JP4874666B2 - Combustion equipment - Google Patents

Combustion equipment Download PDF

Info

Publication number
JP4874666B2
JP4874666B2 JP2006041019A JP2006041019A JP4874666B2 JP 4874666 B2 JP4874666 B2 JP 4874666B2 JP 2006041019 A JP2006041019 A JP 2006041019A JP 2006041019 A JP2006041019 A JP 2006041019A JP 4874666 B2 JP4874666 B2 JP 4874666B2
Authority
JP
Japan
Prior art keywords
heat exchanger
hot water
water supply
exhaust gas
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006041019A
Other languages
Japanese (ja)
Other versions
JP2007218526A (en
Inventor
徹太郎 毛利
重徳 梁島
健二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Housetec Inc
Original Assignee
Housetec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Housetec Inc filed Critical Housetec Inc
Priority to JP2006041019A priority Critical patent/JP4874666B2/en
Publication of JP2007218526A publication Critical patent/JP2007218526A/en
Application granted granted Critical
Publication of JP4874666B2 publication Critical patent/JP4874666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

本発明は、コンパクトで熱効率を向上させた潜熱回収型の燃焼機器に関する。   The present invention relates to a combustion apparatus of a latent heat recovery type that is compact and has improved thermal efficiency.

追焚機能付給湯器の一種で、主に集合住宅用に設置され、浴槽横に設置されるバランス式ふろ釜(以下、「BF釜」と言う。)は、浴室内に設置スペースが必要で、その分浴槽スペースが狭くなる。このため、このBF釜の取替え用として、浴室壁面に開口されたBF釜の給排気筒設置部にBF釜の機能を全て移管し、従来BF釜が存在したスペースを空き空間とすることにより、浴槽が大きくできるといった浴室リフォーム商品が開発されている。このような風呂釜は、壁貫通型の追焚機能付給湯器(以下、「壁貫通釜」と言う。)と言われている。 A type of water heater with a memorial function, which is installed mainly in an apartment building and is installed next to the bathtub, the balance-type bath pot (hereinafter referred to as “BF kettle”) requires installation space in the bathroom. The bathtub space is narrowed accordingly. For this reason, by replacing all the functions of the BF kettle to the supply / exhaust tube installation part of the BF kettle opened on the wall surface of the BF kettle as a replacement for this BF kettle, Bathroom remodeling products that can make the bathtub large are being developed. Such a bath tub is said to be a wall-penetrating water heater with a memorial function (hereinafter referred to as a “wall-through tub”).

従来の壁貫通釜の第1の例を図15に示す。壁貫通釜本体1には上述したような設置形態の独自性から本体寸法の制約が大きい。このため、給湯および追焚ともに共通の送風ファン2にて空気の供給を受け、排気室8についても給湯熱交換器5および追焚熱交換器7を通過した排気ガスを、一体型の排気室8にて排気することにより、壁貫通釜本体1のコンパクト化を図った構成となっている(特許文献1)。   FIG. 15 shows a first example of a conventional wall penetration hook. The wall penetrating pot main body 1 is largely limited by the dimensions of the main body due to the uniqueness of the installation form as described above. For this reason, both the hot water supply and the recuperation are supplied with air by the common blower fan 2, and the exhaust gas that has passed through the hot water supply heat exchanger 5 and the regenerative heat exchanger 7 is also supplied to the exhaust chamber 8 as an integrated exhaust chamber. The wall penetration hook body 1 is made compact by exhausting at 8 (Patent Document 1).

このような一体型の排気室8の斜視図を図16に、そのA−A断面図を図17に示す。給湯燃焼部4を単独で燃焼した場合は、給湯熱交換器5を通過した最大約200℃の排気ガスと、追焚熱交換器7を通過した冷たい外気(空気)が排気室8内にて混合し放熱するため、排気口39付近での排気ガス温度は低下する。また、温度低下は排気ガス温度が低い燃焼条件になればなるほど顕著になる。さらには追焚燃焼部6を単独で燃焼した場合においても同様の現象が発生する。   FIG. 16 is a perspective view of such an integrated exhaust chamber 8, and FIG. When the hot water supply combustion unit 4 is burned alone, the exhaust gas having a maximum of about 200 ° C. that has passed through the hot water supply heat exchanger 5 and the cold outside air (air) that has passed through the additional heat exchanger 7 are contained in the exhaust chamber 8. Since the heat is mixed and radiated, the exhaust gas temperature near the exhaust port 39 decreases. Further, the temperature drop becomes more prominent as the exhaust gas temperature becomes lower. Furthermore, the same phenomenon occurs when the memory combustion unit 6 is burned alone.

従来の壁貫通釜の第2の例を図18に示す。1つの燃焼部20が、給湯燃焼部と追焚燃焼部を兼ねており、給湯機能と追焚機能を有している。したがって、送風ファン2、燃焼部20、二次熱交換器9、排気室8は、何れも1つであるという構成をとっている。   FIG. 18 shows a second example of a conventional wall penetration hook. One combustion unit 20 serves as both a hot water supply combustion unit and a supplementary combustion unit, and has a hot water supply function and a supplementary function. Therefore, the blower fan 2, the combustion part 20, the secondary heat exchanger 9, and the exhaust chamber 8 are all configured to be one.

図18において、まず、給湯運転時においては、水は、排気ガスの熱により二次熱交換器9を用いた潜熱回収で加熱され、次に、燃焼部20の燃焼熱により給湯熱交換器5を用いて加熱された後、給湯水栓へと流れる。また、排気ガスは、水の流れとは逆で、燃焼部20で発生した排気ガスは、まず給湯熱交換器5を加熱し、次に排気室8を経て二次熱交換器9を加熱した後、排気される。
また、追焚運転時においては、水は、燃焼部20の燃焼熱により追焚熱交換器7を用いて加熱された後、浴槽へと流れる。つまり、二次熱交換器9は使用しない。一方、上述したように、送風ファン2、燃焼部20、二次熱交換器9、排気室8は、何れも1つであるため、追焚運転時の排気ガスの流れは、給湯運転時の排気ガスの流れと同じである。
特開2005−321165
In FIG. 18, first, in the hot water supply operation, water is heated by the latent heat recovery using the secondary heat exchanger 9 by the heat of the exhaust gas, and then the hot water supply heat exchanger 5 by the combustion heat of the combustion unit 20. After being heated using, it flows to a hot water tap. Further, the exhaust gas is opposite to the flow of water, and the exhaust gas generated in the combustion unit 20 first heats the hot water supply heat exchanger 5 and then heats the secondary heat exchanger 9 via the exhaust chamber 8. After that, it is exhausted.
Moreover, at the time of a chasing operation, water flows into a bathtub, after being heated using the chasing heat exchanger 7 by the combustion heat of the combustion part 20. That is, the secondary heat exchanger 9 is not used. On the other hand, as described above, since the blower fan 2, the combustion unit 20, the secondary heat exchanger 9, and the exhaust chamber 8 are all one, the flow of exhaust gas during the chasing operation is the same as that during the hot water supply operation. Same as exhaust gas flow.
JP 2005-321165 A

まず、従来の壁貫通釜の第1の例(図15)のように、共通の送風ファン2にて給湯熱交換器5および追焚熱交換器7へ同時送風し、かつ一体型の排気室8を有した追焚機能付給湯器においては、潜熱回収用の二次熱交換器9を排気室8の外側に設置した場合、排気ガスが二次熱交換器9に到るまでの放熱が大きいため、排気ガス温度の低下により十分な潜熱を得られず、二次熱交換器9としての効率が十分でない場合がある。
また、追焚燃焼部6を単独で稼動した場合でも、必ず二次熱交換器9内を排気ガスが通過するため、潜熱回収を行わないにも関わらず、二次熱交換器9内の残水が加熱されることになる。このため、その後で給湯運転を行う場合は、二次熱交換を行うため、二次熱交換器9内の加熱された残水により、出湯温度の制御が難しい場合がある。
First, as in the first example (FIG. 15) of the conventional wall-through hook, the common blower fan 2 simultaneously blows air to the hot water supply heat exchanger 5 and the additional heat exchanger 7 and is an integrated exhaust chamber. When the secondary heat exchanger 9 for recovering latent heat is installed outside the exhaust chamber 8 in the hot water heater with a tracking function having 8, heat is released until the exhaust gas reaches the secondary heat exchanger 9. Since it is large, sufficient latent heat cannot be obtained due to a decrease in exhaust gas temperature, and the efficiency as the secondary heat exchanger 9 may not be sufficient.
In addition, even when the combustion combustion section 6 is operated alone, the exhaust gas always passes through the secondary heat exchanger 9, so that the residual heat in the secondary heat exchanger 9 is not obtained even though latent heat recovery is not performed. Water will be heated. For this reason, when performing hot water supply operation after that, in order to perform secondary heat exchange, control of tapping temperature may be difficult by the heated remaining water in the secondary heat exchanger 9.

次に、従来の壁貫通釜の第2の例(図18)のように、1つの燃焼部20が、給湯燃焼部と追焚燃焼部を兼ねており、給湯機能と追焚機能を有している場合、追焚運転のみを行う時でも、使用しない二次熱交換器9も加熱されることになり、二次熱交換器9内に残水があれば加熱されてしまう。このため、その後で給湯運転を行う際は、二次熱交換を行うため、給湯温度の異常を防ぐために、この加熱された残水が冷めるのを待つか、あるいは、排水する操作が必要であり、制御が複雑になったり、使い勝手が悪い問題がある。   Next, as in the second example of the conventional wall penetration hook (FIG. 18), one combustion section 20 serves as both a hot water supply combustion section and an additional combustion combustion section, and has a hot water supply function and an additional correction function. In such a case, even when only the chasing operation is performed, the secondary heat exchanger 9 that is not used is also heated, and if there is residual water in the secondary heat exchanger 9, it is heated. For this reason, when performing hot water supply operation after that, in order to perform secondary heat exchange, it is necessary to wait for the heated residual water to cool or to drain it in order to prevent abnormalities in the hot water supply temperature. There are problems such as complicated control and poor usability.

さらに、従来の壁貫通釜の第1の例(図15)、第2の例(図18)の何れについても、壁貫通釜本体1の寸法の制約から、二次熱交換器9を排気室8内部へ設置しようとした場合には、二次熱交換器9の下側に凝縮水の落下防止のためのドレン受け皿を設ける必要があるため、このドレン受け皿により、二次熱交換器9への流入口が塞がれ、排気ガスの圧力損失が増加し、燃焼性能の確保が困難な場合がある。   Further, in both the first example (FIG. 15) and the second example (FIG. 18) of the conventional wall-through hook, the secondary heat exchanger 9 is connected to the exhaust chamber due to the size limitation of the wall-through hook body 1. 8 When it is going to install inside, since it is necessary to provide the drain pan for the fall prevention of condensed water to the lower side of the secondary heat exchanger 9, it is to the secondary heat exchanger 9 by this drain pan. In some cases, the inflow port of the exhaust gas is blocked, the pressure loss of the exhaust gas increases, and it is difficult to ensure the combustion performance.

本発明は、上記課題を解決するためになされたものであり、壁貫通釜本体1の寸法の制約に対応しつつ、排気室8の内部における排気ガス温度の放熱による低下を抑制し、高効率な二次熱交換器9を有する燃焼機器を提供することを目的とする。また、壁貫通釜本体1の寸法の制約から、二次熱交換器9を排気室8内部へ設置した場合でも、排気圧損の低減化を図った排気室8を有する燃焼機器を提供することを目的とする。さらには、単独で追焚運転を行う時でも、排気ガスによる二次熱交換器9への加熱を排除し、出湯温度の異常が生じない、使い勝手のよい給湯機器を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and suppresses a decrease in exhaust gas temperature due to heat dissipation inside the exhaust chamber 8 while complying with the restrictions on the dimensions of the wall penetration pot main body 1 and is highly efficient. An object is to provide a combustion device having a secondary heat exchanger 9. In addition, due to the restrictions on the dimensions of the wall penetration pot main body 1, even when the secondary heat exchanger 9 is installed inside the exhaust chamber 8, it is possible to provide a combustion device having the exhaust chamber 8 in which exhaust pressure loss is reduced. Objective. Furthermore, it is an object of the present invention to provide an easy-to-use hot water supply apparatus that eliminates heating of the secondary heat exchanger 9 by exhaust gas and does not cause an abnormality in the temperature of the hot water, even when performing a chase operation alone. .

本発明は、次のものに関する。
(1)燃焼部と、この燃焼部に送風するファンと、前記燃焼部の燃焼熱を回収する一次熱交換器と、この一次熱交換器からの排気ガスから潜熱を回収する二次熱交換器とを備え、給湯運転と追焚運転の機能を有する燃焼機器において、追焚熱交換器と、給湯熱交換器と、上記追焚熱交換器および給湯熱交換器へ同時送風するファンを備え、上記追焚熱交換器を通過した排気ガスと、給湯熱交換器を通過した排気ガスを独立した流路で排気する構成であり、上記給湯熱交換器を通過した排気ガスが、二次熱交換器へと流入され、追焚熱交換器を通過した燃焼用空気が、二次熱交換器と追焚熱交換器との間を通過する燃焼機器。
) 項(1)において、追焚運転を単独で行う時の排気ガスが、二次熱交換器へは流入されない燃焼機器。
) 項()、または、項()において、給湯熱交換器を通過した排気ガスが、二次熱交換器へと流入される燃焼機器。
) 項(または項()において、独立した流路が、隔壁にて形成される燃焼機器。
) 項()において、隔壁断面が、略Z型である燃焼機器。
) 項(1)〜項(5)の何れかにおいて、給湯熱交換器を通過した排気ガスが、二次熱交換器と追焚側排気室との間を通過する燃焼機器。
) 項(1)から項()の何れかにおいて、排気偏向板を二次熱交換器内の排気ガス流路に設けた燃焼機器。
The present invention relates to the following.
(1) A combustion unit, a fan that blows air to the combustion unit, a primary heat exchanger that recovers combustion heat of the combustion unit, and a secondary heat exchanger that recovers latent heat from exhaust gas from the primary heat exchanger In a combustion device having functions of hot water supply operation and reheating operation, a reheating heat exchanger, a hot water supply heat exchanger, and a fan that simultaneously blows air to the reheating heat exchanger and the hot water supply heat exchanger, The exhaust gas that has passed through the memory heat exchanger and the exhaust gas that has passed through the hot water supply heat exchanger are exhausted through independent flow paths, and the exhaust gas that has passed through the hot water supply heat exchanger is subjected to secondary heat exchange. Combustion equipment in which the combustion air that has flowed into the vessel and passed through the additional heat exchanger passes between the secondary heat exchanger and the additional heat exchanger .
(2) of the exhaust gas when performing Oite in (1), the add-fired operation alone is burning appliance not flow into the secondary heat exchanger.
( 3 ) Combustion equipment in which the exhaust gas that has passed through the hot water supply heat exchanger in the item ( 1 ) or ( 2 ) flows into the secondary heat exchanger.
( 4 ) The combustion device in which the independent flow path is formed by a partition wall in the item ( 2 ) or the item ( 3 ).
( 5 ) The combustion device according to item ( 4 ), wherein the partition wall section is substantially Z-shaped.
( 6 ) The combustion apparatus according to any one of items (1) to (5), wherein the exhaust gas that has passed through the hot water supply heat exchanger passes between the secondary heat exchanger and the exhaust side exhaust chamber.
( 7 ) The combustion apparatus according to any one of items (1) to ( 6 ), wherein the exhaust deflection plate is provided in the exhaust gas flow path in the secondary heat exchanger.

本発明によれば、壁貫通釜本体1の寸法の制約に対応しつつ、排気室8の内部における排気ガス温度の放熱による低下を抑制し、高効率な二次熱交換器9を有する燃焼機器を提供することが可能となる。また、壁貫通釜本体1の寸法の制約から、二次熱交換器9を排気室8の内部へ設置した場合でも、排気圧損の低減化を図った排気室8を有する燃焼機器を提供することが可能となる。さらには、単独で追焚運転を行う時でも、排気ガスによる二次熱交換器9への加熱を排除し、出湯温度の異常が生じない、使い勝手のよい給湯機器を提供することが可能となる。   According to the present invention, a combustion apparatus having a high-efficiency secondary heat exchanger 9 that suppresses a decrease in the exhaust gas temperature due to heat dissipation inside the exhaust chamber 8 while complying with the restrictions on the dimensions of the wall penetration pot main body 1. Can be provided. Also, a combustion device having an exhaust chamber 8 that reduces exhaust pressure loss even when the secondary heat exchanger 9 is installed inside the exhaust chamber 8 due to the dimensional limitation of the wall penetration pot main body 1 is provided. Is possible. Furthermore, even when performing the renewal operation alone, it is possible to provide an easy-to-use hot water supply apparatus that eliminates heating of the secondary heat exchanger 9 by exhaust gas and does not cause an abnormality in the tapping temperature. .

本発明の対象となる燃焼機器は、潜熱回収型の追焚機能付き給湯器である。特に、壁貫通釜等の寸法制約が大きい追焚機能付給湯器が望ましい。このような、寸法制約が大きい追焚機能付給湯器の場合には、上述したように、二次熱交換器9の熱効率が低下し易い等の問題があるため、本発明の効果がより大きく発揮できる。   The combustion device that is the subject of the present invention is a latent heat recovery type hot water supply device with a tracking function. In particular, a hot water heater with a memorial function with a large dimensional constraint such as a wall penetration pot is desirable. In the case of such a hot water heater with a memorial function with large dimensional constraints, as described above, there is a problem that the thermal efficiency of the secondary heat exchanger 9 is likely to be lowered, and thus the effect of the present invention is more significant. Can demonstrate.

図2は、本発明の壁貫通釜本体1の一例の正面図であり、図3は、その側面図である。図4は、本発明の壁貫通釜本体1を浴室に設置した浴室ユニットの設置例図であり、浴槽37の短手側から見た透視図を示す。BF釜の給排気筒設置部は浴室壁36に存在する規定の貫通穴内部に設置されるため、代替品である壁貫通釜本体1は貫通穴寸法の制約を受ける。   FIG. 2 is a front view of an example of the wall penetration hook body 1 of the present invention, and FIG. 3 is a side view thereof. FIG. 4 is an installation example of a bathroom unit in which the wall penetration pot main body 1 of the present invention is installed in a bathroom, and shows a perspective view seen from the short side of the bathtub 37. Since the supply / exhaust tube installation portion of the BF kettle is installed inside a specified through hole existing in the bathroom wall 36, the wall through kettle body 1 as an alternative is restricted by the size of the through hole.

図5に、本発明の壁貫通釜の構成図の一例を示す。なお、図5は、独立した給湯燃焼部4および追焚燃焼部6を有する場合を示したが、図14に示すように、一つの燃焼部20で給湯燃焼部と追焚燃焼部を兼用してもよい。   In FIG. 5, an example of the block diagram of the wall penetration hook of this invention is shown. FIG. 5 shows the case where the hot water supply combustion unit 4 and the additional combustion unit 6 are provided. However, as shown in FIG. 14, the single hot unit 20 serves as both the hot water supply combustion unit and the additional combustion unit. May be.

まず、以下に、図5の構成の壁貫通釜を例として説明する。   First, the wall penetration hook having the configuration shown in FIG. 5 will be described as an example.

壁貫通釜においては、BF釜の機能を全て貫通穴内へ移管する必要性から、本体のコンパクト化が必須条件となる。コンパクト化を図るために、図5に示すように、給湯燃焼部4および追焚燃焼部6へ送風する送風ファン2は共通のものとし、上記の給湯燃焼部4および追焚燃焼部6へ同時送風する構成となっている。   In the case of a wall penetration hook, it is essential to make the main body compact because it is necessary to transfer all the functions of the BF hook into the through hole. In order to achieve compactness, as shown in FIG. 5, the blower fan 2 that blows air to the hot water supply combustion unit 4 and the additional combustion unit 6 is made common, and the hot water supply combustion unit 4 and the additional combustion unit 6 are simultaneously used. It is the structure which ventilates.

給湯燃焼部4を単独で稼動させた場合においては、ファン2から供給された空気(外気)と給湯電磁弁3を通して供給された排気ガスにより、給湯燃焼部4にて約1000℃以上の排気ガスを生成し、給湯熱交換器5にて約200℃まで顕熱を回収する。その後、この排気ガスは排気室8へ到る。
一方、これと同時に、追焚燃焼部6へは、給湯燃焼部4と同様にファン2から空気(外気)が供給され、この空気は、そのまま追焚熱交換器7を通過して排気室8へ到る。
In the case where the hot water supply combustion unit 4 is operated alone, the exhaust gas supplied from the fan 2 and the exhaust gas supplied through the hot water supply electromagnetic valve 3 is exhausted at about 1000 ° C. or more by the hot water supply combustion unit 4. And the sensible heat is recovered to about 200 ° C. in the hot water supply heat exchanger 5. Thereafter, the exhaust gas reaches the exhaust chamber 8.
At the same time, air (outside air) is supplied from the fan 2 to the remedy combustion unit 6 in the same manner as the hot water supply combustion unit 4, and this air passes through the remedy heat exchanger 7 as it is and is in the exhaust chamber 8. It reaches.

排気室8は、給湯燃焼部4からの排気ガスと、追焚燃焼部6からの排気ガスが混合せず、独立して排気できる構造であれば、特に限定はない。ただし、寸法制約から、図6または図10に示すように、一つの排気室8を給湯側排気室10と追焚側排気室11に分けた、一体型の排気室8とするのが望ましい。
これにより、排気室8を給湯熱交換器5および追焚熱交換機7の上に、別々に配置する方法に比べて、コンパクト化が図れ、また排気面積を大きくとれる点で有利となる。
The exhaust chamber 8 is not particularly limited as long as the exhaust gas from the hot water combustion unit 4 and the exhaust gas from the additional combustion unit 6 do not mix and can be exhausted independently. However, due to dimensional constraints, it is desirable that the single exhaust chamber 8 is divided into a hot water supply side exhaust chamber 10 and a tracking side exhaust chamber 11 as shown in FIG. 6 or FIG.
This is advantageous in that the exhaust chamber 8 can be made more compact and the exhaust area can be increased compared to a method in which the exhaust chamber 8 is separately disposed on the hot water supply heat exchanger 5 and the reheating heat exchanger 7.

排気室8の内部構造は、寸法の制約を満足し、給湯燃焼部4と追焚燃焼部6からの排気ガスが混合しない構造であれば制限はない。図6と図10は、排気室8の内部構造の一例を示す斜視図、図7と11図はこれらのC−C断面図、図8と図12はこれらのB−B断面図、図9と図13はこれらのA−A断面図である。   The internal structure of the exhaust chamber 8 is not limited as long as it satisfies the dimensional restrictions and the exhaust gas from the hot water combustion unit 4 and the exhaust combustion unit 6 does not mix. 6 and 10 are perspective views showing an example of the internal structure of the exhaust chamber 8, FIGS. 7 and 11 are CC sectional views of these, FIG. 8 and FIG. 12 are these BB sectional views, FIG. FIG. 13 is a sectional view taken along the line AA.

二次熱交換器9の配置は、排気室8の給湯排気口30の外側に設けてもよいが、コンパクト化に対応するため、および、給湯燃焼部4からの距離を短くして、排気ガスの放熱を可能な限り抑制するため、図5に示すように、排気室8の中に配置することが望ましい。   The arrangement of the secondary heat exchanger 9 may be provided outside the hot water supply exhaust port 30 of the exhaust chamber 8. However, in order to cope with downsizing and the distance from the hot water supply combustion unit 4 is shortened, the exhaust gas As shown in FIG. 5, it is desirable to dispose in the exhaust chamber 8 in order to suppress the heat dissipation.

さらに、二次熱交換器9は、図5に示すように、排気室8を上下に分けて、上部に設けるのが望ましい。また、給湯熱交換器5から二次熱交換器9への排気通路である給湯側排気室10と、追焚熱交換器7からの追焚排気流路である追焚側排気室11は、排気室8を上下に分けて、その下部に設けるのが望ましい。これにより、図5に示すように、排気室8が横長となり、二次熱交換器9を横方向に置くことができるため、制約された寸法の下においても、二次熱交換器9を大きくすることができる。   Further, as shown in FIG. 5, the secondary heat exchanger 9 is preferably provided in the upper part with the exhaust chamber 8 divided into upper and lower parts. Further, a hot water supply side exhaust chamber 10 which is an exhaust passage from the hot water supply heat exchanger 5 to the secondary heat exchanger 9 and a retreat side exhaust chamber 11 which is a retreat exhaust passage from the retreat heat exchanger 7 are: It is desirable to divide the exhaust chamber 8 into upper and lower parts and to provide it below. As a result, as shown in FIG. 5, the exhaust chamber 8 becomes horizontally long and the secondary heat exchanger 9 can be placed in the horizontal direction, so that the secondary heat exchanger 9 can be enlarged even under restricted dimensions. can do.

二次熱交換器流入口17は、図6、図8に示すように、給湯側排気室10の上の下部排気室天井面13に設けるのが望ましい。これにより、給湯熱交換器5から二次熱交換器9への排気ガスの流路が形成される。また、図10、図12に示すように、給湯側排気室10を追焚側排気室11の上部まで拡大するのが望ましい。この場合は、二次熱交換器流入口17は、大きさがその分拡大するため、二次熱交換器9に流入する排気ガスの圧力損失が低減し、また、排気ガスの流れが幅方向でより均一になる。さらに、圧力損失が低下した分、二次熱交換器流入口17の長さ(L)が短くできるため、二次熱交換器9をより大きくでき、熱交換効率が向上する。   As shown in FIGS. 6 and 8, the secondary heat exchanger inlet 17 is preferably provided on the lower exhaust chamber ceiling surface 13 above the hot water supply side exhaust chamber 10. Thereby, the flow path of the exhaust gas from the hot water supply heat exchanger 5 to the secondary heat exchanger 9 is formed. Further, as shown in FIGS. 10 and 12, it is desirable to expand the hot water supply side exhaust chamber 10 to the upper part of the tracking side exhaust chamber 11. In this case, since the size of the secondary heat exchanger inlet 17 is increased correspondingly, the pressure loss of the exhaust gas flowing into the secondary heat exchanger 9 is reduced, and the flow of the exhaust gas is in the width direction. Becomes more uniform. Furthermore, since the length (L) of the secondary heat exchanger inlet 17 can be shortened as much as the pressure loss is reduced, the secondary heat exchanger 9 can be made larger and the heat exchange efficiency is improved.

排気室8内の給湯側排気室10及び追焚側排気室11の高さ、さらには給湯熱交換機5、および、追焚熱交換器7の高さは、可能な限り縮小することが望ましい。これにより、壁貫通釜本体1の高さを増加させることが出来ないという寸法制約に対応することができる。   It is desirable to reduce the height of the hot water supply side exhaust chamber 10 and the additional exhaust side exhaust chamber 11 in the exhaust chamber 8, and further the height of the hot water supply heat exchanger 5 and the additional heat exchanger 7, as much as possible. Thereby, it is possible to cope with a dimensional constraint that the height of the wall penetration pot main body 1 cannot be increased.

図5に示すように、排気室8内の二次熱交換器9では強酸のドレン水40が発生するため、図8、図9、図12、図13に示すように、二次熱交換器9の下部には、このドレン水40を受け止め、ドレン排水口へ流す勾配をつけたドレン受け皿12が必要となる。部品点数の削減から二次熱交換器9の底面に勾配を付け、ドレン受け皿12とする構造が望ましい。   As shown in FIG. 5, in the secondary heat exchanger 9 in the exhaust chamber 8, since the drain water 40 of strong acid is generated, as shown in FIGS. 8, 9, 12, and 13, the secondary heat exchanger At the bottom of 9, a drain tray 12 having a gradient for receiving the drain water 40 and flowing it to the drain outlet is required. In order to reduce the number of parts, a structure in which the bottom surface of the secondary heat exchanger 9 is sloped to form a drain tray 12 is desirable.

図8、図9、図12、図13に示すように、下部排気室天井面13は二次熱交換器9の勾配に合わせるのが望ましい。これにより、ドレン受け皿12を兼ねた二次熱交換器9の勾配のついた底面を、下部排気室天井面13として利用でき、部品点数を減らすことができる。   As shown in FIGS. 8, 9, 12, and 13, the lower exhaust chamber ceiling surface 13 is preferably matched to the gradient of the secondary heat exchanger 9. Thereby, the sloped bottom surface of the secondary heat exchanger 9 also serving as the drain tray 12 can be used as the lower exhaust chamber ceiling surface 13, and the number of parts can be reduced.

図6、図10に示すように、給湯側排気室10と追焚側排気室11の構造は、給湯熱交換器5を通過した排気ガスと追焚熱交換器7を通過した排気ガスとを混合させないため、互いに独立流路とする。   As shown in FIGS. 6 and 10, the structure of the hot water supply side exhaust chamber 10 and the additional exhaust side exhaust chamber 11 includes the exhaust gas that has passed through the hot water supply heat exchanger 5 and the exhaust gas that has passed through the additional heat exchanger 7. In order not to mix, the flow paths are mutually independent.

独立流路とする方法としては、給湯熱交換器5からの排気ガスと追焚熱交換器7からの排気ガスが、混合しないようにする方法であれば限定はないが、図6および図7、または、図10および図11に示すように、その内部にて、給湯側排気室10と追焚側排気室11を1枚の隔壁15、18によって、それぞれの排気ガスの流路を独立化させる構造が望ましい。このように、一体型の排気室8を隔壁15、18で区切るだけなので、コンパクトかつ簡易な構造で独立流路が得られる。   The method of making the independent flow path is not limited as long as the exhaust gas from the hot water supply heat exchanger 5 and the exhaust gas from the additional heat exchanger 7 are not mixed, but FIG. 6 and FIG. Alternatively, as shown in FIGS. 10 and 11, the hot water supply side exhaust chamber 10 and the remedy side exhaust chamber 11 are made independent of each other by a single partition wall 15, 18. The structure to be made is desirable. Thus, since the integral exhaust chamber 8 is only divided by the partition walls 15 and 18, an independent flow path can be obtained with a compact and simple structure.

隔壁15、18は、図6、図7に示すように、排気室天井面13の勾配に合わせた断面Z型の隔壁15とするのが望ましい。これにより、1つの部品で排気室8を給湯側排気室10と追焚側排気室11のそれぞれに独立化することが可能である。   As shown in FIGS. 6 and 7, the partition walls 15 and 18 are preferably Z-shaped partition walls 15 having a cross section that matches the gradient of the exhaust chamber ceiling surface 13. Thus, the exhaust chamber 8 can be made independent of each of the hot water supply side exhaust chamber 10 and the tracking side exhaust chamber 11 with one component.

また、隔壁15、18は、図10、図11に示すように、断面が凸型の凸型隔壁18と凸型隔壁天井面19で構成し、凸型隔壁天井面19は水平、または、下部排気室天井面13の勾配とは逆の勾配とするのが、より望ましい。これにより、図11に示すように、追焚側排気室11の上にも、給湯側排気室10が形成されるため、図10に示すように、二次熱交換器流入口17を拡大することができる。このため、排気ガスの圧力損失を低減することができる。また、追焚側排気室11を流れる排気ガスは、図13に示すように、排気ガスの流れ方向に対して、水平、または、上勾配となるため、追焚側排気室11においても、圧力損失を低減することができる。   Further, as shown in FIGS. 10 and 11, the partition walls 15 and 18 are constituted by a convex partition wall 18 having a convex section and a convex partition ceiling surface 19, and the convex partition ceiling surface 19 is horizontal or lower. It is more desirable that the gradient be opposite to the gradient of the exhaust chamber ceiling surface 13. As a result, as shown in FIG. 11, the hot water supply side exhaust chamber 10 is also formed on the retreat side exhaust chamber 11, so that the secondary heat exchanger inlet 17 is enlarged as shown in FIG. 10. be able to. For this reason, the pressure loss of exhaust gas can be reduced. Further, as shown in FIG. 13, the exhaust gas flowing through the exhaust side exhaust chamber 11 is horizontal or upwardly inclined with respect to the flow direction of the exhaust gas. Loss can be reduced.

さらには、図8、図12に示すように二次熱交換器9を有する上部排気室において、排気ガスを水管へ効率よく接触させるための排気整流板21を設けることにより、二次熱交換器9での伝熱効率を増加させることが望ましい。   Furthermore, in the upper exhaust chamber having the secondary heat exchanger 9 as shown in FIGS. 8 and 12, the secondary heat exchanger is provided with an exhaust rectifying plate 21 for efficiently bringing the exhaust gas into contact with the water pipe. It is desirable to increase the heat transfer efficiency at 9.

略Z型隔壁15、および、凸型隔壁18の固定方法は、特に限定するものではなく、ネジ止めや溶接、その他の方法が使用でき、二次熱交換器9との勘合性や気密性から、溶接が望ましい。   The fixing method of the substantially Z-shaped partition wall 15 and the convex partition wall 18 is not particularly limited, and screwing, welding, and other methods can be used, and from the compatibility with the secondary heat exchanger 9 and airtightness. Welding is desirable.

図7、図11に示すように、下部排気室天井面13は、給湯熱交換器5上部から追焚熱交換器7上部まで一体型とするのが望ましい。これにより、二次熱交換器9を追焚熱交換器7側まで拡張することが可能となり、二次熱交換器9での伝熱効率の増加が見込まれる。   As shown in FIGS. 7 and 11, the lower exhaust chamber ceiling surface 13 is preferably integrated from the upper part of the hot water supply heat exchanger 5 to the upper part of the heat exchanger 7. Thereby, it becomes possible to extend the secondary heat exchanger 9 to the side of the heat exchanger 7 and an increase in heat transfer efficiency in the secondary heat exchanger 9 is expected.

以上の構成をとることにより、本発明に係る燃焼機器を用いれば、給湯燃焼部4を単独で稼動させた場合、送風ファン2により給湯燃焼部4へ送風された燃焼用空気は、排気ガスとなって給湯熱交換器5と給湯側排気室10を通過後、二次熱交換器9へと導かれることになる。一方、同時に追焚燃焼部6へ送風された空気は、追焚熱交換器7と追焚側排気室11を通過後、そのまま外部へ排出され、二次熱交換器9とは接触しないことになる。このため、給湯熱交換器5を通過した排気ガスと追焚熱交換器7を通過した燃焼用空気が排気室8内で混合することはない。
また、単独で追焚運転を行った場合でも、追焚燃焼部6へ送風された燃焼用空気は、排気ガスとなって追焚熱交換機7と追焚側排気室11を通過後、そのまま外部へ排出され、二次熱交換器9とは接触しないことになる。このため、二次熱交換器9に残水があっても、この残水が加熱されることがない。したがって、その後で給湯運転を行う場合でも、出湯温度が異常に高温になることがなく、制御が容易で使い勝手のよい給湯機器を提供することが可能となる。
By using the combustion apparatus according to the present invention, the combustion air blown to the hot water supply combustion unit 4 by the blower fan 2 is the exhaust gas when the hot water supply combustion unit 4 is operated alone. Thus, after passing through the hot water supply heat exchanger 5 and the hot water supply side exhaust chamber 10, it is guided to the secondary heat exchanger 9. On the other hand, the air blown to the remedy combustion section 6 simultaneously passes through the remedy heat exchanger 7 and the remedy side exhaust chamber 11 and is then discharged to the outside as it is and does not come into contact with the secondary heat exchanger 9. Become. For this reason, the exhaust gas that has passed through the hot water supply heat exchanger 5 and the combustion air that has passed through the additional heat exchanger 7 are not mixed in the exhaust chamber 8.
In addition, even when the pursuit operation is performed independently, the combustion air blown to the combustor combustion unit 6 becomes exhaust gas and passes through the heat exchanger 7 and the exhaust side exhaust chamber 11 and then directly outside. And is not in contact with the secondary heat exchanger 9. For this reason, even if there is residual water in the secondary heat exchanger 9, the residual water is not heated. Therefore, even when the hot water supply operation is performed thereafter, the hot water temperature does not become abnormally high, and it is possible to provide a hot water supply device that is easy to control and easy to use.

次に、図14の構成の壁貫通釜を例として説明する。   Next, the wall penetration hook having the configuration shown in FIG. 14 will be described as an example.

排気室8は、図5の構成の場合と同様に、排気室8を上下に2分し、上部に二次熱交換器9を取り付け、下部に給湯側排気室10と追焚側排気室11を設け、二次熱交換器9の底面に勾配を付け、ドレン受け皿12とする構造が望ましい。また、二次熱交換器流入口17を、下部排気室天井面13に設けるのが望ましい。これにより、排気ガス流路から、二次熱交換器流入口17を通して二次熱交換器9に通じる排気ガスの流路を形成することができる。   As in the case of the configuration of FIG. 5, the exhaust chamber 8 divides the exhaust chamber 8 vertically into two parts, a secondary heat exchanger 9 is attached to the upper part, and a hot water supply side exhaust room 10 and a memorial side exhaust room 11 are attached to the lower part. And a structure in which the bottom surface of the secondary heat exchanger 9 is inclined to form a drain tray 12 is desirable. Further, it is desirable to provide the secondary heat exchanger inlet 17 on the ceiling surface 13 of the lower exhaust chamber. Thereby, the flow path of the exhaust gas which leads from the exhaust gas flow path to the secondary heat exchanger 9 through the secondary heat exchanger inlet 17 can be formed.

一方、図14の構成の壁貫通釜の場合、1つの燃焼部20が、給湯燃焼部4と追焚燃焼部6を兼ねており、給湯機能と追焚機能を有している。このため、排気ガスの流路ももともと1つであり、図5の構成の壁貫通釜の場合のように、略Z型隔壁15や凸型隔壁18によって、給湯運転時の排気ガスと追焚運転時の排気ガスを独立流路に分離することは難しい。   On the other hand, in the case of the wall-through hook configured as shown in FIG. 14, one combustion unit 20 serves as both the hot water supply combustion unit 4 and the additional combustion unit 6, and has a hot water supply function and an additional correction function. For this reason, there is originally only one exhaust gas flow path, and as in the case of the wall-through hook configured as shown in FIG. It is difficult to separate exhaust gas during operation into independent flow paths.

このため、特にその方法に制限はないが、単独で追焚運転を行う時の排気ガスが、単独で給湯運転を行う時、および、給湯運転と追焚運転を同時に行う時の何れとも異なる流路を形成するため、例えば、以下の方法が考えられる。すなわち、二次熱交換器流入口17にダンパー35を設け、単独で追焚運転を行う時だけ、ダンパー35を閉じて、二次熱交換器9に排気ガスが導入されないようにし、それ以外の時はこのダンパー35を開いて、排気ガスを二次熱交換器9に導入する手段が考えられる。
これにより、単独で追焚運転を行う時は、使用しない二次熱交換器9が異常に加熱されることがなく、残水があっても加熱されることがない。このため、その後で二次熱交換器9を使用する給湯運転を行う際にも、加熱された残水が冷めるのを待ったり、あるいは、排水する操作が不要となる。したがって、制御が複雑さが解消するとともに使い勝手が向上する。
なお、ダンパー35には、排気ガスの温度を感知して開閉する機構を設けるのが望ましく、例えば、温度に対応した形状を記憶する形状記憶合金を使用する方法が考えられる。これにより、ダンパー35を開閉する制御が容易となる。
For this reason, there is no particular limitation on the method, but the exhaust gas when performing the chase operation alone is different from that when performing the hot water supply operation alone and when performing both the hot water supply operation and the chase operation. In order to form a path, for example, the following method can be considered. That is, the damper 35 is provided at the secondary heat exchanger inlet 17, and the damper 35 is closed so that the exhaust gas is not introduced into the secondary heat exchanger 9 only when the tracking operation is performed independently. In some cases, the damper 35 may be opened to introduce exhaust gas into the secondary heat exchanger 9.
Thereby, when performing a chase operation independently, the secondary heat exchanger 9 which is not used is not heated abnormally, and even if there is residual water, it is not heated. For this reason, when performing the hot water supply operation which uses the secondary heat exchanger 9 after that, the operation which waits for the heated residual water to cool down or drains becomes unnecessary. Therefore, the complexity of the control is eliminated and the usability is improved.
The damper 35 is desirably provided with a mechanism for detecting and opening the temperature of the exhaust gas. For example, a method using a shape memory alloy that stores a shape corresponding to the temperature is conceivable. Thereby, the control which opens and closes the damper 35 becomes easy.

図5に本発明の実施例1の壁貫通釜本体1の構成図を、図6に排気室8の斜視図を、図7に排気室8のC−C断面図を、図8に排気室8のB−B断面図を、図9に排気室8のA−A断面図を示す。   FIG. 5 is a configuration diagram of the wall penetration hook main body 1 according to the first embodiment of the present invention, FIG. 6 is a perspective view of the exhaust chamber 8, FIG. 7 is a cross-sectional view of the exhaust chamber 8 along C-C, and FIG. 8 is a sectional view taken along line BB, and FIG. 9 is a sectional view taken along line AA of the exhaust chamber 8.

コンパクト化を図るために、給湯燃焼部4および追焚燃焼部6へ送風するファン2は共通のものとし、上記両燃焼部へ同時送風する構成となっている。給湯燃焼部4を単独で運転した場合でも、追焚燃焼部6へ給湯燃焼部4と同様にファンから空気(外気)が供給され、この空気は、追焚熱交換器7を通過して排気室8へ至る。   In order to reduce the size, the fan 2 that blows air to the hot water supply combustion unit 4 and the additional combustion unit 6 is made common, and is configured to simultaneously blow air to both the combustion units. Even when the hot water combustion unit 4 is operated alone, air (outside air) is supplied from the fan to the additional combustion unit 6 in the same manner as the hot water combustion unit 4, and this air passes through the additional heat exchanger 7 and is exhausted. It reaches room 8.

二次熱交換器9の配置は、寸法制約から本体高さを増加させることは困難であるため、また、給湯熱交換器5からの排気ガスの放熱を可能な限り抑制するため、排気室8内の上部へ配置した。これにより、排気室8の高さ及び給湯熱交換器5、追焚熱交換器7の高さを二次熱交換器9の高さ分縮小することができた。   The arrangement of the secondary heat exchanger 9 is difficult to increase the main body height due to dimensional constraints, and in order to suppress the heat radiation of the exhaust gas from the hot water supply heat exchanger 5 as much as possible, the exhaust chamber 8 Arranged at the top inside. As a result, the height of the exhaust chamber 8 and the height of the hot water supply heat exchanger 5 and the additional heat exchanger 7 could be reduced by the height of the secondary heat exchanger 9.

また、図5に示すように、二次熱交換器9下部では強酸のドレン水40が発生するため、このドレン水40を受け止め、ドレン排水口へ流す勾配をつけたドレン受け皿12として二次熱交換器9の底面に勾配を付けた構造とした。この勾配はドレン排水性から約3°とした。   Further, as shown in FIG. 5, since the drain water 40 of strong acid is generated at the lower part of the secondary heat exchanger 9, the drain heat is received as the drain pan 12 having a gradient to flow into the drain outlet. The bottom surface of the exchanger 9 has a gradient. This gradient was about 3 ° due to drainage.

排気室8は、下部排気室天井面13及び下部排気室後面14において給湯、追焚の区別がない一体型排気室とし、下部排気室天井面13には二次熱交換器9の底面と同じ勾配を設け、接触させる。   The exhaust chamber 8 is an integrated exhaust chamber in which there is no distinction between hot water supply and retreat on the lower exhaust chamber ceiling surface 13 and the lower exhaust chamber rear surface 14, and the lower exhaust chamber ceiling surface 13 is the same as the bottom surface of the secondary heat exchanger 9. Provide a gradient and contact.

さらに、図6、図7に示すように、給湯熱交換器5を通過した排気ガスと追焚熱交換器7を通過した排気ガスとを混合させないため、給湯排気流路と追焚排気流路を1枚の断面略Z型隔壁15によって排気ガス流路を独立化させる。このときの断面略Z型隔壁15の上面と排気室天井面13との固定はスポット溶接にて行う。断面略Z型隔壁15の下面と排気室底面16との固定も同様である。   Further, as shown in FIGS. 6 and 7, the exhaust gas that has passed through the hot water supply heat exchanger 5 and the exhaust gas that has passed through the additional heat exchanger 7 are not mixed. The exhaust gas flow path is made independent by one cross-sectional substantially Z-shaped partition 15. At this time, the upper surface of the substantially Z-shaped partition wall 15 and the exhaust chamber ceiling surface 13 are fixed by spot welding. The fixing of the lower surface of the substantially Z-shaped partition wall 15 and the exhaust chamber bottom surface 16 is the same.

これにより、1部品にて排気室8内部を給湯側排気室10と追焚側排気室11とを独立させることが可能となる。また、下部排気室天井面13を給湯側排気室10から追焚側排気室11まで一体型としているため、二次熱交換器9を追焚熱交換器7側まで拡張可能となり、伝熱効率の増加を図っている。   As a result, the hot water supply side exhaust chamber 10 and the tracking side exhaust chamber 11 can be made independent of each other in the exhaust chamber 8 with a single component. In addition, since the lower exhaust chamber ceiling surface 13 is integrated from the hot water supply side exhaust chamber 10 to the remedy side exhaust chamber 11, the secondary heat exchanger 9 can be expanded to the remedy heat exchanger 7 side, and the heat transfer efficiency is improved. We are trying to increase.

二次熱交換器9への流入口17は、排気室天井面13の断面略Z型隔壁15の上面より給湯側に設ける。結果として、追焚側排気室11は二次熱交換器9と追焚熱交換器7との間に位置し、追焚燃焼部6を単独で稼動させた場合、燃焼用空気はこの流路(追焚側排気室11)を通過する。さらには二次熱交換器9内部に排気ガスを水管へ効率よく接触させる排気整流板21を設けることにより、二次熱交換器9での伝熱効率の増加を図っている。   The inlet 17 to the secondary heat exchanger 9 is provided on the hot water supply side from the upper surface of the substantially Z-shaped partition wall 15 in cross section of the exhaust chamber ceiling surface 13. As a result, the exhaust side exhaust chamber 11 is located between the secondary heat exchanger 9 and the additional heat exchanger 7, and when the additional combustion unit 6 is operated alone, the combustion air is in this flow path. Passes through (remembrance side exhaust chamber 11). Furthermore, the heat transfer efficiency in the secondary heat exchanger 9 is increased by providing an exhaust rectifying plate 21 that efficiently brings the exhaust gas into contact with the water pipe inside the secondary heat exchanger 9.

以下、本発明の実施例1の燃焼機器の動作を、図1を用いて説明する。   Hereinafter, operation | movement of the combustion apparatus of Example 1 of this invention is demonstrated using FIG.

壁貫通釜本体1は給水配管接続部22から給水され、前記給水配管接続部22は給水された水の量を検出する水量センサ23に配管接続される。前記水量センサ23は潜熱回収部である二次熱交換器9に配管接続され、さらに前記二次熱交換器9から燃焼排気ガスの顕熱を回収する給湯熱交換器5に配管接続される。   The wall penetration hook main body 1 is supplied with water from a water supply pipe connecting portion 22, and the water supply pipe connecting portion 22 is connected to a water amount sensor 23 for detecting the amount of supplied water. The water amount sensor 23 is connected by piping to the secondary heat exchanger 9 which is a latent heat recovery unit, and further connected to the hot water supply heat exchanger 5 which recovers sensible heat of the combustion exhaust gas from the secondary heat exchanger 9.

前記給湯熱交換器5の出口は二方に分岐され、一方は浴室内へ給湯する給湯配管接続部24に配管接続され、もう一方は浴槽37にお湯を張るための注湯電磁弁25に配管接続される。   The outlet of the hot water supply heat exchanger 5 is branched in two directions, one is connected to a hot water supply pipe connection 24 for supplying hot water into the bathroom, and the other is connected to a hot water solenoid valve 25 for filling hot water in the bathtub 37. Connected.

前記注湯電磁弁25の出口は二方に分岐され、一方は浴槽水を沸かす追焚熱交換器7に入口に配管接続され、もう一方は、追焚往き配管26に接続される。   The outlet of the pouring electromagnetic valve 25 is branched in two directions, one being connected to the inlet to the reheating heat exchanger 7 for boiling the bath water, and the other connected to the retreating piping 26.

前記追焚熱交換器7の出口は、浴槽水を循環させるための循環ポンプ27に接続され、前記循環ポンプ27は、追焚戻り配管接続部28に接続される。   The outlet of the recuperation heat exchanger 7 is connected to a circulation pump 27 for circulating bath water, and the circulation pump 27 is connected to a retrace return pipe connection portion 28.

給湯燃焼は、ガス配管接続部29から供給される燃料ガスが給湯電磁弁3を経由して、給湯燃焼部4へ供給され燃焼し、高温の排気ガスを発生させる。その排気ガスは前記給湯熱交換器5を通過し、さらに前記二次熱交換器9を通過し、給湯排気口30から器具外へ排気する。   In the hot water supply combustion, the fuel gas supplied from the gas pipe connection portion 29 is supplied to the hot water supply combustion portion 4 through the hot water supply electromagnetic valve 3 and burned to generate high-temperature exhaust gas. The exhaust gas passes through the hot water supply heat exchanger 5, further passes through the secondary heat exchanger 9, and is exhausted from the hot water supply exhaust port 30 to the outside of the appliance.

このとき、前記二次熱交換器9を通過する排気ガスの温度は200℃程度と低温のため、前記二次熱交換器9には結露水が発生する。その結露水はPH2程度の強酸性のため、それを回収し中和して排出しなければならない。前記二次熱交換器9で発生した結露水は滴下し、それを回収するためのドレン受け皿12にて回収し、それがドレン水40となり、ドレン配管31に流入してドレン配管接続部32を介して炭酸カルシウム33を充填した中和容器34の入口部に流入する。前記中和容器34にて中和されたドレン水40は中和容器34の出口部からPH7程度となり排出される。   At this time, since the temperature of the exhaust gas passing through the secondary heat exchanger 9 is as low as about 200 ° C., condensed water is generated in the secondary heat exchanger 9. Since the condensed water is strongly acidic at about PH2, it must be recovered, neutralized and discharged. Condensed water generated in the secondary heat exchanger 9 is dropped and collected in a drain tray 12 for collecting it, which becomes drain water 40 and flows into the drain pipe 31 to connect the drain pipe connection portion 32. It flows into the inlet part of the neutralization container 34 filled with the calcium carbonate 33. The drain water 40 neutralized in the neutralization vessel 34 is discharged from the outlet of the neutralization vessel 34 to about PH7.

本発明の実施例2の壁貫通釜本体1の構成図は、実施例1と同様であり、図5に示すものである。図10に排気室8の斜視図を、図11に排気室8のC−C断面図を、図12に排気室8のB−B断面図を、図13に排気室8のA−A断面図を示す。   The block diagram of the wall penetration hook main body 1 of Example 2 of this invention is the same as that of Example 1, and is shown in FIG. 10 is a perspective view of the exhaust chamber 8, FIG. 11 is a cross-sectional view of the exhaust chamber 8 taken along the line CC, FIG. 12 is a cross-sectional view of the exhaust chamber 8 along the line BB, and FIG. The figure is shown.

排気室8は、下部排気室天井面13及び下部排気室後面14において、給湯側排気室10と追焚側排気室11の区別がない一体型の排気室8とし、下部排気室天井面13には、二次熱交換器9の底面と同じ勾配を設け、接触させる。さらに、給湯熱交換器5を通過した排気ガスと追焚熱交換器7を通過した排気ガスとを混合させないため、給湯側排気室10と追焚側排気室11を凸型隔壁18によって分割し、給湯熱交換器5からの排気ガスと追焚熱交換器7からの排気ガスの流路を独立化させる。図12に示すように、このときの凸型隔壁天井面19は水平とした。凸型隔壁18と排気室底面16との固定はスポット溶接にておこなった。その他の構成は実施例1と同様である。   The exhaust chamber 8 is an integrated exhaust chamber 8 in which there is no distinction between the hot water supply side exhaust chamber 10 and the additional exhaust side exhaust chamber 11 on the lower exhaust chamber ceiling surface 13 and the lower exhaust chamber rear surface 14. Provide the same gradient as the bottom surface of the secondary heat exchanger 9 to make contact. Further, in order not to mix the exhaust gas that has passed through the hot water supply heat exchanger 5 and the exhaust gas that has passed through the additional heat exchanger 7, the hot water supply side exhaust chamber 10 and the additional exhaust side exhaust chamber 11 are divided by the convex partition 18. The flow paths of the exhaust gas from the hot water supply heat exchanger 5 and the exhaust gas from the additional heat exchanger 7 are made independent. As shown in FIG. 12, the convex partition ceiling surface 19 at this time was horizontal. The convex partition 18 and the exhaust chamber bottom surface 16 were fixed by spot welding. Other configurations are the same as those of the first embodiment.

これにより、図11に示すように、前記隔壁18の天井面19上部を給湯熱交換器5を通過した排気ガスが通過可能となるため、図10に示すように、二次熱交換器流入口17の幅(W)を追焚側排気室11の上部まで拡張することが可能となり、排気ガスの圧力損失が低減する。   As a result, as shown in FIG. 11, the exhaust gas that has passed through the hot water supply heat exchanger 5 can pass through the upper part of the ceiling surface 19 of the partition wall 18. Therefore, as shown in FIG. The width (W) of 17 can be expanded to the upper part of the exhaust side exhaust chamber 11, and the pressure loss of the exhaust gas is reduced.

本発明の実施例1の壁貫通釜の動作を示すものである。The operation | movement of the wall penetration hook of Example 1 of this invention is shown. 本発明の実施例1の壁貫通釜本体の正面図を示す。The front view of the wall penetration pot main body of Example 1 of this invention is shown. 本発明の実施例1の壁貫通釜本体の側面図を示す。The side view of the wall penetration pot main body of Example 1 of this invention is shown. 本発明の実施例1の壁貫通釜本体を浴室に設置した浴室の設置例図であり、浴槽短手側から見た透視図を示す。It is the example of installation of the bathroom which installed the wall penetration kettle body of Example 1 of the present invention in the bathroom, and shows the perspective view seen from the bathtub short side. 本発明の実施例1の壁貫通釜本体の構成図を示す。The block diagram of the wall penetration hook main body of Example 1 of this invention is shown. 本発明の実施例1に用いる排気室の斜視図を示す。The perspective view of the exhaust chamber used for Example 1 of this invention is shown. 本発明の実施例1に用いる排気室のC−C断面図を示す。The CC sectional drawing of the exhaust chamber used for Example 1 of this invention is shown. 本発明の実施例1に用いる排気室のB−B断面図を示す。The BB sectional view of the exhaust room used for Example 1 of the present invention is shown. 本発明の実施例1に用いる排気室のA−A断面図を示す。The AA sectional view of the exhaust room used for Example 1 of the present invention is shown. 本発明の実施例2に用いる排気室の斜視図を示す。The perspective view of the exhaust chamber used for Example 2 of this invention is shown. 本発明の実施例2に用いる排気室のC−C断面図を示す。Sectional drawing CC of the exhaust chamber used for Example 2 of this invention is shown. 本発明の実施例2に用いる排気室のB−B断面図を示す。The BB sectional view of the exhaust room used for Example 2 of the present invention is shown. 本発明の実施例2に用いる排気室のA−A断面図を示す。The AA sectional view of the exhaust room used for Example 2 of the present invention is shown. 本発明の壁貫通釜本体の構成図の一例を示す。An example of the block diagram of the wall penetration pot main body of this invention is shown. 従来の壁貫通釜本体の第1の例の構成図を示す。The block diagram of the 1st example of the conventional wall penetration hook main body is shown. 従来の壁貫通釜本体の排気室の斜視図を示す。The perspective view of the exhaust chamber of the conventional wall penetration pot main body is shown. 従来の壁貫通釜本体の排気室の断面図を示す。Sectional drawing of the exhaust chamber of the conventional wall penetration pot main body is shown. 従来の壁貫通釜本体の第2の例の構成図を示す。The block diagram of the 2nd example of the conventional wall penetration hook main body is shown.

符号の説明Explanation of symbols

1…壁貫通釜本体
2…送風ファン
3…給湯電磁弁
4…給湯燃焼部
5…給湯熱交換器
6…追焚燃焼部
7…追焚熱交換器
8…排気室
9…二次熱交換器
10…給湯側排気室
11…追焚側排気室
12…ドレン受け皿
13…下部排気室天井面
14…下部排気室後面
15…略Z型隔壁
16…排気室底面
17…二次熱交換器流入口
18…凸型隔壁
19…凸型隔壁天井面
20…燃焼部
21…排気整流板
22…給水配管接続部
23…水量センサ
24…給湯配管接続部
25…注湯電磁弁
26…追焚往き配管
27…循環ポンプ
28…追焚戻り配管接続部
29…ガス配管接続部
30…給湯排気口
31…ドレン配管
32…ドレン配管接続部
33…炭酸カルシウム
34…中和容器
35…ダンパー
36…浴室壁
37…浴槽
38…吸気口
39…排気口
40…ドレン水


DESCRIPTION OF SYMBOLS 1 ... Wall penetration main body 2 ... Blower fan 3 ... Hot water supply solenoid valve 4 ... Hot water supply combustion part 5 ... Hot water supply heat exchanger 6 ... Remembrance combustion part 7 ... Remembrance heat exchanger 8 ... Exhaust chamber 9 ... Secondary heat exchanger DESCRIPTION OF SYMBOLS 10 ... Hot water supply side exhaust chamber 11 ... Remembrance side exhaust chamber 12 ... Drain tray 13 ... Lower exhaust chamber ceiling surface 14 ... Lower exhaust chamber rear surface 15 ... Substantially Z-shaped partition 16 ... Exhaust chamber bottom surface 17 ... Secondary heat exchanger inlet DESCRIPTION OF SYMBOLS 18 ... Convex-shaped partition wall 19 ... Convex-shaped partition ceiling surface 20 ... Combustion part 21 ... Exhaust flow straightening plate 22 ... Water supply pipe connection part 23 ... Water quantity sensor 24 ... Hot water supply pipe connection part 25 ... Hot water supply solenoid valve 26 ... Remaining delivery pipe 27 ... circulation pump 28 ... return return pipe connection part 29 ... gas pipe connection part 30 ... hot water supply exhaust port 31 ... drain pipe 32 ... drain pipe connection part 33 ... calcium carbonate 34 ... neutralization container 35 ... damper 36 ... bathroom wall 37 ... Bathtub 38 ... Intake port 39 ... Exhaust port 40 ... Drain water


Claims (7)

燃焼部と、この燃焼部に送風するファンと、前記燃焼部の燃焼熱を回収する一次熱交換器と、この一次熱交換器からの排気ガスから潜熱を回収する二次熱交換器とを備え、給湯運転と追焚運転の機能を有する燃焼機器において、
追焚熱交換器と、給湯熱交換器と、上記追焚熱交換器および給湯熱交換器へ同時送風するファンを備え、上記追焚熱交換器を通過した排気ガスと、給湯熱交換器を通過した排気ガスを独立した流路で排気する構成であり、
上記給湯熱交換器を通過した排気ガスが、二次熱交換器へと流入され、追焚熱交換器を通過した燃焼用空気が、二次熱交換器と追焚熱交換器との間を通過する燃焼機器。
A combustion section, a fan that blows air to the combustion section, a primary heat exchanger that recovers the combustion heat of the combustion section, and a secondary heat exchanger that recovers latent heat from the exhaust gas from the primary heat exchanger In the combustion equipment having the functions of hot water supply operation and memorial operation,
A reheating heat exchanger, a hot water supply heat exchanger, a fan that simultaneously blows air to the reheating heat exchanger and the hot water heat exchanger, exhaust gas that has passed through the reheating heat exchanger, and a hot water heat exchanger It is configured to exhaust the exhaust gas that has passed through an independent flow path,
The exhaust gas that has passed through the hot water heat exchanger flows into the secondary heat exchanger, and the combustion air that has passed through the additional heat exchanger passes between the secondary heat exchanger and the additional heat exchanger. Passing combustion equipment.
請求項1において、追焚運転を単独で行う時の排気ガスが、二次熱交換器へは流入されない燃焼機器。 Oite to claim 1, the exhaust gas when performing the add-fired operation alone is burning appliance not flow into the secondary heat exchanger. 請求項、または、請求項において、給湯熱交換器を通過した排気ガスが、二次熱交換器へと流入される燃焼機器。 The combustion apparatus according to claim 1 or 2, wherein the exhaust gas that has passed through the hot water supply heat exchanger flows into the secondary heat exchanger. 請求項2または請求項において、独立した流路が、隔壁にて形成される燃焼機器。 The combustion apparatus according to claim 2 or 3, wherein the independent flow path is formed by a partition wall. 請求項において、隔壁断面が、略Z型である燃焼機器。 The combustion apparatus according to claim 4, wherein the cross section of the partition wall is substantially Z-shaped. 請求項1から請求項5の何れかに記載の燃焼機器において、給湯熱交換器を通過した排気ガスが、二次熱交換器と追焚側排気室との間を通過する燃焼機器。 The combustion apparatus according to any one of claims 1 to 5, wherein the exhaust gas that has passed through the hot water supply heat exchanger passes between the secondary heat exchanger and the exhaust side exhaust chamber. 請求項1から請求項6の何れかに記載の燃焼機器において、排気整流板を二次熱交換器内の排気ガス流路に設けた燃焼機器。 Oite to claim 1, combustion apparatus according to claim 6, the combustion apparatus provided with an exhaust flow regulating plate on the exhaust gas passage in the secondary heat exchanger.
JP2006041019A 2006-02-17 2006-02-17 Combustion equipment Active JP4874666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041019A JP4874666B2 (en) 2006-02-17 2006-02-17 Combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041019A JP4874666B2 (en) 2006-02-17 2006-02-17 Combustion equipment

Publications (2)

Publication Number Publication Date
JP2007218526A JP2007218526A (en) 2007-08-30
JP4874666B2 true JP4874666B2 (en) 2012-02-15

Family

ID=38496029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041019A Active JP4874666B2 (en) 2006-02-17 2006-02-17 Combustion equipment

Country Status (1)

Country Link
JP (1) JP4874666B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145549A (en) * 2013-01-30 2014-08-14 Noritz Corp Combustion device
JP6142548B2 (en) * 2013-01-30 2017-06-07 株式会社ノーリツ Combustion device

Also Published As

Publication number Publication date
JP2007218526A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
US20090050296A1 (en) Heat Exchange Apparatus, Particularly Fire Tube Condensing Boiler
JP2007163039A (en) Hot water supply heater
EP2006607A2 (en) Improvements in and relating to water heating
KR101146020B1 (en) 2nd heat exchanger of condensing boiler
JP2010196992A (en) Water heater
JP4874666B2 (en) Combustion equipment
JP5010201B2 (en) Drain neutralizer
JP2007040566A (en) Electric hot water supplier
US20160313026A1 (en) Heat Exchanger, Heating Device, Heating System and Method for Heating Water
JP6715032B2 (en) Bath water heater
JP4531018B2 (en) Combined heat source
JP4877580B2 (en) Hot water storage water heater
JP2004028447A (en) Secondary heat exchanger and water heater using it
JP2007240129A (en) Combustion device
JP5982636B2 (en) Heat pump water heater
JP2007120867A (en) Hot water supply system
JP4969422B2 (en) Hot water storage type electric water heater
JP5170470B2 (en) Water heater
JP2008180463A (en) Drain neutralizer and bathroom structure using the drain neutralizer
JP5173367B2 (en) Combustion equipment installation structure
JP5538141B2 (en) Bath water heater
JP2017096620A (en) Cogeneration system
JP2012237470A (en) Burning appliance
JP3763900B2 (en) Combustion device
JP2007309599A (en) Burning appliance

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4874666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250