JP2007163039A - Hot water supply heater - Google Patents

Hot water supply heater Download PDF

Info

Publication number
JP2007163039A
JP2007163039A JP2005360271A JP2005360271A JP2007163039A JP 2007163039 A JP2007163039 A JP 2007163039A JP 2005360271 A JP2005360271 A JP 2005360271A JP 2005360271 A JP2005360271 A JP 2005360271A JP 2007163039 A JP2007163039 A JP 2007163039A
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
water supply
secondary heat
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005360271A
Other languages
Japanese (ja)
Inventor
Shuji Kameyama
修司 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2005360271A priority Critical patent/JP2007163039A/en
Publication of JP2007163039A publication Critical patent/JP2007163039A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water supply heater capable of further enhancing heat efficiency by effectively and sufficiently recovering latent heat that is left uncollected in combustion exhaust gas after the gas has been passed through a heating second heat exchanger. <P>SOLUTION: Division plates 85, 86 between an upper case 83 having a hot-water supply side secondary heat exchanger 81 built in and a lower case 84 having a heating side secondary heat exchanger 82 built in are arranged in a staggered manner to form a gap 87. The combustion exhaust gas flowing out of the heating side primary heat exchanger 52 is allowed to flow into the lower case from a rear opening 49 and latent heat is recovered by heat exchange with low-temperature water in the heating side secondary heat exchanger. Thereafter, the combustion exhaust gas on the heating side is allowed to flow into the upper case from the gap 87 and the latent heat left uncollected on the heating side is sufficiently recovered from the combustion exhaust gas by heat exchange with water entering the hot-water supply side secondary heat exchanger. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、給湯用及び暖房用の2つの缶体を備えて2缶2回路又は2缶3回路に構成された給湯暖房機であって、燃焼バーナ、1次熱交換器及び2次熱交換器の組み合わせが上記の2缶体のそれぞれに設けられ、1次熱交換器において燃焼排ガスの顕熱を吸収して通過水が主加熱され、2次熱交換器において1次熱交換器通過後の燃焼排ガスから潜熱を吸収・回収して通過水が予熱されるというコンデンシングタイプの給湯暖房機に関し、特に給湯・暖房の各特性に着目して潜熱回収のさらなる高効率化を図り得る技術に係るものである。   The present invention is a hot water heater provided with two cans for hot water supply and heating and configured in a two-can two-circuit or a two-can three-circuit, comprising a combustion burner, a primary heat exchanger, and a secondary heat exchange Each of the above-mentioned two can bodies is provided with a combination of water, the primary heat exchanger absorbs the sensible heat of the combustion exhaust gas, and the passing water is mainly heated, and the secondary heat exchanger passes through the primary heat exchanger. Condensation type hot water heaters that absorb and recover latent heat from combustion exhaust gas and preheat the passing water, especially in the technology that can improve the efficiency of latent heat recovery by focusing on the characteristics of hot water and heating It is concerned.

従来の2缶2回路でコンデンシングタイプに構成された給湯暖房機においては、例えば図11に示すように給湯用缶体200及び暖房用缶体400の各缶体内において燃焼バーナ310,510からの燃焼排ガスの上流側に1次熱交換器320,520を、下流側に2次熱交換器330,530をそれぞれ配設する一方、加熱対象の湯水をまず2次熱交換器330,530内に通過させて予熱した後に1次熱交換器320,520内に通過させて主加熱するようにしている。そして、給湯用缶体200で給湯側燃焼バーナ310の燃焼により発生した燃焼排ガスは給湯側1次熱交換器320を通過した後に給湯側2次熱交換器330を通過して外部に排出される一方、暖房用缶体400で暖房側燃焼バーナ510の燃焼により発生した燃焼排ガスも暖房側1次熱交換器520を通過した後に暖房側2次熱交換器530を通過して外部に排出されるようになっている。すなわち、給湯用缶体200及び暖房用缶体400のそれぞれで発生する燃焼排ガスは給湯用及び暖房用の各缶体200,400で別個に熱消費された後はそのまま外部に排出されるようになっている。但し、外部に排出させる際には、給湯側2次熱交換器330を通過した後の燃焼排ガスと、暖房側2次熱交換器530を通過した後の燃焼排ガスとを、各2次熱交換器330,530の下流側で集合排気筒100により集合させた上で外部に排出させることが行われている。   In a conventional hot water supply / heater configured as a condensing type with two cans and two circuits, for example, as shown in FIG. The primary heat exchangers 320 and 520 are disposed on the upstream side of the combustion exhaust gas, and the secondary heat exchangers 330 and 530 are disposed on the downstream side, respectively, while hot water to be heated is first placed in the secondary heat exchangers 330 and 530. After passing through and preheating, it is passed through the primary heat exchangers 320 and 520 for main heating. The combustion exhaust gas generated by the hot water supply side combustion burner 310 in the hot water supply can 200 passes through the hot water supply side primary heat exchanger 320 and then passes through the hot water supply side secondary heat exchanger 330 and is discharged to the outside. On the other hand, flue gas generated by the combustion of the heating-side combustion burner 510 in the heating can 400 also passes through the heating-side primary heat exchanger 520 and then passes through the heating-side secondary heat exchanger 530 and is discharged to the outside. It is like that. That is, the combustion exhaust gas generated in each of the hot water supply can body 200 and the heating can body 400 is discharged to the outside as it is after the heat is separately consumed in each of the hot water supply can body 200 and 400 for heating. It has become. However, when discharging outside, the combustion exhaust gas after passing through the hot water supply side secondary heat exchanger 330 and the combustion exhaust gas after passing through the heating side secondary heat exchanger 530 are each subjected to secondary heat exchange. The gas is collected by the collective exhaust pipe 100 on the downstream side of the vessels 330 and 530 and then discharged to the outside.

又、それぞれ多管式熱交換器により構成した給湯用2次熱交換器と、暖房用2次熱交換器とを上下に配置して一体化した上で、給湯用缶体と暖房用缶体とに跨るようにして連結させる構造も提案されている(例えば特許文献1又は本出願人の先願である特願2005−200950にて提案)。   In addition, a hot water supply secondary heat exchanger and a heating secondary heat exchanger, each of which is composed of a multi-tube heat exchanger, are arranged vertically and integrated, and then a hot water supply can and a heating can Also proposed is a structure that is connected so as to straddle (for example, proposed in Patent Document 1 or Japanese Patent Application No. 2005-200950, which is a prior application of the present applicant).

特開2005−274043号公報Japanese Patent Laid-Open No. 2005-274043

しかしながら、従来の2缶2回路でコンデンシングタイプに構成された上記の給湯暖房機では、暖房用2次熱交換器において燃焼排ガスからの潜熱の回収が極めて不十分であり、未回収のまま潜熱が排出されてしまうことにより熱効率のさらなる高効率化を阻害する事態を招いている。すなわち、潜熱の回収効率は潜熱を有する燃焼排ガスと、その潜熱吸収により予熱される湯水との温度差の大小如何により左右され、その温度差が小さければ潜熱の回収効率も低くなって潜熱が未回収のままの燃焼排ガスが外部に排出されてしまうことになるため、特に暖房用2次熱交換器の側で潜熱の回収が不十分となっている。例えば暖房用缶体の側では暖房端末で放熱された後の低温水(例えば60℃)が暖房用2次熱交換器に戻されて暖房用1次熱交換器からは加熱された後の高温水(例えば80℃)が上記暖房端末に循環供給されるのに対し、通常は20℃程度の水が入水される給湯用2次熱交換器とは際だった特性上の相違がある。このため、暖房用1次熱交換器を通過した後に暖房用2次熱交換器に流れてくる燃焼排ガス温度が例えば70〜80℃であったとしても、その暖房用2次熱交換器に入水される戻り温水との温度差があまりないために、給湯用2次熱交換器の場合と比べ燃焼排ガスからの潜熱回収が不十分になって、潜熱回収が不十分なままで比較的高温の燃焼排ガスを外部に排出させてしまうことになる。   However, in the above-described hot water heater configured as a condensing type with two cans and two circuits, the recovery of latent heat from the flue gas in the secondary heat exchanger for heating is extremely insufficient, and latent heat remains unrecovered. As a result, the situation in which further increase in thermal efficiency is hindered is caused. That is, the recovery efficiency of latent heat depends on the temperature difference between the combustion exhaust gas having latent heat and the hot water preheated by the absorption of the latent heat. If the temperature difference is small, the recovery efficiency of latent heat is lowered and the latent heat is not yet increased. Since the recovered combustion exhaust gas is discharged to the outside, the recovery of latent heat is insufficient particularly on the side of the secondary heat exchanger for heating. For example, on the side of the heating can body, the low temperature water (for example, 60 ° C.) after being radiated from the heating terminal is returned to the heating secondary heat exchanger and heated from the heating primary heat exchanger. While water (for example, 80 ° C.) is circulated and supplied to the heating terminal, there is a remarkable difference in characteristics from a secondary heat exchanger for hot water supply in which water of about 20 ° C. is usually introduced. For this reason, even if the combustion exhaust gas temperature flowing to the heating secondary heat exchanger after passing through the heating primary heat exchanger is, for example, 70 to 80 ° C., water enters the heating secondary heat exchanger. Since there is not much temperature difference from the returned warm water, the latent heat recovery from the combustion exhaust gas is insufficient compared to the case of the secondary heat exchanger for hot water supply, and the latent heat recovery is still insufficient and the temperature is relatively high. Combustion exhaust gas will be discharged outside.

このような事情は、上記の従来の給湯暖房機における如く、集合排気筒により各2次熱交換器から出た燃焼排ガスを集合させたり、あるいは、両2次熱交換器をまとめて一体化した構造にしたりしたとしても、暖房用2次熱交換器を通過した後の燃焼排ガスがそのまま外部に排出されることに変わりはなく、上記の不都合はそのまま残ることになる。   Such a situation is caused by the fact that the flue gas discharged from each secondary heat exchanger is gathered by the collective exhaust pipe, or both the secondary heat exchangers are integrated as in the conventional hot water heater described above. Even if the structure is adopted, the combustion exhaust gas after passing through the secondary heat exchanger for heating is still discharged to the outside as it is, and the above inconvenience remains as it is.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、暖房用2次熱交換器を通過させた後の燃焼排ガスに未回収のままで残る潜熱を有効かつ十分に回収して、熱効率のさらなる高効率化を図り得る給湯暖房機を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to effectively utilize latent heat remaining unrecovered in the combustion exhaust gas after passing through the heating secondary heat exchanger. An object of the present invention is to provide a hot water heater that can be sufficiently recovered to further increase the thermal efficiency.

上記目的を達成するために、本発明では、暖房回路の燃焼作動により生じて暖房回路側の2次熱交換器で潜熱回収した後の燃焼排ガスであっても、さらに給湯回路側の2次熱交換器側に供給することにより、未回収のまま残っている潜熱を十分に回収するようにしたものである。   In order to achieve the above object, according to the present invention, even if the combustion exhaust gas is generated by the combustion operation of the heating circuit and the latent heat is recovered by the secondary heat exchanger on the heating circuit side, the secondary heat on the hot water supply circuit side is further increased. By supplying to the exchanger side, the latent heat remaining unrecovered is sufficiently recovered.

具体的には、給湯回路と、温水循環式の暖房回路とがそれぞれ潜熱回収用の2次熱交換器を備えた給湯暖房機を対象にして、暖房回路の燃焼作動により生じた燃焼排ガスが暖房回路側の2次熱交換器を通過した後に給湯回路側の2次熱交換器に向けて供給されるよう両2次熱交換器間を連通させる連通路を備えるようにした(請求項1)。   Specifically, a hot water supply circuit and a hot water circulation type heating circuit are each intended for a hot water heater equipped with a secondary heat exchanger for recovering latent heat, and combustion exhaust gas generated by the combustion operation of the heating circuit is heated. A communication passage is provided for communicating between the secondary heat exchangers so as to be supplied to the secondary heat exchanger on the hot water supply circuit side after passing through the secondary heat exchanger on the circuit side (Claim 1). .

この発明の場合、暖房回路側の2次熱交換器により潜熱は回収されたが、その潜熱回収が不十分で未回収の潜熱が残ったままの燃焼排ガスが連通路を通して給湯回路側の2次熱交換器に供給されるため、この給湯回路側の2次熱交換器内に通される冷たい入水との熱交換によって上記燃焼排ガスから潜熱を十分に回収することが可能となる。これにより、従来はそのまま外部に排出させていた暖房側の燃焼排ガスから、より十分な潜熱回収が図られるため、さらなる高効率化が図られる。   In the case of the present invention, although the latent heat is recovered by the secondary heat exchanger on the heating circuit side, the combustion exhaust gas in which the latent heat recovery is insufficient and unrecovered latent heat remains passes through the communication path to the secondary water source on the hot water supply circuit side. Since the heat is supplied to the heat exchanger, it is possible to sufficiently recover the latent heat from the combustion exhaust gas by heat exchange with the cold incoming water passed through the secondary heat exchanger on the hot water supply circuit side. As a result, more sufficient latent heat recovery can be achieved from the combustion exhaust gas on the heating side, which has been discharged to the outside as it is in the prior art, thereby further improving the efficiency.

この発明においては、上記給湯回路と暖房回路とを互いに独立して燃焼作動可能なように2缶2回路に構成し、給湯回路側の2次熱交換器と暖房回路側の2次熱交換器とを上下各位置に配置して間を仕切られた状態で一体化する一方、その仕切りを貫通して連通路を設けるようにすることもできる(請求項2)。又、上記給湯回路と暖房回路とを互いに独立して燃焼作動可能なように2缶2回路に構成し、給湯回路側の2次熱交換器と暖房回路側の2次熱交換器とを互いに独立して設ける一方、両2次熱交換器の設置空間を、連通路を介して互いに連通接続させるようにすることができる(請求項3)。これらにより、給湯回路側及び暖房回路側の両2次熱交換器を一体配置にしても別個配置にしてもいずれにしても、連通路を設けることが可能となって、上記の熱効率の高効率化が図られる。   In the present invention, the hot water supply circuit and the heating circuit are configured in two cans and two circuits so that the combustion operation can be performed independently of each other, and the secondary heat exchanger on the hot water supply circuit side and the secondary heat exchanger on the heating circuit side Are arranged at respective positions in the vertical direction so as to be integrated in a state where the space is partitioned, and a communication path may be provided through the partition (claim 2). Further, the hot water supply circuit and the heating circuit are configured in two cans and two circuits so that the combustion operation can be performed independently of each other, and the secondary heat exchanger on the hot water supply circuit side and the secondary heat exchanger on the heating circuit side are mutually connected. While providing independently, the installation space of both the secondary heat exchangers can be connected to each other via a communication path (Claim 3). As a result, it is possible to provide a communication path regardless of whether the secondary heat exchangers on the hot water supply circuit side and the heating circuit side are arranged integrally or separately, and the high efficiency of the above-described thermal efficiency. Is achieved.

さらに、上記連通路を、上記給湯回路の燃焼作動により生じた燃焼排ガスが給湯回路側の2次熱交換器に向けて供給される際の下流側に対応する部位に向けて、上記暖房回路の燃焼作動により生じた燃焼排ガスが供給されるよう、配置させることもできる(請求項4)。このようにすることにより、連通路を通して供給される暖房回路側の燃焼排ガスと、潜熱を吸収する媒体であって給湯回路側の2次熱交換器内の入水との間の温度差をより大きくさせることが可能となって、潜熱回収の効率をより一層高めることが可能となる。   Further, the communication passage is directed toward a portion corresponding to the downstream side when the combustion exhaust gas generated by the combustion operation of the hot water supply circuit is supplied toward the secondary heat exchanger on the hot water supply circuit side, and It can also arrange so that the combustion exhaust gas produced by combustion operation may be supplied. By doing so, the temperature difference between the combustion exhaust gas on the heating circuit side supplied through the communication path and the water entering the secondary heat exchanger on the hot water supply circuit side, which is a medium that absorbs latent heat, is further increased. Thus, the efficiency of latent heat recovery can be further enhanced.

以上、説明したように、請求項1〜請求項4のいずれかの給湯暖房機によれば、暖房回路側の2次熱交換器により一応の潜熱回収はされたが、その潜熱回収が不十分で未回収の潜熱が残っている燃焼排ガスから、給湯回路側の2次熱交換器内に通される冷たい入水との熱交換によって潜熱を十分に回収することができようになり、潜熱回収のさらなる高効率化を図ることができる。   As described above, according to any one of the hot water heaters according to claims 1 to 4, although the latent heat recovery is temporarily performed by the secondary heat exchanger on the heating circuit side, the latent heat recovery is insufficient. In the combustion exhaust gas in which the unrecovered latent heat remains, the latent heat can be sufficiently recovered by heat exchange with the cold incoming water passed through the secondary heat exchanger on the hot water supply circuit side. Further efficiency improvement can be achieved.

特に請求項2又は請求項3によれば、給湯回路側及び暖房回路側の両2次熱交換器を一体配置にしても別個配置にしても、いずれの構成の場合にも連通路を設けることができ、熱効率の高効率化を図ることができるようになる。   In particular, according to claim 2 or claim 3, whether the secondary heat exchangers on the hot water supply circuit side and the heating circuit side are arranged integrally or separately, the communication path is provided in either case. It is possible to increase the thermal efficiency.

又、請求項4によれば、連通路を通して供給される暖房回路側の燃焼排ガスと、潜熱を吸収する媒体であって給湯回路側の2次熱交換器内の入水との間の温度差をより大きくとることができ、これにより、潜熱回収の効率をより一層高めることができるようになる。   According to claim 4, the temperature difference between the combustion exhaust gas on the heating circuit side supplied through the communication path and the water entering the secondary heat exchanger on the hot water supply circuit side, which is a medium that absorbs latent heat, is Therefore, the efficiency of latent heat recovery can be further increased.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1実施形態>
図1は、本発明の第1実施形態に係る給湯暖房機の原理的な模式図を示す。この給湯暖房機は、給湯用缶体2を有する給湯回路3と、暖房用缶体4を有する暖房回路5とから2缶2回路に構成されたものである。すなわち、給湯回路3と、暖房回路5とが互いに独立した缶体2,4において燃焼加熱を受ける構成を備えたものである。しかも、上記の給湯回路3及び暖房回路5のそれぞれが後述の如く1次熱交換器32,52及び2次熱交換器33,53を備えたコンデンシングタイプに構成されている。
<First Embodiment>
FIG. 1 shows a principle schematic diagram of a hot water heater according to a first embodiment of the present invention. This hot water heater is composed of a hot water supply circuit 3 having a hot water supply can body 2 and a heating circuit 5 having a heating can body 4 into two cans and two circuits. In other words, the hot water supply circuit 3 and the heating circuit 5 are configured to receive combustion heating in the cans 2 and 4 independent of each other. Moreover, each of the hot water supply circuit 3 and the heating circuit 5 is configured as a condensing type provided with primary heat exchangers 32 and 52 and secondary heat exchangers 33 and 53 as described later.

上記給湯用缶体2は、給湯側燃焼バーナ31を内蔵した燃焼ケース部21と、給湯側1次熱交換器32を内蔵した1次熱交換ケース部22と、給湯側2次熱交換器33を内蔵した2次熱交換ケース部23と、排気筒部24とが組み付けられて基本構成されたものである。上記給湯側燃焼バーナ31は燃料(例えば燃料ガス)の供給と、燃焼ケース部21の下側に連結された送風ファン34からの燃焼用空気の供給とを受けて燃焼されるようになっている。そして、給湯側燃焼バーナ31が燃焼作動されると、発生した燃焼排ガスは給湯側1次熱交換ケース部22及び2次熱交換ケース部23の各内部を順に通過した後に、排気筒部24を通して外部に排出されることになり、その際に1次熱交換器32との熱交換により顕熱が吸収され、2次熱交換器33との熱交換により潜熱が吸収されるようになっている。上記の1次熱交換器32は例えばフィンアンドチューブ式のもので構成され、2次熱交換器33は例えば多管式のもので構成されている。上記2次熱交換器33の入口331には入水路35の下流端が接続され、その出口332が上記1次熱交換器32の入口321に接続され、その出口322が出湯路36の上流端に接続されている。そして、この給湯回路3においては、入水路35の上流端側に水道管等の図外の給水配管から給水を受け、これを上記2次熱交換器33内に入口331から導入して予熱させた後、出口332及び入口321を通して1次熱交換器32内に入水させ、熱交換加熱により昇温した湯が出口322から出湯路36に出湯され、この出湯路36及びこれに接続された図外の給湯配管を通して給湯栓等へ給湯されるようになっている。   The hot water can body 2 includes a combustion case portion 21 having a hot water supply side combustion burner 31, a primary heat exchange case portion 22 having a hot water supply side primary heat exchanger 32, and a hot water supply side secondary heat exchanger 33. Is basically constructed by assembling a secondary heat exchanging case portion 23 having a built-in air and an exhaust cylinder portion 24. The hot water supply side combustion burner 31 is combusted by receiving supply of fuel (for example, fuel gas) and supply of combustion air from a blower fan 34 connected to the lower side of the combustion case portion 21. . When the hot water supply side combustion burner 31 is combusted, the generated flue gas passes through the interiors of the hot water supply side primary heat exchange case portion 22 and the secondary heat exchange case portion 23 in order, and then passes through the exhaust tube portion 24. In this case, sensible heat is absorbed by heat exchange with the primary heat exchanger 32, and latent heat is absorbed by heat exchange with the secondary heat exchanger 33. . The primary heat exchanger 32 is composed of, for example, a fin-and-tube type, and the secondary heat exchanger 33 is composed of, for example, a multi-tube type. The inlet 331 of the secondary heat exchanger 33 is connected to the downstream end of the water inlet 35, the outlet 332 is connected to the inlet 321 of the primary heat exchanger 32, and the outlet 322 is the upstream end of the hot water outlet 36. It is connected to the. In the hot water supply circuit 3, water is supplied from a water supply pipe (not shown) such as a water pipe to the upstream end side of the water inlet 35, and this is introduced into the secondary heat exchanger 33 from the inlet 331 and preheated. After that, the hot water that has been made to enter the primary heat exchanger 32 through the outlet 332 and the inlet 321 and heated by heat exchange heating is discharged from the outlet 322 to the hot water outlet 36, and the hot water outlet 36 and the figure connected to this. Hot water is supplied to a hot water tap or the like through an external hot water supply pipe.

一方、上記暖房用缶体4も、上記の給湯用缶体2とほぼ同様構成を備えている。すなわち、暖房用缶体4は、暖房側燃焼バーナ51を内蔵した燃焼ケース部41と、暖房側1次熱交換器52を内蔵した1次熱交換ケース部42と、暖房側2次熱交換器53を内蔵した2次熱交換ケース部43とが組み付けられて基本構成されたものである。上記暖房側燃焼バーナ51は上記の燃料の供給と、燃焼ケース部41の下側に連結された送風ファン54からの燃焼用空気の供給とを受けて燃焼されるようになっている。そして、暖房側燃焼バーナ51が燃焼作動されると、発生した燃焼排ガスは暖房側1次熱交換ケース部42及び2次熱交換ケース部43の各内部を順に通過した後に、連通路6を通して給湯用の2次熱交換ケース部23内に供給され、この2次熱交換ケース部23内を通って排気筒部24から外部に排出されるようになっている。これにより、1次熱交換器52との熱交換により顕熱が吸収され、2次熱交換器53との熱交換により潜熱が吸収され、さらに給湯側の2次熱交換器33との熱交換により未回収の潜熱が吸収されるようになっている。上記の1次熱交換器52は例えばフィンアンドチューブ式のもので構成され、2次熱交換器53は例えば多管式のもので構成されている。上記2次熱交換器53の入口531には戻り路55の下流端が接続され、この戻り路55を通して1又は2以上(図1には1つのみ図示)の暖房端末7で放熱された後の低温水が2次熱交換器53に戻されるようになっている。この2次熱交換器53の出口532は1次熱交換器52の入口521と接続され、1次熱交換器52の出口522が上記暖房端末7へ延びる往き路56の上流端に接続されている。これにより、2次熱交換器53で予熱された低温水が1次熱交換器52に流入され、この1次熱交換器52での熱交換加熱により暖房用の熱源として必要な所定温度まで昇温されて高温水となり、この高温水が上記往き路56を通して暖房端末7に供給される。この往き路56及び戻り路55を通した暖房端末7と暖房用缶体4との間の循環供給は循環ポンプ57の作動により実現されるようになっている。   On the other hand, the heating can body 4 also has substantially the same configuration as the hot water supply can body 2. That is, the heating can body 4 includes a combustion case part 41 having a heating side combustion burner 51 therein, a primary heat exchange case part 42 having a heating side primary heat exchanger 52, and a heating side secondary heat exchanger. A secondary heat exchange case 43 having a built-in 53 is assembled to form a basic configuration. The heating-side combustion burner 51 is combusted in response to the supply of the fuel and the supply of combustion air from the blower fan 54 connected to the lower side of the combustion case 41. When the heating-side combustion burner 51 is combusted, the generated flue gas passes through each of the heating-side primary heat exchange case portion 42 and the secondary heat exchange case portion 43 in order, and then hot water is supplied through the communication passage 6. Is supplied into the secondary heat exchange case portion 23, and is discharged from the exhaust tube portion 24 through the secondary heat exchange case portion 23 to the outside. Thereby, sensible heat is absorbed by heat exchange with the primary heat exchanger 52, latent heat is absorbed by heat exchange with the secondary heat exchanger 53, and further heat exchange with the secondary heat exchanger 33 on the hot water supply side. Thus, unrecovered latent heat is absorbed. The primary heat exchanger 52 is composed of, for example, a fin and tube type, and the secondary heat exchanger 53 is composed of, for example, a multi-tube type. After the downstream end of the return path 55 is connected to the inlet 531 of the secondary heat exchanger 53, heat is radiated through one or more heating terminals 7 through the return path 55 (only one is shown in FIG. 1). The low-temperature water is returned to the secondary heat exchanger 53. The outlet 532 of the secondary heat exchanger 53 is connected to the inlet 521 of the primary heat exchanger 52, and the outlet 522 of the primary heat exchanger 52 is connected to the upstream end of the outgoing path 56 extending to the heating terminal 7. Yes. As a result, the low-temperature water preheated by the secondary heat exchanger 53 flows into the primary heat exchanger 52, and rises to a predetermined temperature required as a heat source for heating by heat exchange heating in the primary heat exchanger 52. The water is heated to become high-temperature water, and this high-temperature water is supplied to the heating terminal 7 through the outgoing path 56. Circulation supply between the heating terminal 7 and the heating can 4 through the forward path 56 and the return path 55 is realized by the operation of the circulation pump 57.

上記の2次熱交換ケース部23,43、及び、両者を連通接続する連通路6などについて、図1の原理的な構造を具体的な形状・構造にした例を示す図2に基づいてより具体的に説明する。給湯用缶体2において、1次熱交換ケース部22と、2次熱交換ケース部23とは、燃焼排ガスを集合させて流すための集合ケース部25を介して連結されている。又、暖房用缶体4においても、1次熱交換ケース部42と、2次熱交換ケース部43とは、同様の集合ケース部45を介して連結されている。各集合ケース部25,45は、1次熱交換ケース部22,42の上面開口を覆って1次熱交換器32,52(図1参照)を通過した後の燃焼排ガスを集合させ、集合した燃焼排ガスを各缶体2,4の後側に導いた上で後面開口26,46を通して各2次熱交換ケース部23,43内に対し後から導入させるようになっている。そして、給湯側2次熱交換ケース部23の前面開口27と、暖房側2次熱交換ケース部43の前面開口47とに跨って前側位置を横に延びる連通路6が形成されており、暖房側2次熱交換ケース部43内を前方に流れた燃焼排ガスが前面開口47から連通路6及び前面開口27を通して給湯側2次熱交換ケース部23内の前側に流入されるようになっている。給湯側2次熱交換ケース部23の前面上側位置には排気筒24が前方に突出して開口形成されており、給湯側2次熱交換ケース部23に対し後面開口26から流入した燃焼排ガスと、前面開口27から流入した燃焼排ガスとが排気筒24から外部に排出されるようになっている。ここで、上記の給湯側2次熱交換ケース部23内においては、後面開口26から給湯側1次熱交換ケース部22からの燃焼排ガスが流入され、この燃焼排ガスは排気筒24のある前方に流れることになる。つまり、暖房側2次熱交換ケース部43からの燃焼排ガスが流入される給湯側2次熱交換ケース部23の前側とは、給湯側2次熱交換ケース部23あるいは2次熱交換器33の下流側に相当する。なお、上記の排気筒24は前方に突出させる他、符号24aで示すように上方に突出させるようにしてもよい。   Based on FIG. 2 which shows the example which made the fundamental structure of FIG. 1 into a concrete shape and structure about said secondary heat exchange case parts 23 and 43, and the communication path 6 etc. which connect and connect both. This will be specifically described. In the hot water supply can body 2, the primary heat exchange case portion 22 and the secondary heat exchange case portion 23 are connected via a collective case portion 25 for collecting and flowing the combustion exhaust gas. Also in the heating can 4, the primary heat exchange case part 42 and the secondary heat exchange case part 43 are connected via a similar collective case part 45. Each of the collecting case portions 25 and 45 collects and collects the flue gas after passing through the primary heat exchangers 32 and 52 (see FIG. 1) covering the upper surface openings of the primary heat exchange case portions 22 and 42. The combustion exhaust gas is guided to the rear side of each can body 2, 4 and then introduced into the respective secondary heat exchange case parts 23, 43 through the rear openings 26, 46. And the communicating path 6 which extends across the front side position across the front opening 27 of the hot water supply side secondary heat exchange case part 23 and the front opening 47 of the heating side secondary heat exchange case part 43 is formed. Combustion exhaust gas that has flowed forward in the side secondary heat exchange case portion 43 flows from the front opening 47 to the front side in the hot water supply side secondary heat exchange case portion 23 through the communication passage 6 and the front opening 27. . An exhaust tube 24 protrudes forward and is formed at the front upper side position of the hot water supply side secondary heat exchange case portion 23, and the combustion exhaust gas flowing into the hot water supply side secondary heat exchange case portion 23 from the rear opening 26, The combustion exhaust gas flowing in from the front opening 27 is discharged from the exhaust cylinder 24 to the outside. Here, in the hot water supply side secondary heat exchange case portion 23, the combustion exhaust gas from the hot water supply side primary heat exchange case portion 22 flows from the rear opening 26, and this combustion exhaust gas is forward in the front of the exhaust cylinder 24. Will flow. That is, the front side of the hot water supply side secondary heat exchange case part 23 into which the combustion exhaust gas from the heating side secondary heat exchange case part 43 flows is the hot water supply side secondary heat exchange case part 23 or the secondary heat exchanger 33. Corresponds to the downstream side. The exhaust cylinder 24 may be protruded upward as indicated by reference numeral 24a in addition to protruding forward.

図3(a)は図2のA−A線における断面説明図を、図3(b)は図2のB−B線における断面説明図をそれぞれ示し、図4は多管式に構成した場合における給湯側及び暖房側の両2次熱交換器33,53の構造説明図を示している。給湯側2次熱交換器33は、入口331に連通する入口側ヘッダ333及び出口332に連通する出口側ヘッダ334と、折返しヘッダ335との間に、往き側及び戻り側の2群の細管群33a,33bが掛け渡されて連通接続されたものである。入口331から入った入水は入口側ヘッダ333で複数の細管からなる往き側細管群33aに分流されて折返しヘッダ335に至り、折返しヘッダ335で一旦合流した後に再度戻り側細管群33bに分流されて出口側ヘッダ334に至る。そして、出口側ヘッダ334で合流されて出口332を通して1次熱交換器32に送られることになる。上記の入水は往き側及び戻り側の細管群33a,33bを通過する間に2次熱交換ケース部23内に流される燃焼排ガスと熱交換して燃焼排ガスの有する潜熱を吸収して予熱されることになる。暖房側2次熱交換器53も給湯側2次熱交換器33と同じ構造とされ、入口531に連通する入口側ヘッダ533及び出口532に連通する出口側ヘッダ534と、折返しヘッダ535との間に、往き側及び戻り側の2群の細管群53a,53bが掛け渡されて連通接続されている。   3A is a cross-sectional explanatory view taken along line AA in FIG. 2, FIG. 3B is a cross-sectional explanatory view taken along line BB in FIG. 2, and FIG. The structure explanatory drawing of both the secondary heat exchangers 33 and 53 of the hot_water | molten_metal supply side and heating side is shown. The hot water supply side secondary heat exchanger 33 is composed of an inlet side header 333 communicating with the inlet 331, an outlet side header 334 communicating with the outlet 332, and a return header 335. 33a and 33b are connected and connected in communication. The incoming water from the inlet 331 is divided by the inlet header 333 into the forward side thin tube group 33a composed of a plurality of thin tubes to reach the return header 335, and once merged at the return header 335, it is diverted again to the return side thin tube group 33b. It reaches the outlet header 334. Then, they are merged at the outlet header 334 and sent to the primary heat exchanger 32 through the outlet 332. The incoming water is preheated by exchanging heat with the combustion exhaust gas flowing in the secondary heat exchange case 23 while passing through the forward and return narrow tube groups 33a and 33b and absorbing the latent heat of the combustion exhaust gas. It will be. The heating side secondary heat exchanger 53 has the same structure as the hot water supply side secondary heat exchanger 33, and is provided between an inlet header 533 that communicates with the inlet 531 and an outlet header 534 that communicates with the outlet 532, and the return header 535. In addition, two groups of narrow tubes 53a and 53b on the forward side and the return side are stretched over and connected to each other.

なお、図3中の符号231,431はそれぞれ排ガスドレンを集めて集水するドレン管であり、符号232,432はそれぞれ邪魔板である。邪魔板232は給湯側2次熱交換ケース部23の上面から下から垂下されて後面開口26からの燃焼排ガスが排気筒24に向けて直線的に流れるのを邪魔し、邪魔板432は暖房側2次熱交換ケース部43の下面から上に立設されて後面開口46からの燃焼排ガスが前面開口47に向けて直線的に流れるのを邪魔するようになっている。   In addition, the code | symbols 231 and 431 in FIG. 3 are each a drain pipe which collects and collects exhaust gas drains, and code | symbols 232 and 432 are each a baffle plate. The baffle plate 232 is hung from below from the upper surface of the hot water supply side secondary heat exchange case portion 23 to block the combustion exhaust gas from the rear opening 26 from flowing linearly toward the exhaust cylinder 24, and the baffle plate 432 is on the heating side. The secondary heat exchange case portion 43 is erected upward from the lower surface of the secondary heat exchange case portion 43 so as to prevent the combustion exhaust gas from the rear surface opening 46 from flowing linearly toward the front surface opening 47.

以上の第1実施形態では、暖房側2次熱交換ケース部43に対し暖房側1次熱交換ケース部42からの燃焼排ガスが後面開口46を通して流入し、2次熱交換器53の細管群53b,53aを通過して前面開口47に向けて流れる間に、燃焼排ガスの潜熱が細管群53a,53b内の低温水と熱交換により吸収されて低温水が予熱される。ここで、暖房端末7が例えば80℃の高温水の供給を受けて放熱し、放熱後に60℃の低温水となって暖房用缶体4に戻されるとした場合、暖房側1次熱交換器42を熱交換加熱した後の燃焼排ガスが例えば80℃であると、予熱対象の低温水と燃焼排ガスとの温度差が僅かであるため、潜熱の回収が不十分なままで燃焼排ガスが前面開口47から連通路6及び前面開口27を通して給湯側2次熱交換ケース部23内に送られることになる。一方、給湯側2次熱交換ケース部23では給湯側1次熱交換ケース部22からの燃焼排ガスが後面開口26を通して流入し、2次熱交換器33の細管群33b,33aを通過して排気筒24に向けて流れる間に、燃焼排ガスの潜熱が細管群33a,33b内の入水と熱交換により吸収されて入水が予熱される上に、暖房側からの燃焼排ガスによっても予熱されることになる。例えば、入水の水道水が20℃であり、この入水が給湯側1次熱交換器32からの燃焼排ガスにより予熱されて30℃まで予熱されたとしても、連通路6を通して暖房側2次熱交換ケース部43から供給される燃焼排ガスの潜熱を吸収してより一層高温まで予熱させることができるようになる。要するに、暖房側の燃焼排ガスを暖房側2次熱交換器53に通過させた後にそのまま排出させずに、給湯側2次熱交換器33に導入させることにより、暖房側で潜熱回収が不十分で未回収の潜熱を給湯側において十分に回収することができ、これにより、潜熱回収効率を可及的に高めてより一層の高効率化を図ることができるようになる。   In the first embodiment described above, the flue gas from the heating side primary heat exchange case part 42 flows into the heating side secondary heat exchange case part 43 through the rear opening 46, and the narrow tube group 53 b of the secondary heat exchanger 53. , 53a and flowing toward the front opening 47, the latent heat of the combustion exhaust gas is absorbed by heat exchange with the low-temperature water in the thin tube groups 53a, 53b, and the low-temperature water is preheated. Here, for example, when the heating terminal 7 is supplied with high-temperature water at 80 ° C. and dissipates heat, and after heat dissipation, the low-temperature water at 60 ° C. is returned to the heating can 4, the heating-side primary heat exchanger If the combustion exhaust gas after heat exchange heating 42 is at 80 ° C., for example, the temperature difference between the low-temperature water to be preheated and the combustion exhaust gas is small, so that the combustion exhaust gas remains in the front opening with insufficient recovery of latent heat. 47 is fed into the hot water supply side secondary heat exchange case 23 through the communication path 6 and the front opening 27. On the other hand, in the hot water supply side secondary heat exchange case portion 23, the combustion exhaust gas from the hot water supply side primary heat exchange case portion 22 flows through the rear opening 26 and passes through the narrow tube groups 33 b and 33 a of the secondary heat exchanger 33. While flowing toward the cylinder 24, the latent heat of the combustion exhaust gas is absorbed by heat exchange with the incoming water in the thin tube groups 33a and 33b, and the incoming water is preheated and also preheated by the combustion exhaust gas from the heating side. Become. For example, even if the incoming tap water is 20 ° C. and this incoming water is preheated by the combustion exhaust gas from the hot water supply side primary heat exchanger 32 and preheated to 30 ° C., the heating side secondary heat exchange is performed through the communication passage 6. The latent heat of the combustion exhaust gas supplied from the case part 43 can be absorbed and preheated to a higher temperature. In short, by letting the combustion exhaust gas on the heating side pass through the heating side secondary heat exchanger 53 and not being discharged as it is, it is introduced into the hot water supply side secondary heat exchanger 33, so that the latent heat recovery on the heating side is insufficient. Unrecovered latent heat can be sufficiently recovered on the hot water supply side, whereby the latent heat recovery efficiency can be increased as much as possible to achieve higher efficiency.

しかも、暖房側からの燃焼排ガスを給湯側2次熱交換ケース部23の前側位置(下流側位置)、すなわち入口側ヘッダ333からの往き側細管群33aの配設位置、要するに入水路35から最初に入水される最も低温の水が流される位置に供給するようにしているため、暖房側からの燃焼排ガスの潜熱をより高い回収効率によって十分に回収することができることになる。   In addition, the combustion exhaust gas from the heating side is first introduced from the front side position (downstream side position) of the hot water supply side secondary heat exchange case 23, that is, the disposition position of the outgoing side narrow tube group 33 a from the inlet side header 333. Thus, the latent heat of the combustion exhaust gas from the heating side can be sufficiently recovered with higher recovery efficiency.

ここで、給湯運転が停止状態(給湯側燃焼バーナ31が燃焼停止状態)で、暖房運転のみ継続中の場合には、暖房側2次熱交換ケース部43から給湯側2次熱交換ケース部23に供給される燃焼排ガスによって給湯側2次熱交換器33内の水が滞留状態のまま予熱されることになるため、給湯側2次熱交換器33を一種の蓄熱槽として機能させることもできるようになる。逆に、暖房運転が停止状態(暖房側燃焼バーナ51が燃焼停止状態)で、給湯運転のみが実行中において、給湯側2次熱交換ケース部23から暖房側への逆流防止のために暖房側の送風ファン54だけ作動させて送風した場合に、この送風が連通路6を通して給湯側2次熱交換ケース部23に流れたとしても、最も低温側の入水が流される位置であるため、送風に起因する熱効率の損失を最小限に抑制することができる。   Here, when the hot water supply operation is stopped (the hot water supply side combustion burner 31 is in the combustion stopped state) and only the heating operation is continued, the heating side secondary heat exchange case unit 43 to the hot water supply side secondary heat exchange case unit 23 are operated. Since the water in the hot water supply side secondary heat exchanger 33 is preheated in a staying state by the combustion exhaust gas supplied to the hot water supply side, the hot water supply side secondary heat exchanger 33 can also function as a kind of heat storage tank. It becomes like this. Conversely, when the heating operation is stopped (the heating-side combustion burner 51 is in the combustion-stopped state) and only the hot water supply operation is being performed, the heating side is used to prevent the backflow from the hot water supply side secondary heat exchange case section 23 to the heating side. Even if only the blower fan 54 is operated and blown, even if this blown air flows through the communication path 6 to the hot water supply side secondary heat exchange case 23, it is the position where the coldest incoming water flows, The resulting loss of thermal efficiency can be minimized.

<第2実施形態>
図5は、本発明の第2実施形態に係る給湯暖房機の原理的な模式図を示す。この給湯暖房機は、第1実施形態と同様に給湯用缶体2を有する給湯回路3と、暖房用缶体4を有する暖房回路5とから2缶2回路に構成され、かつ、コンデンシングタイプに構成されている点は同じであるが、給湯側2次熱交換器81と暖房側2次熱交換器82とを上下に重ねて一体化した2次熱交換器8を用いている点で第1実施形態と異なる。なお、以下において特に説明を加えたものを除き、第1実施形態と同じ構成要素については第1実施形態と尾など符号を付して重複した詳細説明を省略する。
Second Embodiment
FIG. 5: shows the principle schematic diagram of the hot water heater based on 2nd Embodiment of this invention. As in the first embodiment, this hot water heater is composed of a hot water supply circuit 3 having a hot water supply can body 2 and a heating circuit 5 having a heating can body 4 in two cans and two circuits, and a condensing type. However, the secondary heat exchanger 8 in which the hot water supply side secondary heat exchanger 81 and the heating side secondary heat exchanger 82 are integrated one above the other is used. Different from the first embodiment. Note that, except for those that are specifically described below, the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and redundant detailed description is omitted.

この2次熱交換器8は互いに独立して構成された給湯用缶体2と暖房用缶体4とを跨いで両者を連結するような状態に設置される。この連結構造は次のようになっている。すなわち、図6に示すように2次熱交換器8は上側ケース83内に給湯側2次熱交換器81が配設され、下側ケース84内に暖房側2次熱交換器82が配設されている。上側ケース83は図7にも示すように給湯側の集合ケース部25内と後側開口29を通して連通され、下側ケース84は暖房側の集合ケース部45内と後側開口49を通して連通されている。上側ケース83と下側ケース84とは内部において互いに上下方向に段差を設けて配置された2つの仕切り板85,86により仕切られると同時に、前側位置において連通路としての隙間87を通して互いに連通されている。加えて、上側ケース83の前面には排気筒88が前方に突出して開口されている。なお、排気筒88は図7に符号88aで示すように上向きに突出して配置させるようにしてもよい。又、図7中の符号831は第1実施形態でも説明したドレン管である。   The secondary heat exchanger 8 is installed in a state where the hot water supply can body 2 and the heating can body 4 which are configured independently of each other are connected to each other. This connection structure is as follows. That is, as shown in FIG. 6, in the secondary heat exchanger 8, a hot water supply side secondary heat exchanger 81 is disposed in the upper case 83, and a heating side secondary heat exchanger 82 is disposed in the lower case 84. Has been. As shown in FIG. 7, the upper case 83 communicates with the hot water supply-side collective case portion 25 and the rear opening 29, and the lower case 84 communicates with the heating-side collective case portion 45 and the rear opening 49. Yes. The upper case 83 and the lower case 84 are partitioned by two partition plates 85 and 86 that are provided with a step in the vertical direction inside, and at the same time, are communicated with each other through a gap 87 as a communication path at the front position. Yes. In addition, an exhaust cylinder 88 projects forward from the front surface of the upper case 83 and opens. The exhaust pipe 88 may be disposed so as to protrude upward as indicated by reference numeral 88a in FIG. Further, reference numeral 831 in FIG. 7 is the drain pipe described in the first embodiment.

上側ケース83内の給湯側2次熱交換器81は、図8に示すように、入口811に連通する入口側ヘッダ812及び出口813に連通する出口側ヘッダ814と、折返しヘッダ815との間に、往き側及び戻り側の2群の細管群81a,81bが掛け渡されて連通接続されたものである。入口811から入った入水は入口側ヘッダ812で複数の細管からなる往き側細管群81aに分流されて折返しヘッダ815に至り、折返しヘッダ815で一旦合流した後に再度戻り側細管群81bに分流されて出口側ヘッダ814に至る。そして、出口側ヘッダ814で合流されて出口813を通して1次熱交換器32(図5参照)に送られることになる。下側ケース84内の暖房側2次熱交換器82も、構造としては上記と同様であり、入口821に連通する入口側ヘッダ822及び出口823に連通する出口側ヘッダ824と、折返しヘッダ825との間に、往き側及び戻り側の2群の細管群82a,82bが掛け渡されて連通接続されたものである。   As shown in FIG. 8, the hot water supply side secondary heat exchanger 81 in the upper case 83 is provided between an inlet header 812 that communicates with the inlet 811 and an outlet header 814 that communicates with the outlet 813, and the folded header 815. The two groups of narrow tubes 81a and 81b on the forward side and the return side are stretched and connected in communication. The incoming water that has entered from the inlet 811 is diverted to the forward-side narrow tube group 81a composed of a plurality of thin tubes at the inlet-side header 812, reaches the return header 815, and once merges at the return header 815, then is diverted again to the return-side narrow tube group 81b. It reaches the outlet header 814. And it merges by the exit side header 814, and is sent to the primary heat exchanger 32 (refer FIG. 5) through the exit 813. FIG. The heating-side secondary heat exchanger 82 in the lower case 84 has the same structure as described above, and includes an inlet-side header 822 that communicates with the inlet 821, an outlet-side header 824 that communicates with the outlet 823, and a folding header 825. Between these, two groups of narrow tube groups 82a and 82b on the forward side and the return side are stretched and connected in communication.

この第2実施形態の場合も第1実施形態と同様に、暖房側で潜熱回収が不十分なままの燃焼排ガスを給湯側に供給して給湯側において十分に潜熱回収を図ることができるようになる。すなわち、下側ケース84内に対し暖房側1次熱交換ケース部42からの燃焼排ガスが後側開口49を通して流入し、暖房側2次熱交換器82の細管群82b,82aを通過して前側に向けて流れる間に、燃焼排ガスの潜熱が細管群82a,82b内の低温水と熱交換により吸収されて低温水が予熱される。そして、下側ケース84の前側位置まで流れた燃焼排ガスは隙間87から上方の上側ケース83内に流入する。一方、上側ケース83内に対し給湯側1次熱交換ケース部22からの燃焼排ガスが後側開口29を通して流入し、給湯側2次熱交換器81の細管群81b,81aを通過して排気筒88に向けて流れる間に、燃焼排ガスの潜熱が細管群81a,81b内の入水と熱交換により吸収されて入水が予熱される上に、上記の隙間87を通して供給される暖房側からの燃焼排ガスによっても予熱されることになる。これにより、暖房側で未回収の潜熱を暖房側の燃焼排ガスから十分に回収して給湯側の入水をより一層高温まで予熱させることができるようになる。   Also in the case of the second embodiment, as in the first embodiment, the combustion exhaust gas with insufficient latent heat recovery on the heating side can be supplied to the hot water supply side so that the latent heat recovery can be sufficiently performed on the hot water supply side. Become. That is, the combustion exhaust gas from the heating side primary heat exchange case portion 42 flows into the lower case 84 through the rear side opening 49 and passes through the narrow tube groups 82b and 82a of the heating side secondary heat exchanger 82. While flowing toward the bottom, the latent heat of the combustion exhaust gas is absorbed by the low temperature water in the thin tube groups 82a and 82b by heat exchange, and the low temperature water is preheated. The combustion exhaust gas that has flowed up to the front side position of the lower case 84 flows into the upper case 83 from the gap 87. On the other hand, the combustion exhaust gas from the hot water supply side primary heat exchange case portion 22 flows into the upper case 83 through the rear opening 29, passes through the narrow tube groups 81b and 81a of the hot water supply side secondary heat exchanger 81, and the exhaust pipe. While flowing toward 88, the latent heat of the combustion exhaust gas is absorbed by heat exchange with the water in the narrow tube groups 81a and 81b to preheat the water, and the combustion exhaust gas from the heating side supplied through the gap 87 is supplied. Will also be preheated. As a result, the latent heat that has not been recovered on the heating side can be sufficiently recovered from the combustion exhaust gas on the heating side, and the incoming water on the hot water supply side can be preheated to a higher temperature.

しかも、この第2実施形態の場合も、暖房側からの燃焼排ガスを給湯側2次熱交換器部81の前側位置(下流側位置)の最も低温の水が流される位置に供給するようにしているため、暖房側からの燃焼排ガスの潜熱をより高い回収効率によって十分に回収することができることになる。又、給湯運転が停止状態で暖房運転のみ実行される場合や、逆に、給湯運転のみ実行され暖房運転が停止状態の場合の作用効果等として、第1実施形態で説明したものと同様のものを第2実施形態でも得ることができる。   Moreover, also in the case of the second embodiment, the combustion exhaust gas from the heating side is supplied to the front side position (downstream side position) of the hot water supply side secondary heat exchanger section 81 at the position where the coldest water flows. Therefore, the latent heat of the combustion exhaust gas from the heating side can be sufficiently recovered with higher recovery efficiency. Also, when the hot water supply operation is stopped and only the heating operation is executed, or conversely, the same effects as those described in the first embodiment are provided as the effects when the hot water supply operation is executed only and the heating operation is stopped. Can also be obtained in the second embodiment.

なお、この第2実施形態の両仕切り板85,86を隙間87の側に向けて僅かに下り勾配に配置することにより、上側ケース83内で発生する排ガスドレンを下側ケース84内に落下させてドレン管831を通して処理のために集水することができる。   In addition, the exhaust gas drain generated in the upper case 83 is dropped into the lower case 84 by arranging the partition plates 85 and 86 of the second embodiment slightly downwardly inclined toward the gap 87 side. Water can be collected for treatment through a drain pipe 831.

又、上記の仕切り板85,86と、下側ケース84から上側ケース83に対し暖房側からの燃焼排ガスを流入させるための隙間87との態様は各種のものを採用することができる。例えば、図9に示すように、2つの仕切り板91,92を前側位置(同図の左側位置)において前後方向(同図の左右方向)に離隔させ、両者間に所定幅の隙間(連通路)93を形成するようにしてもよい。この場合も両仕切り板91,92を隙間93側に向けて下り勾配に配置すればよい。あるいは、図10に示すように、1乃至2枚以上の仕切板94,95を組み合わせて前側の範囲に2以上の隙間(連通路)96,96,…を開口させるようにしてもよい。この場合、連通路としては隙間状もしくは孔状など形状はいずれでもよく、又、その数も1以上の任意でよい。さらに、仕切り板94から下側ケース84の空間に向けて邪魔板97を垂下させるようにしてもよい。   Various forms of the partition plates 85 and 86 and the gap 87 for allowing the combustion exhaust gas from the heating side to flow into the upper case 83 from the lower case 84 can be adopted. For example, as shown in FIG. 9, two partition plates 91 and 92 are separated in the front-rear direction (left-right position in the figure) in the front-rear direction (left-right direction in the figure), and a gap having a predetermined width (communication path) is formed therebetween. ) 93 may be formed. In this case as well, both partition plates 91 and 92 may be arranged in a downward gradient toward the gap 93 side. Alternatively, as shown in FIG. 10, one or more partition plates 94, 95 may be combined to open two or more gaps (communication paths) 96, 96,. In this case, the communication path may have any shape such as a gap or a hole, and the number thereof may be any one or more. Further, the baffle plate 97 may be suspended from the partition plate 94 toward the space of the lower case 84.

<他の実施形態>
なお、本発明は上記第1及び第2実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、上記第1及び第2実施形態では、2缶2回路に構成された給湯暖房機を示したが、これに限らず、暖房回路5の往き路56の途中に例えば液・液熱交換器を介装させて、この液・液熱交換器と浴槽とを循環路で接続することにより浴槽湯水の追い焚き加熱を行う追い焚き回路を形成し、これにより、2缶3回路に構成してもよい。
<Other embodiments>
The present invention is not limited to the first and second embodiments described above, but includes other various embodiments. That is, in the first and second embodiments, the hot water heater configured in two cans and two circuits is shown. However, the present invention is not limited to this. For example, a liquid / liquid heat exchanger is provided in the middle of the outgoing path 56 of the heating circuit 5. By connecting the liquid / liquid heat exchanger and the bathtub with a circulation path, a reheating circuit for reheating and heating the bathtub hot water is formed, thereby forming a 2-can 3 circuit. Also good.

また、給湯回路2に循環ポンプを設け、給湯運転が停止状態で暖房運転のみが実行される時にその循環ポンプを作動させて2次熱交換器33,81内の滞留水を給湯回路3内で循環させるようにしてもよい。これにより、暖房側の2次熱交換器53,82を通過した後の燃焼排ガスが給湯側2次熱交換器33,81に供給された際における潜熱回収をより高く効率化させることができる。又、この際に上記循環ポンプとして、暖房回路5側の循環ポンプ57と別個に設けるのではなくて、回転羽根もしくは水車のみを給湯回路3側にも設けておき、暖房側の循環ポンプ57のモータからの回転駆動力を受けるようにしてもよい。   In addition, when the hot water supply circuit 2 is provided with a circulation pump and only the heating operation is executed when the hot water supply operation is stopped, the circulation pump is operated to remove the accumulated water in the secondary heat exchangers 33 and 81 in the hot water supply circuit 3. You may make it circulate. Thereby, the latent heat recovery when the combustion exhaust gas after passing through the heating side secondary heat exchangers 53 and 82 is supplied to the hot water supply side secondary heat exchangers 33 and 81 can be made more efficient. At this time, the circulating pump is not provided separately from the circulating pump 57 on the heating circuit 5 side, but only rotating blades or water turbines are also provided on the hot water supply circuit 3 side. You may make it receive the rotational driving force from a motor.

さらに、第2実施形態では給湯側2次熱交換器81を上側ケース83内に、暖房側2次熱交換器82を下側ケース84内に配置しているが、必須ではなく、上下逆にしてもよい。上下逆にしても給湯側2次熱交換器が配置されている側のケースに排気筒を設置することで、暖房側から給湯側への燃焼排ガスの流れが生じるからである。   Furthermore, in the second embodiment, the hot water supply side secondary heat exchanger 81 is disposed in the upper case 83 and the heating side secondary heat exchanger 82 is disposed in the lower case 84. May be. This is because if the exhaust pipe is installed in the case on the side where the hot water supply side secondary heat exchanger is arranged even if it is turned upside down, the combustion exhaust gas flows from the heating side to the hot water supply side.

本発明の第1実施形態を原理的に示す模式図である。It is a schematic diagram which shows 1st Embodiment of this invention in principle. 缶体のより具体的な形状・構造を示す斜視図である。It is a perspective view which shows the more specific shape and structure of a can body. 図3(a)は図2のA−A線における断面説明図、図3(b)は図2のB−B線における断面説明図である。3A is a cross-sectional explanatory view taken along line AA in FIG. 2, and FIG. 3B is a cross-sectional explanatory view taken along line BB in FIG. 2次熱交換器の構造を説明するための斜視図である。It is a perspective view for demonstrating the structure of a secondary heat exchanger. 第2実施形態を原理的に示す模式図である。It is a schematic diagram which shows 2nd Embodiment theoretically. 缶体のより具体的に形状・構造を示す斜視図である。It is a perspective view which shows the shape and structure more specifically of a can body. 図7(a)は図6のC−C線における断面説明図、図7(b)は図6のD−D線における断面説明図である。7A is a cross-sectional explanatory view taken along line CC in FIG. 6, and FIG. 7B is a cross-sectional explanatory view taken along line DD in FIG. 2次熱交換器の構造を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the structure of a secondary heat exchanger. 図7とは異なる他の態様を示すものであり、図9(a)は図7(a)の対応図、図9(b)は図7(b)の対応図である。FIG. 9A shows another mode different from FIG. 7, FIG. 9A is a corresponding diagram of FIG. 7A, and FIG. 9B is a corresponding diagram of FIG. 7B. 図7又は図9とは異なる他の態様を示すものであり、図10(a)は図7(a)の対応図、図10(b)は図7(b)の対応図である。FIG. 10 shows another mode different from FIG. 7 or FIG. 9, FIG. 10 (a) is a corresponding diagram of FIG. 7 (a), and FIG. 10 (b) is a corresponding diagram of FIG. 7 (b). 従来の給湯暖房機の例を示す図1対応図である。It is a figure corresponding to FIG. 1 which shows the example of the conventional hot-water supply heater.

符号の説明Explanation of symbols

2 給湯用缶体
3 給湯回路
4 暖房用缶体
5 暖房回路
6 連通路
33,81 給湯側2次熱交換器
53,82 暖房側2次熱交換器
87,93,96 隙間(連通路)
2 Hot water supply can body 3 Hot water supply circuit 4 Heating can body 5 Heating circuit 6 Communication path 33, 81 Hot water supply side secondary heat exchanger 53, 82 Heating side secondary heat exchanger 87, 93, 96 Clearance (communication path)

Claims (4)

給湯回路と、温水循環式の暖房回路とがそれぞれ潜熱回収用の2次熱交換器を備えた給湯暖房機であって、
暖房回路の燃焼作動により生じた燃焼排ガスが暖房回路側の2次熱交換器を通過した後に給湯回路側の2次熱交換器に向けて供給されるよう両2次熱交換器間を連通させる連通路を備えている
ことを特徴とする給湯暖房機。
The hot water supply circuit and the hot water circulation type heating circuit are each a hot water supply heater equipped with a secondary heat exchanger for collecting latent heat,
Both the secondary heat exchangers are communicated so that the flue gas generated by the combustion operation of the heating circuit passes through the secondary heat exchanger on the heating circuit side and is supplied to the secondary heat exchanger on the hot water supply circuit side. A hot water heater provided with a communication passage.
請求項1記載の給湯暖房機であって、
上記給湯回路と暖房回路とは互いに独立して燃焼作動可能なように2缶2回路に構成され、
給湯回路側の2次熱交換器と暖房回路側の2次熱交換器とは上下各位置に配置され間を仕切られた状態で一体化される一方、その仕切りを貫通して連通路が設けられている、給湯暖房機。
A hot water heater according to claim 1,
The hot water supply circuit and the heating circuit are configured in two cans and two circuits so that the combustion operation can be performed independently of each other.
The secondary heat exchanger on the side of the hot water supply circuit and the secondary heat exchanger on the side of the heating circuit are integrated in a state where they are arranged at upper and lower positions and separated from each other, and a communication passage is provided through the partition. There is a hot water heater.
請求項1記載の給湯暖房機であって、
上記給湯回路と暖房回路とは互いに独立して燃焼作動可能なように2缶2回路に構成され、
給湯回路側の2次熱交換器と暖房回路側の2次熱交換器とは互いに独立して設けられる一方、両2次熱交換器の設置空間は連通路を介して互いに連通接続されている、給湯暖房機。
A hot water heater according to claim 1,
The hot water supply circuit and the heating circuit are configured in two cans and two circuits so that the combustion operation can be performed independently of each other.
The secondary heat exchanger on the hot water supply circuit side and the secondary heat exchanger on the heating circuit side are provided independently of each other, while the installation spaces of both secondary heat exchangers are connected to each other via a communication path. , Hot water heater.
請求項1〜請求項3のいずれかに記載の給湯暖房機であって、
上記連通路は、上記給湯回路の燃焼作動により生じた燃焼排ガスが給湯回路側の2次熱交換器に向けて供給される際の下流側に対応する部位に向けて、上記暖房回路の燃焼作動により生じた燃焼排ガスが供給されるよう、配置されている、給湯暖房機。
A hot water heater according to any one of claims 1 to 3,
The communication path is configured so that the combustion circuit operates toward the portion corresponding to the downstream side when the combustion exhaust gas generated by the combustion operation of the hot water supply circuit is supplied toward the secondary heat exchanger on the hot water supply circuit side. A hot water heater that is arranged so that the combustion exhaust gas generated by the gas is supplied.
JP2005360271A 2005-12-14 2005-12-14 Hot water supply heater Withdrawn JP2007163039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360271A JP2007163039A (en) 2005-12-14 2005-12-14 Hot water supply heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360271A JP2007163039A (en) 2005-12-14 2005-12-14 Hot water supply heater

Publications (1)

Publication Number Publication Date
JP2007163039A true JP2007163039A (en) 2007-06-28

Family

ID=38246142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360271A Withdrawn JP2007163039A (en) 2005-12-14 2005-12-14 Hot water supply heater

Country Status (1)

Country Link
JP (1) JP2007163039A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190556A (en) * 2009-02-17 2010-09-02 Atago Seisakusho:Kk Plate type heat exchanger
CN102109281A (en) * 2009-12-25 2011-06-29 株式会社能率 Heat exchanger and water heater incorporating the same
JP2011144981A (en) * 2010-01-13 2011-07-28 Chofu Seisakusho Co Ltd Water heater
JP2014070800A (en) * 2012-09-28 2014-04-21 Gastar Corp Combustion apparatus
JP2014119225A (en) * 2012-12-19 2014-06-30 Corona Corp Secondary heat exchanging device of latent heat recovery type water heater
JP2017003222A (en) * 2015-06-12 2017-01-05 パーパス株式会社 Heat exchanger and heat source machine
CN108931052A (en) * 2018-08-31 2018-12-04 江苏四方锅炉有限公司 A kind of binary channels big flow adverse current cryogenic heat exchanger for hot-water boiler
JP2019174066A (en) * 2018-03-29 2019-10-10 株式会社ノーリツ Hot water heating device
JP2019215112A (en) * 2018-06-11 2019-12-19 株式会社パロマ Heat exchanger and composite water heater
CN110671811A (en) * 2019-10-21 2020-01-10 珠海格力电器股份有限公司 Gas water heater and control method thereof
JP2021101131A (en) * 2019-12-24 2021-07-08 株式会社ノーリツ Heat exchanger and water heating device
CN114811947A (en) * 2022-04-08 2022-07-29 广东万和新电气股份有限公司 Control method of gas water heater and gas water heater
CN116592511A (en) * 2023-04-14 2023-08-15 广东欧思曼节能设备有限公司 High-efficiency gas positive-displacement water heater

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190556A (en) * 2009-02-17 2010-09-02 Atago Seisakusho:Kk Plate type heat exchanger
CN102109281A (en) * 2009-12-25 2011-06-29 株式会社能率 Heat exchanger and water heater incorporating the same
JP2011144981A (en) * 2010-01-13 2011-07-28 Chofu Seisakusho Co Ltd Water heater
JP2014070800A (en) * 2012-09-28 2014-04-21 Gastar Corp Combustion apparatus
JP2014119225A (en) * 2012-12-19 2014-06-30 Corona Corp Secondary heat exchanging device of latent heat recovery type water heater
JP2017003222A (en) * 2015-06-12 2017-01-05 パーパス株式会社 Heat exchanger and heat source machine
JP7067194B2 (en) 2018-03-29 2022-05-16 株式会社ノーリツ Hot water heating device
JP2019174066A (en) * 2018-03-29 2019-10-10 株式会社ノーリツ Hot water heating device
JP2019215112A (en) * 2018-06-11 2019-12-19 株式会社パロマ Heat exchanger and composite water heater
CN108931052A (en) * 2018-08-31 2018-12-04 江苏四方锅炉有限公司 A kind of binary channels big flow adverse current cryogenic heat exchanger for hot-water boiler
CN110671811A (en) * 2019-10-21 2020-01-10 珠海格力电器股份有限公司 Gas water heater and control method thereof
CN110671811B (en) * 2019-10-21 2023-10-27 珠海格力电器股份有限公司 Gas water heater and control method thereof
JP2021101131A (en) * 2019-12-24 2021-07-08 株式会社ノーリツ Heat exchanger and water heating device
JP7356024B2 (en) 2019-12-24 2023-10-04 株式会社ノーリツ Heat exchanger and hot water equipment
CN114811947A (en) * 2022-04-08 2022-07-29 广东万和新电气股份有限公司 Control method of gas water heater and gas water heater
CN114811947B (en) * 2022-04-08 2024-04-12 广东万和新电气股份有限公司 Control method of gas water heater and gas water heater
CN116592511A (en) * 2023-04-14 2023-08-15 广东欧思曼节能设备有限公司 High-efficiency gas positive-displacement water heater
CN116592511B (en) * 2023-04-14 2023-10-20 广东欧思曼节能设备有限公司 High-efficiency gas positive-displacement water heater

Similar Documents

Publication Publication Date Title
JP2007163039A (en) Hot water supply heater
JP5043859B2 (en) Condenser boiler heat exchanger for heating and hot water supply
JP6645426B2 (en) Fin and tube heat exchanger and hot water supply device provided with the same
KR101608149B1 (en) Plate type high efficiency heat exchanger
US6662758B1 (en) Condensing gas boiler for recollecting condensed latent heat using uptrend combustion
US20190195563A1 (en) Heat exchange device and heat source machine
JP5835569B2 (en) Heat exchanger and hot water device provided with the same
RU2602947C1 (en) Condensation heat exchanger with false tubes
KR20110077308A (en) 2nd heat exchanger of condensing boiler
US9404650B2 (en) Boiler with improved hot gas passages
JP2007120865A (en) Single-drum two-waterway hot water supply system
JP4531018B2 (en) Combined heat source
JP5234349B2 (en) Heat exchanger and water heater
JP2004028447A (en) Secondary heat exchanger and water heater using it
JP4160576B2 (en) Combined heat source machine
JP5900731B2 (en) Water heater
JP2007064551A (en) Combustion apparatus
JP7248275B2 (en) Heat exchangers and combined water heaters
JP2004245515A (en) Heat exchanging device
KR20080056364A (en) Heat exchanger for condensing boiler
JP4179723B2 (en) Heating device
JP3841081B2 (en) Combustion device
KR102348104B1 (en) Plate heat exchanger in particular for a fuel-fired heater
CN100414208C (en) Upward combustion type condensing boiler for recovering latent heat of condensation
JP7289453B2 (en) Water heater

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303