜として、窒
化ケイ素からなる絶縁膜A(厚さ0.2μm)の表面
に、シリカからなる絶縁膜B(厚さ0.4μm)が積層
され、さらに、絶縁膜Bの表面に窒化ケイ素からなる絶
縁膜C(厚さ0.2μm)が順次形成されたシリコンウ
ェーハー(8インチウェーハー)基板上にポジ型フォト
レジストを塗布し、0.3μmのラインアンドスペース
の露光処理を行った。ついでテトラメチルアンモニウム
ハイドライド(TMAH)の現像液で露光部分を除去し
た。次ぎに、CF4とCHF3の混合ガスを用いて、下層
の絶縁膜にパターンを形成し、ついでO2プラズマによ
りレジストを除去し、幅(WC)が0.3μmで、深さ
(D)が0.6μm、アスペクト比D/WCが2の配線溝
を形成した。ついで、配線溝を形成した基板に、CVD
法にて厚さ15nmの銀薄膜層を形成した。
Example 1 [Creation of a substrate with integrated circuit] As an insulating film, an insulating film B made of silica (thickness 0.4 μm) is laminated on the surface of an insulating film A made of silicon nitride (thickness 0.2 μm). Further, a positive type photoresist is coated on a silicon wafer (8 inch wafer) substrate in which an insulating film C (thickness 0.2 μm) made of silicon nitride is sequentially formed on the surface of the insulating film B, and the thickness is 0.3 μm. Line and space exposure processing was performed. Then, the exposed portion was removed with a developing solution of tetramethylammonium hydride (TMAH). Then, a mixed gas of CF 4 and CHF 3 is used to form a pattern on the lower insulating film, and then the resist is removed by O 2 plasma to obtain a width (W C ) of 0.3 μm and a depth (D C ). ) Is 0.6 μm, and the aspect ratio D / W C is 2. Then, CVD is performed on the substrate on which the wiring groove is formed.
By the method, a silver thin film layer having a thickness of 15 nm was formed.

【0065】ついで、先に調製した集積回路形成用分散
液(SC-1)をノズル径が5mmのノズル付き容器に充填
し、ついで上記の銀薄膜層を形成した配線溝に沿って塗
布しながらこれに超音波発生装置(海上電気(株)製:
AUTOCHDER-300、形式-5271)で27kHz、300Wの超
音波を照射して配線溝に金属微粒子(Q-1)を堆積させ
た回路を形成した。ついで配線溝上端面を越えて僅かに
堆積した金属微粒子層および銀薄膜をCMP処理して平
坦化し、窒素雰囲気下400℃で30分間キュアリング
し、次ぎにCVD法により厚さ200nmのSiO2
(絶縁膜)を形成して集積回路付基板(A)を得た。導
電性微粒子の堆積量、平坦性およびCMP処理速度の比
較による研磨の難易度を表2に示した。また、得られた
集積回路付基板(A)について、回路の導通性および堆
積粒子の緻密性を調べた。結果を表3に示す。
Next, the previously prepared dispersion liquid for forming an integrated circuit (SC-1) was filled in a container with a nozzle having a nozzle diameter of 5 mm, and then applied along the wiring groove on which the silver thin film layer was formed. In addition to this, an ultrasonic generator (Kaiyo Denki KK:
A circuit was formed by irradiating ultrasonic waves of 27 kHz and 300 W with AUTOCHDER-300, type-5271) and depositing metal fine particles (Q-1) in the wiring groove. Then, the metal fine particle layer and the silver thin film slightly deposited over the upper end surface of the wiring groove are flattened by CMP treatment and cured at 400 ° C. for 30 minutes in a nitrogen atmosphere, and then a 200 nm thick SiO 2 film is formed by a CVD method ( An insulating film) was formed to obtain a substrate with integrated circuit (A). Table 2 shows the degree of difficulty of polishing by comparing the deposition amount of the conductive fine particles, the flatness, and the CMP processing speed. Further, with respect to the obtained substrate (A) with an integrated circuit, circuit continuity and denseness of deposited particles were examined. The results are shown in Table 3.

【0066】なお、表3における評価は以下のようにし
て行った。 (a)塗布後の平坦性 回路断面10点の走査型電子顕微鏡写真(SEM)によ
り観察し、以下の基準で評価した。 平坦である : ○ ほぼ平坦である : △ 明らかに凹凸がある: × (b)研磨の難易度 塗布乾燥後の基板上の犠牲層(図2参照)を研磨装置
(ナノファクタ((株)製:ウェハーポリッシングシス
テム NF-300)を用い、荷重が200g/cm2
ウェハーと研磨パッドの相対速度が450cm/minの
条件で研磨し、以下の研磨所要時間を基準にして評価し
た。
The evaluations in Table 3 were carried out as follows. (A) The flatness circuit cross section after coating was observed by a scanning electron microscope photograph (SEM) of 10 points, and evaluated according to the following criteria. Flat: ○ Almost flat: △ Clearly uneven: × (b) Difficulty in polishing The sacrificial layer (see FIG. 2) on the substrate after coating and drying was polished by a polishing device (Nano Factor (manufactured by KK)). : Wafer polishing system NF-300) with a load of 200 g / cm 2 ,
Polishing was performed under the condition that the relative speed between the wafer and the polishing pad was 450 cm / min, and the following required polishing time was used as a reference for evaluation.

【0067】 研磨時間1分以内 : ○ 研磨時間2分以内 : △ 研磨時間2分以上 : × (c)導通性 実施例と同様にして絶縁膜を形成した後、シリコンウェ
ーハー基板上にポジ型フォトレジストを塗布し、図4の
ような1本の0.3μmのラインとテスター用端子(Ta
およびTb)のためレジスト部分の露光処理を行い、つ
いで、露光部分の除去し、CF4とCHF3の混合ガスを
用いて、下層の絶縁膜にパターンを形成し、ついでO2
プラズマによりレジストを除去し、幅(WC)が0.3μ
mで、深さ(D)が0.6μm、アスペクト比D/WC
2の配線溝を形成した。両テスター用端子にテスターを
接続して抵抗(Ta−Tb間)値を測定した。
Polishing time less than 1 minute: ○ Polishing time less than 2 minutes: △ Polishing time more than 2 minutes: × (c) Conductivity After forming an insulating film in the same manner as in Example, a positive type photo film was formed on the silicon wafer substrate. A resist is applied and one 0.3 μm line and a tester terminal (T a
And T b ), the resist portion is exposed to light, then the exposed portion is removed, a pattern is formed in the lower insulating film by using a mixed gas of CF 4 and CHF 3 , and then O 2 is added.
The resist is removed by plasma and the width (W C ) is 0.3μ
m, a wiring groove having a depth (D) of 0.6 μm and an aspect ratio D / W C of 2 was formed. The by connecting a tester resistance (between T a -T b) value in both tester terminals was measured.

【0068】また、抵抗値測定のブランクとして、図4
のRc-1とRc-2間の抵抗値を測定し、以下の基準により
導通性を評価した。 TaとTbとの間の抵抗値が、Rc-1−Rc-2間の抵抗値の
10/1未満 : ○ TaとTbとの間の抵抗値が、Rc-1−Rc-2間の抵抗値の
100/3未満 : △ TaとTbとの間の抵抗値が、Rc-1−Rc-2間の抵抗値の
100/3以上 : × (d)回路密度 集積回路形成用塗布液塗布後の平坦性を評価する際に、
SEMで観察した。 ボイドが無く緻密な堆積 :◎ ボイドが僅かにあるが緻密な堆積 :○ ボイドが僅かにあり疎な堆積 :△ 空洞が認められる :× (e)密着性 上記集積回路付基板(A)と同様にして、SiO2膜(絶
縁膜)形成前の集積回路付基板(A)を作成し、回路表
面を覆うようにセロファンテープを接着し、ついで、セ
ロファンテープを剥離したときの回路の観察を行い、以
下の基準で評価した。
As a blank for measuring the resistance value, FIG.
The resistance value between R c-1 and R c-2 was measured and the conductivity was evaluated according to the following criteria. The resistance value between T a and T b is the resistance value between R c-1 and R c-2.
Less than 10/1: ○ The resistance value between T a and T b is the resistance value between R c-1 and R c-2.
Less than 100/3: △ The resistance value between T a and T b is the resistance value between R c-1 and R c-2.
100/3 or more: × (d) Circuit density When evaluating the flatness after application of the coating liquid for forming an integrated circuit,
It was observed by SEM. Dense deposition with no voids: ◎ Dense deposition with a few voids: ○ Sparse deposition with a few voids: △ Cavities are observed: × (e) Adhesion Similar to the above integrated circuit board (A) Then, a substrate (A) with an integrated circuit before forming a SiO 2 film (insulating film) is prepared, a cellophane tape is adhered so as to cover the circuit surface, and then the circuit is observed when the cellophane tape is peeled off. The following criteria were evaluated.

【0069】 全く変化無し :○ 回路の一部に僅かに平坦面からの盛り上がりが認められる:△ 少なくとも回路の一部に配線溝からの剥離が認められる :×[0069]           No change at all: ○           A slight rise from the flat surface is observed in a part of the circuit: △           Peeling from the wiring groove is observed in at least part of the circuit: ×

【0070】[0070]

【実施例2】配線溝の幅(WC)が0.4μm、深さ
(D)が1.6μm、比D/WCが4の配線溝を形成し、
集積回路形成用塗布液(SC-2)を用いた以外は実施例1
と同様にして集積回路付基板(B)を得た。得られた集
積回路付基板(B)について、実施例1と同様にして、
平坦性、研磨の難易度、回路の導通性、密着性および堆
積粒子の緻密性を調べた。結果を表3に示す。
Example 2 A wiring groove having a width (W C ) of the wiring groove of 0.4 μm, a depth (D) of 1.6 μm and a ratio D / W C of 4 is formed,
Example 1 except that the coating liquid for forming an integrated circuit (SC-2) was used
A substrate with integrated circuit (B) was obtained in the same manner as in. Regarding the obtained substrate (B) with an integrated circuit, in the same manner as in Example 1,
The flatness, the difficulty of polishing, the conductivity of the circuit, the adhesion, and the denseness of the deposited particles were examined. The results are shown in Table 3.

【0071】[0071]

【実施例3】実施例1において、スパッタ法で厚さ15
nmの銅薄膜層を形成した。ついで集積回路形成用分散
液(SC-3)を用いた以外は実施例1と同様にして集積回
路付基板(C)を得た。得られた集積回路付基板(C)
について、実施例1と同様にして、平坦性、研磨の難易
度、回路の導通性、密着性および堆積粒子の緻密性を調
べた。結果を表3に示す。
Third Embodiment In the first embodiment, a thickness of 15 is formed by the sputtering method.
nm copper thin film layer was formed. Then, a substrate with an integrated circuit (C) was obtained in the same manner as in Example 1 except that the dispersion liquid for forming an integrated circuit (SC-3) was used. Obtained substrate with integrated circuit (C)
As to Example 1, the flatness, the difficulty of polishing, the circuit conductivity, the adhesion, and the denseness of the deposited particles were examined. The results are shown in Table 3.

【0072】[0072]

【実施例4】実施例1において、集積回路形成用塗布液
(SB-1)を用いた以外は同様にして集積回路付基板
(D)を得た。得られた集積回路付基板(D)につい
て、実施例1と同様にして、平坦性、研磨の難易度、回
路の導通性、密着性および堆積粒子の緻密性を調べた。
結果を表3に示す。
Example 4 A substrate with an integrated circuit (D) was obtained in the same manner as in Example 1 except that the coating solution for forming an integrated circuit (SB-1) was used. With respect to the obtained substrate (D) with an integrated circuit, the flatness, the degree of difficulty of polishing, the circuit continuity, the adhesion, and the denseness of the deposited particles were examined in the same manner as in Example 1.
The results are shown in Table 3.

【0073】[0073]

【実施例5】実施例1において、集積回路形成用塗布液
(SB-2)を用いた以外は同様にして集積回路付基板
(E)を得た。得られた集積回路付基板(E)につい
て、実施例1と同様にして、平坦性、研磨の難易度、回
路の導通性、密着性および堆積粒子の緻密性を調べた。
結果を表3に示す。
Example 5 A substrate with an integrated circuit (E) was obtained in the same manner as in Example 1 except that the coating solution for forming an integrated circuit (SB-2) was used. With respect to the obtained substrate with integrated circuit (E), the flatness, the difficulty of polishing, the circuit continuity, the adhesion, and the denseness of the deposited particles were examined in the same manner as in Example 1.
The results are shown in Table 3.

【0074】[0074]

【実施例6】実施例1において、集積回路形成用塗布液
(SB-3)を用いた以外は同様にして集積回路付基板
(F)を得た。得られた集積回路付基板(F)につい
て、実施例1と同様にして、平坦性、研磨の難易度、回
路の導通性、密着性および堆積粒子の緻密性を調べた。
結果を表3に示す。
Example 6 A substrate (F) with an integrated circuit was obtained in the same manner as in Example 1 except that the coating solution for forming an integrated circuit (SB-3) was used. With respect to the obtained substrate (F) with an integrated circuit, the flatness, the difficulty of polishing, the circuit continuity, the adhesion, and the denseness of the deposited particles were examined in the same manner as in Example 1.
The results are shown in Table 3.

【0075】[0075]

【実施例7】実施例1において、集積回路形成用塗布液
(SD-1)を用いた以外は同様にして集積回路付基板
(G)を得た。得られた集積回路付基板(G)につい
て、実施例1と同様にして、平坦性、研磨の難易度、回
路の導通性、密着性および堆積粒子の緻密性を調べた。
結果を表3に示す。
Example 7 A substrate (G) with an integrated circuit was obtained in the same manner as in Example 1 except that the coating solution for forming an integrated circuit (SD-1) was used. With respect to the obtained substrate (G) with an integrated circuit, the flatness, the degree of difficulty of polishing, the circuit continuity, the adhesion, and the denseness of the deposited particles were examined in the same manner as in Example 1.
The results are shown in Table 3.

【0076】[0076]

【実施例8】実施例1において、銀薄膜層の厚さを5n
mとした以外は同様にして集積回路付基板(G)を得
た。得られた集積回路付基板(G)について、実施例1
と同様にして、平坦性、研磨の難易度、回路の導通性、
密着性および堆積粒子の緻密性を調べた。結果を表3に
示す。
[Embodiment 8] In Embodiment 1, the silver thin film layer has a thickness of 5 n.
A substrate with integrated circuit (G) was obtained in the same manner except that m was used. Regarding the obtained substrate with integrated circuit (G), Example 1
Similar to, flatness, polishing difficulty, circuit continuity,
The adhesion and denseness of the deposited particles were investigated. The results are shown in Table 3.

【0077】[0077]

【実施例9】実施例1において、銀薄膜層の厚さを30
nmとした以外は同様にして集積回路付基板(H)を得
た。得られた集積回路付基板(H)について、実施例1
と同様にして、平坦性、研磨の難易度、回路の導通性、
密着性および堆積粒子の緻密性を調べた。結果を表3に
示す。
Example 9 In Example 1, the thickness of the silver thin film layer was set to 30.
A substrate with integrated circuit (H) was obtained in the same manner except that the thickness was set to nm. Regarding the obtained substrate with integrated circuit (H), Example 1
Similar to, flatness, polishing difficulty, circuit continuity,
The adhesion and denseness of the deposited particles were investigated. The results are shown in Table 3.

【0078】[0078]

【比較例1】実施例1において、銀薄膜層を設けなかっ
た以外は同様にして集積回路付基板(I)を得た。得ら
れた集積回路付基板(I)について、実施例1と同様に
して、平坦性、研磨の難易度、回路の導通性、密着性お
よび堆積粒子の緻密性を調べた。結果を表3に示す。
Comparative Example 1 A substrate (I) with an integrated circuit was obtained in the same manner as in Example 1 except that the silver thin film layer was not provided. With respect to the obtained substrate (I) with an integrated circuit, the flatness, the difficulty of polishing, the circuit continuity, the adhesion and the denseness of the deposited particles were examined in the same manner as in Example 1. The results are shown in Table 3.

【0079】[0079]

【比較例2】実施例3において、銅薄膜層を設けなかっ
た以外は同様にして集積回路付基板(J)を得た。得ら
れた集積回路付基板(J)について、実施例1と同様に
して、平坦性、研磨の難易度、回路の導通性、密着性お
よび堆積粒子の緻密性を調べた。結果を表3に示す。
Comparative Example 2 A substrate with integrated circuit (J) was obtained in the same manner as in Example 3 except that the copper thin film layer was not provided. With respect to the obtained substrate with integrated circuit (J), the flatness, the difficulty of polishing, the circuit continuity, the adhesiveness, and the denseness of the deposited particles were examined in the same manner as in Example 1. The results are shown in Table 3.

【0080】[0080]

【比較例3】比較例1において、超音波を照射すること
なくスピナー法で集積回路形成用分散液(SC-1)を塗布
し、ついで90℃で5分間乾燥した。この塗布および乾
燥を20回繰り返して配線溝に金属微粒子(Q-1)を堆
積させて回路を形成した以外は比較例1と同様にして集
積回路付基板(K)を得た。なお、20回塗布後の絶縁
膜上には金属微粒子が厚く堆積し、絶縁膜上部が凸で、
配線溝上部が凹での凹凸を有していた。
[Comparative Example 3] In Comparative Example 1, the dispersion liquid for forming an integrated circuit (SC-1) was applied by a spinner method without irradiating ultrasonic waves, and then dried at 90 ° C for 5 minutes. A substrate with an integrated circuit (K) was obtained in the same manner as in Comparative Example 1 except that the coating and drying were repeated 20 times to deposit the metal fine particles (Q-1) in the wiring groove to form a circuit. In addition, the metal fine particles are thickly deposited on the insulating film after being applied 20 times, and the upper part of the insulating film is convex,
The upper part of the wiring groove had concave and convex unevenness.

【0081】得られた集積回路付基板(K)について、
平坦性、研磨の難易度、回路の導通性、密着性および堆
積粒子の緻密性を調べた。結果を表3に示す。
With respect to the obtained substrate with integrated circuit (K),
The flatness, the difficulty of polishing, the conductivity of the circuit, the adhesion, and the denseness of the deposited particles were examined. The results are shown in Table 3.

【0082】[0082]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、本発明で使用される配線溝付基板の
概略断面図を示す。
FIG. 1 is a schematic sectional view of a wiring grooved substrate used in the present invention.

【図2】 図2は、平坦化処理の概略を表す模式図を示
す。
FIG. 2 is a schematic diagram showing an outline of a flattening process.

【図3】 図3は、本発明に係る集積回路付基板の一実
施例の概略断面図を示す。
FIG. 3 is a schematic sectional view of an embodiment of a substrate with integrated circuit according to the present invention.

【図4】 図4は、導通性を評価するためのパターンの
概略図を示す。
FIG. 4 shows a schematic diagram of a pattern for evaluating conductivity.

【図5】 図5は、半導体集積回路の概略断面図を示
す。
FIG. 5 is a schematic sectional view of a semiconductor integrated circuit.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・絶縁膜 3・・・配線溝 11・・・基板 12・・・絶縁膜 13・・・導電性微粒子層 14・・・バリアメタル層 15・・・金属薄膜 21・・・基板 22・・・第1絶縁膜 23・・・配線層 24・・・第2絶縁膜 31・・・基板 32・・・第1絶縁膜 33・・・第1配線層 34・・・層間絶縁膜 35・・・シリカ絶縁膜(平坦化膜) 36・・・第2絶縁膜 1 ... Substrate 2 ... Insulating film 3 ... Wiring groove 11 ... Substrate 12 ... Insulating film 13 ... Conductive fine particle layer 14 ... Barrier metal layer 15 ... Metal thin film 21 ... Substrate 22 ... First insulating film 23 ... Wiring layer 24 ... Second insulating film 31 ... substrate 32 ... First insulating film 33 ... First wiring layer 34 ... Interlayer insulating film 35 ... Silica insulating film (planarizing film) 36 ... Second insulating film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小 松 通 郎 福岡県北九州市若松区北湊町13番2号 触 媒化成工業株式会社若松工場内 Fターム(参考) 4M104 AA01 BB04 BB08 BB17 BB30 BB32 BB36 CC01 DD08 DD15 DD16 DD17 DD19 DD20 DD37 DD43 DD51 DD52 DD53 DD75 DD78 FF17 FF18 FF22 HH04 HH12 HH14 HH16 HH20 5F033 HH00 HH07 HH08 HH11 HH13 HH14 HH15 HH16 HH18 HH19 HH21 HH32 HH33 HH35 JJ00 JJ07 JJ08 JJ11 JJ13 JJ14 JJ15 JJ18 JJ19 JJ21 JJ32 JJ33 JJ35 KK00 KK07 KK08 KK11 KK13 KK14 KK15 KK18 KK19 KK21 KK32 KK33 KK35 MM01 MM12 MM13 NN06 NN07 PP06 PP15 PP26 PP27 PP28 PP33 QQ09 QQ11 QQ13 QQ14 QQ37 QQ48 QQ73 RR01 RR03 RR04 RR06 RR09 RR21 SS08 SS11 SS15 SS21 WW00 WW01 XX00 XX01 XX03 XX04 XX10 XX13 XX14 XX28    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiro Komatsu             No. 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu City, Fukuoka Prefecture             Medium Chemical Industry Co., Ltd. Wakamatsu Factory F-term (reference) 4M104 AA01 BB04 BB08 BB17 BB30                       BB32 BB36 CC01 DD08 DD15                       DD16 DD17 DD19 DD20 DD37                       DD43 DD51 DD52 DD53 DD75                       DD78 FF17 FF18 FF22 HH04                       HH12 HH14 HH16 HH20                 5F033 HH00 HH07 HH08 HH11 HH13                       HH14 HH15 HH16 HH18 HH19                       HH21 HH32 HH33 HH35 JJ00                       JJ07 JJ08 JJ11 JJ13 JJ14                       JJ15 JJ18 JJ19 JJ21 JJ32                       JJ33 JJ35 KK00 KK07 KK08                       KK11 KK13 KK14 KK15 KK18                       KK19 KK21 KK32 KK33 KK35                       MM01 MM12 MM13 NN06 NN07                       PP06 PP15 PP26 PP27 PP28                       PP33 QQ09 QQ11 QQ13 QQ14                       QQ37 QQ48 QQ73 RR01 RR03                       RR04 RR06 RR09 RR21 SS08                       SS11 SS15 SS21 WW00 WW01                       XX00 XX01 XX03 XX04 XX10                       XX13 XX14 XX28

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】下記の工程(a)および(b)からなるこ
とを特徴とする集積回路の製造方法。 (a)基板に形成された配線溝表面に金属薄膜を形成す
る工程。 (b)ついで、超音波を照射しながら、金属薄膜を形成
した配線溝に、導電性微粒子形成成分および/または導
電性微粒子を含んでなる集積回路形成用塗布液を塗布す
る工程。
1. A method of manufacturing an integrated circuit, comprising the following steps (a) and (b). (A) A step of forming a metal thin film on the surface of the wiring groove formed on the substrate. (B) Next, a step of applying a coating solution for forming an integrated circuit containing a conductive fine particle forming component and / or conductive fine particles to the wiring groove formed with the metal thin film while irradiating with ultrasonic waves.
【請求項2】(c)前記集積回路形成用塗布液を塗布し
た後に、さらに塗布面を平坦化することを特徴とする請
求項1に記載の集積回路の製造方法。
2. The method of manufacturing an integrated circuit according to claim 1, further comprising the step of: (c) applying the coating solution for forming an integrated circuit and then flattening the applied surface.
【請求項3】前記導電性微粒子が、Au、Ag、Pd、P
t、Rh、Ru、Cu、Fe、Ni、Co、Sn、Ti、In、A
l、SbおよびWからなる群から選ばれる少なくとも1種
の金属を含んでなる金属微粒子であることを特徴とする
請求項1または2に記載の集積回路の製造方法。
3. The conductive fine particles are Au, Ag, Pd, P
t, Rh, Ru, Cu, Fe, Ni, Co, Sn, Ti, In, A
3. The method for manufacturing an integrated circuit according to claim 1, wherein the fine metal particles are metal fine particles containing at least one metal selected from the group consisting of l, Sb and W.
【請求項4】前記導電性微粒子形成成分が、Au、Ag、
Pd、Pt、Rh、Ru、Cu、Fe、Ni、Co、Sn、Ti、
In、Al、SbおよびWからなる群から選ばれる少なく
とも1種の金属のイオンを含んでなることを特徴とする
請求項1〜3のいずれかに記載の集積回路の製造方法。
4. The conductive fine particle forming component is Au, Ag,
Pd, Pt, Rh, Ru, Cu, Fe, Ni, Co, Sn, Ti,
4. The method for manufacturing an integrated circuit according to claim 1, further comprising ions of at least one metal selected from the group consisting of In, Al, Sb and W.
【請求項5】前記配線溝の深さ(D)が0.05〜10
μmの範囲にあり、配線溝の幅(WC)が0.05〜1
00μmの範囲にあり、配線溝の深さ(D)と配線溝の
幅(WC)との比(D/WC)が0.1〜20の範囲に
あることを特徴とする請求項1〜4のいずれかに記載の
集積回路の製造方法。
5. The depth (D) of the wiring groove is 0.05 to 10
In the range of μm, the width (WC) of the wiring groove is 0.05 to 1
It is in the range of 00 μm, and the ratio (D / WC) of the depth (D) of the wiring groove and the width (WC) of the wiring groove is in the range of 0.1 to 20. A method for manufacturing an integrated circuit according to any one of 1.
【請求項6】基板に形成された集積回路が、請求項1〜
5のいずれかに記載の方法により形成された集積回路で
あることを特徴とする集積回路付基板。
6. An integrated circuit formed on a substrate, comprising:
5. A substrate with an integrated circuit, which is an integrated circuit formed by the method according to any one of 5 above.
JP2002072525A 2002-03-15 2002-03-15 Method of manufacturing integrated circuit and substrate with integrated circuit formed by the same Pending JP2003273041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002072525A JP2003273041A (en) 2002-03-15 2002-03-15 Method of manufacturing integrated circuit and substrate with integrated circuit formed by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002072525A JP2003273041A (en) 2002-03-15 2002-03-15 Method of manufacturing integrated circuit and substrate with integrated circuit formed by the same

Publications (1)

Publication Number Publication Date
JP2003273041A true JP2003273041A (en) 2003-09-26

Family

ID=29202498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002072525A Pending JP2003273041A (en) 2002-03-15 2002-03-15 Method of manufacturing integrated circuit and substrate with integrated circuit formed by the same

Country Status (1)

Country Link
JP (1) JP2003273041A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186328A (en) * 2004-11-30 2006-07-13 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2011035426A (en) * 2004-11-30 2011-02-17 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
WO2011162322A1 (en) * 2010-06-24 2011-12-29 富士フイルム株式会社 Conductive film, touch panel, and solar cell
JP2013140991A (en) * 2006-10-11 2013-07-18 Mitsubishi Materials Corp Composition for electrode formation and method for forming electrode by using the composition
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186328A (en) * 2004-11-30 2006-07-13 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2011035426A (en) * 2004-11-30 2011-02-17 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US7935626B2 (en) 2004-11-30 2011-05-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9312404B2 (en) 2006-06-30 2016-04-12 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9620668B2 (en) 2006-06-30 2017-04-11 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
JP2013140991A (en) * 2006-10-11 2013-07-18 Mitsubishi Materials Corp Composition for electrode formation and method for forming electrode by using the composition
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US10020409B2 (en) 2007-04-19 2018-07-10 Mitsubishi Materials Corporation Method for producing a conductive reflective film
WO2011162322A1 (en) * 2010-06-24 2011-12-29 富士フイルム株式会社 Conductive film, touch panel, and solar cell
JP2012230881A (en) * 2010-06-24 2012-11-22 Fujifilm Corp Conductive film, touch panel and solar cell

Similar Documents

Publication Publication Date Title
JP4578755B2 (en) Integrated circuit manufacturing method
US7393781B2 (en) Capping of metal interconnects in integrated circuit electronic devices
US20030207561A1 (en) Interconnect structures containing conductive electrolessly deposited etch stop layers, liner layers, and via plugs
Fritz et al. Electroless deposition of copper on organic and inorganic substrates using a Sn/Ag catalyst
TW200413509A (en) Polishing composition and polishing method thereof
KR19990045243A (en) How to Provide Metal Wires in Integrated Circuits
CA2836845C (en) Method for forming a vertical electrical connection in a layered semiconductor structure
JP2002343900A (en) Chip carrier substrate
KR20110033824A (en) Method of preparing an electrical insulation film and application for the metallization of through-vias
KR20110005832A (en) Electroplating composition and process for coating a semiconductor substrate using said composition
US20070134912A1 (en) Method for fabricating semiconductor device
WO2006112202A1 (en) Semiconductor device and process for producing the same
WO2001099168A1 (en) Semiconductor device and method of manufacture thereof
US8900473B2 (en) Polishing solution for CMP, and method for polishing substrate using the polishing solution for CMP
US8524512B2 (en) Method for repairing copper diffusion barrier layers on a semiconductor solid substrate and repair kit for implementing this method
JP2003273041A (en) Method of manufacturing integrated circuit and substrate with integrated circuit formed by the same
JP2006173408A (en) Method of manufacturing substrate with circuit, and substrate with circuit obtained thereby
WO2011018478A1 (en) Electrolyte and method for the electroplating of copper on a barrier layer, and semiconductor substrate obtained with said method
US6083834A (en) Zincate catalysis electroless metal deposition for via metal interconnection
JP3488193B2 (en) Copper thin film plating method
JP2006120664A (en) Method for manufacturing semiconductor device
JP2004523898A (en) Planarizing material for spin-etch planarization of electronic device and method of using the same
TWI259120B (en) Chemical mechanical polishing method for copper process
JP6604061B2 (en) Polishing liquid and polishing method for CMP
TW589678B (en) Chemical mechanical polishing process for non-dishing at narrow lines in Cu process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060607

A521 Written amendment

Effective date: 20060807

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20070611

Free format text: JAPANESE INTERMEDIATE CODE: A911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070928

RD02 Notification of acceptance of power of attorney

Effective date: 20090722

Free format text: JAPANESE INTERMEDIATE CODE: A7422