JP4873388B2 - Starting device - Google Patents

Starting device Download PDF

Info

Publication number
JP4873388B2
JP4873388B2 JP2008192999A JP2008192999A JP4873388B2 JP 4873388 B2 JP4873388 B2 JP 4873388B2 JP 2008192999 A JP2008192999 A JP 2008192999A JP 2008192999 A JP2008192999 A JP 2008192999A JP 4873388 B2 JP4873388 B2 JP 4873388B2
Authority
JP
Japan
Prior art keywords
shape
blade thickness
thickness direction
front edge
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008192999A
Other languages
Japanese (ja)
Other versions
JP2010031706A (en
Inventor
上野康男
Original Assignee
上野 康男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上野 康男 filed Critical 上野 康男
Priority to JP2008192999A priority Critical patent/JP4873388B2/en
Publication of JP2010031706A publication Critical patent/JP2010031706A/en
Application granted granted Critical
Publication of JP4873388B2 publication Critical patent/JP4873388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Description

本発明は、風力発電装置、波力発電装置、船舶の帆走装置等に広く応用可能な起動装置に関するものである。   The present invention relates to a starter that can be widely applied to wind power generators, wave power generators, marine sailing devices, and the like.

従来、航空機の翼や流体機械用の翼の断面形状についてはその目的に応じて各種のものが提案されている。 しかし、一般に±90度近い大きな迎角において流れに直角な力(揚力)を出すことが出来るものは知られていない。 そのために現在、特に垂直軸型風力発電装置の起動特性の改良、往復流を利用する波力発電装置の起動特性の改良及び船舶の補助動力としての帆走装置における低速時での推進力を増強することが出来る起動装置の実現が待たれている。   Conventionally, various types of cross-sectional shapes of aircraft wings and fluid machinery wings have been proposed depending on the purpose. However, there is no known one that can generate a force (lift) perpendicular to the flow at a large angle of attack generally close to ± 90 degrees. To that end, especially the improvement of the starting characteristics of the vertical axis wind power generator, the improvement of the starting characteristics of the wave power generator using the reciprocating flow, and the propulsive force at low speed in the sailing device as auxiliary power of the ship is enhanced. The realization of an activation device that can be used is awaited.

本出願人が出願中の前翼が1枚、後翼が2枚の組合せ翼ユニット及び前翼が2枚、後翼が1枚の組合せ翼ユニットが有るが、更なる高性能化を要望される場合がある。
特願平9−58582 特願2006−90745
The applicant has a combination wing unit with one front wing, two rear wings, and two combination wing units with one front wing and one rear wing. There is a case.
Japanese Patent Application No. 9-58582 Japanese Patent Application No. 2006-90745

本発明は、上記背景の下に成立するものであり、本発明の第1の手段は、対称翼断面形状をなす主要部の前縁部に、該前縁部に直角な複数の仕切り板を断面に対して交互に傾斜したごとく設け、該仕切り板の間にいわゆるスラットを形成する複数の曲面板を翼厚方向に交互に設け、流体の流入部の形状をスパン方向に短く翼弦方向に長く形成し, 流体の流出部の形状をスパン方向に長く翼厚方向に短く形成した回転翼を設けた風力発電装置の起動装置を提供するものである。   The present invention is established under the above-mentioned background, and the first means of the present invention is that a plurality of partition plates perpendicular to the front edge are formed on the front edge of the main part having a symmetric wing cross-sectional shape. Provided as if they were alternately inclined with respect to the cross section, a plurality of curved plates forming so-called slats were alternately provided in the blade thickness direction between the partition plates, and the shape of the fluid inflow portion was short in the span direction and long in the chord direction In addition, the present invention provides a starter for a wind turbine generator provided with a rotor blade in which the shape of the fluid outflow portion is long in the span direction and short in the blade thickness direction.

本発明の第2の手段は、対称翼断面形状をなす主要部の前縁部に、該前縁部に直角な複数の仕切り板を断面に対して交互に傾斜したごとく設け、該仕切り板の間にいわゆるスラットを形成する複数の曲面板を翼厚方向に交互に設け、流体の流入部の形状をスパン方向に短く翼弦方向に長く形成し, 流体の流出部の形状をスパン方向に長く翼厚方向に短く形成した回転翼を設けた水力発電装置の起動装置を提供するものである。   According to a second means of the present invention, a plurality of partition plates perpendicular to the front edge portion are provided at the front edge portion of the main portion having a symmetric wing cross-sectional shape so as to be alternately inclined with respect to the cross section, and between the partition plates. A plurality of curved plates forming so-called slats are provided alternately in the blade thickness direction, the shape of the fluid inflow portion is short in the span direction and long in the chord direction, and the shape of the fluid outflow portion is long in the span direction. A starter for a hydroelectric generator provided with a rotor blade formed short in the direction is provided.

本発明の第3の手段は、対称翼断面形状をなす主要部の前縁部に、該前縁部に直角な複数の仕切り板を断面に対して交互に傾斜したごとく設け、該仕切り板の間にいわゆるスラットを形成する複数の曲面板を翼厚方向に交互に設け、流体の流入部の形状をスパン方向に短く翼弦方向に長く形成し, 流体の流出部の形状をスパン方向に長く翼厚方向に短く形成した推進機構を船体に対して上向きに又進行方向に並行に設けた船舶の起動装置を提供するものである。   According to a third means of the present invention, a plurality of partition plates perpendicular to the front edge portion are provided at the front edge portion of the main portion having a symmetric wing cross-sectional shape so as to be alternately inclined with respect to the cross section, and between the partition plates. A plurality of curved plates forming so-called slats are provided alternately in the blade thickness direction, the shape of the fluid inflow portion is short in the span direction and long in the chord direction, and the shape of the fluid outflow portion is long in the span direction. Provided is a marine vessel starter provided with a propulsion mechanism formed short in a direction upward with respect to a hull and in parallel with a traveling direction.

本発明は、対称翼断面形状をなす主要部の前縁部に、該前縁部に直角な複数の仕切り板を断面に対して交互に傾斜したごとく設け、該仕切り板の間にいわゆるスラットを形成する複数の曲面板を翼厚方向に交互に設け、流体の流入部の形状をスパン方向に短く翼弦方向に長く形成し, 流体の流出部の形状をスパン方向に長く翼厚方向に短く形成した回転翼を設けることにより垂直軸型風力発電装置の起動特性を大幅に向上するものである。
また、上記構造の回転翼を取り付けることにより往復流を利用する波力発電装置の起動特性を大幅に向上し、小さな波での発電を可能にするものである。
更に上記構造の推進機構を船体に対して上向きに又進行方向に並行に固定的に設けることにより、船舶の補助動力としての帆走装置の低速時における推進力を高めることが出来るものである。
In the present invention, a plurality of partition plates perpendicular to the front edge portion are provided at the front edge portion of the main portion having a symmetric wing cross-sectional shape so as to be alternately inclined with respect to the cross section, and so-called slats are formed between the partition plates. A plurality of curved plates are provided alternately in the blade thickness direction, the shape of the fluid inflow part is short in the span direction and long in the chord direction, and the shape of the fluid outflow part is long in the span direction and short in the blade thickness direction By providing the rotor blades, the starting characteristics of the vertical axis wind power generator are greatly improved.
Further, by attaching the rotor blade having the above structure, the starting characteristics of the wave power generation device using the reciprocating flow are greatly improved, and power generation with a small wave is enabled.
Furthermore, by providing the propulsion mechanism having the above structure upwardly with respect to the hull and in parallel with the traveling direction, the propulsive force at low speed of the sailing device as auxiliary power for the ship can be increased.

又、船舶の帆走装置等に利用した場合は、帆走の為の人為的操作は不要であり広い用途範囲の船舶での応用を可能にするものである。 この場合、主要部の後縁部は後述する回動部と可撓性の膜によって構成することが出来る。   In addition, when used in a sailing device for a ship or the like, an artificial operation for sailing is not required, and application in a wide range of ships is possible. In this case, the rear edge part of the main part can be constituted by a rotating part and a flexible film which will be described later.

本発明の構造は、対称翼断面形状をなす主要部の前縁部に、該前縁部に直角な複数の仕切り板を断面に対して交互に傾斜したごとく設け、該仕切り板の間にいわゆるスラットを形成する複数の曲面板を翼厚方向に交互に設け、流体の流入部の形状をスパン方向に短く翼弦方向に長く形成し, 流体の流出部の形状をスパン方向に長く翼厚方向に短く形成した回転翼を設けた風力発電装置の起動装置を構成するものである。   In the structure of the present invention, a plurality of partition plates perpendicular to the front edge portion are provided at the front edge portion of the main portion having a symmetric wing cross-sectional shape so as to be alternately inclined with respect to the cross section, and so-called slats are provided between the partition plates. A plurality of curved plates are formed alternately in the blade thickness direction, the shape of the fluid inflow portion is short in the span direction and long in the chord direction, and the shape of the fluid outflow portion is long in the span direction and short in the blade thickness direction. The starter of the wind power generator provided with the formed rotor blade is configured.

以下図について本発明の実施形態について説明する。
図1は本発明の一実施形態の構造を示す側面図であり、図2はその主要部の形状を示す部分側面図、図3はその主要部の形状を示す部分正面図、図4はその主要部の形状を示す部分断面図である。
図1において、回転軸1には略コの字形をなす2枚の回転翼2が対称的に配置された2個のユニットが互いに90度の位相差をもって取り付けられている。
回転翼2の主要部3は図2、図3、図4に示すごとく対称翼断面形状をなし、前縁部4に該前縁部4に直角な複数の仕切り板5を断面に対して交互に傾斜したごとく設け、該仕切り板5の間にいわゆるスラットを形成する複数の曲面板6’、6”を翼厚方向に交互に設け、流体の流入部7’、7”の形状をスパン方向S1を短く翼弦方向H1を長く形成し, 流体の流出部8’、8”の形状をスパン方向S2を長く翼厚方向H2を短く形成している。 回転軸1は図示しない発電機等に接続されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a side view showing the structure of one embodiment of the present invention, FIG. 2 is a partial side view showing the shape of the main part, FIG. 3 is a partial front view showing the shape of the main part, and FIG. It is a fragmentary sectional view which shows the shape of the principal part.
In FIG. 1, two units in which two rotary blades 2 having a substantially U-shape are symmetrically arranged are attached to a rotary shaft 1 with a phase difference of 90 degrees.
The main portion 3 of the rotor blade 2 has a symmetrical blade cross-sectional shape as shown in FIGS. 2, 3, and 4, and a plurality of partition plates 5 perpendicular to the front edge portion 4 are alternately arranged on the front edge portion 4 with respect to the cross section. A plurality of curved plates 6 ′, 6 ″ forming so-called slats are alternately provided in the blade thickness direction between the partition plates 5, and the shapes of the fluid inflow portions 7 ′, 7 ″ are set in the span direction. S1 is short and the chord direction H1 is long, and the shape of the fluid outflow portions 8 ′ and 8 ″ is long and the span direction S2 is long and the blade thickness direction H2 is short. It is connected.

図4に示す流線9’、9”、10’、10”、11’、11”は主要部3に迎角が約90度で流体が当たる状態をものである。 9’、9”は主要部3の前縁部を通る流れであり10”、11’は曲面板6’、6”と主要部3の間を通り抜ける流れであり、11’、11”は主要部3の後縁を通る流れである。   The streamlines 9 ′, 9 ″, 10 ′, 10 ″, 11 ′, and 11 ″ shown in FIG. 4 indicate a state in which the fluid hits the main portion 3 at an angle of attack of about 90 degrees. 10 "and 11 'are flows passing between the curved plates 6' and 6" and the main part 3, and 11 'and 11 "are the rear edges of the main part 3. It is a flow through.

図4において本発明の作用について説明する。
図4において迎角が90度程度となっているので、従来の翼断面では流体の流れは翼断面から剥離し、後流は大きく乱れて揚力を発生することは出来ない。 しかし、注目すべきは流線10’、10”であり、流入部7’、7”から流入した流体は流出部8’、8”でスパン方向に長く引き伸ばされ、翼厚方向に短く(薄く)主要部3の広い範囲に排出される。 従ってこの広い範囲の境界層を後流方向に押し流しこの部分での流れの剥離を防止して流線9’、9”、11’、11”全体を後縁方向に曲げる働きをする。 そうするとその流の方向変化の反力として主要部3には流の方向と直角な揚力L1が生まれる。 その方向は前縁方向でありこれが推力T1となる。 流の流入方向が前縁側からの場合は通常の翼型と同様に流の方向と直角な方向の力としての揚力L2が働くのでその前縁方向の成分が推力T2となる。 又、流の流入方向が後縁側からの場合は揚力よりも流の方向に平行な抗力Dが支配的となり、この抗力Dの前縁方向成分T3が大きくなる。 このことによって広い角度範囲で前縁方向の力が働くので90°ずつ位相をずらして配置した回転翼2のそれぞれに働く力の合成力によって静止状態の回転軸1が起動回転することになる。
The operation of the present invention will be described with reference to FIG.
In FIG. 4, since the angle of attack is about 90 degrees, in the conventional blade cross section, the fluid flow is separated from the blade cross section, and the wake is greatly disturbed so that lift cannot be generated. However, it should be noted that the streamlines 10 ′ and 10 ″ are such that the fluid flowing in from the inflow portions 7 ′ and 7 ″ is elongated in the span direction at the outflow portions 8 ′ and 8 ″ and short (thinly) in the blade thickness direction. ) Discharged over a wide area of the main part 3. Therefore, the boundary layer in this wide area is washed away in the wake direction to prevent separation of the flow in this part, and the streamlines 9 ', 9 ", 11', 11" as a whole Then, a lift L1 perpendicular to the direction of the flow is generated in the main part 3 as a reaction force of the direction change of the flow, which is the front edge direction, and this is the thrust T1. When the flow inflow direction is from the leading edge side, lift L2 as a force in a direction perpendicular to the flow direction acts like a normal airfoil, so that the component in the leading edge direction becomes the thrust T2. When the inflow direction is from the trailing edge side, the drag D parallel to the flow direction is more dominant than the lift force. As a result, the leading edge direction component T3 of the drag D becomes large, so that the force in the leading edge direction works over a wide angle range, so that the combined force of the forces acting on each of the rotor blades 2 that are arranged out of phase by 90 °. As a result, the rotating shaft 1 in the stationary state starts and rotates.

従来、スラット付きの翼において大きな迎角での揚力の発生は確認されているが、比較的大きなカンバー(反り)のある翼型における高揚力装置としての実施が主体であり、本出願のごとき上下対称の翼断面に実施する例は少なく、また上下交互にスラットを取り付けた例は無く、両面に取り付けたものはヨットの帆のごときものに限定される。 更に断面に対して傾斜した仕切り板によって流出部の形状をスパン方向に長く翼厚方向に短く形成しているものは存在しない。 本出願においてはこの点が乱流境界層の後流方向への押し流し効果が起動性能の改善に大きな役割を占めるものである。   Conventionally, it has been confirmed that wings with slats generate lift at a large angle of attack, but they have mainly been implemented as high-lift devices in airfoils with relatively large cambers. There are few examples of symmetric wing cross-sections, and there is no example of slats mounted alternately on the upper and lower sides, and those mounted on both sides are limited to sailboat sails. Furthermore, there is no partition plate that is inclined with respect to the cross section and has a shape of the outflow portion that is long in the span direction and short in the blade thickness direction. In this application, this point dominates the improvement of the start-up performance by the effect of the turbulent boundary layer in the wake direction.

図1に示す実施例の起動装置は、垂直軸型の風車に利用するとその効果が大きい。 すなわち、垂直軸型の風車は風の方向に関係なく回転するので構造が簡単で、発電機を地上近くに設置できるなどの利点はあるが、起動特性が悪くこれを改善する為に翼の巾を広げていわゆるソリディティーを増加させ、後流の乱れを利用して起動する方法があるが、そうすると、本来の風車としての空力特性が低下してしまうという欠点がある。 その主な理由は、風車の回転速度が低下し、風車の翼に当たる風の迎角が翼断面の特性から得られる最適な迎角より大きくなって、揚抗比が低下する為である。 又、ソリディティーを増加させることは、強風時に例え風車を停止させてとしても大きな風力抵抗を受けるので、装置全体の強度を高める必要があり、重量及びコストの増加を来たし、総合性能の低下に結びつくものである。   The starter of the embodiment shown in FIG. 1 has a great effect when used in a vertical axis type windmill. In other words, the vertical axis type wind turbine rotates regardless of the direction of the wind, so the structure is simple and the generator can be installed near the ground. There is a method of increasing so-called solidity and starting up using the turbulence of the wake, but there is a disadvantage that the aerodynamic characteristic as an original windmill is deteriorated. The main reason is that the rotational speed of the windmill decreases, the angle of attack of the wind hitting the blades of the windmill becomes larger than the optimum angle of attack obtained from the characteristics of the blade cross section, and the lift-drag ratio decreases. Also, increasing the solidity is subject to a large wind resistance even if the wind turbine is stopped in a strong wind, so it is necessary to increase the overall strength of the device, resulting in an increase in weight and cost and a decrease in overall performance. It is connected.

これに対して本発明の起動装置は迎角が90度付近でも揚力を発生することが出来る為、上記のごとくソリディティーを大きくしなくとも容易に風車を起動させることが出来るので風上の翼による後流の乱れも少なく風下の翼も有効に働くので、定格運転時の回転数が速くなり、これによって翼の迎角も正規の状態内(±10度程度)に納まるので、風車の空力効率を大幅に向上することが出来る。 特に本発明の主要部3の失速角はスラットの効果によって大幅に大きくなっているので運転中の失速は上記角度範囲で生じることはなく安定して回転することが出来る。 又、ソリディティーが小さいと言うことは、風車が停止している時に受ける風力が小さいので、暴風などの時に風車を停止することで過大な風力から風車を守り、破損を防止することも出来る。   On the other hand, since the starter of the present invention can generate lift even when the angle of attack is around 90 degrees, the windmill can be easily started without increasing the solidity as described above. Since the wake of the leeward wind works effectively with less turbulence in the wake, the rotational speed during rated operation is faster, and the angle of attack of the wing is within the normal state (about ± 10 degrees), so the aerodynamics of the windmill Efficiency can be greatly improved. In particular, the stall angle of the main part 3 of the present invention is greatly increased by the effect of the slats, so that the stall during operation does not occur in the above angle range and can rotate stably. In addition, the fact that the solidity is small means that the wind power received when the windmill is stopped is small, so that the windmill can be protected from excessive wind power by stopping the windmill during a storm or the like, and damage can be prevented.

図5は本発明の他の実施例の構造を示す正面図である。
本発明の起動装置は水平軸型波力発電装置として用いた場合も、通常のプロペラのように捩れ角を設定することの必要が無く、平面的(回転軸に直角で回転面に平行)に取り付ければよいので形状が簡単であると同時に、流の方向が反対向きとなっても同じ方向に回転するという特徴を有する。 従って、この特性は、往復流を利用する波力発電用のタービンとして利用する場合に極めて有利である。
図5において、回転軸21には半径方向に複数の回転翼22が設けられている。 その主要部3には前述と同様の構造をもつ仕切り板5、曲面板6’、6”を設けている。 この場合、回転翼22の数は任意であり、ソリディティー値を大きくしないためには2〜4枚が適当であるが極端な例としては1個でも反対側にバランスウェイトを設ければ支障は無い。 波力発電では波の動きは不安定な往復運動であり複数のプロペラ軸を並列に接続して安定した回転を得る事が有効であるが、この起動装置によって広い範囲での波の力を加算して使用する事が出来る。 従来、波の力は往復運動の位相がずれている為に大型化して平均化すると出力が0になってしまう欠点があったが、本起動装置で上記のごとく流の方向が反対向きとなっても同じ方向に回転するという特徴を有することでこの欠点を克服することが出来る。
FIG. 5 is a front view showing the structure of another embodiment of the present invention.
Even when the starter of the present invention is used as a horizontal-axis type wave power generator, it is not necessary to set a twist angle unlike a normal propeller, and it is planar (perpendicular to the rotation axis and parallel to the rotation surface). Since it only has to be attached, the shape is simple, and at the same time, it has the feature of rotating in the same direction even if the flow direction is opposite. Therefore, this characteristic is extremely advantageous when used as a turbine for wave power generation using a reciprocating flow.
In FIG. 5, the rotating shaft 21 is provided with a plurality of rotating blades 22 in the radial direction. The main part 3 is provided with a partition plate 5 and curved plates 6 ′ and 6 ″ having the same structure as described above. In this case, the number of the rotor blades 22 is arbitrary, so as not to increase the solidity value. 2 to 4 is suitable, but as an extreme example, there is no problem if even one balance weight is provided on the opposite side In wave power generation, the wave motion is an unstable reciprocating motion and multiple propeller shafts It is effective to connect the two in parallel to obtain a stable rotation, but this activation device can be used by adding the wave force in a wide range. There is a drawback that the output becomes zero when the size is increased and averaged due to the deviation, but the present starter has a feature that it rotates in the same direction even if the flow direction is opposite as described above. This can overcome this drawback.

図6は本発明の他の実施例の構造を示す上面図であり、図7はその主要部の形状を示す部分上断面図である。
図6及び図7において、船体31の上面に上向きに取り付けられた推進機構32の主要部33は船体31の進行方向に対して並行に取り付けられている。該主要部33には前述と同様の構造をもつ仕切り板5、曲面板6’、6”を設けている。 この場合、推進機構32及び主要部33の数は任意である。 本来、船舶は推進機能を持っているが長い距離を航行する場合には、燃料を節約する上で海上に安定して吹く風を利用することは有効な手段である。 しかし、風の方向や強さに合わせて帆を制御したり進路を変更したりすることは乗組員の少ない船舶では好ましくない。 そこで航空機の固定翼を船体に対して並行に取り付けることで横風の時に生じる揚力を推進力とする試みは行なわれている。 しかしこの場合、通常の航空機の固定翼では揚力を有効に推進力に利用できる風の方向がかなり限定される。 そこで翼の構造を本発明の主要部33、仕切り板5、曲面板6’、6”にのよるものとすると前述のごとく90°近辺の大きな迎角においても揚力を発生することが出来、これを船体と平行な成分として推進力として利用することが出来る。 船体が停止している場合は風の方向は360°どちらからでも吹いてくる可能性は同じであるのでこれを船首方向の力に変換して船体を起動させることが出来る。 この場合、主要部33の後半部材34は軸35を有し、主要部33から後ろ向きに突出した軸受36に対して回動可能に取り付けられている。 後半部材34の溝37‘、37“には可撓性の膜状部材38が先端凸部39‘、39“にて長手方向に摺動自在に嵌合している。 膜状部材38の後端部40は1枚に纏められて船体31の後方に引かれている。 風の向きによって後半部材34が適度に回動して膜状部材38を風下側に膨らますことで気流の乱れを防いで推進力を増加することが出来る。 通常のヨットなどではこの溝37‘、37“が1個でありまた後半部材34に相当するマストは回転しないためこの部分での帆の断面は理想的な翼型から大きくかけ離れた形状となり抗力の増加と揚力の減少という好ましくない結果を生むことになっている。 この後半部材34の構造により停泊中等推進力を必要としないときは膜状部材38を引き下ろしておくことが出来る。 そうすると後半部材34のみでは面積が小さい為にほとんど風力を受けることが無く、推進力を発生することは無い。 また暴風の時に安全を保つ上でも有効である。
FIG. 6 is a top view showing the structure of another embodiment of the present invention, and FIG. 7 is a partial top sectional view showing the shape of the main part thereof.
6 and 7, the main portion 33 of the propulsion mechanism 32 attached upward on the upper surface of the hull 31 is attached in parallel to the traveling direction of the hull 31. The main portion 33 is provided with a partition plate 5 and curved plates 6 ′ and 6 ″ having the same structure as described above. In this case, the number of the propulsion mechanism 32 and the main portion 33 is arbitrary. When navigating long distances with propulsion functions, it is an effective means to save the fuel and to use the wind that blows stably on the sea. Controlling the sail and changing the course are not desirable for ships with few crew members, so attempts to use the lift generated during crosswinds as a propulsive force by attaching the fixed wings of the aircraft in parallel to the hull However, in this case, the direction of wind that can effectively use lift for propulsive force is considerably limited in the fixed wing of a normal aircraft, so that the structure of the wing is the main part 33 of the present invention, the partition plate 5, According to curved plate 6 ', 6 " That the even able to generate a lift in a large angle of attack near 90 ° as described above, which can be utilized as a propulsion force as components parallel and hull. When the hull is stopped, the possibility that the wind will blow from either 360 ° is the same, so it can be converted into a force in the bow direction to activate the hull. In this case, the rear half member 34 of the main portion 33 has a shaft 35 and is rotatably attached to a bearing 36 protruding rearward from the main portion 33. A flexible film-like member 38 is fitted in the grooves 37 ′ and 37 ″ of the latter half member 34 so as to be slidable in the longitudinal direction at the tip convex portions 39 ′ and 39 ″. The rear end portion 40 of the membrane member 38 is gathered into one sheet and pulled behind the hull 31. The latter half member 34 is appropriately rotated according to the direction of the wind, and the film-like member 38 is expanded to the leeward side, so that the turbulence of the air current is prevented and the propulsive force can be increased. In a normal yacht or the like, there is only one groove 37 ', 37 ", and the mast corresponding to the latter half member 34 does not rotate, so that the sail cross-section at this part is far away from the ideal airfoil and has a drag force. It is supposed to produce an unfavorable result of an increase and a decrease in lift force.The structure of the latter half member 34 allows the membranous member 38 to be pulled down when no propulsive force is required, such as during anchoring. Because it has a small area, it hardly receives wind power and does not generate propulsion, and is effective in maintaining safety in case of a storm.

以上の説明で明らかなごとく、本発明の軌道装置は風力発電装置、波力発電装置及び船舶の補助推進装置への工業的効果は極めて著しい。   As is apparent from the above description, the track apparatus of the present invention has an extremely remarkable industrial effect on the wind power generation apparatus, the wave power generation apparatus, and the auxiliary propulsion apparatus for ships.

本発明の一実施形態の構造を示す側面図である。It is a side view which shows the structure of one Embodiment of this invention. 本発明の一実施形態の主要部の形状を示す部分側面図である。It is a partial side view which shows the shape of the principal part of one Embodiment of this invention. 本発明の一実施形態の主要部の形状を示す部分正面図である。It is a partial front view which shows the shape of the principal part of one Embodiment of this invention. 本発明の一実施形態の主要部の形状を示す部分断面図である。It is a fragmentary sectional view which shows the shape of the principal part of one Embodiment of this invention. 本発明の他の実施形態の構造を示す正面図である。It is a front view which shows the structure of other embodiment of this invention. 本発明の他の実施形態の構造を示す上面図である。It is a top view which shows the structure of other embodiment of this invention. 本発明の一実施形態の主要部の形状を示す部分上断面図である。It is a fragmentary top sectional view which shows the shape of the principal part of one Embodiment of this invention.

符号の説明Explanation of symbols

1、21:回転軸
2、22:回転翼
3:主要部
4:前縁部
5:仕切り板
6’、6”:曲面板
7’、7”:流入部
8’、8”:流出部
9’、9”:流線
10’、10”:流線
11’、11”:流線
31:船体
32:推進機構
33:主要部
34:後半部材
35:軸
36:軸受
37‘、37“:溝
38:膜状部材
39‘、39“:先端凸部
40:後端部
L1、L2:揚力
T1、T2、T3:推力
D:抗力
1, 2: Rotating shafts 2, 22: Rotating blades 3: Main part 4: Front edge part 5: Partition plate 6 ', 6 ": Curved plate 7', 7": Inflow part 8 ', 8 ": Outlet part
9 ', 9 ": Streamline 10', 10": Streamline 11 ', 11 ": Streamline 31: Hull 32: Propulsion mechanism 33: Main part 34: Rear member 35: Shaft 36: Bearings 37', 37" : Groove 38: Film-like members 39 ', 39 ": Front protrusion 40: Rear end
L1, L2: Lift T1, T2, T3: Thrust D: Drag

Claims (3)

対称翼断面形状をなす主要部の前縁部に、該前縁部に直角な複数の仕切り板を断面に対して交互に傾斜したごとく設け、該仕切り板の間にいわゆるスラットを形成する複数の曲面板を翼厚方向に交互に設け、前記翼厚方向に開口した流体の流入部の形状をスパン方向に短く翼弦方向に長く形成し, 前記主要部の広い範囲に排出し得る流体の流出部の形状をスパン方向に長く翼厚方向に短く形成した回転翼を設けたことを特徴とする風力発電装置の起動装置。 A plurality of curved plates that form so-called slats between the partition plates provided at the front edge of the main portion having a symmetric wing cross-sectional shape as a plurality of partition plates perpendicular to the front edge portions are alternately inclined with respect to the cross section. Are formed alternately in the blade thickness direction, and the shape of the fluid inflow portion that opens in the blade thickness direction is formed short in the span direction and long in the chord direction, and the fluid outflow portion that can be discharged over a wide range of the main portion. A starter for a wind turbine generator, characterized in that a rotor blade having a shape that is long in a span direction and short in a blade thickness direction is provided. 対称翼断面形状をなす主要部の前縁部に、該前縁部に直角な複数の仕切り板を断面に対して交互に傾斜したごとく設け、該仕切り板の間にいわゆるスラットを形成する複数の曲面板を翼厚方向に交互に設け、前記翼厚方向に開口した流体の流入部の形状をスパン方向に短く翼弦方向に長く形成し, 前記主要部の広い範囲に排出し得る流体の流出部の形状をスパン方向に長く翼厚方向に短く形成した回転翼を設けたことを特徴とする波力発電装置の起動装置。 A plurality of curved plates that form so-called slats between the partition plates provided at the front edge of the main portion having a symmetric wing cross-sectional shape as a plurality of partition plates perpendicular to the front edge portions are alternately inclined with respect to the cross section. Are formed alternately in the blade thickness direction, and the shape of the fluid inflow portion that opens in the blade thickness direction is formed short in the span direction and long in the chord direction, and the fluid outflow portion that can be discharged over a wide range of the main portion. A starting device for a wave power generator, characterized in that a rotor blade having a shape that is long in a span direction and short in a blade thickness direction is provided. 対称翼断面形状をなす主要部の前縁部に、該前縁部に直角な複数の仕切り板を断面に対して交互に傾斜したごとく設け、該仕切り板の間にいわゆるスラットを形成する複数の曲面板を翼厚方向に交互に設け、前記翼厚方向に開口した流体の流入部の形状をスパン方向に短く翼弦方向に長く形成し, 前記主要部の広い範囲に排出し得る流体の流出部の形状をスパン方向に長く翼厚方向に短く形成した推進機構を船体に対して上向きに又進行方向に並行に設けたことを特徴とする船舶の起動装置。 A plurality of curved plates that form so-called slats between the partition plates provided at the front edge of the main portion having a symmetric wing cross-sectional shape as a plurality of partition plates perpendicular to the front edge portions are alternately inclined with respect to the cross section. Are formed alternately in the blade thickness direction, and the shape of the fluid inflow portion that opens in the blade thickness direction is formed short in the span direction and long in the chord direction, and the fluid outflow portion that can be discharged over a wide range of the main portion. A marine vessel starter characterized in that a propulsion mechanism having a shape that is long in the span direction and short in the blade thickness direction is provided in an upward direction with respect to the hull and in parallel with the traveling direction.
JP2008192999A 2008-07-28 2008-07-28 Starting device Expired - Fee Related JP4873388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008192999A JP4873388B2 (en) 2008-07-28 2008-07-28 Starting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008192999A JP4873388B2 (en) 2008-07-28 2008-07-28 Starting device

Publications (2)

Publication Number Publication Date
JP2010031706A JP2010031706A (en) 2010-02-12
JP4873388B2 true JP4873388B2 (en) 2012-02-08

Family

ID=41736475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008192999A Expired - Fee Related JP4873388B2 (en) 2008-07-28 2008-07-28 Starting device

Country Status (1)

Country Link
JP (1) JP4873388B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120039712A1 (en) * 2009-05-08 2012-02-16 Yasuo Ueno Vertical axis wind turbine device
JP2020076396A (en) * 2018-11-02 2020-05-21 株式会社グローバルエナジー Light wing windmill and its vertically-long blade

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH659851A5 (en) * 1981-06-05 1987-02-27 Escher Wyss Ag TURBINE.
JPS5981780A (en) * 1982-10-30 1984-05-11 株式会社東芝 Ticket processor
JPS6328792A (en) * 1986-07-22 1988-02-06 Mitsubishi Heavy Ind Ltd Vaneform canvas device with rotor
GB8821035D0 (en) * 1988-09-07 1988-10-05 Unilever Plc Detergent compositions
GR910200234U (en) * 1990-05-31 1992-07-30 Mihail Valsamidis Turbine wind machine with a vertical axis

Also Published As

Publication number Publication date
JP2010031706A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
CN103089536B (en) Aileron surface on the stall fence on wind turbine blade
TWI231840B (en) Windmill for wind power generation
WO2005116446A1 (en) Blade for vertical shaft wind wheel and vertical shaft wind wheel
US20100310357A1 (en) Ring wing-type actinic fluid drive
Bøckmann et al. Wind turbine propulsion of ships
CN108891569B (en) Marine sail with variable airfoil profile
JP5081455B2 (en) Asymmetrical front wing of a ship
US20070189899A1 (en) Wind turbine rotor
JP4873388B2 (en) Starting device
US20210284312A1 (en) Method and Apparatus for Adjusting the Flow Properties of a Propeller
WO2010093305A1 (en) Propulsion device for a boat
WO2011102103A1 (en) Thruster with duct attached and vessel comprising same
JP2023528154A (en) Floating vessels for energy recovery
EP2143631B1 (en) Asymmetric preswirl stator of ship
JP2019108046A (en) Vessel with aerial wings
KR20120121112A (en) Pre-swirl Stator of Ship
JP4363789B2 (en) High lift rudder for ships
JP6158019B2 (en) Axial turbine generator
JPS61263892A (en) Wind power ship
WO2002064974A1 (en) Wind power generating device
JP2009299650A (en) Straightening fluid wheel
JP3886049B2 (en) Valve, rudder, ship
WO2022249417A1 (en) Variable pitch propeller/turbine and power generation sailing ship provided with variable pitch propeller/turbine
JP2023088803A (en) Free navigation system with wind power
US20240035437A1 (en) Rotor blade of a wind turbine and corresponding wind turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110704

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110704

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees