JP2003083805A - Measuring technique of acoustic impedance and acoustic absorption coefficient - Google Patents

Measuring technique of acoustic impedance and acoustic absorption coefficient

Info

Publication number
JP2003083805A
JP2003083805A JP2001276149A JP2001276149A JP2003083805A JP 2003083805 A JP2003083805 A JP 2003083805A JP 2001276149 A JP2001276149 A JP 2001276149A JP 2001276149 A JP2001276149 A JP 2001276149A JP 2003083805 A JP2003083805 A JP 2003083805A
Authority
JP
Japan
Prior art keywords
absorption coefficient
acoustic impedance
acoustic
sound
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001276149A
Other languages
Japanese (ja)
Inventor
Toru Ozuru
徹 大鶴
Yasuo Takahashi
康夫 高橋
Reiji Tomiki
礼次 富来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001276149A priority Critical patent/JP2003083805A/en
Publication of JP2003083805A publication Critical patent/JP2003083805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for measuring accurately the acoustic impedance and the acoustic absorption coefficient of a sample such as a building material in the installed state on a cite. SOLUTION: In this measuring technique of the acoustic impedance and the acoustic absorption coefficient for measuring accurately the acoustic impedance and the acoustic absorption coefficient of the material installed on the cite, the acoustic impedance and the acoustic absorption coefficient of the material are measured by utilizing a usually existing noise without using a sound source speaker. In a room where the usually existing noise level is low and measurement is difficult as it is, a random noise is outputted, and measurement is performed by improving diffusion of the sound in the room.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、建築材料等の各種
試料の音響インピーダンス及び吸音率の測定に関する。
TECHNICAL FIELD The present invention relates to measurement of acoustic impedance and sound absorption coefficient of various samples such as building materials.

【0002】[0002]

【従来の技術】従来より、材料の音響インピーダンス及
び吸音率の測定手法の1つとして、音響管を用いた手法
や音源スピーカ・マイクロホン・試料間の精密な設置条
件を考慮し、現場で測定する手法が行われている。以下
に、従来の材料の音響インピーダンス測定手法について
述べる。
2. Description of the Related Art Conventionally, as one of the methods for measuring the acoustic impedance and sound absorption coefficient of a material, a method using an acoustic tube and a precise installation condition between a sound source speaker, a microphone, and a sample are taken into consideration for measurement on site. The technique is being carried out. The conventional method for measuring the acoustic impedance of materials will be described below.

【0003】図3は、音響管を用いて材料の音響インピ
ーダンスを測定する手法の1つである。音響管の片側に
試料を、もう片側に音源スピーカを設置する。さらに菅
の中心に移動可能なマイクロホン(プローブマイクロホ
ン)を設置する。このマイクロホンを移動させ材料表面
に近い部分の定在波のパターン、つまり第1Pminの生じ
る位置を測定することにより材料の音響インピーダンス
を求めている。
FIG. 3 is one of the techniques for measuring the acoustic impedance of a material using an acoustic tube. Place the sample on one side of the acoustic tube and the sound source speaker on the other side. Furthermore, a movable microphone (probe microphone) is installed in the center of the tube. The acoustic impedance of the material is determined by moving the microphone and measuring the pattern of the standing wave near the surface of the material, that is, the position where the first Pmin occurs.

【0004】図4は上記と同様に、音響管を用いて材料
の音響インピーダンスを測定する手法である。上記の手
法とはマイクロホンの種類並びに設置方法が異なり、固
定された2つのマイクロホンにより測定された2点間の
伝達関数から、試料表面の音響インピーダンスを求めて
いる。
FIG. 4 shows a method of measuring the acoustic impedance of a material using an acoustic tube, as in the above. The type of microphone and the installation method are different from the above method, and the acoustic impedance of the sample surface is obtained from the transfer function between two points measured by two fixed microphones.

【0005】図5、図6は現場において、材料の音響イ
ンピーダンスを測定する手法であるが、妥当な音源・試
料・マイクロホンの位置関係や音源の種類を求め、その
条件により材料の音響インピーダンスを求めている。
FIG. 5 and FIG. 6 show a method for measuring the acoustic impedance of a material in the field. However, an appropriate positional relationship between a sound source, a sample, and a microphone and a kind of a sound source are obtained, and the acoustic impedance of the material is obtained according to the conditions. ing.

【0006】また、材料の吸音率を求める測定手法には
JIS A1408、ISO 354に規定される。残響室法吸音率の測
定手法がある。残響時間T秒の残響室に試料を入れ、残
響時間の変化からSabineの残響式を用い、試料の吸音率
を求めている。
Further, the measuring method for obtaining the sound absorption coefficient of a material is
It is specified in JIS A1408 and ISO 354. There is a method of measuring the sound absorption coefficient in the reverberation room method. A sample is placed in a reverberation room with a reverberation time of T seconds, and the sound absorption coefficient of the sample is calculated from the change in reverberation time using Sabine's reverberation equation.

【0007】[0007]

【発明が解決しようとする課題】以上に述べた従来の音
響インピーダンス測定手法の問題点は、上記0003
項、0004項の場合は、測定対象が小さな試料に限定
され、大きな寸法で現場に設置された試料の特性とは異
なることである。
The problems of the conventional acoustic impedance measuring method described above are 0003 above.
In the cases of the items [0004] and [0004], the measurement target is limited to a small sample, and the characteristics are different from those of the sample installed in the field with a large size.

【0008】さらに、0005項の場合は、音源の特性
や音源・試料・マイクロホンの位置関係等の設定条件に
大きく左右され、それらの設定や制御が煩雑なことであ
る。また、この方法では一般的な室内で低周波数におけ
る材料の特性を求めることは困難であった。
Further, in the case of the item 0005, the setting and control of the characteristics of the sound source and the positional relationship between the sound source, the sample, and the microphone are greatly affected, and the setting and control thereof are complicated. Moreover, it is difficult to obtain the characteristics of the material at low frequencies in a general room by this method.

【0009】0006項の手法では試料の吸音率を求め
ることはできるが、音響インピーダンスを求めることは
できない。さらに、残響室や10平米程度の試料などの
大規模な設備が必要であり、測定のための残響室の設定
条件である完全拡散音場の実現が困難である。
Although the sound absorption coefficient of the sample can be obtained by the method of paragraph 0006, the acoustic impedance cannot be obtained. Furthermore, a large-scale equipment such as a reverberation room and a sample of about 10 square meters is required, and it is difficult to realize a perfect diffuse sound field which is a setting condition of the reverberation room for measurement.

【0010】本発明は、このような従来の測定手法の問
題点を解決しようとするものであり、特殊な装置や精密
な設置条件を必要とせず、どのような場所においても材
料の音響インピーダンス及び吸音率を測定することを目
的とする。
The present invention is intended to solve the above problems of the conventional measuring method, does not require a special device or precise installation conditions, and does not require the acoustic impedance and the material impedance at any place. The purpose is to measure sound absorption.

【0011】[0011]

【課題を解決するための手段】本願発明は、上記目的を
達成するために音源スピーカを使用せずに音響インピー
ダンス及び吸音率を測定することを特徴とする。このよ
うにして測定することにより、ある程度の雑音さえあれ
ばどのような場所でも音響インピーダンス及び吸音率の
測定が可能である。
In order to achieve the above-mentioned object, the present invention is characterized by measuring the acoustic impedance and the sound absorption coefficient without using a sound source speaker. By measuring in this way, the acoustic impedance and the sound absorption coefficient can be measured at any place as long as there is some noise.

【0012】また、0008項の課題解決手段は、ラン
ダムな雑音原を複数利用することにより、室内の拡散性
を向上させ、音響インピーダンス及び吸音率の測定を行
うことである。
Further, the means for solving the problem of the item 0008 is to improve the diffusivity in the room by using a plurality of random noise sources and to measure the acoustic impedance and the sound absorption coefficient.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を、図面を参
照に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings.

【0014】図1に示すように、試料の表面に垂直に2
本のマイクロホンを設置し、この時の2点間の伝達関数
を求める。さらに、同様の測定を数箇所の受音点で行
い、それらをエネルギーで平均し、この試料の音響イン
ピーダンス及び吸音率を求めることができる。
As shown in FIG.
A microphone is installed and the transfer function between the two points at this time is obtained. Furthermore, the same measurement can be performed at several sound receiving points, and they can be averaged by energy to obtain the acoustic impedance and sound absorption coefficient of this sample.

【0015】次に、ランダムな雑音を音源に用いる場合
は、図2示すように音源をランダムに置き、上記と同様
の測定を実施する。この測定を音源位置が異なる数種類
の音源配置条件下で行い、さらに上記同様数箇所の受音
点で測定し、それらを平均すればこの試料の音響インピ
ーダンス及び吸音率を求めることができる。
Next, when random noise is used for the sound source, the sound source is randomly placed as shown in FIG. 2 and the same measurement as above is performed. This measurement is carried out under several kinds of sound source arrangement conditions in which sound source positions are different, and measurement is performed at several sound receiving points in the same manner as described above, and by averaging them, the acoustic impedance and sound absorption coefficient of this sample can be obtained.

【発明の効果】【The invention's effect】

【0016】上述したように、本発明の材料の音響イン
ピーダンス及び吸音率の測定手法は、マイクロホンとFF
T分析器若しくはデジタルフィルタといった簡単な装置
を利用するだけで、現場に設置された状態の材料の音響
インピーダンス及び吸音率を測定することができる。
As described above, the method for measuring the acoustic impedance and the sound absorption coefficient of the material of the present invention is the microphone and the FF.
It is possible to measure the acoustic impedance and sound absorption coefficient of a material installed in the field simply by using a simple device such as a T analyzer or a digital filter.

【0017】ランダム雑音を音源に用いる場合でも、精
密な設置条件を与えずに、音源をランダムに設置すれば
上記同様簡単に材料の音響インピーダンス及び吸音率の
測定を行うことができる。
Even when random noise is used for the sound source, the acoustic impedance and the sound absorption coefficient of the material can be easily measured in the same manner as described above if the sound sources are randomly installed without giving precise installation conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例、測定手法の設置図FIG. 1 is an installation diagram of an embodiment of the present invention and a measurement method.

【図2】音源としてランダム雑音を用いた場合の本発明
の実施例の1つ
FIG. 2 is one of the embodiments of the present invention when random noise is used as a sound source

【図3】従来の技術の実施例、音響管法の1つ、定在波
法(JIS A1405、ISO10534-1)
[Fig. 3] Example of conventional technology, one of acoustic tube methods, standing wave method (JIS A1405, ISO10534-1)

【図4】従来の技術の実施例、音響管法の1つ、2マイ
クロホン法(ISO10534-2)
[FIG. 4] Example of conventional technology, one of acoustic tube method, and two-microphone method (ISO10534-2)

【図5】従来の技術の実施例、反射法1FIG. 5: Example of prior art, reflection method 1

【図6】従来の技術の実施例、反射法2FIG. 6 is a reflection method 2 according to an embodiment of the related art.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】現場に設置された材料の音響インピーダン
ス及び吸音率の測定手法において、音源スピーカを用い
ず、通常存在する音(雑音)を利用した音響インピーダ
ンス及び吸音率の測定手法
1. A method of measuring acoustic impedance and sound absorption coefficient of a material installed in a site, which does not use a sound source speaker, but uses sound (noise) that is normally present.
【請求項2】請求項1記載の音響インピーダンス及び吸
音率の測定手法において、雑音レベルが小さい場合に、
複数の互いにランダムな雑音を利用することによる音響
インピーダンス及び吸音率の測定手法
2. The method for measuring acoustic impedance and sound absorption coefficient according to claim 1, when the noise level is low,
Method of measuring acoustic impedance and sound absorption coefficient by using multiple random noises
【請求項3】請求項1記載の音響インピーダンス及び吸
音率の測定手法において、小さな室内等の音の拡散性が
悪い場所においても、請求項2記載のランダムな雑音を
複数設置し室の拡散性を向上させることによる音響イン
ピーダンス及び吸音率の測定手法
3. The method for measuring acoustic impedance and sound absorption coefficient according to claim 1, wherein a plurality of random noises according to claim 2 are installed even in a place such as a small room where sound diffusivity is poor. Method for Measuring Acoustic Impedance and Sound Absorption Coefficient by Improving Noise
JP2001276149A 2001-09-12 2001-09-12 Measuring technique of acoustic impedance and acoustic absorption coefficient Pending JP2003083805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276149A JP2003083805A (en) 2001-09-12 2001-09-12 Measuring technique of acoustic impedance and acoustic absorption coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276149A JP2003083805A (en) 2001-09-12 2001-09-12 Measuring technique of acoustic impedance and acoustic absorption coefficient

Publications (1)

Publication Number Publication Date
JP2003083805A true JP2003083805A (en) 2003-03-19

Family

ID=19100895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276149A Pending JP2003083805A (en) 2001-09-12 2001-09-12 Measuring technique of acoustic impedance and acoustic absorption coefficient

Country Status (1)

Country Link
JP (1) JP2003083805A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236664A (en) * 2008-03-27 2009-10-15 Oita Univ Measuring method of acoustic impedance and acoustic absorption coefficient
JP2013511712A (en) * 2009-11-19 2013-04-04 ウニフェルジテイト・トゥウェンテ Method and apparatus for determining acoustic coefficients and power
CN113418985A (en) * 2021-06-04 2021-09-21 中国科学院声学研究所 On-site sound absorption coefficient measuring device and method based on vector microphone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236664A (en) * 2008-03-27 2009-10-15 Oita Univ Measuring method of acoustic impedance and acoustic absorption coefficient
JP2013511712A (en) * 2009-11-19 2013-04-04 ウニフェルジテイト・トゥウェンテ Method and apparatus for determining acoustic coefficients and power
CN113418985A (en) * 2021-06-04 2021-09-21 中国科学院声学研究所 On-site sound absorption coefficient measuring device and method based on vector microphone

Similar Documents

Publication Publication Date Title
Park et al. Sound-field analysis by plane-wave decomposition using spherical microphone array
Jeon et al. Development of scattering surfaces for concert halls
Takahashi et al. In situ measurements of surface impedance and absorption coefficients of porous materials using two microphones and ambient noise
Gover et al. Measurements of directional properties of reverberant sound fields in rooms using a spherical microphone array
Gover et al. Microphone array measurement system for analysis of directional and spatial variations of sound fields
Deroo et al. Detection of damage in concrete using diffuse ultrasound
Nolan et al. A wavenumber approach to quantifying the isotropy of the sound field in reverberant spaces
Summers et al. Adapting a randomized beam-axis-tracing algorithm to modeling of coupled rooms via late-part ray tracing
Nolan et al. Isotropy in decaying reverberant sound fields
Allard et al. Free field surface impedance measurements of sound-absorbing materials with surface coatings
JP2003083805A (en) Measuring technique of acoustic impedance and acoustic absorption coefficient
JP2007225436A (en) Measuring method of acoustic transmission characteristic of plate body
Barnard et al. Evaluation of receiving room diffusivity and the effect on low frequency impact insulation class
JP4876287B2 (en) Measuring method of acoustic impedance and sound absorption coefficient
San Martín et al. Uncertainties caused by source directivity in room-acoustic investigations
Pan et al. Factors influencing scattering coefficient measurement accuracy in scaled reverberation room
Guy et al. A measurement system and method to investigate the directional characteristics of sound fields in enclosures
Jacobsen et al. Ensemble statistics of active and reactive sound intensity in reverberation rooms
Qiu Acoustic testing and evaluation of textiles for buildings and office environments
Kim et al. The Effect of an Edge on the Measured Scattering Coefficients in a Reverberation Chamber based on ISO 17497-1
Calicchia et al. Revealing surface anomalies in structures by in situ measurement of acoustic energy absorption
JP2002228643A (en) Method and apparatus for measuring sound insulation performance
Green Scale model analysis of a rectangular concert hall with variable diffusion
CN205844267U (en) A kind of sound scattering coefficient on-the-spot test microphone linear array
Bradette et al. Practical and accurate room acoustical measurements in large indoor multipurpose halls and measures to optimize acoustics