JP4876287B2 - Measuring method of acoustic impedance and sound absorption coefficient - Google Patents
Measuring method of acoustic impedance and sound absorption coefficient Download PDFInfo
- Publication number
- JP4876287B2 JP4876287B2 JP2008082656A JP2008082656A JP4876287B2 JP 4876287 B2 JP4876287 B2 JP 4876287B2 JP 2008082656 A JP2008082656 A JP 2008082656A JP 2008082656 A JP2008082656 A JP 2008082656A JP 4876287 B2 JP4876287 B2 JP 4876287B2
- Authority
- JP
- Japan
- Prior art keywords
- sound
- measured
- absorption coefficient
- sound absorption
- sound pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Description
本発明は、建築材料等の各種試料の音響インピーダンス及び吸音率の測定に関するものである。 The present invention relates to measurement of acoustic impedance and sound absorption coefficient of various samples such as building materials.
従来より、材料の吸音率や音響インピーダンスの測定方法として、残響室を用いる方法、音響管を用いる方法、音源スピーカ・マイクロホン・試料間の精密な設置条件を考慮して現場で測定する方法がある。以下に、従来の材料の吸音率や音響インピーダンス測定方法について述べる。 Conventional methods for measuring the sound absorption coefficient and acoustic impedance of a material include a method using a reverberation chamber, a method using an acoustic tube, and a method of measuring on-site in consideration of precise installation conditions between a sound source speaker, a microphone, and a sample. . Hereinafter, conventional methods for measuring sound absorption coefficient and acoustic impedance of materials will be described.
残響室を用いる方法としてJIS A 1409、ISO 354に残響室法吸音率の測定方法が規定されている。これは、測定試料の無い残響室の残響時間と測定試料のある残響室の残響時間より、Sabineの残響式を用い、試料の吸音率を求める方法である。 As a method of using the reverberation chamber, JIS A 1409 and ISO 354 define a method of measuring the reverberation chamber method sound absorption coefficient. This is a method for obtaining the sound absorption rate of a sample by using the Sabine reverberation equation from the reverberation time of the reverberation chamber without the measurement sample and the reverberation time of the reverberation chamber with the measurement sample.
また、特許文献1は、電気音響的設備を用いて上記の測定方法に改良を加えている。
Further,
図3は、音響管を用いて材料の音響インピーダンスを測定する方法の1つである。音響管の片側に試料を、もう片側に音源スピーカを設置する。さらに管の中心に移動可能なマイクロホン(プローブマイクロホン)を設置する。このマイクロホンを移動させ材料表面に近い部分の定在波のパターン、つまり第1Pminの生じる位置を測定することにより材料の音響インピーダンスを求めている。 FIG. 3 shows one method for measuring the acoustic impedance of a material using an acoustic tube. Install the sample on one side of the acoustic tube and the sound source speaker on the other side. Furthermore, a movable microphone (probe microphone) is installed at the center of the tube. The acoustic impedance of the material is obtained by moving the microphone and measuring the pattern of the standing wave near the material surface, that is, the position where the first P min occurs.
図4は上記と同様に、音響管を用いて材料の音響インピーダンスを測定する方法である。上記の方法とはマイクロホンの種類並びに設置方法が異なり、固定された2つのマイクロホンにより測定された2点間の伝達関数から、試料表面の音響インピーダンスを求めている。 FIG. 4 shows a method of measuring the acoustic impedance of a material using an acoustic tube, as described above. Different from the above method, the type of microphone and the installation method are different, and the acoustic impedance of the sample surface is obtained from the transfer function between two points measured by two fixed microphones.
図5、図6は現場において、材料の音響インピーダンスを測定する方法であるが、妥当な音源・試料・マイクロホンの位置関係や音源の種類を求め、その条件により材料の音響インピーダンスを求めている。 5 and 6 show a method for measuring the acoustic impedance of a material in the field. The appropriate positional relationship between the sound source / sample / microphone and the type of the sound source are obtained, and the acoustic impedance of the material is obtained based on the conditions.
特許文献2は、その場に存在する音、その音のレベルが不足する場合はスピーカ等から発せられる複数の互いにランダムな雑音と、固定された2つのマイクロホンにより測定された2点間の伝達関数から、試料表面の音響インピーダンスを求めている。
上記図3、図4に示す方法では試料の吸音率を求めることはできるが、音響インピーダンスを求めることはできない。さらに、残響室や10平米程度の試料などの大規模な設備が必要であり、測定のための残響室の設定条件である完全拡散音場の実現が困難である。 The method shown in FIGS. 3 and 4 can determine the sound absorption coefficient of the sample, but cannot determine the acoustic impedance. Furthermore, a large-scale facility such as a reverberation room or a sample of about 10 square meters is necessary, and it is difficult to realize a complete diffuse sound field that is a setting condition of the reverberation room for measurement.
上記図3、図4に示す方法の場合は、測定対象が小さな試料に限定され、測定される音響インピーダンスは、大きな寸法で現場に施工された試料の特性とは異なる点に問題がある。 In the case of the method shown in FIGS. 3 and 4, there is a problem in that the object to be measured is limited to a small sample, and the measured acoustic impedance is different from the characteristics of a sample constructed on the site with a large size.
上記図5、図6に示す方法は、音源の特性や音源・試料・マイクロホンの位置関係等の設定条件に大きく左右され、それらの設定や制御が煩雑である。また、この方法では一般的な室内で低周波数における材料の特性を求めることは困難である。 The methods shown in FIGS. 5 and 6 are greatly affected by setting conditions such as the characteristics of the sound source and the positional relationship of the sound source / sample / microphone, and the setting and control thereof are complicated. Also, with this method, it is difficult to obtain the material characteristics at a low frequency in a general room.
特に吸音率の低い材料で測定結果が安定せず、妥当な測定が困難である。 In particular, the measurement result is not stable with a material having a low sound absorption coefficient, and it is difficult to perform a proper measurement.
上記特許文献2に示す方法では、その場に存在する音のレベルが小さい場合にスピーカ等から発する複数の互いにランダムな雑音を用いても、試料に応じた音響インピーダンス及び吸音率が得られない、あるいは、測定毎に測定結果が異なる。
In the method shown in
本発明は、このような従来の測定方法の問題点を解決しようとするものであり、特殊な装置や大規模な設備を必要とせず、施工状態にある材料の安定した音響インピーダンス及び吸音率を簡易に且つ精度良く測定することを目的とする。 The present invention is intended to solve the problems of the conventional measurement method, and does not require special equipment or large-scale equipment, and can provide stable acoustic impedance and sound absorption coefficient of the material in the construction state. The object is to measure easily and accurately.
前記目的を達成するための技術手段は次の(1)〜(2)の通りである。
(1)、被測定物の近傍に、所定の遠近間隔で二本の遠・近マイクロホンを設置し、この二本の遠・近マイクロホンに、拡散性を確保した音源から、上記材料の吸音率が0.2未満のとき近マイクロホン位置の音圧レベルが85dB以上、0.2以上0.6未満のとき近マイクロホン位置の音圧レベルが75dB以上、0.6以上のとき近マイクロホン位置の音圧レベルが65dB以上の音波を入射させ、遠・近マイクロホン間音圧の例えば伝達関数を測定し、この測定値に基いて被測定物の音響インピーダンスと吸音率を算出することを特徴とする音響インピーダンス及び吸音率の測定方法。
Technical means for achieving the object are as follows (1) to (2).
(1) In the vicinity of the object to be measured, two far / near microphones are installed at a predetermined distance, and the sound absorption coefficient of the above material is obtained from a sound source that ensures diffusivity in the two far / near microphones. When the sound pressure level is less than 0.2, the sound pressure level at the near microphone position is 85 dB or more. When the sound pressure level is from 0.2 to less than 0.6, the sound pressure level at the near microphone position is 75 dB or more. A sound having a pressure level of 65 dB or more is incident, a transfer function of the sound pressure between far and near microphones is measured, for example, and the acoustic impedance and sound absorption coefficient of the object to be measured are calculated based on the measured values. Measuring method of impedance and sound absorption coefficient.
(2)、被測定物の近傍に、音圧−粒子速度センサーを設置し、この音圧−粒子速度センサーに、拡散性を確保した音源から、上記材料の吸音率が0.2未満のとき上記センサー位置の音圧レベルが70dB以上、0.2以上0.6未満のとき上記センサー位置の音圧レベルが65dB以上、0.6以上のとき上記センサー位置の音圧レベルが55dB以上の音波を入射させ、音圧−粒子速度間の例えば伝達関数を測定し、この測定値に基いて被測定物の音響インピーダンスと吸音率を算出することを特徴とする音響インピーダンス及び吸音率の測定方法。 (2) When a sound pressure-particle velocity sensor is installed in the vicinity of the object to be measured, and the sound absorption coefficient of the above material is less than 0.2 from a sound source that ensures diffusibility in this sound pressure-particle velocity sensor. When the sound pressure level at the sensor position is 70 dB or more, 0.2 or more and less than 0.6, the sound pressure level at the sensor position is 65 dB or more, and when it is 0.6 or more, the sound pressure level at the sensor position is 55 dB or more. For example, a transfer function between the sound pressure and the particle velocity is measured, and the acoustic impedance and sound absorption coefficient of the object to be measured are calculated based on the measured values.
本発明は、上記の特徴(1)と(2)の手段により、建築材料などの音響インピーダンス及び吸音率が、吸音率の低い材料も含め、残響室を用いる場合より簡易に、音響管を用いる場合と異なり現場施工状態で、測定毎の差異が吸音率0.0015以内と安定して精度よく測定することができるものである。 The present invention uses an acoustic tube by means of the above features (1) and (2) more easily than when a reverberation chamber is used, including materials with low acoustic absorption and sound absorption coefficient such as building materials. Unlike the case, the difference in each measurement can be stably and accurately measured with the sound absorption coefficient within 0.0015 in the on-site construction state.
以下、本発明を実施するための最良の形態を、以下に記載の実施例により詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the following examples.
1.前記特徴(1)に係わる建築材料等の各種試料の音響インピーダンス測定方法の実施形態の一例を図1に示す。被測定物1の近傍に、所定の遠近間隔で二本の遠・近マイクロホン2a,2bを設置し、この二本の遠・近マイクロホンに、拡散性を確保した音源から、まず近マイクロホン位置で65 dB以上の音圧レベルとなるような音波を入射させ、伝達関数の演算機能を搭載する周波数分析器3によって遠マイクロホン1a・近マイクロホン1b間の音圧の伝達関数を測定し、次に示す数1により音響インピーダンスを、数2により吸音率を算出する。
1. An example of an embodiment of a method for measuring acoustic impedance of various samples such as building materials according to the feature (1) is shown in FIG. Two far / near
これにより大まかな吸音率は得られる。 As a result, a rough sound absorption coefficient can be obtained.
続いて、音響インピーダンスもしくは吸音率を算出したい周波数範囲の上記の大まかな吸音率が0.6未満である場合、さらに0.2未満のとき近マイクロホン位置の音圧レベルが85dB以上、0.2以上0.6未満のとき近マイクロホン位置の音圧レベルが75dB以上、となるよう音源から音波を出力し測定を実施する。これらの音圧レベルは以下の手順で行われた実験に基づき得られる。 Subsequently, when the above-described rough sound absorption coefficient in the frequency range in which the acoustic impedance or sound absorption coefficient is to be calculated is less than 0.6, when the sound absorption level is less than 0.2, the sound pressure level at the near microphone position is 85 dB or more, 0.2 When the value is less than 0.6, sound waves are output from the sound source so that the sound pressure level at the near microphone position is 75 dB or more. These sound pressure levels are obtained based on experiments performed in the following procedure.
1)、まず、測定ごとの変化量の評価の参考値として、GW50を測定し、得られる吸音率(以下、Ref.)と、以下の6条件の測定で得られる吸音率を比較する。
Ref.C1, Ref.C2:Ref.の音源・測定点のまま連続測定する。
Ref.R1, Ref.R2:1 度受音点を移動させ、再びRef.と同じ点に設置し、測定。
Ref.2.5, Ref.5.0:試料の中心から、受音点をそれぞれ2.5, 5.0 [mm]ずつ長辺方向に移動させて測定する。
1) First, GW50 is measured as a reference value for evaluating the amount of change for each measurement, and the obtained sound absorption coefficient (hereinafter referred to as Ref.) Is compared with the sound absorption coefficient obtained by measurement under the following six conditions.
Ref. C1 , Ref. C2 : Continuously measure with the sound source and measurement points of Ref.
Ref. R1 , Ref. R2 : Move the receiving point once and place it again at the same point as Ref.
Ref. 2.5 , Ref. 5.0 : Measure by moving the sound receiving point from the center of the sample by 2.5 and 5.0 [mm] in the long side direction, respectively.
2)、この測定条件下で得られた吸音率と、Ref.との差を、1 Oct. bandごとに二乗平均平方する。図1の方法による結果を図7に示す。全ての周波数帯域で、Ref.C1, Ref.C2の場合、Refとの差が0.01以下であり、Ref.R1, Ref.R2, Ref.2.5, Ref.5.0 の場合、Refとの差は、0.02以下であった。受音点を移動させた場合も測定結果の差は小さい。なお、連続測定、Ref.C1と Ref.C2それぞれの、二乗平均平方根の差は、0.0015以内であった。 2) Calculate the root mean square of the difference between the sound absorption coefficient obtained under this measurement condition and Ref. For each 1 Oct. band. The result of the method of FIG. 1 is shown in FIG. In all frequency bands, the difference between Ref. C1 and Ref. C2 is 0.01 or less, and in the case of Ref. R1 , Ref. R2 , Ref. 2.5 and Ref. 5.0 , the difference from Ref is 0.02 or less. Even when the receiving point is moved, the difference in measurement results is small. In addition, the difference of the root mean square of each of the continuous measurement, Ref. C1 and Ref. C2 , was within 0.0015.
3)、続いて、表1に示す吸音率の異なる4種の試料を用い、測定される吸音率と近マイクロホン位置の音圧レベルの関係を明らかにする。 3) Next, using the four samples with different sound absorption rates shown in Table 1, the relationship between the measured sound absorption rate and the sound pressure level at the near microphone position is clarified.
近マイクロホン位置の音圧レベルは、表2に示す音圧レベルから5 dBステップで、11段階上昇させ、各ステップの音圧レベルを、LRP_N (N = 1, 2, ... , 11)で表す。 The sound pressure level at the near microphone position is increased by 11 steps in 5 dB steps from the sound pressure level shown in Table 2, and the sound pressure level at each step is set to L RP_N (N = 1, 2, ..., 11) Represented by
音圧レベルに対する測定される吸音率の変化は、以下に示す数3の式で、1 Oct. bandごとの二乗平均平方根 Drms (fc, N)を算出し、評価する。 The change in the sound absorption coefficient measured with respect to the sound pressure level is evaluated by calculating the root mean square D rms (f c , N) for each 1 Oct. band using the following equation ( 3 ).
図8は得られた Drms (fc,N) を試料ごとに示したものである。図8より、試料及び周波数に関わらず、音圧レベルが高くなると、Drms (fc,N) は変化しなくなる。また、多孔質材(GW50, GW100, RW25)は、周波数が高いほど、低い音圧レベルで Drms (fc,N) は変化しなくなる。CFは、概ね同じ周波数で Drms (fc,N) が変化しなくなる。多孔質材は、周波数が高いほど吸音率が高く、CFは周波数によって吸音率が変化しない。よって、吸音率が高いほど、低い音圧レベルで、Drms (fc,N) が変化しなくなると考えられる。 FIG. 8 shows the obtained D rms (f c , N) for each sample. From FIG. 8, D rms (f c , N) does not change as the sound pressure level increases regardless of the sample and frequency. Further, the porous materials (GW50, GW100, RW25) do not change D rms (f c , N) at a lower sound pressure level as the frequency is higher. In CF, D rms (f c , N) does not change at approximately the same frequency. The higher the frequency, the higher the sound absorption rate of the porous material, and the CF does not change the sound absorption rate depending on the frequency. Therefore, it is considered that D rms (f c , N) does not change at a lower sound pressure level as the sound absorption rate is higher.
前記2)を参考に、以下の数4の式を満たす音圧レベルの最小値を、「測定に必要な音圧レベル」LEAとする。
With reference to the above 2), the minimum value of the sound pressure level satisfying the
図9に吸音率と LEA の関係を示す。なお、吸音率は各試料とも、1 Oct. band ごとに算術平均した値を用いており、得られた結果から最小二乗法により回帰した直線もあわせて示している。これより測定される吸音率と近マイクロホン位置での音圧レベルとの関係がわかる。 Fig. 9 shows the relationship between the sound absorption coefficient and LEA . For each sample, the sound absorption coefficient is an arithmetic average value for each 1 Oct. band, and a straight line regressed by the least square method from the obtained results is also shown. This shows the relationship between the measured sound absorption coefficient and the sound pressure level at the near microphone position.
2.前記特徴(2)に係わる建築材料等の各種試料の音響インピーダンス測定方法の実施形態の一例を図2に示す。被測定物の近傍に、音圧−粒子速度センサー4を設置し、この音圧−粒子速度センサー4に、拡散性を確保した音源から上記センサー4位置で55dB以上となるような音圧レベルとなるような音波を入射させ、伝達関数の演算機能を搭載する周波数分析器5によって音圧−粒子速度間の伝達関数を測定し、この測定値に基づいて被測定物の音響インピーダンスを以下の数5で、吸音率を数2により算出する。
2. An example of an embodiment of an acoustic impedance measuring method for various samples such as building materials according to the feature (2) is shown in FIG. A sound pressure-
これにより大まかな吸音率は得られる。 As a result, a rough sound absorption coefficient can be obtained.
続いて、音響インピーダンスもしくは吸音率を算出したい周波数範囲の上記の大まかな吸音率が0.6未満である場合、さらに0.2未満のとき上記センサー位置の音圧レベルが70dB以上、0.2以上0.6未満のとき上記センサー位置の音圧レベルが65dB以上、となるよう音源から音波を出力し測定を実施する。これらの音圧レベルは以下の手順で行われた実験に基づき得られる。
この値は、前記1の1)〜2)と同様の手順の実験により得られた図13に基づくものである。
Subsequently, when the above rough sound absorption coefficient in the frequency range in which the acoustic impedance or the sound absorption coefficient is to be calculated is less than 0.6, and further less than 0.2, the sound pressure level at the sensor position is 70 dB or more, 0.2 or more and 0. When the sound pressure level is less than 6, a sound wave is output from the sound source so that the sound pressure level at the sensor position is 65 dB or more. These sound pressure levels are obtained based on experiments performed in the following procedure.
This value is based on FIG. 13 obtained by the experiment of the same procedure as 1) to 2) of 1 above.
本発明において、受音点における拡散性を確保する手段としては、室内で複数の音源と移動音源、もしくはそのいずれかの音源を利用する。 In the present invention, as a means for ensuring the diffusibility at the sound receiving point, a plurality of sound sources and moving sound sources or any one of the sound sources is used in the room.
本発明において、試験信号は、得ようとする周波数が含まれていれば、どのような信号でも良い。但し、効率的に測定を行おうとする場合、試験信号として、ピンクノイズまたはホワイトノイズを使用すれば全周波数が含まれる。 In the present invention, the test signal may be any signal as long as the frequency to be obtained is included. However, when the measurement is to be performed efficiently, all frequencies are included if pink noise or white noise is used as the test signal.
本発明では、1回以上の測定を実施もしくはリアルタイム測定装置を用いることを特徴とする。 In the present invention, one or more measurements are performed or a real-time measurement device is used.
材料開発のスピードアップが可能である The speed of material development is possible.
コンピュータシミュレーション手法により音場を予測する場合、室の境界条件として、測定された吸音率または音響インピーダンスを与えることで、正確に音響を予測可能となり、室全体の音の制御が可能となる
When a sound field is predicted by a computer simulation method, the sound can be accurately predicted by giving the measured sound absorption coefficient or acoustic impedance as the boundary condition of the room, and the sound of the entire room can be controlled.
Claims (2)
A sound pressure-particle velocity sensor is installed in the vicinity of the object to be measured. When the sound absorption coefficient of the object to be measured is less than 0.2 from the sound source that secures diffusibility in the sound pressure-particle velocity sensor, the sensor A sound wave having a sound pressure level of 70 dB or more is made incident, and a sound wave having a sound pressure level of 65 dB or more is made incident when the sound absorption rate of the object to be measured is 0.2 or more and less than 0.6. When the sound absorption coefficient of the measurement object is 0.6 or more, a sound wave having a sound pressure level of 55 dB or more is made incident on the sensor position, and the transfer function between the sound pressure and the particle velocity is measured. A method for measuring acoustic impedance and sound absorption coefficient, comprising calculating an acoustic impedance and a sound absorption coefficient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008082656A JP4876287B2 (en) | 2008-03-27 | 2008-03-27 | Measuring method of acoustic impedance and sound absorption coefficient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008082656A JP4876287B2 (en) | 2008-03-27 | 2008-03-27 | Measuring method of acoustic impedance and sound absorption coefficient |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009236664A JP2009236664A (en) | 2009-10-15 |
JP4876287B2 true JP4876287B2 (en) | 2012-02-15 |
Family
ID=41250802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008082656A Expired - Fee Related JP4876287B2 (en) | 2008-03-27 | 2008-03-27 | Measuring method of acoustic impedance and sound absorption coefficient |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4876287B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL2004628C2 (en) * | 2009-11-19 | 2011-05-23 | Univ Twente | METHOD AND DEVICE FOR DETERMINING THE ACOUSTIC ABSORPTION AND TRANSMISSION COEFFICIENT, IN PARTICULAR AT A CHOSEN POSITION IN A SPACE. |
JP6977949B2 (en) * | 2017-11-21 | 2021-12-08 | 岡山県 | Vertically incident sound absorption coefficient measuring device and vertically incident sound absorption coefficient measuring method |
CN111220257B (en) * | 2020-01-16 | 2022-04-08 | 江苏物联网研究发展中心 | Acoustic particle velocity reactor and manufacturing method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63218855A (en) * | 1987-03-09 | 1988-09-12 | Mitsubishi Heavy Ind Ltd | Method for measuring sound absorbing characteristic |
JP2907772B2 (en) * | 1995-05-30 | 1999-06-21 | キヤノン株式会社 | Method and apparatus for measuring ink ejection amount, printing apparatus, and method for measuring ink ejection amount in printing apparatus |
JP3329224B2 (en) * | 1997-03-15 | 2002-09-30 | ヤマハ株式会社 | Acoustic characteristics measurement device |
JP2003083805A (en) * | 2001-09-12 | 2003-03-19 | Toru Ozuru | Measuring technique of acoustic impedance and acoustic absorption coefficient |
JP2005134207A (en) * | 2003-10-29 | 2005-05-26 | Mitsubishi Electric Engineering Co Ltd | Sound absorption characteristic measuring method |
JP2007292667A (en) * | 2006-04-26 | 2007-11-08 | Isuzu Motors Ltd | Device for measuring acoustic characteristics |
-
2008
- 2008-03-27 JP JP2008082656A patent/JP4876287B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009236664A (en) | 2009-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109302667B (en) | Method and device for rapidly measuring broadband sending response of underwater acoustic emission transducer | |
Brandão et al. | Estimation and minimization of errors caused by sample size effect in the measurement of the normal absorption coefficient of a locally reactive surface | |
CN104501939B (en) | Inversion method utilizing single hydrophone to measure reverberation time of non-anechoic pool | |
CN110186546A (en) | Hydrophone sensitivity free field wide band calibration method based on pink noise | |
Hopkins | Revision of international standards on field measurements of airborne, impact and facade sound insulation to form the ISO 16283 series | |
CN113671041B (en) | Sound insulation measurement system and method based on near-field acoustic holography | |
JP4876287B2 (en) | Measuring method of acoustic impedance and sound absorption coefficient | |
CN109324320A (en) | A method of hydrophone batch, which is carried out, using reverberation tank calibrates | |
Pierzga et al. | Studies on infrasound noise generated by operation οf low-power wind turbine | |
Pilch | Sources of measurement uncertainty in determination of the directional diffusion coefficient value | |
Amédin et al. | Acoustical characterization of absorbing porous materials through transmission measurements in a free field | |
Kuipers | Measuring sound absorption using local field assumptions | |
Li et al. | A note on noise propagation in street canyons | |
Mijić et al. | Reverberation radius in real rooms | |
JP2003083805A (en) | Measuring technique of acoustic impedance and acoustic absorption coefficient | |
Bilova et al. | Influence of sampel size by sound absorption coefficient determination | |
Bay et al. | Measuring system for qualification tests of free-field rooms | |
Zhao | An investigation of the wind noise reduction mechanism of porous microphone windscreens | |
Barrera-Figueroa et al. | On experimental determination of the random-incidence response of microphones | |
Sugahara et al. | Real-time measurements of tonal audibility by using multifunctional measuring system | |
Mohamady et al. | Statistical uncertainty analysis of an acoustic system | |
Lee et al. | Sound Power Measurements Based on ISO 3741 and 3745 | |
Zhang et al. | The investigation of the method for measuring the low-frequency radiated sound power in a reverberation tank | |
Autio et al. | The Influence of Different Scattering Algorithms on Room Acoustic Simulations in Rectangular Rooms. Buildings 2021, 11, 414 | |
D'Antonio et al. | Design of a new Sound Field Analysis Recorder (SOFAR) for isotropy quantification in reverberation chambers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110523 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111026 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111110 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |