JP2005134207A - Sound absorption characteristic measuring method - Google Patents

Sound absorption characteristic measuring method Download PDF

Info

Publication number
JP2005134207A
JP2005134207A JP2003369262A JP2003369262A JP2005134207A JP 2005134207 A JP2005134207 A JP 2005134207A JP 2003369262 A JP2003369262 A JP 2003369262A JP 2003369262 A JP2003369262 A JP 2003369262A JP 2005134207 A JP2005134207 A JP 2005134207A
Authority
JP
Japan
Prior art keywords
sound
absorbing material
wall
wave
absorption characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003369262A
Other languages
Japanese (ja)
Inventor
Shinichi Sakai
新一 酒井
Masamitsu Ishii
政光 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Engineering Co Ltd
Original Assignee
Mitsubishi Electric Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Engineering Co Ltd filed Critical Mitsubishi Electric Engineering Co Ltd
Priority to JP2003369262A priority Critical patent/JP2005134207A/en
Publication of JP2005134207A publication Critical patent/JP2005134207A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sound absorption characteristic measuring method for measuring easily the sound absorption characteristic of a sound absorbing material. <P>SOLUTION: A sound wave of a super-directive beam acquired by modulating a test signal is radiated to a rigid wall 12 from a parametric speaker 5 for acquiring a sound wave in an audible band by nonlinear interaction in a propagating process in the air as a finite amplitude sound wave which is a strong ultrasonic wave, and the sound waves reflected by the wall 12 in the case where the sound absorbing material 11 is mounted on the wall 12 and in the case where the sound absorbing material 11 is not mounted thereon are collected by a microphone 6 and analyzed by an analyzer 7, to thereby measure the sound absorption characteristic of the sound absorbing material 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は吸音材の吸音特性を測定するための吸音特性測定法に関するものである。   The present invention relates to a sound absorption characteristic measuring method for measuring a sound absorption characteristic of a sound absorbing material.

不要な音を低減する騒音対策を行うためや、ステレオ装置から出力される音を良好な状態にするために、一般的に吸音性の材料である吸音材が使用されている。このような吸音材を適正に使用するには、吸音率等の音響特性を把握しておく必要がある。従来、垂直入射や斜入射等の吸音率を測定する方法が幾つかあり、例えば、垂直入射吸音率を測定する一般的な方法として音響管法がある。   A sound absorbing material, which is a sound absorbing material, is generally used in order to take measures against noise that reduces unnecessary sound and to make sound output from a stereo device in a good state. In order to properly use such a sound absorbing material, it is necessary to grasp acoustic characteristics such as a sound absorption coefficient. Conventionally, there are several methods for measuring the sound absorption coefficient such as normal incidence and oblique incidence. For example, there is an acoustic tube method as a general method for measuring the normal incidence sound absorption coefficient.

図5は非特許文献1に規定されている従来の音響管法による吸音特性測定法の構成を示す図である。この吸音特性測定法は、円形の音響管20の一端に評価対象の試料21を円形に切り出して取り付け、他端から音源22を駆動して吸音率を測定するものである。この方法は、2マイクロフォン法といって、音響管20内に音源22からホワイトノイズを発生させて管軸方向に並んだ2本のマイクロホン23,24で管内の音圧レベルを測り、その伝達関数の分析を行い、入射波、反射波の位相差を利用して吸音率や音響インピーダンスを算出する。この方法により、音が垂直に入射した試料21の吸音率を求めることができる。   FIG. 5 is a diagram showing a configuration of a sound absorption characteristic measurement method by a conventional acoustic tube method defined in Non-Patent Document 1. In this sound absorption characteristic measurement method, a sample 21 to be evaluated is cut out and attached to one end of a circular acoustic tube 20, and the sound source 22 is driven from the other end to measure the sound absorption rate. This method is called a two-microphone method, in which white noise is generated from the sound source 22 in the acoustic tube 20 and the sound pressure level in the tube is measured with the two microphones 23 and 24 arranged in the tube axis direction, and the transfer function is measured. The sound absorption coefficient and acoustic impedance are calculated using the phase difference between the incident wave and the reflected wave. By this method, it is possible to obtain the sound absorption coefficient of the sample 21 on which sound is incident vertically.

図6は非特許文献2に規定されている従来の残響室法による吸音特性測定法の構成を示す図である。内面が完全に反射に近い壁を持つ残響室30内に、評価対象の試料31、音源32、マイクロホン33〜36を設置し、音源32から音を出して複数本のマイクロホン33〜36で収音できる状態にする。音源32からの音を止めて残響時間を測定するが、残響室30内の試料31のあり、なしの各条件で測定された残響時間の差から試料31の斜入射吸音率を算出する。   FIG. 6 is a diagram showing a configuration of a sound absorption characteristic measuring method by a conventional reverberation chamber method defined in Non-Patent Document 2. A sample 31 to be evaluated, a sound source 32, and microphones 33 to 36 are installed in a reverberation chamber 30 whose inner surface is almost completely reflective, and sound is collected from the sound source 32 and collected by a plurality of microphones 33 to 36. Make it ready. While the sound from the sound source 32 is stopped and the reverberation time is measured, the oblique incident sound absorption coefficient of the sample 31 is calculated from the difference in the reverberation time measured under the conditions where the sample 31 in the reverberation chamber 30 is present and absent.

図7は残響室法により求められる吸音率の例を示す図である。横軸は対数目盛りの周波数を示し、縦軸は吸音率を示しており、吸音率は一般に1/1又は1/3オクターブ毎の周波数でプロットされ、その値は0から1となる。一般的な吸音材、例えば、グラスウールのような均一な多孔質吸音材では、図7の特性40に示すように、低音域で吸音率が低く、高音域では吸音率が高くなる。   FIG. 7 is a diagram showing an example of the sound absorption coefficient obtained by the reverberation chamber method. The horizontal axis indicates the logarithmic scale frequency, and the vertical axis indicates the sound absorption rate. The sound absorption rate is generally plotted at a frequency of 1/1 or 1/3 octave, and the value is 0 to 1. A general sound-absorbing material, for example, a uniform porous sound-absorbing material such as glass wool, has a low sound absorption rate in the low sound range and a high sound absorption rate in the high sound range, as shown by the characteristic 40 in FIG.

JIS A1405 1998「音響インピーダンス管による吸音率及びインピーダンスの測定」 日本規格協会JIS A1405 1998 “Measurement of sound absorption coefficient and impedance by acoustic impedance tube” Japanese Standards Association JIS A1409 1998「残響室法吸音率及の測定方法」 日本規格協会JIS A1409 1998 “Measurement method of sound absorption rate and reverberation chamber method” Japanese Standards Association

従来の吸音特性測定法は以上のように行われていたので、音響管法では試料を精確な円形に切り出す手間が必要だったり、精密な音響管や性能評価処理用の処理ソフトやパソコン等の高価なシステムが必要になるという課題があった。
また、残響室法では、規模が大きな残響室が必要になり、高価な専用の設備を用意しなければならないという課題があった。
The conventional method for measuring sound absorption characteristics has been carried out as described above, so the acoustic tube method requires time and effort to cut the sample into a precise circle, or a precision acoustic tube, processing software for performance evaluation processing, a personal computer, etc. There was a problem that an expensive system was required.
In addition, the reverberation room method requires a large reverberation room, and there is a problem that expensive dedicated equipment must be prepared.

この発明は上記のような課題を解決するためになされたもので、高価なシステムや高価な専用の設備を必要とせずに、吸音材の吸音特性を容易に測定することができる吸音特性測定法を得ることを目的とする。   The present invention has been made to solve the above problems, and it is possible to easily measure the sound absorption characteristics of the sound absorbing material without requiring an expensive system or expensive dedicated equipment. The purpose is to obtain.

この発明に係る吸音特性測定法は、強力な超音波である有限振幅音波として空気中に伝搬する過程で非線形相互作用により可聴帯域の音波を得るためのパラメトリックスピーカーから、試験信号を変調した超指向性ビームの音波を剛性を有する壁に放射し、上記壁に吸音材を取り付けた場合と上記吸音材がない場合の上記壁により反射された音波をマイクロホンで収音し分析することにより、上記吸音材の吸音特性を測定するものである。   The sound absorption characteristic measuring method according to the present invention is a super-directive that modulates a test signal from a parametric speaker for obtaining sound waves in the audible band by nonlinear interaction in the process of propagation into the air as finite amplitude sound waves that are powerful ultrasonic waves. The sound absorption of the sound beam is radiated to a rigid wall, and the sound wave reflected by the wall when the sound absorbing material is attached to the wall and without the sound absorbing material is collected and analyzed by a microphone. The sound absorption characteristics of the material are measured.

この発明は、パラメトリックスピーカーを吸音特性測定に使用することにより、高価なシステムや高価な専用の設備を必要とせずに、吸音材の吸音特性を容易に測定することができるという効果がある。   The present invention has an effect that by using a parametric speaker for sound absorption characteristic measurement, it is possible to easily measure the sound absorption characteristic of the sound absorbing material without requiring an expensive system or expensive dedicated equipment.

以下、この発明の実施の一形態を説明する。
実施の形態1.
図1はこの発明の実施の形態1による吸音特性測定法の構成を示すブロック図である。図1において、吸音特性の評価対象試料としての吸音材11は剛性を有する壁12に取り付けられており、吸音材11の吸音特性を測定するために、信号発生器1、振幅変調器2、増幅器3、電気音響変換器4、マイクロホン6及び分析器7を備えている。なお、振幅変調器2、増幅器3及び電気音響変換器4によりパラメトリックスピーカー5を構成し、剛性を有する壁12はほとんど吸音性がなく音波をほぼ完全に反射するものとする。
An embodiment of the present invention will be described below.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing the configuration of a sound absorption characteristic measuring method according to Embodiment 1 of the present invention. In FIG. 1, a sound absorbing material 11 as a sample to be evaluated for sound absorption characteristics is attached to a wall 12 having rigidity, and in order to measure the sound absorption characteristics of the sound absorbing material 11, a signal generator 1, an amplitude modulator 2, an amplifier. 3. An electroacoustic transducer 4, a microphone 6 and an analyzer 7 are provided. The amplitude modulator 2, the amplifier 3 and the electroacoustic transducer 4 constitute a parametric speaker 5, and the rigid wall 12 has almost no sound absorption and reflects sound waves almost completely.

図2は図1に示す吸音特性測定法の構成を示す上面図であり、図3は図1に示す吸音特性測定法の構成の鳥瞰図であり、図1に示すものと同一符号はそれぞれ同一である。電気音響変換器4から放射された音波は壁12に向かって放射され、壁12に取り付けられた吸音材11から反射した音波はマイクロホン6に向かって伝搬してマイクロホン6により収音される。   2 is a top view showing the structure of the sound absorption characteristic measuring method shown in FIG. 1, and FIG. 3 is a bird's eye view of the structure of the sound absorption characteristic measuring method shown in FIG. 1, and the same reference numerals as those shown in FIG. is there. The sound wave emitted from the electroacoustic transducer 4 is emitted toward the wall 12, and the sound wave reflected from the sound absorbing material 11 attached to the wall 12 propagates toward the microphone 6 and is collected by the microphone 6.

次に動作について説明する。
信号発生器1は可聴帯域の試験信号を生成し、振幅変調器2は、内蔵する高周波生成器(図示せず)からの超音波キャリア信号と、信号発生器1からの試験信号とを乗算して振幅変調を行い変調信号を出力する。増幅器3は振幅変調器2からの変調信号を増幅して電気音響変換器4に供給する。電気音響変換器4は増幅器3からの変調信号を音波に変換して壁12に取り付けられた吸音材11に向かって放射する。
Next, the operation will be described.
The signal generator 1 generates an audible band test signal, and the amplitude modulator 2 multiplies the ultrasonic carrier signal from a built-in high frequency generator (not shown) and the test signal from the signal generator 1. Amplitude modulation is performed to output a modulated signal. The amplifier 3 amplifies the modulation signal from the amplitude modulator 2 and supplies it to the electroacoustic transducer 4. The electroacoustic transducer 4 converts the modulation signal from the amplifier 3 into a sound wave and radiates it toward the sound absorbing material 11 attached to the wall 12.

吸音材11に入射された音波(入射波)は、吸音材11により一部は吸収され、残りは反射する。吸音材11により反射された音波(反射波)はマイクロホン6に向かって伝搬する。マイクロホン6は伝搬された反射波を収音して電気信号に変換し、分析器7はマイクロホン6からの電気信号を分析して吸音材3の吸音特性を測定する。   A part of the sound wave (incident wave) incident on the sound absorbing material 11 is absorbed by the sound absorbing material 11 and the rest is reflected. The sound wave (reflected wave) reflected by the sound absorbing material 11 propagates toward the microphone 6. The microphone 6 collects the propagated reflected wave and converts it into an electrical signal, and the analyzer 7 analyzes the electrical signal from the microphone 6 and measures the sound absorption characteristics of the sound absorbing material 3.

振幅変調器2、増幅器3及び電気音響変換器4により構成されたパラメトリックスピーカー5から放射される音波は、強力な超音波である有限振幅音波として空気中に伝搬する過程で、非線形相互作用を起こして自己復調され可聴帯域の音波として再現される。このように放射される超音波及び自己復調される可聴帯域の音波は、電気音響変換器4の中心軸である音軸上に集中するようになり、極めて狭い指向性、即ち、超指向性を有することになる。   A sound wave radiated from a parametric speaker 5 constituted by the amplitude modulator 2, the amplifier 3 and the electroacoustic transducer 4 causes a nonlinear interaction in the process of propagating into the air as a finite amplitude sound wave which is a powerful ultrasonic wave. Self-demodulated and reproduced as an audible sound wave. The radiated ultrasonic waves and the sound waves in the audible band that are self-demodulated are concentrated on the sound axis that is the central axis of the electroacoustic transducer 4, and have extremely narrow directivity, that is, super directivity. Will have.

この実施の形態1では、このようなパラメトリックスピーカー5から放射される音波の「超指向性」の性質を利用する。図2に示すように、電気音響変換器4から放射されるほとんどの音波は細いビーム状のエリアを伝搬し、壁12のような平坦な面に到達しても光のように反射し、その後も同様に伝搬するので測定に応用できることになる。即ち、マイクロホン6で収音される音波は、電気音響変換器4からの直接音はほとんど到達せずに、壁12からの反射音が主体となる。このとき、壁12に吸音材11がないときとあるときの反射音の音圧レベルを評価することにより、吸音材11の吸音特性を測定することができる。   In the first embodiment, the “superdirectivity” property of sound waves emitted from the parametric speaker 5 is used. As shown in FIG. 2, most of the sound waves radiated from the electroacoustic transducer 4 propagate through a thin beam-like area and are reflected like light even after reaching a flat surface such as the wall 12. Since it propagates in the same way, it can be applied to measurement. That is, the sound waves collected by the microphone 6 are mainly reflected sound from the wall 12 while almost no direct sound from the electroacoustic transducer 4 arrives. At this time, the sound absorption characteristics of the sound absorbing material 11 can be measured by evaluating the sound pressure level of the reflected sound when the sound absorbing material 11 is not present on the wall 12.

パラメトリックスピーカー5の代わりに、従来のスピーカーを使用した場合には、マイクロホン6には大きなレベルの直接波が収音されると共に、放射された音波はあらゆる方向に伝搬し、壁12により反射された反射波も収音されるので、吸音材3からの反射波のみを収音することが難しくなる。また、この状態では、連続的な定常正弦波やノイズを試験信号に使用することはできなくなり、図1〜図3の構成で反射波を使用して吸音特性を測定することは不可能となる。   When a conventional speaker is used instead of the parametric speaker 5, a high-level direct wave is picked up by the microphone 6, and the emitted sound wave propagates in all directions and is reflected by the wall 12. Since the reflected wave is also collected, it is difficult to collect only the reflected wave from the sound absorbing material 3. Further, in this state, it is impossible to use a continuous stationary sine wave or noise for the test signal, and it is impossible to measure the sound absorption characteristic using the reflected wave in the configuration shown in FIGS. .

ここで、吸音特性を測定する場合の音圧レベルの測定について説明する。
図4は吸音特性測定法における音圧レベルの測定を説明する図であり、図4(a)は音圧レベルを測定する際の配置を示し、図4(b)は音源である電気音響変換器4からの距離に対する音圧レベル特性を示している。一般に、反射波によって評価する吸音材11の吸音特性は、図4(a)に示すように、反射面への入射波の音圧レベルpi と反射波の音圧レベルpr が既知となれば求めることができる。図4(a)に示す音圧レベル測定の配置では、マイクロホン6の位置において反射波のみが測定され、吸音材11があるときの音圧レベルpmrと、吸音材11がないときの音圧レベルpmhが得られる。
Here, the measurement of the sound pressure level when measuring the sound absorption characteristics will be described.
FIG. 4 is a diagram for explaining the measurement of the sound pressure level in the sound absorption characteristic measurement method, FIG. 4 (a) shows the arrangement for measuring the sound pressure level, and FIG. 4 (b) is the electroacoustic conversion that is the sound source. The sound pressure level characteristic with respect to the distance from the device 4 is shown. In general, sound-absorbing characteristics of the sound absorbing material 11 is evaluated by the reflected waves, as shown in FIG. 4 (a), the sound pressure level p r of the reflected wave and the sound pressure level p i of the incident wave on the reflective surface become known Can be obtained. In the arrangement of the sound pressure level measurement shown in FIG. 4A, only the reflected wave is measured at the position of the microphone 6, the sound pressure level p mr when the sound absorbing material 11 is present, and the sound pressure when the sound absorbing material 11 is absent. Level p mh is obtained.

また、図4(b)に示すように、電気音響変換器4(距離=0)からdh の距離に壁12の反射面が存在し、そこから折り返して電気音響変換器4からの総距離dm にマイクロホン6が存在する。吸音材11がないときは壁12で音波は反射するが、図4(b)の特性51の点線で示すように、反射波の音圧レベルは入射波の音圧レベルに連続した特性となる。一方、吸音材11がある場合には、反射面のdh の距離で吸音が起こるので、図4(b)の特性52の実線で示すように、入射波の音圧レベルpi から反射波の音圧レベルpr に減衰する。ここで、マイクロホン6で観測される音圧レベル差(pmh−pmr)は、壁12の反射面での音圧レベル差(pi −pr )にほぼ等しいので、マイクロホン6により測定された吸音材11がないときの音圧レベルpmhと、吸音材11があるときの音圧レベルpmrを測定することにより、吸音材11の吸音特性を測定することが可能となる。 Further, as shown in FIG. 4B, the reflection surface of the wall 12 exists at a distance of d h from the electroacoustic transducer 4 (distance = 0), and the total distance from the electroacoustic transducer 4 is folded from there. the microphone 6 is present in the d m. When there is no sound absorbing material 11, the sound wave is reflected by the wall 12, but as shown by the dotted line of the characteristic 51 in FIG. 4B, the sound pressure level of the reflected wave becomes a characteristic continuous with the sound pressure level of the incident wave. . On the other hand, if there is a sound-absorbing material 11, since the sound absorbing occurs at a distance d h of the reflective surface, as shown by the solid line characteristic 52 in FIG. 4 (b), the reflected waves from the sound pressure level p i of the incident wave Is attenuated to the sound pressure level pr. Here, the sound pressure level difference (p mh −p mr ) observed by the microphone 6 is approximately equal to the sound pressure level difference (p i −p r ) at the reflecting surface of the wall 12, and is thus measured by the microphone 6. By measuring the sound pressure level p mh when the sound absorbing material 11 is not present and the sound pressure level p mr when the sound absorbing material 11 is present, the sound absorption characteristics of the sound absorbing material 11 can be measured.

評価対象試料としての吸音材11の面積はある程度の大きさが必要であるが、その面積(寸法)は、電気音響変換器4が形成する超指向性ビームの円錐状の音波がほとんど到達する大きさが望ましい。例えば、電気音響変換器4と壁12との距離は2m位であり、吸音材11の寸法は、電気音響変換器4の中心軸上の垂直方向の音圧レベルが半減する円形範囲(−6dB)の直径以上であれば良い。また、吸音材11の外周形状は、角形、円形等、任意であって良く、さらには、建物に既設の吸音材や吸音性の天井・壁・床や外壁・戸外の壁等の性能も測定可能となる。   The area of the sound-absorbing material 11 as the sample to be evaluated needs to have a certain size, but the area (dimension) is large enough to reach the conical sound wave of the superdirective beam formed by the electroacoustic transducer 4. Is desirable. For example, the distance between the electroacoustic transducer 4 and the wall 12 is about 2 m, and the size of the sound absorbing material 11 is a circular range (−6 dB) in which the sound pressure level in the vertical direction on the central axis of the electroacoustic transducer 4 is halved. ) Or more. The outer peripheral shape of the sound absorbing material 11 may be arbitrary, such as a square shape or a circular shape. Furthermore, it is possible to measure the performance of the sound absorbing material already installed in the building and the sound absorbing ceiling / wall / floor / outer wall / outdoor wall. It becomes.

信号発生器1により生成された試験信号による試験音は、連続的な定常音や単発的な過渡音を使用することができる。定常音としては正弦波やノイズであり、正弦波であれば例えば1kHz単音のスポット音や周波数が連続的に変化するスイープ音、ノイズであればホワイトノイズ・ピンクノイズ・1/1又は1/3オクターブ等の帯域ノイズ等である。過渡音としてはインパルスやトーンバースト音であり、過渡音を使用することにより、測定個所の周辺から反射のある通常の部屋でも測定できる。即ち、電気音響変換器4から発せられる超指向性ビームは伝搬経路が限定されているために、壁12又は吸音材11から反射してきた音波が周辺の障害物や壁等から反射してきた音波より速く到達していれば、吸音特性を測定できる。発展的に考えれば、連続音を使用する場合であっても、測定用反射経路以外からの反射音を影響のない程度に周囲を設定できれば、限定された超指向性ビームを利用するために測定が可能となる。一方、音波の反射のない無響室や広大な空間で測定していいことは言うまでもない。   The test sound generated by the test signal generated by the signal generator 1 can be a continuous steady sound or a single transient sound. The stationary sound is a sine wave or noise. If it is a sine wave, for example, a 1 kHz single spot sound or a sweep sound whose frequency changes continuously, and if it is noise, white noise, pink noise, 1/1 or 1/3. Band noise such as octave. The transient sound is an impulse or tone burst sound, and by using the transient sound, it can be measured even in a normal room reflected from the periphery of the measurement location. That is, since the propagation path of the super-directional beam emitted from the electroacoustic transducer 4 is limited, the sound wave reflected from the wall 12 or the sound absorbing material 11 is more than the sound wave reflected from the surrounding obstacle or wall. If it reaches quickly, the sound absorption characteristics can be measured. From a developmental point of view, even if continuous sound is used, if the surroundings can be set to an extent that does not affect the reflected sound from other than the reflection path for measurement, the measurement is performed to use the limited super-directional beam. Is possible. On the other hand, it goes without saying that measurement can be performed in an anechoic room or a vast space where no sound waves are reflected.

吸音特性の測定指標としては、例えば、吸音材11なし(壁12のみ)に対する吸音材11ありの反射音の音圧レベル差である減衰量(pmh−pmr)がある。これは、上記で説明したように、壁12の反射面での入射波と反射波の音圧レベル差(pi −pr )に等しい。一方、マイクロホン6により測定した音圧レベルpmhとpmrから、入射波の音圧レベルpi と反射波の音圧レベルpr の関係が既知となるので、吸音率Aは次式で求めることができる。
A=1−(Ir /Ii
ここで、Ii は入射波の強さを示し、Ir は反射波の強さを示す。入射波の強さIi 、反射波の強さIr は次式で求めることができる。
i =pi 2 /ρc
r =pr 2 /ρc
ここで、ρは空気の密度を示し、cは音速を示す。測定指標をグラフとして表す場合の周波数軸は、例えば、1/1若しくは1/3オクターブの離散値、又は連続値を取ることができる。
As an index for measuring the sound absorption characteristic, for example, there is an attenuation amount (p mh −p mr ) which is a difference in sound pressure level of reflected sound with the sound absorbing material 11 with respect to the absence of the sound absorbing material 11 (only the wall 12). As described above, this is equal to the sound pressure level difference (p i −p r ) between the incident wave and the reflected wave at the reflecting surface of the wall 12. On the other hand, from the sound pressure level p mh and p mr measured by the microphone 6, the relationship between the sound pressure level p r of the reflected wave and the sound pressure level p i of the incident wave is known, the sound absorption coefficient A is obtained by the following formula be able to.
A = 1- (I r / I i )
Here, I i indicates the intensity of the incident wave, and I r indicates the intensity of the reflected wave. The intensity I i of the incident wave and the intensity I r of the reflected wave can be obtained by the following equations.
I i = p i 2 / ρc
I r = p r 2 / ρc
Here, ρ represents the density of air, and c represents the speed of sound. The frequency axis when the measurement index is represented as a graph can take, for example, a discrete value of 1/1 or 1/3 octave, or a continuous value.

図1〜図3の構成において、超指向性ビームの入射角と反射角が比較的小さい角度の例を示しているが、角度は大きくなっても良く、さらには、試験信号に過渡音を使用すれば、電気音響変換器4とマイクロホン6が一直線となる配置(入射角度が90度=垂直入射)でも良い。これから、入射角度をパラメータにする吸音材11の評価が可能となり、例えば、入射角度に依存した吸音率を簡単に求めることができる。   In the configuration of FIGS. 1 to 3, an example in which the incident angle and the reflection angle of the superdirective beam are relatively small is shown, but the angle may be large, and furthermore, a transient sound is used for the test signal. In this case, the electroacoustic transducer 4 and the microphone 6 may be arranged in a straight line (incident angle is 90 degrees = vertical incidence). From this, it is possible to evaluate the sound absorbing material 11 using the incident angle as a parameter, and for example, it is possible to easily obtain a sound absorption coefficient depending on the incident angle.

以上のように、この実施の形態1によれば、強力な超音波である有限振幅音波として空気中に伝搬する過程で非線形相互作用により可聴帯域の音波を得るためのパラメトリックスピーカー5から、試験信号を変調した超指向性ビームの音波を剛性を有する壁12に放射し、壁12に吸音材11を取り付けた場合と吸音材11がない場合の壁12により反射された音波をマイクロホンで収音し分析することにより、高価なシステムや高価な専用の設備を必要とせずに、吸音材11の吸音特性を容易に測定することができるという効果が得られる。   As described above, according to the first embodiment, the test signal is obtained from the parametric speaker 5 for obtaining the sound wave in the audible band by the non-linear interaction in the process of propagating in the air as the finite amplitude sound wave that is a strong ultrasonic wave. The sound wave of the super-directional beam modulated with the sound wave is radiated to the rigid wall 12, and the sound wave reflected by the wall 12 when the sound absorbing material 11 is attached to the wall 12 and when there is no sound absorbing material 11 is collected by the microphone. By analyzing, it is possible to easily measure the sound absorption characteristics of the sound absorbing material 11 without requiring an expensive system or expensive dedicated equipment.

また、この実施の形態1によれば、従来の音響管法による吸音特性測定方法に比べ、広い面積の試料を評価することができ、実態に即した吸音特性を測定することができるという効果が得られる。   In addition, according to the first embodiment, it is possible to evaluate a sample having a large area as compared with the sound absorption characteristic measurement method using the conventional acoustic tube method, and to measure the sound absorption characteristic in accordance with the actual situation. can get.

この発明の実施の形態1による吸音特性測定法の構成を示すブロック図である。It is a block diagram which shows the structure of the sound absorption characteristic measuring method by Embodiment 1 of this invention. この発明の実施の形態1による吸音特性測定法の構成を示す上面図である。It is a top view which shows the structure of the sound absorption characteristic measuring method by Embodiment 1 of this invention. この発明の実施の形態1による吸音特性測定法の構成を示す鳥瞰図である。It is a bird's-eye view which shows the structure of the sound-absorption characteristic measuring method by Embodiment 1 of this invention. この発明の実施の形態1による吸音特性測定法における音圧レベルの測定を説明する図である。It is a figure explaining the measurement of the sound pressure level in the sound absorption characteristic measuring method by Embodiment 1 of this invention. 従来の音響管法による吸音特性測定法の構成を示す図である。It is a figure which shows the structure of the sound absorption characteristic measuring method by the conventional acoustic tube method. 従来の残響室法による吸音特性測定法の構成を示す図である。It is a figure which shows the structure of the sound absorption characteristic measuring method by the conventional reverberation room method. 残響室法により求められる吸音率の例を示す図である。It is a figure which shows the example of the sound absorption rate calculated | required by the reverberation room method.

符号の説明Explanation of symbols

1 信号発生器、2 振幅変調器、3 増幅器、4 電気音響変換器、5 パラメトリックスピーカー、6 マイクロホン、7 分析器、11 吸音材、12 壁。   1 signal generator, 2 amplitude modulator, 3 amplifier, 4 electroacoustic transducer, 5 parametric speaker, 6 microphone, 7 analyzer, 11 sound absorbing material, 12 walls.

Claims (4)

強力な超音波である有限振幅音波として空気中に伝搬する過程で非線形相互作用により可聴帯域の音波を得るためのパラメトリックスピーカーから、試験信号を変調した超指向性ビームの音波を剛性を有する壁に放射し、上記壁に吸音材を取り付けた場合と上記吸音材がない場合の上記壁により反射された音波をマイクロホンで収音し分析することにより、上記吸音材の吸音特性を測定することを特徴とする吸音特性測定法。   From a parametric speaker to obtain sound waves in the audible band by nonlinear interaction in the process of propagating into the air as finite amplitude sound waves, which are powerful ultrasonic waves, the sound waves of the super-directional beam modulated with the test signal are sent to the rigid wall The sound absorbing characteristic of the sound absorbing material is measured by collecting and analyzing the sound wave emitted and reflected by the wall when the sound absorbing material is attached to the wall and when there is no sound absorbing material. Sound absorption characteristic measurement method. 壁に吸音材を取り付けた場合と上記吸音材がない場合の上記壁により反射されマイクロホンで収音された音波の音圧レベル差により、上記吸音材の吸音特性を求めることを特徴とする請求項1記載の吸音特性測定法。   The sound absorption characteristic of the sound absorbing material is obtained from a difference in sound pressure level of a sound wave reflected by the wall and picked up by a microphone when the sound absorbing material is attached to a wall and when there is no sound absorbing material. The sound absorption characteristic measuring method according to 1. マイクロホンで収音された音波の音圧レベル差から、壁に入射する音波と上記壁で反射する音波の音圧レベル差を求め、上記吸音材の吸音率を求めることを特徴とする請求項2記載の吸音特性測定法。   3. A sound pressure level difference between a sound wave incident on a wall and a sound wave reflected on the wall is obtained from a sound pressure level difference between sound waves picked up by a microphone, and a sound absorption rate of the sound absorbing material is obtained. The sound absorption characteristic measurement method described. 試験信号として、正弦波やノイズ等の連続的な定常音、又はインパルスやトーンバースト等の過渡音を使用することを特徴とする請求項1記載の吸音特性測定法。   2. The sound absorption characteristic measuring method according to claim 1, wherein a continuous steady sound such as a sine wave or noise or a transient sound such as an impulse or a tone burst is used as the test signal.
JP2003369262A 2003-10-29 2003-10-29 Sound absorption characteristic measuring method Pending JP2005134207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369262A JP2005134207A (en) 2003-10-29 2003-10-29 Sound absorption characteristic measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369262A JP2005134207A (en) 2003-10-29 2003-10-29 Sound absorption characteristic measuring method

Publications (1)

Publication Number Publication Date
JP2005134207A true JP2005134207A (en) 2005-05-26

Family

ID=34646682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369262A Pending JP2005134207A (en) 2003-10-29 2003-10-29 Sound absorption characteristic measuring method

Country Status (1)

Country Link
JP (1) JP2005134207A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333545A (en) * 2006-06-15 2007-12-27 Clarion Co Ltd Sound absorption characteristic measuring method and sound absorption characteristic measuring apparatus
JP2009236664A (en) * 2008-03-27 2009-10-15 Oita Univ Measuring method of acoustic impedance and acoustic absorption coefficient
JP2012220402A (en) * 2011-04-12 2012-11-12 Yokohama Rubber Co Ltd:The Acoustic characteristic measurement method for acoustic material and acoustic characteristic measurement device for acoustic material
GB2519142A (en) * 2013-10-11 2015-04-15 Univ Manchester Signal processing system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333545A (en) * 2006-06-15 2007-12-27 Clarion Co Ltd Sound absorption characteristic measuring method and sound absorption characteristic measuring apparatus
JP2009236664A (en) * 2008-03-27 2009-10-15 Oita Univ Measuring method of acoustic impedance and acoustic absorption coefficient
JP2012220402A (en) * 2011-04-12 2012-11-12 Yokohama Rubber Co Ltd:The Acoustic characteristic measurement method for acoustic material and acoustic characteristic measurement device for acoustic material
GB2519142A (en) * 2013-10-11 2015-04-15 Univ Manchester Signal processing system and method
GB2519142B (en) * 2013-10-11 2016-09-28 Univ Manchester Signal processing system and method
US10168302B2 (en) 2013-10-11 2019-01-01 The University Of Manchester Signal processing system and methods

Similar Documents

Publication Publication Date Title
Meyer Physical and applied acoustics: an introduction
Jacobsen et al. A note on the calibration of pressure-velocity sound intensity probes
Prato et al. Reverberation time measurements in non-diffuse acoustic field by the modal reverberation time
GB1604489A (en) Loudspeaker arrangements
RU2012146419A (en) DEVICE AND METHOD FOR ACOUSTIC MEASUREMENTS OF A LOT OF SPEAKERS AND DIRECTED MICROPHONES SYSTEM
US8139785B2 (en) Sound reinforcement method and apparatus for musical instruments
Gómez Bolaños et al. Laser-induced acoustic point source for accurate impulse response measurements within the audible bandwidth
CN103582912B (en) Transducer for phased acoustic array system
JP2005134207A (en) Sound absorption characteristic measuring method
Zhong et al. Reflection of audio sounds generated by a parametric array loudspeaker
Hayman et al. Calibration of marine autonomous acoustic recorders
JPH0453258B2 (en)
Delany et al. The high frequency performance of wedge-lined free field rooms
JP2007333545A (en) Sound absorption characteristic measuring method and sound absorption characteristic measuring apparatus
Sugahara et al. A study on the measurements of the absorption coefficient by using a parametric loudspeaker
Fasciani et al. Comparative study of cone-shaped versus flat-panel speakers for active noise control of multi-tonal signals in open windows
JP3324432B2 (en) Reverberation type sound absorption measurement device
Fahy Measurement of audio-frequency sound in air
Sujatha Experiments in Acoustics
Brezas et al. Calibration of sound power sources: Current status and new developments
Oldfield et al. Accurate low frequency impedance tube measurements
JP2000304730A (en) Device and method for measuring acoustic characteristics
Jacobsen Intensity techniques
Sugahara et al. A study on in-situ method of measuring acoustic properties of materials by using a parametric loudspeaker-Reduction of pseudo sound due to high pressure ultrasound
Hodgson et al. BEM computations of a finite-length acoustic horn and comparison with experiment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216