JP4876643B2 - Superconducting wire - Google Patents

Superconducting wire Download PDF

Info

Publication number
JP4876643B2
JP4876643B2 JP2006065950A JP2006065950A JP4876643B2 JP 4876643 B2 JP4876643 B2 JP 4876643B2 JP 2006065950 A JP2006065950 A JP 2006065950A JP 2006065950 A JP2006065950 A JP 2006065950A JP 4876643 B2 JP4876643 B2 JP 4876643B2
Authority
JP
Japan
Prior art keywords
superconducting
phase
superconducting wire
crystal
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006065950A
Other languages
Japanese (ja)
Other versions
JP2007242526A (en
Inventor
昌志 菊地
直樹 綾井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006065950A priority Critical patent/JP4876643B2/en
Publication of JP2007242526A publication Critical patent/JP2007242526A/en
Application granted granted Critical
Publication of JP4876643B2 publication Critical patent/JP4876643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、超電導線材に関し、たとえば大きな粒径の超電導結晶を含むBi2223超電導線材に関する。   The present invention relates to a superconducting wire, for example, a Bi2223 superconducting wire including a superconducting crystal having a large particle size.

Bi2223超電導体は、異方性が非常に強い物質であることが知られており、そのa−b面(CuOの結晶面)方向には電流を流しやすく、c軸方向には電流を流しにくい。そのため、a−b面方向に接合した複数のBi2223結晶が存在する場合に、その結晶間の接合にずれがあると電流が流れにくくなる。また、複数のBi2223超電導体におけるa−b面方向およびc軸方向の結晶間に非超電導物質が存在すると、電流経路が阻害される。そのため、Bi2223超電導体における電流の流れやすさは、接合ずれ角や、非超電導物質などに影響を受ける。   The Bi2223 superconductor is known to be a material with very strong anisotropy, and it is easy to flow current in the ab plane (CuO crystal plane) direction, and it is difficult to flow current in the c-axis direction. . Therefore, in the case where there are a plurality of Bi2223 crystals joined in the ab plane direction, it is difficult for current to flow if there is a deviation in the joining between the crystals. In addition, when a non-superconducting substance is present between crystals in the ab plane direction and the c-axis direction in a plurality of Bi2223 superconductors, the current path is hindered. Therefore, the ease of current flow in the Bi2223 superconductor is affected by the junction deviation angle, the non-superconducting material, and the like.

非特許文献1に開示されているBi2223超電導線材では、a−b面と平行な面のBi2223相の結晶は、10μm×10μm×1μmの大きさであることが開示されている。なお、この結晶の大きさは、入射電子が原子の熱振動によって非弾性散乱を受け、その後ブラック反射されることによって生じる図形の大きさとしている。
T T Tan,S Li,J T Oh,W Gao,H K Liu and S X Dou, "Crystallographic orientation mapping with an electron backscattered diffraction technique in (Bi,Pb)2Sr2Ca2Cu3O10superconductor tapes", Superconductor Science and Technology,vol.14, (2001), pp79.
In the Bi2223 superconducting wire disclosed in Non-Patent Document 1, it is disclosed that the Bi2223 phase crystal parallel to the ab plane has a size of 10 μm × 10 μm × 1 μm. Note that the size of this crystal is the size of a figure that is generated when incident electrons are subjected to inelastic scattering due to thermal vibration of atoms and then reflected black.
TT Tan, S Li, JT Oh, W Gao, HK Liu and SX Dou, "Crystallographic orientation mapping with an electron backscattered diffraction technique in (Bi, Pb) 2Sr2Ca2Cu3O10superconductor tapes", Superconductor Science and Technology, vol.14, (2001) , pp79.

しかしながら、上記非特許文献1に開示のBi2223超電導線材では、Bi2223相の結晶が小さいため、a−b面方向における結晶間の接合数が増大して、結晶接合ずれ角が大きくなるという問題がある。また、非超電導物質により電流経路が減少した場合に、結晶接合ずれ角が大きいと、電流がより流れにくくなるという問題がある。   However, since the Bi2223 superconducting wire disclosed in Non-Patent Document 1 has a small Bi2223 phase crystal, there is a problem that the number of junctions between crystals in the ab plane direction increases and the crystal junction deviation angle increases. . In addition, when the current path is decreased due to the non-superconducting material, there is a problem that current is less likely to flow if the crystal junction deviation angle is large.

したがって、本発明の目的は、電流がより流れやすいBi2223超電導線材とし、臨界電流値を向上する超電導線材を提供することである。   Accordingly, an object of the present invention is to provide a Bi2223 superconducting wire that allows current to flow more easily, and to provide a superconducting wire that improves the critical current value.

本発明にしたがった一の局面における超電導線材は、Bi2223相よりなる複数の超電導結晶を有するフィラメントと、フィラメントを被覆するシース部とを含む超電導線材であって、超電導結晶間に非超電導物質が存在し、フィラメントを流れる電流が非超電導物質を回避してc軸方向に積層された超電導結晶間の粒界を介して流れるように超電導結晶がc軸方向に積層されており、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径が20μm以上である。 A superconducting wire according to one aspect of the present invention is a superconducting wire including a filament having a plurality of superconducting crystals made of Bi2223 phase and a sheath portion covering the filament, and a non-superconducting substance exists between the superconducting crystals. The superconducting crystals are laminated in the c-axis direction so that the current flowing through the filament flows through the grain boundary between the superconducting crystals laminated in the c-axis direction while avoiding the non-superconducting material , The average particle diameter of the superconducting crystal composed of the Bi2223 phase in the parallel cross section is 20 μm or more.

本発明にしたがった他の局面における超電導線材は、Bi2223相よりなる複数の超電導結晶を有するフィラメントと、フィラメントを被覆するシース部とを含む超電導線材であって、超電導結晶間に非超電導物質が存在し、フィラメントを流れる電流が非超電導物質を回避してc軸方向に積層された超電導結晶間の粒界を介して流れるように超電導結晶がc軸方向に積層されており、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径が21.1μm以上である。 A superconducting wire in another aspect according to the present invention is a superconducting wire including a filament having a plurality of superconducting crystals made of Bi2223 phase and a sheath portion covering the filament, and a non-superconducting substance exists between the superconducting crystals. The superconducting crystals are laminated in the c-axis direction so that the current flowing through the filament flows through the grain boundary between the superconducting crystals laminated in the c-axis direction while avoiding the non-superconducting material , The average particle diameter of the superconducting crystal composed of the Bi2223 phase in the parallel cross section is 21.1 μm or more.

本発明の超電導線材によれば、Bi2223超電導線材において、電流を流しやすいa−b面に平行な断面におけるBi2223相の超電導結晶の平均粒径は、従来のBi2223相の超電導結晶の平均粒径よりも大きい。そのため、a−b面に平行な方向における結晶間の接合数を減少でき、結晶接合ずれ角を小さくできる。また、非超電導物質による電流経路が減少した場合であっても、結晶接合ずれ角を小さくできるので、電流が通る粒界を減少でき、電流が流れにくくなることを防止できる。よって、電流が流れやすいBi2223超電導線材とでき、臨界電流値を向上できる。   According to the superconducting wire of the present invention, in the Bi2223 superconducting wire, the average particle size of the Bi2223 phase superconducting crystal in the cross section parallel to the ab plane through which current easily flows is larger than the average particle size of the conventional Bi2223 phase superconducting crystal. Is also big. Therefore, the number of junctions between crystals in the direction parallel to the ab plane can be reduced, and the crystal junction deviation angle can be reduced. Further, even when the current path due to the non-superconducting material is reduced, the crystal junction deviation angle can be reduced, so that the grain boundaries through which the current passes can be reduced, and the current can be prevented from becoming difficult to flow. Therefore, a Bi2223 superconducting wire that allows current to flow easily can be obtained, and the critical current value can be improved.

なお、上記「平均粒径」とは、a−b面に平行な断面の200μm四方の視野において、各結晶粒における目視可能な粒界の最大の長さを測定し、25視野採って測定したときの平均の長さを意味する。   In addition, the above-mentioned “average particle diameter” was measured by measuring the maximum length of a grain boundary that can be visually observed in each crystal grain in a 200 μm square field parallel to the ab plane and taking 25 fields. It means the average length when.

上記超電導線材において好ましくは、Bi2223相よりなる超電導結晶のXRDロッキングカーブで測定された(0.0.24)ピークのFWHMが18°以下である。FWHMを18°以下とすることによって、超電導線材の長手方向におけるBi2223相よりなる超電導結晶の並び(a−b方向に平行な面)である面内配向性が良好となる。そのため、臨界電流値をより向上できる。   In the superconducting wire, the FWHM of the (0.0.24) peak measured by the XRD rocking curve of the superconducting crystal composed of the Bi2223 phase is preferably 18 ° or less. By setting the FWHM to 18 ° or less, the in-plane orientation, which is an array of superconducting crystals composed of Bi2223 phase in the longitudinal direction of the superconducting wire (plane parallel to the ab direction), is improved. Therefore, the critical current value can be further improved.

なお、上記「FWHM(半波高全幅値)」とは、XRDロッキングカーブで測定された(0.0.24)ピークの半値幅を意味し、面内配向性を示す指標となる。FWHMの値が小さいほど面内での配向性が良好であることを示す。   The “FWHM (half wave height full width value)” means the half width of the (0.0.24) peak measured by the XRD rocking curve, and serves as an index indicating in-plane orientation. The smaller the FWHM value, the better the in-plane orientation.

上記超電導線材において好ましくは、Bi2212相よりなる超電導結晶をさらに含み、X線回折によりθ/2θスキャン法で測定されるBi2223相およびBi2212相のピーク強度において、Bi2223(0.0.14)/(Bi2223(0.0.14)+Bi2212(0.0.12))により求められる値が0.95以上である。値を0.95以上とすることによって、超電導線材におけるBi2223相が十分に含まれて、電流がより多く流れる。   Preferably, the superconducting wire further includes a superconducting crystal composed of a Bi2212 phase, and the Bi2223 phase and Bi2212 phase peak intensities measured by X / 2 diffraction by the θ / 2θ scanning method are Bi2223 (0.0.14) / ( Bi2223 (0.0.14) + Bi2212 (0.0.12)) is 0.95 or more. By setting the value to 0.95 or more, the Bi2223 phase in the superconducting wire is sufficiently contained, and more current flows.

本発明の超電導線材によれば、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径が大きいため、電流が流れやすいBi2223超電導線材とでき、臨界電流値を向上できる。   According to the superconducting wire of the present invention, since the average particle size of the superconducting crystal composed of the Bi2223 phase in the cross section parallel to the ab plane is large, it can be a Bi2223 superconducting wire that easily flows current, and the critical current value can be improved.

以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には、同一の参照符号を付し、その説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

図1は、本発明の実施の形態における超電導線材を示す概略図である。図2は、図1における線分II−IIにおける断面図である。図3は、図2におけるある視野における拡大模式図である。図4は、本発明の実施の形態のa−b面に平行な断面におけるBi2223相よりなる超電導結晶の概略模式図である。図5は、本発明の実施の形態の超電導線材のある領域における電流の流れを説明するための図である。図6は、従来の超電導線材のある領域における電流の流れを説明するための図である。図1〜図6を参照して、本発明の実施の形態における超電導線材を説明する。実施の形態における超電導線材10は、Bi2223相よりなる超電導結晶を含む超電導線材であって、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径が20μm以上である。   FIG. 1 is a schematic view showing a superconducting wire in an embodiment of the present invention. 2 is a cross-sectional view taken along line II-II in FIG. FIG. 3 is an enlarged schematic view of a certain visual field in FIG. FIG. 4 is a schematic diagram of a superconducting crystal composed of a Bi2223 phase in a cross section parallel to the ab plane according to the embodiment of the present invention. FIG. 5 is a diagram for explaining a current flow in a certain region of the superconducting wire according to the embodiment of the present invention. FIG. 6 is a diagram for explaining a current flow in a certain region of a conventional superconducting wire. With reference to FIGS. 1-6, the superconducting wire in embodiment of this invention is demonstrated. Superconducting wire 10 in the embodiment is a superconducting wire containing a superconducting crystal made of Bi2223 phase, and the average particle size of the superconducting crystal made of Bi2223 phase in a cross section parallel to the ab plane is 20 μm or more.

実施の形態では、図1に示すように、超電導線材10は、フィラメント1と、シース部2とを備えている。シース部2は、たとえば銀などからなり、フィラメント1を被覆している。   In the embodiment, as shown in FIG. 1, the superconducting wire 10 includes a filament 1 and a sheath portion 2. The sheath portion 2 is made of, for example, silver and covers the filament 1.

フィラメント1を構成する結晶は、超電導線材10の幅方向と同じ方向に延在するa−b面と、超電導線材10の厚さ方向(図1において上下方向)と同じ方向に延在するc軸とを有している。超電導線材10において電流は主にa−b面と平行な方向を流れる。   The crystal constituting the filament 1 includes an ab plane extending in the same direction as the width direction of the superconducting wire 10 and a c-axis extending in the same direction as the thickness direction of the superconducting wire 10 (vertical direction in FIG. 1). And have. In the superconducting wire 10, the current mainly flows in a direction parallel to the ab plane.

フィラメント1は、Bi−Pb−Sr−Ca−Cu−O系の組成よりなっており、(ビスマスと鉛):ストロンチウム:カルシウム:銅の元素比がほぼ2:2:2:3の比率で近似して表わされるBi2223相よりなる超電導結晶を含む。   The filament 1 has a composition of Bi—Pb—Sr—Ca—Cu—O system, and the element ratio of (bismuth and lead): strontium: calcium: copper is approximated at a ratio of 2: 2: 2: 3. The superconducting crystal which consists of Bi2223 phase expressed as above is included.

また、フィラメント1は、Bi2223相に変わりきらないため、(ビスマスと鉛):ストロンチウム:カルシウム:銅の元素比がほぼ2:2:1:2よりなるBi2212相よりなる超電導結晶を含む場合もある。この場合には、X線回折によりθ/2θスキャン法で測定されるBi2223相およびBi2212相のピーク強度において、Bi2223(0.0.14)/(Bi2223(0.0.14)+Bi2212(0.0.12))により求められる値が0.95以上であることが好ましく、さらに好ましくは0.96以上であり、最も好ましくは0.98以上である。0.95以上とすることによって、Bi2223相からなる超電導結晶が多くなるので、電流がより流れやすくなる。0.96以上とすることによって、電流がより一層流れやすくなる。0.98以上とすることによって、電流が非常に流れやすくなる。   Further, since the filament 1 cannot be completely changed to the Bi2223 phase, it may include a superconducting crystal composed of a Bi2212 phase in which the element ratio of (bismuth and lead): strontium: calcium: copper is approximately 2: 2: 1: 2. . In this case, Bi2223 (0.0.14) / (Bi2223 (0.0.14) + Bi2212 (0...) In the peak intensities of the Bi2223 phase and Bi2212 phase measured by X / 2 diffraction by the θ / 2θ scan method. The value obtained by 0.12)) is preferably 0.95 or more, more preferably 0.96 or more, and most preferably 0.98 or more. By setting it to 0.95 or more, the number of superconducting crystals composed of the Bi2223 phase increases, so that the current flows more easily. By setting it to 0.96 or more, it becomes easier for the current to flow. By setting it to 0.98 or more, the current can flow very easily.

Bi2223相よりなる超電導結晶のXRDロッキングカーブで測定された(0.0.24)ピークのFWHMが18°以下であることが好ましく、さらに好ましくは10°以上16°以下である。FWHMは、Bi2223相からなる超電導結晶の延びる方向の、超電導線材10の延びる方向(超電導線材10に電流が流れる方向)に対する傾角である。FWHMを18°以下とすることによって、面内配向性に優れ、電流がより流れやすくなる。FWHMを16°以下とすることによって、電流をより一層流れやすくできる。一方、10°以上とすることによって、超電導線材10を製造しやすい。   The FWHM of the (0.0.24) peak measured by the XRD rocking curve of the superconducting crystal composed of the Bi2223 phase is preferably 18 ° or less, more preferably 10 ° or more and 16 ° or less. FWHM is an inclination of the direction in which the superconducting crystal composed of the Bi2223 phase extends with respect to the direction in which the superconducting wire 10 extends (the direction in which current flows in the superconducting wire 10). By setting the FWHM to 18 ° or less, the in-plane orientation is excellent, and the current flows more easily. By setting the FWHM to 16 ° or less, the current can flow more easily. On the other hand, the superconducting wire 10 can be easily manufactured by setting the angle to 10 ° or more.

次に、フィラメント1を構成する結晶について詳細に説明する。図2に示すように、フィラメント1において、a−b面方向と平行な方向での断面であって、顕微鏡で観察するために、1mm四方の試料を取り出す。なお、顕微鏡としては、たとえば走査型電子顕微鏡(SEM:scanning electron microscope)を用いることができる。そして、図2に示す試料の200μm四方のある視野20において、図3に示すように、Bi2223相よりなる超電導結晶の各結晶粒における目視可能な粒界の長さx1〜x9をそれぞれ測定する。この長さx1〜x9のうち、最大の長さ(図3ではたとえば長さx1)をある視野20における長さとする。なお、視野20に存在するBi2223相よりなる超電導結晶30は、図4に示すように、a−b面方向の長さxは20μm以上であることが好ましい。そして、視野20を25採って測定したときの平均の長さをBi2223相よりなる超電導結晶の平均粒径とすると、平均粒径は20μm以上であり、好ましくは21.1μm以上であり、さらに好ましくは27μm以上50μm以下である。平均粒径が20μmよりも小さいと、電流を流したときに、a−b面方向における結晶間の接合数を減少できず、結晶接合ずれ角を小さくすることができない。平均粒径を21.1μm以上とすることによって、電流を流したときに、a−b面方向における結晶間の接合数を減少でき、結晶接合ずれ角を小さくすることができる。一方、平均粒径を50μm以下とすることによって、現実的に作製可能な結晶とできる。   Next, the crystals constituting the filament 1 will be described in detail. As shown in FIG. 2, in the filament 1, a cross section in a direction parallel to the ab plane direction, and a 1 mm square sample is taken out for observation with a microscope. In addition, as a microscope, a scanning electron microscope (SEM: scanning electron microscope) can be used, for example. Then, in the visual field 20 having a 200 μm square of the sample shown in FIG. 2, as shown in FIG. 3, the lengths x1 to x9 of grain boundaries that can be visually observed in each crystal grain of the superconducting crystal composed of Bi2223 phase are measured. Among these lengths x1 to x9, the maximum length (for example, length x1 in FIG. 3) is the length in a certain visual field 20. The superconducting crystal 30 made of the Bi2223 phase existing in the visual field 20 preferably has a length x in the ab plane direction of 20 μm or more, as shown in FIG. And when the average length of the superconducting crystal made of Bi2223 phase is the average length when measured by taking 25 fields of view 20, the average particle diameter is 20 μm or more, preferably 21.1 μm or more, and more preferably Is 27 μm or more and 50 μm or less. If the average grain size is less than 20 μm, the number of junctions between crystals in the ab plane direction cannot be reduced and the crystal junction deviation angle cannot be reduced when a current is passed. By setting the average grain size to 21.1 μm or more, the number of junctions between crystals in the ab plane direction can be reduced and the crystal junction deviation angle can be reduced when a current is passed. On the other hand, when the average particle size is 50 μm or less, a crystal that can be produced practically can be obtained.

また、図5に示すように、超電導線材10におけるある領域40を見たときに、a−b面方向およびc軸方向のBi2223相からなる超電導結晶間に非超電導物質41が存在すると、電流(図5における矢印)は非超電導物質41を回避して3の結晶42〜44、すなわち2の粒界を介して流れる。一方、図6に示すように、従来のBi2223相からなる超電導結晶の平均粒径が小さい場合には、従来の超電導線材における領域40と同じ範囲の領域50を見たとき、非超電導物質51が存在すると、電流(図6における矢印)は、非超電導物質51を回避するため9の結晶52,53,55〜58,60,62,63、すなわち8の粒界を流れる。このように、実施の形態の超電導線材に電流を流すと、従来の超電導線材と比較して、粒界をまたぐ数を減少できる。そのため、超電導線材10に非超電導物質が存在している場合であっても、電流が流れにくくなることを防止できる。   Further, as shown in FIG. 5, when a certain region 40 in the superconducting wire 10 is viewed, if a non-superconducting substance 41 exists between superconducting crystals composed of Bi2223 phases in the ab plane direction and the c-axis direction, current ( The arrows in FIG. 5 flow through the three crystals 42 to 44, that is, the two grain boundaries while avoiding the non-superconducting material 41. On the other hand, as shown in FIG. 6, when the average particle size of the conventional superconducting crystal composed of the Bi2223 phase is small, when the region 50 in the same range as the region 40 in the conventional superconducting wire is viewed, the non-superconducting substance 51 is When present, the current (arrow in FIG. 6) flows through the nine crystals 52, 53, 55 to 58, 60, 62, 63, that is, eight grain boundaries to avoid the non-superconducting material 51. As described above, when a current is passed through the superconducting wire of the embodiment, the number across the grain boundaries can be reduced as compared with the conventional superconducting wire. Therefore, even when a non-superconducting substance is present in the superconducting wire 10, it is possible to prevent the current from becoming difficult to flow.

次に、本発明の実施の形態における超電導線材10の製造方法について説明する。まず、酸化物超電導体の原材料粉末(前駆体)を準備し、これを金属管に充填する。具体的には、たとえばBi:Pb:Sr:Ca:Cu=1.7:0.4:1.9:2.0:3.0の組成比になるように原料粉末を混合する。これに700〜860℃程度の熱処理を複数回施し、多量の(BiPb)2Sr2Ca1Cu2Z(Bi−2212相)と少量の(BiPb)2Sr2Ca2Cu3Z(Bi−2223相)および非超電導相から構成される粉末を準備する。この粉末を準備する工程では、噴霧した液滴を加熱炉内に導入し、溶媒の蒸発および、化学反応により微粒子を核生成・成長させた後、焼結して組織と形状を整える噴霧熱分解法(CSP法)を用いることが好ましい。また、クエンチ現象による発熱を速やかに取り去ることができる観点から、金属管としては熱伝導率の高い銀や銀合金などを用いることが好ましい。 Next, the manufacturing method of the superconducting wire 10 in the embodiment of the present invention will be described. First, raw material powder (precursor) of an oxide superconductor is prepared, and this is filled in a metal tube. Specifically, for example, the raw material powder is mixed so that the composition ratio is Bi: Pb: Sr: Ca: Cu = 1.7: 0.4: 1.9: 2.0: 3.0. This was subjected to heat treatment at about 700 to 860 ° C. several times, and a large amount of (BiPb) 2 Sr 2 Ca 1 Cu 2 O Z (Bi-2212 phase) and a small amount of (BiPb) 2 Sr 2 Ca 2 Cu 3 O Z ( Bi-2223 phase) and a non-superconducting phase are prepared. In the process of preparing this powder, sprayed droplets are introduced into a heating furnace, and after evaporation of the solvent and nucleation / growth of fine particles by chemical reaction, sintering is performed to form and refine the structure and shape of the spray. The method (CSP method) is preferably used. Further, from the viewpoint of quickly removing heat generated by the quench phenomenon, it is preferable to use silver or a silver alloy having a high thermal conductivity as the metal tube.

次に、粉末が充填された金属管を伸線加工して、原材料粉末を芯材として銀などの金属で被覆された単芯線を作製する。次に、この単芯線を多数束ねて、たとえば銀などの金属よりなる金属管内に嵌合する。これにより、原料材粉末を芯材として多数有する多芯構造の線材が得られる。   Next, the metal tube filled with the powder is drawn to produce a single core wire coated with a metal such as silver using the raw material powder as a core material. Next, many single core wires are bundled and fitted into a metal tube made of a metal such as silver. Thereby, the wire of multi-core structure which has many raw material powders as a core material is obtained.

次に、所望の直径にまで多芯構造の線材を伸線加工し、原材料粉末がたとえば銀などのシース部2に埋め込まれた多芯線を作製する。これにより、超電導線材10の原材料粉末を金属で被覆した形態を有する長尺の多芯線の線材が得られる。そして、この多芯線の線材を圧延することによって、原材料粉末の密度が高められ、テープ形状の線材が得られる。   Next, a wire having a multi-core structure is drawn to a desired diameter to produce a multi-core wire in which the raw material powder is embedded in a sheath portion 2 such as silver. As a result, a long multifilamentary wire having a form in which the raw material powder of the superconducting wire 10 is coated with metal is obtained. And the density of raw material powder is raised by rolling this multifilament wire, and a tape-shaped wire is obtained.

次に、この多芯線の線材をたとえば99.9%窒素ガスと0.1%酸素ガスとからなる雰囲気ガスを用いて1atmの雰囲気下で、760℃程度の温度で2時間、上記線材を熱処理する。760℃の高温で熱処理することによって、原材料粉末からBi2212相が結晶成長し、フィラメント1となる。以上の製造工程を実施することにより、図1に示す超電導線材10が得られる。   Next, the multifilamentary wire is heat-treated at a temperature of about 760 ° C. for 2 hours under an atmosphere of 1 atm using an atmosphere gas composed of, for example, 99.9% nitrogen gas and 0.1% oxygen gas. To do. By performing heat treatment at a high temperature of 760 ° C., the Bi2212 phase grows from the raw material powder and becomes the filament 1. By performing the above manufacturing process, the superconducting wire 10 shown in FIG. 1 is obtained.

以上説明したように、本発明の実施の形態における超電導線材10によれば、Bi2223相よりなる超電導結晶を含む超電導線材であって、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径が20μm以上である。これにより、超電導線材10におけるBi2223相の超電導結晶の平均粒径は、従来のBi2223相の超電導結晶の平均粒径よりも充分に大きい。そのため、電流が流れる際に、a−b面方向における結晶間の接合数を減少でき、電流が流れる結晶粒界の数を減少できる。また、a−b面方向における結晶間の接合数を減少でき、結晶接合ずれ角を小さくできる。さらに、非超電導物質41による電流経路が減少した場合であっても、接合ずれ角を小さくできるので、電流が通る粒界を減少でき、電流が流れにくくなることを防止できる。よって、超電導線材10は、電流がより流れやすいBi2223超電導線材とでき、臨界電流値を向上できる。   As described above, according to superconducting wire 10 according to the embodiment of the present invention, a superconducting wire including a superconducting crystal composed of Bi2223 phase, which is a superconducting crystal composed of Bi2223 phase in a cross section parallel to the ab plane. The average particle size is 20 μm or more. Thus, the average particle size of the Bi2223 phase superconducting crystal in the superconducting wire 10 is sufficiently larger than the average particle size of the conventional Bi2223 phase superconducting crystal. Therefore, when current flows, the number of junctions between crystals in the ab plane direction can be reduced, and the number of crystal grain boundaries through which current flows can be reduced. Further, the number of junctions between crystals in the ab plane direction can be reduced, and the crystal junction deviation angle can be reduced. Furthermore, even when the current path by the non-superconducting material 41 is reduced, the junction deviation angle can be reduced, so that the grain boundary through which the current passes can be reduced and the current can be prevented from becoming difficult to flow. Therefore, the superconducting wire 10 can be a Bi2223 superconducting wire in which current flows more easily, and the critical current value can be improved.

なお、上記非先行技術文献1に開示されているBi2223超電導線材におけるa−b面と平行な面のBi2223相の結晶は、本発明のBi2223相からなる超電導結晶の平均粒径と比較可能な測定法により測定されている。そのため、本発明の実施の形態におけるBi2223相の超電導結晶の平均粒径は、非先行技術文献1のBi2223相の超電導結晶の粒径の約2倍以上である。   In the Bi2223 superconducting wire disclosed in Non-prior art document 1, the Bi2223 phase crystal parallel to the ab plane is a measurement comparable to the average grain size of the superconducting crystal composed of the Bi2223 phase of the present invention. It is measured by the method. Therefore, the average particle size of the Bi2223 phase superconducting crystal in the embodiment of the present invention is about twice or more the particle size of the Bi2223 phase superconducting crystal of Non-prior art document 1.

[実施例]
本発明の実施例では、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径が20μm以上であることの効果について調べた。
[Example]
In the examples of the present invention, the effect of the average particle diameter of the superconducting crystal composed of the Bi2223 phase in the cross section parallel to the ab plane being 20 μm or more was examined.

(実施例1)
本発明の実施例1の超電導線材は、本発明の実施の形態1の製造方法にしたがって製造した。なお、熱処理の条件として、酸素濃度8%において828℃で50時間とした。そして、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径が21.1μmの超電導線材を得た。
Example 1
The superconducting wire of Example 1 of the present invention was manufactured according to the manufacturing method of Embodiment 1 of the present invention. The heat treatment was performed at 828 ° C. for 50 hours at an oxygen concentration of 8%. And the superconducting wire with the average particle diameter of the superconducting crystal which consists of Bi2223 phase in a cross section parallel to ab surface was 21.1 micrometers was obtained.

(実施例2)
実施例2の超電導線材は、実施例1の超電導線材と基本的には同様であるが、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径を27.3μmとした点においてのみ異なる。なお、熱処理の条件として、酸素濃度8%において828℃で70時間とした。
(Example 2)
The superconducting wire of Example 2 is basically the same as the superconducting wire of Example 1, except that the average particle size of the superconducting crystal composed of Bi2223 phase in the cross section parallel to the ab plane is 27.3 μm. It differs only in. Note that the heat treatment was performed at 828 ° C. for 70 hours at an oxygen concentration of 8%.

(実施例3)
実施例3の超電導線材は、実施例1の超電導線材と基本的には同様であるが、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径を20.0μmとした点においてのみ異なる。なお、熱処理の条件として、酸素濃度8%において828℃で150時間とした。
(Example 3)
The superconducting wire of Example 3 is basically the same as the superconducting wire of Example 1, except that the average particle size of the superconducting crystal composed of the Bi2223 phase in the cross section parallel to the ab plane is 20.0 μm. It differs only in. The heat treatment was performed at 828 ° C. for 150 hours at an oxygen concentration of 8%.

(比較例1)
比較例1の超電導線材は、実施例1の超電導線材と基本的には同様であるが、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径が本発明の範囲外の5.1μmとした点においてのみ異なる。なお、熱処理の条件として、酸素濃度8%において822℃で50時間とした。
(Comparative Example 1)
The superconducting wire of Comparative Example 1 is basically the same as the superconducting wire of Example 1, but the average particle size of the superconducting crystal composed of Bi2223 phase in the cross section parallel to the ab plane is outside the scope of the present invention. It differs only in that it is 5.1 μm. The heat treatment was performed at 822 ° C. for 50 hours at an oxygen concentration of 8%.

(比較例2)
比較例2の超電導線材は、実施例1の超電導線材と基本的には同様であるが、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径が本発明の範囲外の8.6μmとした点においてのみ異なる。なお、熱処理の条件として、酸素濃度8%において822℃で70時間とした。
(Comparative Example 2)
The superconducting wire of Comparative Example 2 is basically the same as the superconducting wire of Example 1, but the average particle size of the superconducting crystal composed of Bi2223 phase in the cross section parallel to the ab plane is outside the scope of the present invention. It differs only in that it was 8.6 μm. The heat treatment was performed at 822 ° C. for 70 hours at an oxygen concentration of 8%.

(比較例3)
比較例3の超電導線材は、実施例1の超電導線材と基本的には同様であるが、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径が本発明の範囲外の15.5μmとした点においてのみ異なる。なお、熱処理の条件として、酸素濃度8%において822℃で200時間とした。
(Comparative Example 3)
The superconducting wire of Comparative Example 3 is basically the same as the superconducting wire of Example 1, but the average particle size of the superconducting crystal composed of Bi2223 phase in the cross section parallel to the ab plane is outside the scope of the present invention. It differs only in that it was 15.5 μm. The heat treatment was performed at 822 ° C. for 200 hours at an oxygen concentration of 8%.

(比較例4)
比較例4の超電導線材は、実施例1の超電導線材と基本的には同様であるが、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径を19.5μmとした点においてのみ異なる。なお、熱処理の条件として、酸素濃度8%において828℃で35時間とした。
(Comparative Example 4)
The superconducting wire of Comparative Example 4 is basically the same as the superconducting wire of Example 1, except that the average particle size of the superconducting crystal composed of Bi2223 phase in the cross section parallel to the ab plane is 19.5 μm. It differs only in. The heat treatment was performed at 828 ° C. for 35 hours at an oxygen concentration of 8%.

(測定方法)
実施例1,2および比較例1〜3の超電導線材について、温度が77Kで、自己磁場中において、臨界電流値を測定した。臨界電流値は、10-6V/cmの電界が発生したときの通電電流値とした。その結果を表1および図7に示す。なお、図7は、本発明の実施例におけるa−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径とその臨界電流値との関係を示す図である。図7中、縦軸は臨界電流値(単位:A)を、横軸はa−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径(単位:μm)としている。
(Measuring method)
For the superconducting wires of Examples 1 and 2 and Comparative Examples 1 to 3, the critical current value was measured in a self-magnetic field at a temperature of 77K. The critical current value was defined as an energization current value when an electric field of 10 −6 V / cm was generated. The results are shown in Table 1 and FIG. FIG. 7 is a diagram showing the relationship between the average grain size of the superconducting crystal composed of the Bi2223 phase and the critical current value in the cross section parallel to the ab plane in the embodiment of the present invention. In FIG. 7, the vertical axis represents the critical current value (unit: A), and the horizontal axis represents the average particle size (unit: μm) of the superconducting crystal composed of the Bi2223 phase in a cross section parallel to the ab plane.

Figure 0004876643
Figure 0004876643

(測定結果)
表1および図7に示すように、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径が20μm以上である実施例1,2は、臨界電流値が非常に高かった。また、図7から明らかなように、平均粒径が大きいほど臨界電流値は高くなるが、平均粒径が20μm以上となる点を境界として、臨界電流値が飛躍的に向上していることがわかった。一方、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径が20μm未満の比較例1〜3は、実施例1,2と比較して、臨界電流値が低かった。
(Measurement result)
As shown in Table 1 and FIG. 7, Examples 1 and 2 in which the average particle size of the superconducting crystal composed of the Bi2223 phase in the cross section parallel to the ab plane was 20 μm or more had very high critical current values. Further, as apparent from FIG. 7, the larger the average particle size, the higher the critical current value, but the critical current value is dramatically improved at the point where the average particle size is 20 μm or more. all right. On the other hand, Comparative Examples 1 to 3 in which the average particle size of the superconducting crystal composed of the Bi2223 phase in the cross section parallel to the ab plane was less than 20 μm had a lower critical current value than Examples 1 and 2.

以上説明したように、本発明の実施例によれば、a−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径が20μm以上である超電導線材は、その臨界電流値を向上できることが確認できた。   As described above, according to the embodiment of the present invention, the superconducting wire in which the average particle diameter of the superconducting crystal composed of the Bi2223 phase in the cross section parallel to the ab plane is 20 μm or more can improve the critical current value. Was confirmed.

以上に開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態および実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものと意図される。   The embodiments and examples disclosed above are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is shown not by the above embodiments and examples but by the scope of claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the scope of claims. .

本発明の実施の形態における超電導線材を示す概略図である。It is the schematic which shows the superconducting wire in embodiment of this invention. 図1における線分II−IIにおける断面図である。It is sectional drawing in line segment II-II in FIG. 図2におけるある視野における拡大模式図である。It is an expansion schematic diagram in a certain visual field in FIG. 本発明の実施の形態のa−b面に平行な断面におけるBi2223相よりなる超電導結晶の概略模式図である。It is a schematic diagram of the superconducting crystal which consists of Bi2223 phase in the cross section parallel to the ab surface of embodiment of this invention. 本発明の実施の形態の超電導線材のある領域における電流の流れを説明するための図である。It is a figure for demonstrating the flow of the electric current in the area | region with the superconducting wire of embodiment of this invention. 従来の超電導線材のある領域における電流の流れを説明するための図である。It is a figure for demonstrating the flow of the electric current in the area | region with the conventional superconducting wire. 本発明の実施例におけるa−b面に平行な断面におけるBi2223相よりなる超電導結晶の平均粒径とその臨界電流値との関係を示す図である。It is a figure which shows the relationship between the average particle diameter of the superconducting crystal which consists of Bi2223 phase in the cross section parallel to the ab surface in the Example of this invention, and its critical current value.

符号の説明Explanation of symbols

1 フィラメント、2 シース部、10 超電導線材、20 視野、30 超電導結晶、40,50 領域、41,51 非超電導物質、42〜44,52〜63 結晶、x1〜x9 長さ。   1 Filament, 2 sheath part, 10 superconducting wire, 20 fields of view, 30 superconducting crystal, 40, 50 region, 41, 51 non-superconducting material, 42-44, 52-63 crystal, x1-x9 length.

Claims (4)

Bi2223相よりなる複数の超電導結晶を有するフィラメントと、前記フィラメントを被覆するシース部とを含む超電導線材であって、
前記超電導結晶間に非超電導物質が存在し、
前記フィラメントを流れる電流が前記非超電導物質を回避してc軸方向に積層された前記超電導結晶間の粒界を介して流れるように前記超電導結晶が前記c軸方向に積層されており、
a−b面に平行な断面における前記Bi2223相よりなる超電導結晶の平均粒径が20μm以上である、超電導線材。
A superconducting wire comprising a filament having a plurality of superconducting crystals composed of a Bi2223 phase and a sheath portion covering the filament ,
A non-superconducting material exists between the superconducting crystals,
The superconducting crystal is laminated in the c-axis direction so that a current flowing through the filament flows through a grain boundary between the superconducting crystals laminated in the c-axis direction while avoiding the non-superconducting material;
A superconducting wire in which an average particle diameter of a superconducting crystal composed of the Bi2223 phase in a cross section parallel to the ab plane is 20 μm or more.
Bi2223相よりなる複数の超電導結晶を有するフィラメントと、前記フィラメントを被覆するシース部とを含む超電導線材であって、
前記超電導結晶間に非超電導物質が存在し、
前記フィラメントを流れる電流が前記非超電導物質を回避してc軸方向に積層された前記超電導結晶間の粒界を介して流れるように前記超電導結晶が前記c軸方向に積層されており、
a−b面に平行な断面における前記Bi2223相よりなる超電導結晶の平均粒径が21.1μm以上である、超電導線材。
A superconducting wire comprising a filament having a plurality of superconducting crystals composed of a Bi2223 phase and a sheath portion covering the filament ,
A non-superconducting material exists between the superconducting crystals,
The superconducting crystal is laminated in the c-axis direction so that a current flowing through the filament flows through a grain boundary between the superconducting crystals laminated in the c-axis direction while avoiding the non-superconducting material;
A superconducting wire in which an average particle diameter of a superconducting crystal composed of the Bi2223 phase in a cross section parallel to the ab plane is 21.1 μm or more.
前記Bi2223相よりなる超電導結晶のXRDロッキングカーブで測定された(0.0.24)ピークのFWHMが18°以下である、請求項1または2に記載の超電導線材。   The superconducting wire according to claim 1 or 2, wherein a (0.0.24) peak FWHM measured by an XRD rocking curve of the superconducting crystal composed of the Bi2223 phase is 18 ° or less. Bi2212相よりなる超電導結晶をさらに含み、
X線回折によりθ/2θスキャン法で測定される前記Bi2223相および前記Bi2212相のピーク強度において、Bi2223(0.0.14)/(Bi2223(0.0.14)+Bi2212(0.0.12))により求められる値が0.95以上である、請求項1〜3のいずれかに記載の超電導線材。
A superconducting crystal composed of a Bi2212 phase;
In the peak intensities of the Bi2223 phase and the Bi2212 phase measured by the θ / 2θ scan method by X-ray diffraction, Bi2223 (0.0.14) / (Bi2223 (0.0.14) + Bi2212 (0.0.12). The superconducting wire according to any one of claims 1 to 3, wherein the value obtained by)) is 0.95 or more.
JP2006065950A 2006-03-10 2006-03-10 Superconducting wire Expired - Fee Related JP4876643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065950A JP4876643B2 (en) 2006-03-10 2006-03-10 Superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065950A JP4876643B2 (en) 2006-03-10 2006-03-10 Superconducting wire

Publications (2)

Publication Number Publication Date
JP2007242526A JP2007242526A (en) 2007-09-20
JP4876643B2 true JP4876643B2 (en) 2012-02-15

Family

ID=38587844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065950A Expired - Fee Related JP4876643B2 (en) 2006-03-10 2006-03-10 Superconducting wire

Country Status (1)

Country Link
JP (1) JP4876643B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255582A (en) * 1989-03-29 1990-10-16 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Method for reforming oxide superconductor
JP3089294B2 (en) * 1997-02-04 2000-09-18 工業技術院長 Manufacturing method of superconducting tape material
JPH11329118A (en) * 1998-05-19 1999-11-30 Natl Res Inst For Metals Oxide superconducting composite material and its manufacture
JP2002037626A (en) * 2000-07-27 2002-02-06 Internatl Superconductivity Technology Center Method for manufacturing bismuth type high temperature superconductor

Also Published As

Publication number Publication date
JP2007242526A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
CN101061555B (en) Process for producing bismuth-based oxide superconductor, and superconductive wire
JP4876643B2 (en) Superconducting wire
CN100552833C (en) The manufacture method of superconducting wire
Adachi et al. Single-crystal growth of underdoped Bi-2223
US6599862B2 (en) Method for preparing bismuth-based high temperature superconductors
JP6212241B2 (en) Superconductor and manufacturing method thereof
Siswayanti et al. The effect of MgO, CNT, TiO2 addition on transport properties and formation (Bi, Pb)-2223 prepared by solid state method and recurrent sintering
JP6359740B2 (en) Superconductor
EP1865515A1 (en) Re123 oxide superconductor and method for manufacturing same
US5399312A (en) Method for fabricating high-jc thallium-based superconducting tape
JP2009170276A (en) Manufacturing method of bi2223 superconducting wire rod, and bi2223 superconducting wire rod
Suazlina et al. Fabrication and Characterization of Bi1. 6Pb0. 4Sr2Ca2Cu3-x Fe x O y Superconductor
JP4893117B2 (en) Oxide superconducting wire manufacturing method and superconducting equipment
Mansori et al. Bi-2201, Bi-2212 and (Bi, Pb)-2223 fibers have been grown using the micro-pulling down (μ-PD) technique
Ozabaci et al. Growth Speed and Substitution Effects on Alignment and Thermal Transport Properties of Bi-2212 Textured Superconductors
Young et al. Reduction in secondary phases and increased transport I/sub c/of (Bi, Pb) 2223/Ag tapes sintered with rapid heating rates
Sebleku et al. The Effect of Sintering Temperature on The Rolled Silver-Sheathed Monofilament Bi, Pb-Sr-Ca-Cu-O Superconducting Wire
Ikebe et al. Influence of Precursor Composition on the Microstructure and Superconducting Properties of Dy-Ba-Cu-O filaments
JP5105314B2 (en) Method for producing bismuth oxide superconducting wire
Padam et al. Bi‐Sr‐Ca‐Cu‐O superconductor with improved zero resistance temperature of 122 K
Zhang et al. Bi2Sr2CaCu2Ox oxide precursor synthesis from nano-oxides and its effects on multifilamentary wire transport properties
JP2004296253A (en) Manufacturing method of bismuth based oxide superconducting wire rod
JP2008153140A (en) Manufacturing method of oxide superconductive wire
Superkonduktur Influence of Heat Treatments on Electrical Properties and Microstructure of 10% Mass Fraction of Sucrose YBCO Superconductor
JP2008147078A (en) Manufacturing method of oxide superconductive wire rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4876643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees