JP4874639B2 - Radiation monitor device - Google Patents

Radiation monitor device Download PDF

Info

Publication number
JP4874639B2
JP4874639B2 JP2005357472A JP2005357472A JP4874639B2 JP 4874639 B2 JP4874639 B2 JP 4874639B2 JP 2005357472 A JP2005357472 A JP 2005357472A JP 2005357472 A JP2005357472 A JP 2005357472A JP 4874639 B2 JP4874639 B2 JP 4874639B2
Authority
JP
Japan
Prior art keywords
signal
processing units
signal processing
radiation
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005357472A
Other languages
Japanese (ja)
Other versions
JP2007163207A (en
Inventor
宏隆 酒井
憲弘 梅村
信一郎 中園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005357472A priority Critical patent/JP4874639B2/en
Publication of JP2007163207A publication Critical patent/JP2007163207A/en
Application granted granted Critical
Publication of JP4874639B2 publication Critical patent/JP4874639B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は、核燃料施設における放射能監視や原子力発電所の核計装等に用いられる放射線モニタ装置に関する。   The present invention relates to a radiation monitoring device used for radioactivity monitoring in nuclear fuel facilities, nuclear instrumentation of nuclear power plants, and the like.

核燃料施設における放射能監視や原子力発電所の核計装においては中性子等の放射線を検出し測定するために放射線モニタ装置が設けられるが、放射線モニタ装置には集積回路が多用されている。集積回路は、使用者が記述言語や回路図等を用いてその構成を決定し得るASIC(アプリケーションスペシフィック・インテグレーテッドサーキット)やFPGA(フィールドプログラマブル・ゲートアレイ)、PLD(プログラマブル・ロジックデバイス)等の大規模化が進み、近年、大規模な処理を1つの集積回路で実現することができるようになっている。   In radiation monitoring at nuclear fuel facilities and nuclear instrumentation at nuclear power plants, a radiation monitor device is provided to detect and measure radiation such as neutrons, and integrated circuits are frequently used in the radiation monitor device. Integrated circuits such as ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), PLD (Programmable Logic Device), etc. whose users can determine the configuration using description language, circuit diagram, etc. In recent years, as the scale has increased, it has become possible to realize large scale processing with a single integrated circuit.

しかしながら、原子力発電所の出力系モニタなど複雑な信号処理を行い高い信頼性が要求される放射線モニタ装置においては、ロジック内部の検証性を確保するために、特許文献1に示されているように内部構成を電気的な入出力試験によって確認した小型のPLD等を複数組み合わせるなど、検証性の観点から大規模化の恩恵を受けにくく、PLD等そのものだけでなく、付随する周辺部品(バッファIC等)も含めてひとつの信号処理回路における部品点数の削減が困難であるという課題がある。   However, in a radiation monitor apparatus that performs complex signal processing such as an output system monitor of a nuclear power plant and requires high reliability, as shown in Patent Document 1, in order to ensure the verification inside the logic, Combining multiple small PLDs whose internal configuration has been confirmed by electrical input / output tests, it is difficult to receive the benefits of large scale from the viewpoint of verification, and not only the PLD itself but also the peripheral components (buffer IC, etc.) ), It is difficult to reduce the number of parts in one signal processing circuit.

集積回路の信頼性確保の方法として、特許文献2のように、集積回路のメモリに関して多数決ロジックを用いて安定性を増す方法あるが、この方法が対象とするのはあくまでランダムエラーの除去のみである。高い信頼性が要求される複雑な信号処理においては、ランダムエラーのみではなく、ロジック自体に内在するバグといったものの影響を避けることが必要であり、この方法では信頼性の高い放射線モニタ装置は得られない。
特開2004−317183号公報 特開2004−336123号公報
As a method of ensuring the reliability of an integrated circuit, there is a method of increasing stability by using a majority logic for the memory of an integrated circuit as in Patent Document 2, but this method is intended only for the removal of random errors. is there. In complex signal processing that requires high reliability, it is necessary to avoid the influence of not only random errors but also bugs inherent in the logic itself. With this method, a highly reliable radiation monitoring device can be obtained. Absent.
JP 2004-317183 A JP 2004-336123 A

本発明は、集積回路の信号処理ロジックにバグ等の欠陥が存在してもそれが顕在化することなく信頼性の高い放射線検出測定を行うことのできる放射線モニタ装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a radiation monitor device capable of performing highly reliable radiation detection measurement without causing any defects such as bugs in the signal processing logic of an integrated circuit. .

上記課題を解決するために請求項1の発明の放射線モニタ装置は、放射線検出信号が入力される信号入力部と、前記信号入力部の出力信号を複数に分岐する信号分岐部と、前記信号分岐部の複数の出力信号に対して放射線レベル演算を行う複数の信号処理部と、前記複数の信号処理部の出力信号に対して多数決処理を行う多数決処理部と、前記多数決処理部の出力信号を表示する信号出力部とを備え、前記複数の信号処理部は少なくとも一つが異なった方式により作られ同じ入出力関係を実現するとともに、前記複数の信号処理部はハードウェアロジックをプログラムすることのできる同一の集積回路内に設けられている構成とする。 In order to solve the above problems, a radiation monitor apparatus according to claim 1 is a signal input unit to which a radiation detection signal is input, a signal branch unit that branches an output signal of the signal input unit into a plurality, and the signal branch A plurality of signal processing units that perform radiation level calculation on a plurality of output signals of the plurality of units, a majority processing unit that performs majority processing on the output signals of the plurality of signal processing units, and an output signal of the majority processing unit A plurality of signal processing units that are formed by different methods to achieve the same input / output relationship, and the plurality of signal processing units can be programmed with hardware logic. A structure is provided in the same integrated circuit.

本発明によれば、集積回路の信号処理ロジックにバグ等の欠陥が存在してもそれが顕在化することなく信頼性の高い放射線検出測定を行うことができる。   According to the present invention, even if a defect such as a bug exists in the signal processing logic of the integrated circuit, it is possible to perform highly reliable radiation detection measurement without revealing it.

以下、本発明に係る放射線モニタ装置の第1ないし第8の実施の形態を図面を参照して説明する。
(第1の実施の形態)
本実施の形態の放射線モニタ装置は、図1に示すように、放射線検出信号が入力される信号入力部1と、信号入力部1の出力信号を複数に分岐する信号分岐部3と、信号分岐部3の複数の出力信号に対して放射線レベル演算を行う複数の信号処理部4a,4b,4cと、複数の信号処理部4a,4b,4cの出力信号に対して多数決処理を行う多数決処理部5と、多数決処理部5の出力信号を表示する信号出力部6とを備え、複数の信号処理部4a,4b,4cはハードウェアロジックをプログラムすることのできる集積回路であるPLD2内に設けられている構成とする。
Hereinafter, first to eighth embodiments of a radiation monitoring apparatus according to the present invention will be described with reference to the drawings.
(First embodiment)
As shown in FIG. 1, the radiation monitor apparatus according to the present embodiment includes a signal input unit 1 to which a radiation detection signal is input, a signal branch unit 3 that branches an output signal of the signal input unit 1 into a plurality, and a signal branch A plurality of signal processing units 4a, 4b, 4c that perform radiation level calculation on a plurality of output signals of the unit 3, and a majority processing unit that performs majority processing on the output signals of the plurality of signal processing units 4a, 4b, 4c 5 and a signal output unit 6 that displays the output signal of the majority processing unit 5, and the plurality of signal processing units 4a, 4b, and 4c are provided in a PLD 2 that is an integrated circuit capable of programming hardware logic. The configuration is as follows.

信号処理部4a,4b,4cは、それぞれ異なった方式により作られて同じ入出力関係を実現する。多数決処理部5は、たとえば信号処理部4a,4b,4cの出力が2値である場合には、図2に示すような、ANDゲート12a,12b,12cとORゲート13からなる論理回路により実現される。   The signal processing units 4a, 4b, and 4c are made by different methods and realize the same input / output relationship. For example, when the outputs of the signal processing units 4a, 4b, and 4c are binary, the majority processing unit 5 is realized by a logic circuit including AND gates 12a, 12b, and 12c and an OR gate 13 as shown in FIG. Is done.

信号の分岐あるいは多数決処理は比較的単純な回路で実現可能であり、これらの部分を外部にたとえば別のPLDなどで構成したとしても、そのPLD自身はたとえば予想される全パターンに対する試験などにより検証は比較的容易である。一方で、各信号処理部4a,4b,4cにおいて試験により全機能の検証を行うことが容易ではない複雑な演算処理を行う構成とするといった形で機能の分担を行うことで、信頼性の高い放射線モニタ装置を提供することができる。また、複数の信号分岐部3や多数決処理部5を有し、そのうちの一部の多数決処理部5が、別の信号分岐部3への入力となる構成してもよい。このように、単純な処理を行う部分をPLDの外に出し、その出力を再びPLDに戻す構成をとってもよい。   Signal branching or majority processing can be realized with a relatively simple circuit. Even if these parts are configured externally, for example, by another PLD, the PLD itself is verified by, for example, testing all expected patterns. Is relatively easy. On the other hand, each signal processing unit 4a, 4b, 4c is highly reliable by sharing functions in the form of a configuration that performs complicated arithmetic processing that is not easy to verify all functions by testing. A radiation monitoring device can be provided. In addition, a plurality of signal branching units 3 and a majority processing unit 5 may be provided, and some of the majority processing units 5 may be input to another signal branching unit 3. In this way, a configuration may be adopted in which a portion for performing simple processing is taken out of the PLD and its output is returned to the PLD again.

信号処理部4a,4b,4cは内部のアルゴリズムを多様性を有するように作成する。たとえば、信号処理部4aは、記述言語Aで、信号処理部4bは記述言語Bで、信号処理部4cは回路図方式でといった形で異なった方式で記述する。   The signal processing units 4a, 4b, and 4c create internal algorithms so as to have diversity. For example, the signal processing unit 4a is described in a different method such as a description language A, the signal processing unit 4b in a description language B, and the signal processing unit 4c in a circuit diagram method.

ロジックのエラーは、1)開発環境に含まれるバグ、たとえば、記述を回路の配線情報に変えるソフトウェアツールに含まれるバグにより設計者の意図どおりに作成されない事象、2)設計者自身の誤り、3)素子自身の部分的な不良、4)設計に使用するライブラリに含まれるバグ、といったケースが考えられるが、上記のような多様性をとることによって、開発環境に含まれるバグのうち、記述をPLD2の配線情報として実装する部分までについては多様性が確保される。設計者自身の誤りについては、同一人物によるコーディングでも、異なる記述方法をとることによって、同一のエラーを別の記述にまで含める可能性は小さくなる。場合によってはそれぞれの記述に対して別の設計者が作業を行うことによってより信頼性の高い構成とすることができる。素子自身の部分的な不良に対しては、別々の部分で同一の入出力関係を実現するアルゴリズムを並列に作動させることによって、その影響を排除できる。ライブラリに含まれるバグについてはそれぞれの設計で使用するライブラリを異なったものとすることによって信頼性の高い構成とすることができる。このようにエラーを回避することができる。   Logic errors are: 1) a bug that is included in the development environment, for example, an event that is not created as intended by the designer due to a bug that is included in a software tool that changes the description to circuit wiring information; There are cases where the device itself is partially defective, and 4) bugs are included in the library used in the design. By taking the diversity described above, the bugs included in the development environment can be described. Diversity is ensured up to the part to be mounted as the wiring information of PLD2. Regarding the error of the designer himself, even if coding by the same person, the possibility of including the same error in another description is reduced by adopting different description methods. In some cases, a different designer can work on each description to achieve a more reliable configuration. The effects of partial failure of the element itself can be eliminated by operating in parallel algorithms that realize the same input / output relationship in different parts. Regarding bugs included in the library, it is possible to make the configuration highly reliable by making the library used in each design different. In this way, errors can be avoided.

以上のように本実施の形態によれば、集積回路であるPLD2の信号処理ロジックにバグ等の欠陥が存在してもそれが顕在化することなく信頼性の高い放射線検出測定を行うことができ、単一の故障や不具合がすぐに装置全体の停止や不具合にならない。
なお、信号処理部4a,4b,4cは、少なくとも一つが異なった方式により作られて同じ入出力関係を実現するものでもよい。
As described above, according to the present embodiment, even if a defect such as a bug exists in the signal processing logic of the PLD 2 that is an integrated circuit, it is possible to perform highly reliable radiation detection measurement without revealing the defect. A single failure or malfunction does not immediately stop or malfunction the entire device.
Note that at least one of the signal processing units 4a, 4b, and 4c may be made by a different method to realize the same input / output relationship.

(第2の実施の形態)
次に、図3を用いて第2の実施の形態を説明する。本実施の形態では、信号分岐部3と、多数決処理部5をPLD2の中に設ける。したがって、入力信号の各信号処理部4a,4b,4cへの分岐、および各信号処理部4a,4b,4cの出力信号の多数決処理はPLD2の内部において行われる。信号処理部4a,4b,4cのロジックの設計方法は第1の実施の形態におけると同じである。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. In the present embodiment, the signal branching unit 3 and the majority processing unit 5 are provided in the PLD 2. Therefore, the branching of the input signal to the signal processing units 4a, 4b and 4c and the majority processing of the output signals of the signal processing units 4a, 4b and 4c are performed inside the PLD 2. The logic design method of the signal processing units 4a, 4b, and 4c is the same as that in the first embodiment.

本実施の形態によれば、回路部品点数が低減されて装置の構造が簡潔になり、集積回路であるPLD2の信号処理ロジックにバグ等の欠陥が存在してもそれが顕在化することなく信頼性の高い放射線検出測定を行うことができる。   According to the present embodiment, the number of circuit parts is reduced, the structure of the device is simplified, and even if a defect such as a bug exists in the signal processing logic of the PLD 2 that is an integrated circuit, it can be trusted without revealing it. A highly sensitive radiation detection measurement can be performed.

(第3の実施の形態)
次に、図4を用いて第3の実施の形態を説明する。本実施の形態では、信号処理部4a,4b,4cの処理の設定値を保存する設定値保存部7a,7b,7cを、それぞれの信号処理部に対して独立に設けた設けた構成とする。信号処理部4a,4b,4cはそれぞれの専用の設定値保存部7a,7b,7cから設定値を読み込む。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG. In the present embodiment, setting value storage units 7a, 7b, and 7c that store setting values for processing of the signal processing units 4a, 4b, and 4c are provided independently for the respective signal processing units. . The signal processing units 4a, 4b, and 4c read the setting values from the dedicated setting value storage units 7a, 7b, and 7c, respectively.

本実施の形態によれば、集積回路であるPLD2の信号処理ロジックにバグ等の欠陥が存在してもそれが顕在化することなく信頼性の高い放射線検出測定を行うことができる。また、PLD2内での設定値読み込みラインのエラーの影響が信号処理に影響を与えることを避けることができる。   According to the present embodiment, even if a defect such as a bug exists in the signal processing logic of the PLD 2 that is an integrated circuit, highly reliable radiation detection measurement can be performed without revealing the defect. Further, it is possible to avoid the influence of the error of the setting value reading line in the PLD 2 from affecting the signal processing.

(第4の実施の形態)
次に、図5を用いて第4の実施の形態を説明する。本実施の形態では、信号分岐部3a,3bと、信号処理部4a,4b,4c,8a,8b,8cと、多数決処理部5a,5bがPLD2内に設けられている。このような構成において、多数決処理部5aの出力を一旦PLD2の外に出した後、再び信号分岐部3bの入力としてPLD2の入力とし、信号分岐部3bからの3出力を信号処理部4a〜4cとは別の処理を行う信号処理部8a〜8cに並列に入力し、その出力を多数決処理部5bにて処理する構成とする。すなわち、PLD2は、所定のステップごとに一旦PLD2外部に信号を出し、その結果を再びPLD2に戻す処理を行う。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIG. In the present embodiment, signal branching units 3a and 3b, signal processing units 4a, 4b, 4c, 8a, 8b, and 8c, and majority processing units 5a and 5b are provided in PLD2. In such a configuration, after the output of the majority processing unit 5a is once taken out of the PLD 2, it is again used as the input of the PLD 2 as the input of the signal branch unit 3b, and the three outputs from the signal branch unit 3b are used as signal processing units 4a to 4c. The signal processing units 8a to 8c that perform processing different from the above are input in parallel, and the output is processed by the majority processing unit 5b. That is, the PLD 2 once outputs a signal to the outside of the PLD 2 every predetermined step and performs a process of returning the result to the PLD 2 again.

本実施の形態によれば、集積回路であるPLD2の信号処理ロジックにバグ等の欠陥が存在してもそれが顕在化することなく信頼性の高い放射線検出測定を行うことができる。また、信号処理部4a〜8cをモジュール化し再使用が容易となるとともに、その機能の重要度に応じて外部に一旦信号を出すことで検証性を確保することができる。   According to the present embodiment, even if a defect such as a bug exists in the signal processing logic of the PLD 2 that is an integrated circuit, highly reliable radiation detection measurement can be performed without revealing the defect. Further, the signal processing units 4a to 8c are modularized and can be easily reused, and verification can be ensured by outputting a signal once to the outside according to the importance of the function.

(第5の実施の形態)
次に、図6を用いて第5の実施の形態を説明する。本実施の形態は、前記第4の実施の形態において信号分岐部3a,3bおよび多数決処理部5a,5bをPLD2の外に設けた構成である。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIG. In the fourth embodiment, the signal branching units 3a and 3b and the majority processing units 5a and 5b are provided outside the PLD 2 in the fourth embodiment.

PLD2内には複数の信号処理部4a,4b,4c,8a,8b,8cを有し、所定のステップごとに一旦PLD2外部にて多数決処理を行い、その結果を再びPLD2に戻す処理を行う。すなわち、多数決処理部5aの出力を信号分岐部3bの入力とした上で、信号分岐部3bからの3出力を再びPLD2に並列に入力し、その内部で信号処理部4a〜4cとは別の処理を行う信号処理部8a〜8cで処理を行い、その出力を多数決処理部5bにて処理する。   The PLD 2 includes a plurality of signal processing units 4a, 4b, 4c, 8a, 8b, and 8c. A majority process is once performed outside the PLD 2 at every predetermined step, and the result is returned to the PLD 2 again. That is, after the output of the majority processing unit 5a is used as the input of the signal branching unit 3b, the three outputs from the signal branching unit 3b are again input in parallel to the PLD 2, and the signal processing units 4a to 4c are different from those inside. Processing is performed by the signal processing units 8a to 8c that perform processing, and the output is processed by the majority processing unit 5b.

本実施の形態によれば、集積回路であるPLD2の信号処理ロジックにバグ等の欠陥が存在してもそれが顕在化することなく信頼性の高い放射線検出測定を行うことができる。また、信号処理部4a〜8cのロジックを他の設計で再使用することが容易となるとともに、その機能の重要度に応じて外部に一旦信号を出すことで検証性を確保することができる。
なお、図6では、多数決処理部5a,5bおよび信号分岐部3a,3bをPLD2の外に設けているが、これらの一部をPLD2内に入れた構成としてもよい。
According to the present embodiment, even if a defect such as a bug exists in the signal processing logic of the PLD 2 that is an integrated circuit, highly reliable radiation detection measurement can be performed without revealing the defect. In addition, the logic of the signal processing units 4a to 8c can be easily reused in other designs, and verification can be ensured by outputting a signal once in accordance with the importance of the function.
In FIG. 6, the majority processing units 5 a and 5 b and the signal branching units 3 a and 3 b are provided outside the PLD 2, but a part of them may be included in the PLD 2.

(第6の実施の形態)
次に、図7を用いて第6の実施の形態を説明する。本実施の形態の放射線モニタ装置は、放射線検出信号が入力される信号入力部1と、信号入力部1の出力信号を分岐する信号分岐部3と、メーカーが異なる等、製造ロットが異なり、信号分岐部3の出力信号を受けて同一信号の処理を行うように構成されたPLD9a〜9cと、これらのPLDの出力信号の多数決処理を行う多数決処理部5及び、表示や別の処理部が含まれる信号出力部6からなる。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIG. The radiation monitor apparatus according to the present embodiment has different production lots such as a signal input unit 1 to which a radiation detection signal is input and a signal branch unit 3 that branches an output signal of the signal input unit 1 from different manufacturers. Includes PLDs 9a to 9c configured to receive the output signal of branching unit 3 and process the same signal, majority processing unit 5 to perform majority processing of the output signals of these PLDs, and display and other processing units Signal output unit 6.

PLD9a,9b,9cはそれぞれ別のメーカー製のものである等、製造ロットが異なるので多様性が確保される。または、同一のメーカー製のPLDであっても、設計に使用するソフトウェアツールをそれぞれ別のものとしたり、設計に使用する記述言語をそれぞれ別のものとしたり、または設計者を別のものとしたり、使用するライブラリをそれぞれ別のものとしたりして多様性を確保してもよい。   Since the PLDs 9a, 9b, 9c are manufactured by different manufacturers and the production lots are different, diversity is ensured. Or, even for PLDs made by the same manufacturer, the software tools used for the design are different, the description languages used for the design are different, or the designers are different. Alternatively, different libraries may be used to ensure diversity.

本実施の形態の放射線モニタ装置は、PLD9a,9b,9cすべてを別のメーカー製とした場合、メーカーの製造プロセスの欠陥による影響を直接的に受けずに済む。また設計に使用するソフトウェアツールのメーカーをそれぞれ別のものとすることで、ソフトウェアツール自身の欠陥による影響を直接的に受けずに済む。また設計に使用するライブラリをそれぞれ別のものとすることで、ライブラリに含まれる欠陥による影響を直接的に核計装・放射線モニタが受けずに済む。あるいはPLDロジックの設計者が異なるようにすることで、設計者自身の記述スタイルによる欠陥の影響を直接的に受けずに済む。   When all of the PLDs 9a, 9b, and 9c are manufactured by different manufacturers, the radiation monitor apparatus according to the present embodiment does not need to be directly affected by the manufacturing process defects. In addition, by making each software tool manufacturer used for design different, it is not necessary to be directly affected by defects of the software tool itself. In addition, by using different libraries for the design, the nuclear instrumentation / radiation monitor is not directly affected by the defects contained in the library. Alternatively, by making the PLD logic designers different, it is not necessary to be directly affected by defects due to the designer's own writing style.

したがって本実施の形態によれば、集積回路であるPLD9a,9b,9cの信号処理ロジックにバグ等の欠陥が存在してもそれが顕在化することなく信頼性の高い放射線検出測定を行うことができる。   Therefore, according to the present embodiment, even if a defect such as a bug exists in the signal processing logic of the PLDs 9a, 9b, and 9c that are integrated circuits, it is possible to perform highly reliable radiation detection measurement without revealing it. it can.

(第7の実施の形態)
本実施の形態は、図8に示すように、PLD2内の多様性を持った信号処理部4a,4b,4cあるいは異なるPLD2に対してその動作のための電源10a,10b,10cを独立して接続した構成とする。
(Seventh embodiment)
In the present embodiment, as shown in FIG. 8, the signal processing units 4a, 4b, 4c having diversity in the PLD 2 or the power supplies 10a, 10b, 10c for the operation of the different PLDs 2 are independently provided. Connected configuration.

本実施の形態によれば、集積回路であるPLD2の信号処理ロジックにバグ等の欠陥が存在してもそれが顕在化することなく信頼性の高い放射線検出測定を行うことができる。また、電源10a,10b,10cのいずれかの動作の不安定性が信号処理部4a,4b,4cあるいはPLD2に対する共通故障要因となることを避けることができる。   According to the present embodiment, even if a defect such as a bug exists in the signal processing logic of the PLD 2 that is an integrated circuit, highly reliable radiation detection measurement can be performed without revealing the defect. Further, it is possible to avoid the instability of the operation of any of the power supplies 10a, 10b, and 10c from becoming a common failure factor for the signal processing units 4a, 4b, 4c, or the PLD 2.

(第8の実施の形態)
本実施の形態は、図9に示すように、PLD2内の多様性を持った信号処理部4a,4b,4cあるいは、多様性を持った異なるPLD2に対してその動作のためのクロック供給源11a,11b,11cを独立して設けた構成とする。
(Eighth embodiment)
In this embodiment, as shown in FIG. 9, the signal processing units 4a, 4b, 4c having diversity in the PLD 2 or the clock supply source 11a for the operation with respect to different PLDs 2 having diversity. , 11b, 11c are provided independently.

こうした構成とすることで、各信号処理部4a,4b,4cに対して独立の動作クロックを供給し、1つのクロック供給源の動作の不安定性が多様性を有する信号処理部4a,4b,4cあるいはPLD2に対する共通故障要因となることを避けることができる。
本実施の形態によれば、集積回路であるPLD2の信号処理ロジックにバグ等の欠陥が存在してもそれが顕在化することなく信頼性の高い放射線検出測定を行うことができる。
With such a configuration, independent operation clocks are supplied to the respective signal processing units 4a, 4b, and 4c, and the signal processing units 4a, 4b, and 4c in which the instability of the operation of one clock supply source is diverse. Or it can avoid becoming a common failure factor with respect to PLD2.
According to the present embodiment, even if a defect such as a bug exists in the signal processing logic of the PLD 2 that is an integrated circuit, highly reliable radiation detection measurement can be performed without revealing the defect.

(第9の実施の形態)
本実施の形態は、前記第1ないし第8の形態の放射線モニタ装置において、多数決処理部5,5a,5bにおいてすべての入力信号が同値を示さなかった場合に信号出力部6にエラー信号を出す構成とする。なお、エラー信号については、入力信号が同値を示さないエラーが連続的に起きないこともありうるので、エラー信号が一旦生じたらリセット動作を行わない限り継続して出力されるようにする。
(Ninth embodiment)
In this embodiment, in the radiation monitor apparatus according to the first to eighth embodiments, an error signal is output to the signal output unit 6 when all the input signals do not show the same value in the majority processing units 5, 5a, 5b. The configuration. As for the error signal, an error in which the input signals do not show the same value may not continuously occur. Therefore, once the error signal is generated, it is continuously output unless the reset operation is performed.

こうした構成とすることで、集積回路の信号処理ロジックにバグ等の欠陥が存在してもそれが顕在化することなく信頼性の高い放射線検出測定を行うことができる。また、信号処理部4a,4b,4c,8a,8b,8cに発生したエラーを早期に発見し、原子力施設の安全系に影響を与えるような故障に至る前に放射線モニタ装置の故障を検知することができる。なお第1ないし第9の実施の形態におけるPLDはFPGAであってもよい。   With such a configuration, even if a defect such as a bug exists in the signal processing logic of the integrated circuit, highly reliable radiation detection measurement can be performed without revealing the defect. Further, an error that has occurred in the signal processing units 4a, 4b, 4c, 8a, 8b, and 8c is detected at an early stage, and the failure of the radiation monitor device is detected before a failure that affects the safety system of the nuclear facility is reached. be able to. Note that the PLD in the first to ninth embodiments may be an FPGA.

本発明の第1の実施の形態の放射線モニタ装置の構成を示すブロック図。The block diagram which shows the structure of the radiation monitor apparatus of the 1st Embodiment of this invention. 本発明の第1の実施の形態の放射線モニタ装置に備えられる多数決処理部の構成を示す論理回路図。The logic circuit diagram which shows the structure of the majority process part with which the radiation monitor apparatus of the 1st Embodiment of this invention is equipped. 本発明の第2の実施の形態の放射線モニタ装置の構成を示すブロック図。The block diagram which shows the structure of the radiation monitor apparatus of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の放射線モニタ装置の構成を示すブロック図。The block diagram which shows the structure of the radiation monitor apparatus of the 3rd Embodiment of this invention. 本発明の第4の実施の形態の放射線モニタ装置の構成を示すブロック図。The block diagram which shows the structure of the radiation monitor apparatus of the 4th Embodiment of this invention. 本発明の第5の実施の形態の放射線モニタ装置の構成を示すブロック図。The block diagram which shows the structure of the radiation monitor apparatus of the 5th Embodiment of this invention. 本発明の第6の実施の形態の放射線モニタ装置の構成を示すブロック図。The block diagram which shows the structure of the radiation monitor apparatus of the 6th Embodiment of this invention. 本発明の第7の実施の形態の放射線モニタ装置の構成を示すブロック図。The block diagram which shows the structure of the radiation monitor apparatus of the 7th Embodiment of this invention. 本発明の第8の実施の形態の放射線モニタ装置の構成を示すブロック図。The block diagram which shows the structure of the radiation monitor apparatus of the 8th Embodiment of this invention.

符号の説明Explanation of symbols

1…信号入力部、2…PLD、3,3a…信号分岐部、3b…信号再分岐部、4a,4b,4c…信号処理部、5,5a…多数決処理部、5b…再多数決処理部、6…信号出力部、7a,7b,7c…設定値保存部、8a,8b,8c…信号再処理部、9a,9b,9c…PLD、10a,10b,10c…電源、11a,11b,11c…クロック供給源、12a,12b,12c…ANDゲート、13…ORゲート。   DESCRIPTION OF SYMBOLS 1 ... Signal input part, 2 ... PLD, 3, 3a ... Signal branch part, 3b ... Signal re-branch part, 4a, 4b, 4c ... Signal processing part, 5, 5a ... Majority processing part, 5b ... Re-majority processing part, 6 ... Signal output unit, 7a, 7b, 7c ... Set value storage unit, 8a, 8b, 8c ... Signal reprocessing unit, 9a, 9b, 9c ... PLD, 10a, 10b, 10c ... Power supply, 11a, 11b, 11c ... Clock supply source, 12a, 12b, 12c... AND gate, 13.

Claims (8)

放射線検出信号が入力される信号入力部と、前記信号入力部の出力信号を複数に分岐する信号分岐部と、前記信号分岐部の複数の出力信号に対して放射線レベル演算を行う複数の信号処理部と、前記複数の信号処理部の出力信号に対して多数決処理を行う多数決処理部と、前記多数決処理部の出力信号を表示する信号出力部とを備え、
前記複数の信号処理部は少なくとも一つが異なった方式により作られ同じ入出力関係を実現するとともに、前記複数の信号処理部はハードウェアロジックをプログラムすることのできる同一の集積回路内に設けられていることを特徴とする放射線モニタ装置。
A signal input unit to which a radiation detection signal is input, a signal branch unit that branches the output signal of the signal input unit into a plurality of signals, and a plurality of signal processes that perform radiation level calculation on the plurality of output signals of the signal branch unit A majority processing unit that performs majority processing on output signals of the plurality of signal processing units, and a signal output unit that displays an output signal of the majority processing unit,
At least one of the plurality of signal processing units is formed by a different method to achieve the same input / output relationship, and the plurality of signal processing units are provided in the same integrated circuit that can program hardware logic. A radiation monitor device characterized by comprising:
前記複数の信号処理部は、少なくとも一つが異なるライブラリを用いて設計されていることを特徴とする請求項1記載の放射線モニタ装置。   The radiation monitor apparatus according to claim 1, wherein at least one of the plurality of signal processing units is designed using different libraries. 前記複数の信号処理部は、少なくとも一つが異なる記述方法または記述言語により設計されていることを特徴とする請求項1記載の放射線モニタ装置。   The radiation monitor apparatus according to claim 1, wherein at least one of the plurality of signal processing units is designed by a different description method or description language. 前記集積回路は、前記信号分岐部と前記多数決処理部を備えていることを特徴とする請求項1乃至のいずれかに記載の放射線モニタ装置。 The integrated circuit, radiation monitoring device according to any one of claims 1 to 3, characterized in that it comprises the said signal branching section majority processing unit. 前記複数の信号処理部に対する設定値を保存する複数の設定値保存部がそれぞれ独立に設けられていることを特徴とする請求項1又は4のいずれかに記載の放射線モニタ装置。 The radiation monitoring device according to claim 1 or 4, wherein a plurality of setting value storage unit for storing the set values for the plurality of signal processing units are provided independently of each other. 前記複数の信号処理部に対してそれぞれ独立に電力を供給する電源を備えていることを特徴とする請求項1又は4のいずれかに記載の放射線モニタ装置。 The radiation monitoring device according to claim 1 or 4, characterized in that it comprises a power supply for supplying power independently to the plurality of signal processing units. 前記複数の信号処理部に対してそれぞれ独立な動作クロックを供給するクロック供給源を備えていることを特徴とする請求項1又は4のいずれかに記載の放射線モニタ装置。 The radiation monitoring device according to claim 1 or 4, characterized in that it comprises a clock supply source for supplying the independent operation clock to the plurality of signal processing units. 前記多数決処理部は、入力された複数の値の間に違いがあった場合に前記信号出力部に装置のリセットを行わない限り継続して出し続けられるエラー信号を出力することを特徴とする請求項1乃至のいずれかに記載の放射線モニタ装置。 The majority processing section outputs an error signal that can be continuously output unless the apparatus is reset to the signal output section when there is a difference between a plurality of input values. Item 5. The radiation monitor device according to any one of Items 1 to 4 .
JP2005357472A 2005-12-12 2005-12-12 Radiation monitor device Expired - Fee Related JP4874639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357472A JP4874639B2 (en) 2005-12-12 2005-12-12 Radiation monitor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357472A JP4874639B2 (en) 2005-12-12 2005-12-12 Radiation monitor device

Publications (2)

Publication Number Publication Date
JP2007163207A JP2007163207A (en) 2007-06-28
JP4874639B2 true JP4874639B2 (en) 2012-02-15

Family

ID=38246277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357472A Expired - Fee Related JP4874639B2 (en) 2005-12-12 2005-12-12 Radiation monitor device

Country Status (1)

Country Link
JP (1) JP4874639B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448360B (en) * 2015-12-22 2018-05-25 清华大学 Nearly isometrical ball flow tube based on vibration signal processing passes by ball detecting system and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144578A (en) * 1979-04-28 1980-11-11 Japan Atom Energy Res Inst Method for measuring neutron irradiation and accumulation dose
JP2510750B2 (en) * 1990-03-16 1996-06-26 株式会社日立製作所 A fault tolerant system, a method of synchronizing between redundant systems, and a multiplexed clock oscillator
JPH07294688A (en) * 1994-04-21 1995-11-10 Toshiba Corp Reactor power monitor
US5984504A (en) * 1997-06-11 1999-11-16 Westinghouse Electric Company Llc Safety or protection system employing reflective memory and/or diverse processors and communications
JP2002116286A (en) * 2000-10-06 2002-04-19 Mitsubishi Nuclear Fuel Co Ltd Abnormality response device
JP4080873B2 (en) * 2000-11-24 2008-04-23 浜松ホトニクス株式会社 Radiation detector
FR2832685A1 (en) * 2001-11-23 2003-05-30 Conception & Dev Michelin Sa ELECTRIC STEERING FOR VEHICLE, TRIPLE REDUNDANCY
JP2003287587A (en) * 2002-03-27 2003-10-10 Toshiba Corp Plant protection instrumentation device

Also Published As

Publication number Publication date
JP2007163207A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
US7634713B1 (en) Error detection and location circuitry for configuration random-access memory
US6233182B1 (en) Semiconductor integrated circuit and method for testing memory
Giordano et al. Redundant-configuration scrubbing of SRAM-based FPGAs
CN104583969B (en) Computer equipped with a self-monitoring function, monitoring method
EP2631803B1 (en) Methods and apparatus for automatic fault detection
JP6717059B2 (en) Control system
US7800396B2 (en) Semiconductor integrated circuit, control method, and information processing apparatus
McWilliam et al. Zero-maintenance of electronic systems: Perspectives, challenges, and opportunities
US9404972B2 (en) Diagnosis and debug with truncated simulation
US20100107005A1 (en) Processor operation inspection system and operation inspection circuit
JP4874639B2 (en) Radiation monitor device
JP4762204B2 (en) Program development support device
CN116802640A (en) Structural analysis for determining fault type in safety-related logic
Kogan et al. Advanced uniformed test approach for automotive SoCs
JP2013242746A (en) Failure detection system and method, and semiconductor device
JP5348418B2 (en) controller
JPS63193237A (en) Semiconductor integrated circuit device
KR102408165B1 (en) Repair analysis apparatus of tester for semiconductor device, method for repair analysis and tester for semiconductor device
JP5563700B2 (en) Control device
JP2004318254A (en) Testing device for safety protection measuring device
JP6925751B2 (en) Semiconductor devices and their test methods
JP4526985B2 (en) Test system
CN115374735A (en) Automation for functional safety diagnostic coverage
JP5513862B2 (en) Microcomputer failure analysis system
JP4518790B2 (en) Semiconductor device and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4874639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees