JP4873293B2 - Package air conditioner performance degradation prevention system using solar cells - Google Patents

Package air conditioner performance degradation prevention system using solar cells Download PDF

Info

Publication number
JP4873293B2
JP4873293B2 JP2006082318A JP2006082318A JP4873293B2 JP 4873293 B2 JP4873293 B2 JP 4873293B2 JP 2006082318 A JP2006082318 A JP 2006082318A JP 2006082318 A JP2006082318 A JP 2006082318A JP 4873293 B2 JP4873293 B2 JP 4873293B2
Authority
JP
Japan
Prior art keywords
solar cell
cooling
peltier element
refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006082318A
Other languages
Japanese (ja)
Other versions
JP2007255813A (en
Inventor
淳 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2006082318A priority Critical patent/JP4873293B2/en
Publication of JP2007255813A publication Critical patent/JP2007255813A/en
Application granted granted Critical
Publication of JP4873293B2 publication Critical patent/JP4873293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、マルチパッケージエアコン(マルチエアコンとも呼ばれる)その他、圧縮機と冷房時に凝縮器として機能する排熱用熱交換器を備えた室外機と熱利用側熱交換器を備えた室内機と減圧装置からなるパッケージエアコンによる冷却システムに関し、より詳しくは室外機と室内機の間で冷媒を過冷却するパッケージエアコンによる冷却システムに関する。   The present invention relates to a multi-package air conditioner (also referred to as a multi air conditioner), an outdoor unit including a compressor and a heat exchanger for exhaust heat functioning as a condenser during cooling, an indoor unit including a heat utilization side heat exchanger, and a decompression unit. More particularly, the present invention relates to a cooling system using a packaged air conditioner that supercools refrigerant between an outdoor unit and an indoor unit.

空調設備でマルチエアコン等パッケージエアコンの導入が進んでいるが、負荷の多い時間帯に室外機から外気への排熱効率が落ちる。冷房時には圧縮機の吐出側の冷媒温度と圧力が上昇して効率が落ち、最悪の場合機器が停止してしまう場合がある。これは一般的に高圧カットと呼ばれている。高圧カットをはじめとする盛夏等冷房高負荷時の効率低下を防止する対策として、室外機の排熱用熱交換器(冷房時に凝縮器として作用する。以下「凝縮器」と表記することがある)に水を噴霧し水の蒸発潜熱で冷媒を冷やす方法(特許文献1)や、外部冷熱、例えば蓄熱槽の熱媒水や空調負荷と熱交換済みの冷水還水を利用して凝縮器の前段で冷媒を過冷却器を介して冷やす冷媒過冷却システム(特許文献2、特許文献3)が開発されている。   The introduction of packaged air conditioners such as multi air conditioners is progressing with air conditioning equipment, but the efficiency of exhaust heat from the outdoor unit to the outside air is reduced during heavy loads. At the time of cooling, the refrigerant temperature and pressure on the discharge side of the compressor rise and the efficiency decreases, and in the worst case, the device may stop. This is generally called a high pressure cut. As a measure to prevent efficiency reduction during high-cooling cooling loads such as high-pressure cuts such as high-pressure cut, it is used as a heat exchanger for exhaust heat of outdoor units (acts as a condenser during cooling. Hereinafter referred to as "condenser". ) By spraying water and cooling the refrigerant with the latent heat of evaporation of the water (Patent Document 1), or using external cold heat, for example, heat transfer water in a heat storage tank or cold water return water that has been heat exchanged with an air conditioning load. A refrigerant supercooling system (Patent Document 2 and Patent Document 3) that cools the refrigerant through a supercooler in the previous stage has been developed.

一方、太陽電池を用いたシステムは、太陽光を利用しているがゆえの不安定さから、建築設備に用いるには系統連系を行なったり、蓄電池に蓄えて用いることが多い。どちらの場合も、交直変換器や出力調整を行なうインバーターやコンバーターなどの調整機器を取付けなくてはならないため、システムが複雑となりコスト高の要因となっている。それゆえ、太陽電池で発電された電流は、そのまま直流電流で利用できることが望ましいが、直流電源を使用する機器類が電灯や送風機などあまり多くなく、さらに機器類は一般的に電力の安定が求められるため、利用するのが難しい。
そこで、太陽電池にて生じた直流電流によって直接熱交換を行なうペルチェ素子を空調装置として用いて設備費を低減する処法も開示されている(特許文献4)。
On the other hand, systems using solar cells are often unstable due to the use of sunlight, and are often used for building facilities by grid connection or storage in a storage battery. In either case, an AC / DC converter and an adjusting device such as an inverter or converter for adjusting the output must be installed, which complicates the system and increases costs. Therefore, it is desirable that the current generated by the solar cell can be directly used as a direct current, but there are not many devices that use a DC power source such as electric lamps and blowers, and the devices are generally required to have stable power. It is difficult to use.
Then, the processing method which reduces an installation cost using the Peltier device which directly heat-exchanges with the direct current produced in the solar cell as an air conditioner is also disclosed (patent document 4).

特開2003−166744号公報JP 2003-166744 A 特開2004−211998号公報JP 2004-211998 A 特開2005−249221号公報JP 2005-249221 A 特開平08―178340号公報Japanese Patent Laid-Open No. 08-178340

しかし、特許文献1に示された処法では節水に反し、かつ水質管理や水噴霧の対象となる凝縮器の防食対策に留意する必要がある。この点、特許文献2と特許文献3に示された処法では冷媒を過冷却する過冷却器が閉じた系で構成され器内が常時通水されることから前記問題は改善しているが、過冷却のための熱媒管の敷設や過冷却器との接続等、工事施工の手間に改善の余地があった。   However, in the treatment method disclosed in Patent Document 1, it is necessary to pay attention to the anticorrosion measures for the condenser which is against water saving and is subject to water quality management and water spraying. In this respect, in the methods shown in Patent Document 2 and Patent Document 3, the above problem is improved because the supercooler for supercooling the refrigerant is constituted by a closed system and the interior of the container is constantly passed. There was room for improvement in the construction work, such as the installation of a heat transfer pipe for supercooling and connection with a supercooler.

なお、特許文献4に記載されたような、ペルチェ素子それ自体をそのまま空調に使用しようという考えは、賄える負荷の程度が現在のパッケージエアコン利用の場合の負荷と比べて著しく小さく、しいて同様の冷房効果を得ようとすると初期の設備費も電力代も経済性を欠き現実的でない。   The idea of using the Peltier element itself as it is for air conditioning as described in Patent Document 4 is that the degree of load that can be covered is significantly smaller than the load when using the current packaged air conditioner, and the same In order to obtain a cooling effect, the initial equipment cost and the power bill are not realistic because they lack economic efficiency.

そこで本発明の課題は、盛夏のような高負荷時であっても冷房を安定して行なえ、かつ冷房の安定運転のための運転費が廉価で、しかも維持管理と施工性の改善した冷房システムを提供することにある。   Accordingly, an object of the present invention is to provide a cooling system that can stably perform cooling even at high loads such as in midsummer, and has low operating costs for stable cooling operation and improved maintenance and workability. Is to provide.

前記課題を解決すべく請求項1の発明は、圧縮機と冷房時に凝縮器として機能する排熱用熱交換器を備えた室外機と、熱利用側熱交換器を備えた室内機と減圧装置からなるパッケージエアコンによる冷却システムにおいて、さらに太陽電池を付設し、圧縮機の出口の下流または凝縮器の下流と室内機近傍の膨張弁との間の冷媒往管に、冷媒を過冷却するペルチェ素子を屋外に、前記管路の少なくとも一部を覆うように設け、前記ペルチェ素子は、吸熱面を前記冷媒往管の管外壁側とする一方、放熱面を前記筒体カバーの外壁面として水で冷却する構成とし、さらに前記ペルチェ素子に前記太陽電池から直流電源を供給するようにしたことを特徴とする、太陽電池を用いたパッケージエアコン性能低下防止システムである。
熱利用側熱交換器は熱の利用先を直膨方式で冷却するものであり、冷却対象は空気のような気体である。排熱用熱交換器は例えば水冷または空冷の凝縮器であり、これを備えたパッケージエアコンのシステムでさらに冷媒を冷却するのは、盛夏など屋外の熱負荷が大きい場合である。ここでは付加する冷媒冷却手段として太陽電池を採用したので、日射の程度と屋外の温度をほぼ比例する関係とみなせることから、高負荷であるほど高効率なシステムが構築できる。また、冷房その他熱負荷の冷却時に室内機で熱交換されてガス化された冷媒を液化して圧縮機に導くに際し、太陽電池から供給される直流電流を複雑な構成を採ることなく簡易に構成されたシステムで、冷媒の冷却ができる。ペルチェ素子は管路に巻きまわしてもよいし、ユニット化して後述のように管路に対して間接的に(冷)熱を付与してもよい。
In order to solve the above problems, the invention of claim 1 is directed to an outdoor unit including a compressor and a heat exchanger for exhaust heat functioning as a condenser during cooling, an indoor unit including a heat utilization side heat exchanger, and a pressure reducing device. In a cooling system using a packaged air conditioner comprising: a Peltier element that further includes a solar cell and supercools the refrigerant in the refrigerant outlet pipe downstream of the compressor outlet or the condenser and between the expansion valve near the indoor unit The Peltier element is disposed outside so as to cover at least a part of the pipe line, and the Peltier element has a heat-absorbing surface as a pipe outer wall side of the refrigerant outlet pipe, and a heat-radiating surface as an outer wall surface of the cylindrical cover. A package air conditioner performance deterioration prevention system using a solar cell, wherein the system is cooled, and a DC power source is supplied from the solar cell to the Peltier element .
The heat utilization side heat exchanger cools the heat utilization destination by a direct expansion method, and the object to be cooled is a gas such as air. The heat exchanger for exhaust heat is, for example, a water-cooled or air-cooled condenser, and the refrigerant is further cooled by a packaged air conditioner system provided with the condenser when the outdoor heat load such as midsummer is large. Here, since the solar cell is adopted as the refrigerant cooling means to be added, the degree of solar radiation and the outdoor temperature can be regarded as a substantially proportional relationship, so that a higher efficiency system can be constructed with a higher load. In addition, when the refrigerant gasified by heat exchange in the indoor unit during cooling or other heat load is liquefied and led to the compressor, the DC current supplied from the solar cell is simply configured without taking a complicated configuration. The system can cool the refrigerant. The Peltier element may be wound around the pipeline, or may be unitized and indirectly (cold) heat applied to the pipeline as described below.

さらに請求項2の発明は、上記構成に加え、前記太陽電池は、建物の冷房負荷の大きな時間帯に対応した方位に設置され前記ペルチェ素子は冷却ユニットとして前記管路に沿って短く構成した前記筒体カバーを接続して前記管路を連続的に覆い、かつ、前記冷却ユニットの外壁から外側に向けてフィンが筒体カバーの間に挟まれることで断続的に取り付けられていることを特徴とする。
社団法人日本冷凍空調学会刊「冷凍空調技術」(平成13年4月1日大2次改訂版 185ページ
編集・発行(社)日本冷凍空調学会 図3、4)では南の方位で12時から14時、西の方位で16時から17時、東の方位で8時から9時の間に熱負荷のピーク(いずれも4000W以上)に至ることが示されている。本発明に係る太陽電池を、負荷の大きい時間帯に対応した方位に設ければ、太陽電池から受ける(冷)熱量を多くできる。また、冷却ユニットを排熱用熱交換器の前段に設けることで、室外機に改造を要さずにその運転負荷を低減する。
Further, in the invention of claim 2, in addition to the above configuration, the solar cell is installed in an orientation corresponding to a time zone with a large cooling load of the building, and the Peltier element is configured to be short along the pipeline as a cooling unit . The cylinder cover is connected to continuously cover the pipeline, and the fins are intermittently attached by being sandwiched between the cylinder covers from the outer wall of the cooling unit toward the outside. Features.
“Refrigerating and Air Conditioning Technology” published by the Japan Society of Refrigerating and Air Conditioning Engineers (April 1, 2001, 2nd revised edition, 185 pages edited and published by Japan Society of Refrigerating and Air Conditioning Engineers) It is shown that it reaches the peak of heat load (all are 4000 W or more) between 14:00, 16: 00-17: 00 in the west direction, and 8: 00-9am in the east direction. If the solar cell according to the present invention is provided in an orientation corresponding to a time zone with a large load, the amount of (cold) heat received from the solar cell can be increased. In addition, by providing the cooling unit in front of the heat exchanger for exhaust heat, the operation load is reduced without requiring modification of the outdoor unit.

さらに請求項3の発明は、上記請求項2の構成に加え、前記冷却ユニットは矩形の外形であり、前記冷却ユニットとその内部の前記管路の間には、潜熱蓄熱カプセルまたは相変化可能な作動流体が充填されていることを特徴とする。
矩形の外形とすることで平坦な面に載置しやすく、この矩形内壁面と管路の円形外壁面の隙間に作動流体を充填すれば、ペルチェ素子の伝熱面と冷媒管の外壁面との間でエネルギーの移動が活発に行われ、設置面積に対して熱交換効率が向上した冷却システムが構築できる。
Furthermore, in the invention of claim 3, in addition to the configuration of claim 2, the cooling unit has a rectangular outer shape, and a latent heat storage capsule or a phase change is possible between the cooling unit and the pipe line in the cooling unit. The working fluid is filled.
The rectangular outer shape makes it easy to place on a flat surface.If the working fluid is filled in the gap between the rectangular inner wall surface and the circular outer wall surface of the pipe, the heat transfer surface of the Peltier element and the outer wall surface of the refrigerant tube Energy transfer is actively performed between them, and a cooling system with improved heat exchange efficiency with respect to the installation area can be constructed.

以上の発明を実施するに際し、太陽電池の下端は、前記室外機の排熱用熱交換器の下端より高い位置に設置され、日射に対して前記室外機を遮るように設けてもよい
この構成により、太陽電池は冷却システムに補助熱を付与するほか室外機のひさしの機能を持ち、輻射熱や機内の熱のこもり等に由来する日射による効率低下を防止する。
In carrying out the above invention, the lower end of the solar cell may be installed at a position higher than the lower end of the heat exchanger for exhaust heat of the outdoor unit, and may be provided so as to shield the outdoor unit from solar radiation.
With this configuration, the solar cell not only provides auxiliary heat to the cooling system, but also has an eaves function for the outdoor unit, and prevents a decrease in efficiency due to solar radiation derived from radiant heat, heat accumulation in the unit, and the like.

請求項の発明は、上記請求項1からのいずれかの構成に加え、さらに冷媒の水冷却手段を備え、前記太陽電池と前記ペルチェ素子とは一体化され、放熱面と太陽電池裏面の間に冷却水を供給することで、空冷よりも水冷の方が奪える熱量が大きいため、ペルチェ素子の吸熱効率および太陽電池の発電効率(「太陽光発電導入ガイドブック」、92ページ 編集・発行 新エネルギー・産業技術開発機構)の上がった状態で、前記冷媒を冷却することを特徴とする。
本発明では主要部材である太陽電池とペルチェ素子を一体化して配管や電気・通信配線を一体化ユニット廻りに集約することが可能である。
The invention of claim 4 is provided with a coolant water cooling means in addition to the structure of any of claims 1 to 3 , wherein the solar cell and the Peltier element are integrated, and the heat dissipation surface and the back surface of the solar cell are provided. By supplying cooling water in between, water cooling can take more heat than air cooling, so the heat absorption efficiency of Peltier elements and the power generation efficiency of solar cells ("Solar Power Generation Introduction Guidebook", page 92) The refrigerant is cooled in a state where the Energy / Industrial Technology Development Organization is up.
In the present invention, it is possible to integrate the solar cell and the Peltier element, which are the main members, and collect the piping and electrical / communication wiring around the integrated unit.

請求項の発明は、上記請求項の構成に加え、水冷却手段は冷却塔であり、前記太陽電池と前記冷却ユニットが一体化されたユニットは日射を受ける面を太陽電池、その背面を冷却ユニットの関係で一体化され、かつ、前記冷却ユニットは前記ペルチェ素子を挟んで日射を受ける側に水、その背面側に冷媒が導かれ、前記水は冷却塔、前記冷媒は前記管路との間を循環するよう構成されたことを特徴とする。
この構成によれば、前述した効果を規格化された構成で得ることが可能となる。
According to a fifth aspect of the present invention, in addition to the configuration of the fourth aspect , the water cooling means is a cooling tower, a unit in which the solar cell and the cooling unit are integrated is a solar cell, and a back surface of the solar cell. The cooling unit is integrated in relation to the cooling unit, and the cooling unit is configured such that water is introduced to the side receiving solar radiation across the Peltier element, and refrigerant is guided to the back side thereof, the water is a cooling tower, and the refrigerant is the pipe line. It is characterized by being configured to circulate between.
According to this configuration, the above-described effects can be obtained with a standardized configuration.

本発明の効果は、太陽電池は高負荷に追随して出力が上がるため、冷凍サイクルからみれば高負荷時であればあるほど効率が高い冷却システムを提供できること、高圧カットなどの不意の機器効率低下を免れて安定的にシステムを運用できること、維持管理が容易で、施工性を向上させ得ること、前述の高効率かつ安定運転のための運転費が廉価であることである。   The effect of the present invention is that the output of a solar cell increases following a high load, so that when viewed from the refrigeration cycle, the higher the load, the higher the efficiency of the cooling system, the unexpected equipment efficiency such as high-pressure cut That is, the system can be stably operated avoiding the decrease, the maintenance can be easily performed, the workability can be improved, and the operation cost for the high efficiency and stable operation described above is low.

図1に本発明に係る冷却システム1の基本的な構成を示す。この例では冷却システム1は室内空気を冷却する冷房システムであり、主要な機器として冷却システム1に太陽電池2と、室内機3aと室外機3bからなるパッケージエアコン2を備えている。室内機3aは冷却熱負荷としての室内空気を冷却するものである。室内機には熱利用側熱交換器としての蒸発器と、減圧装置としての膨張弁と、蒸発器に空気を流通させるための送風機を備える。室外機3bは圧縮機3b1のほか排熱用熱交換器としての凝縮器3b2を機内に備えている。そして室内機3aと室外機3bは冷媒往管5aと冷媒還管5bからなる冷媒管5で接続されている。そして、本発明に係る主要部材としてペルチェ素子4が圧縮機3b1の出口の下流、本例では凝縮器3b2の下流と室内機近傍の膨張弁との間の冷媒往管に設けられている。また図示では室内機が1台であるが、継手を介して複数の室内機を室外機3bに接続してももちろん構わない。この場合ペルチェ素子は継手よりも凝縮器3b2寄りに設けることが好ましい。   FIG. 1 shows a basic configuration of a cooling system 1 according to the present invention. In this example, the cooling system 1 is a cooling system that cools indoor air, and the cooling system 1 includes a solar cell 2 and a packaged air conditioner 2 including an indoor unit 3a and an outdoor unit 3b as main devices. The indoor unit 3a cools indoor air as a cooling heat load. The indoor unit includes an evaporator as a heat utilization side heat exchanger, an expansion valve as a decompression device, and a blower for circulating air through the evaporator. The outdoor unit 3b includes a compressor 3b1 and a condenser 3b2 as a heat exchanger for exhaust heat in addition to the compressor 3b1. The indoor unit 3a and the outdoor unit 3b are connected by a refrigerant pipe 5 including a refrigerant forward pipe 5a and a refrigerant return pipe 5b. A Peltier element 4 as a main member according to the present invention is provided in the refrigerant forward pipe downstream of the outlet of the compressor 3b1, in this example, downstream of the condenser 3b2 and the expansion valve near the indoor unit. In the drawing, there is one indoor unit. However, it is of course possible to connect a plurality of indoor units to the outdoor unit 3b through joints. In this case, the Peltier element is preferably provided closer to the condenser 3b2 than the joint.

ペルチェ素子4には前述の特許文献3に開示されているような、p型半導体とn型半導体とを電極板によって交互に直列に接続し、これらの半導体の表裏に絶縁板を配設したものを例示できる。そして、このペルチェ素子4の電極板を+極及び−極に接続して直流電流を流すことにより、一方の絶縁板が吸熱し、他方の絶縁板が発熱するものである。本例では、電極板の吸熱側を冷媒往管5aに巻き回している。もっとも、4枚の電極板で冷媒管外壁面を接して囲うようにしてもよい。なお、冷媒管はペルチェ素子と接して冷熱を受ける面を除いて断熱材で被覆される。施工上はペルチェ素子と接する面の管軸方向でわずかに重なるように予め断熱施工することが好ましい。
太陽電池1としてはシリコン系のものや色素増感型等公知のものが採用でき、形状はパネル型であり両面受光型も採用できるがここではコストの関係から表面のみで受光する形式を採用している。
そして、太陽電池1はペルチェ素子4に電線7を介して接続され、受光パネルで得た太陽光により生成した電流をペルチェ素子4の電極板に供給する。太陽電池の発電能力はペルチェ素子の最大冷却能力に合わせ、太陽電池本体面積、設置方位、設置角度を決定する。
In the Peltier element 4, a p-type semiconductor and an n-type semiconductor are alternately connected in series by electrode plates as disclosed in Patent Document 3, and insulating plates are disposed on the front and back of these semiconductors. Can be illustrated. Then, by connecting the electrode plate of the Peltier element 4 to the positive electrode and the negative electrode and causing a direct current to flow, one insulating plate absorbs heat and the other insulating plate generates heat. In this example, the heat absorption side of the electrode plate is wound around the refrigerant forward pipe 5a. But you may make it surround a refrigerant | coolant pipe | tube outer wall surface in contact with four electrode plates. The refrigerant pipe is covered with a heat insulating material except for a surface that contacts the Peltier element and receives cold heat. In terms of construction, it is preferable to insulate in advance so as to slightly overlap in the tube axis direction of the surface in contact with the Peltier element.
As the solar cell 1, a known type such as a silicon type or a dye-sensitized type can be adopted, and the shape is a panel type and a double-sided light receiving type can also be adopted. ing.
The solar cell 1 is connected to the Peltier element 4 via the electric wire 7 and supplies the current generated by sunlight obtained by the light receiving panel to the electrode plate of the Peltier element 4. The power generation capacity of the solar cell is determined in accordance with the maximum cooling capacity of the Peltier element, and determines the solar cell body area, installation orientation, and installation angle.

通常太陽電池の出力は太陽電池の表面に入射する日射強度にほぼ比例する。一般的に太陽の日射強度は太陽高度が最高になる南中時刻が最大になる。また、パッケージエアコンの最大負荷は、建物の用途や方位によって異なるが、ピーク負荷は12:00〜15:00の間に来ることが多い。そこで、予めビル用マルチの最大負荷になるときに太陽電池出力が最大になるよう、ここでも太陽電池パネルの受光面を南向きに配置している。本例の冷却システムの冷媒は圧縮機3b1により高圧ガスとなり、凝縮器3b2で液化され、この液冷媒が冷媒往管5aのペルチェ素子4で被覆される位置に至って過冷却される。過冷却された液冷媒が膨張弁により室内機3aの蒸発器で高いCOPで気化する。あるいは、過冷却器として機能するペルチェ素子の存在により、凝縮器3b2の放熱量を低減することもでき、ここからも前述した高圧カットの問題を回避できる。   Usually, the output of a solar cell is approximately proportional to the intensity of solar radiation incident on the surface of the solar cell. In general, the solar radiation intensity is greatest at south-central time when the solar altitude is highest. The maximum load of a packaged air conditioner varies depending on the use and direction of the building, but the peak load often comes between 12:00 and 15:00. Therefore, the light receiving surface of the solar cell panel is also arranged in the south direction so that the solar cell output is maximized in advance when the maximum load of the building multi is reached. The refrigerant in the cooling system of this example is converted into high-pressure gas by the compressor 3b1, liquefied by the condenser 3b2, and is supercooled to a position where the liquid refrigerant is covered by the Peltier element 4 of the refrigerant forward pipe 5a. The supercooled liquid refrigerant is vaporized at a high COP in the evaporator of the indoor unit 3a by the expansion valve. Alternatively, due to the presence of the Peltier element functioning as a supercooler, the heat radiation amount of the condenser 3b2 can be reduced, and the above-described problem of high-pressure cut can also be avoided.

太陽電池で発電された直流電流をペルチェ素子に直接供給することができるので、交流から直流へ変換するインバーターなどの装置がいらないシンプルな回路構成とすることができる。このように発電された直流電流はペルチェ素子により高出力で供給することができる。また、日射強度により変化する太陽電池の出力特性と、一般的に天候が良いときは増加、悪いときは減少するパッケージエアコンの冷房負荷特性が合致するため、太陽電池出力を調整させるためのコンバーターなどの装置もなくすことができる。
以上のような構成によれば、既設設備の冷却能力を向上させるリニューアルが容易である。すなわち室内機と室外機には一切改造をせず、太陽電池を新設し工事はこれと冷媒管廻りに施すだけ(冷媒管に被覆された断熱材をペルチェ素子の取付部位で剥がす必要はある)で、OA機器による内部負荷の増大などに簡単に対応できる。
Since the direct current generated by the solar cell can be directly supplied to the Peltier element, a simple circuit configuration that does not require an inverter or other device that converts AC to DC can be achieved. The direct current generated in this way can be supplied at a high output by the Peltier element. Also, converters for adjusting solar cell output, etc., because the output characteristics of solar cells that change depending on solar radiation intensity and the cooling load characteristics of packaged air conditioners that generally increase when the weather is good and decrease when the weather is bad match It can be eliminated.
According to the above configuration, renewal that improves the cooling capacity of the existing equipment is easy. In other words, the indoor unit and the outdoor unit are not modified at all, and a new solar cell is installed and the work is only performed around the refrigerant pipe (the heat insulating material covered with the refrigerant pipe needs to be peeled off at the Peltier element mounting site). Therefore, it is possible to easily cope with an increase in internal load caused by OA equipment.

図2に別の実施形態を示す。ここでは図1の実施形態で用いるペルチェ素子を冷却ユニットとして構成した例を示している(システム構成は変更がない)。すなわち、冷媒往管5aの管外壁をとりまいて4枚の板状のペルチェ素子4により矩形の筒体カバー14aを構成している。筒体カバー14aは長い(例えば3m)一体物であってもよいが、図2の例では16個の短い(例えば20cm)の筒体カバー14aを、間に放熱板としてのフィン14bを挟んで接続して形成している。フィンとしてはアルミニウムや亜鉛鉄板、ステンレスのような耐食性と熱伝導性が良好なものが好ましく、筒体カバー14aを形成するペルチェ素子の放熱面(筒体カバーの外壁面)に取り付けられ、熱を逃がしている。さらに、ペルチェ素子の外側に前述のフィンと同じ材料でフィンと一体に構成した筒体を重ねてもよい。いずれにせよペルチェ素子の冷却能力は、液冷媒の温度が10〜40℃の間になるように取付け長さで調整する。
筒体カバー14aの管軸方向の開口は、吸熱効率を落とさないようキャップで閉止されている。このキャップは冷媒往管5aと筒体カバー14aとの間に隙間が生じないよう、例えば軟質で接着性のあるものが施工上好ましい。このように筒体カバー14aは気密に形成される。ここではペルチェ素子の吸熱面が冷媒冷媒往管5aの管外壁に接してもよいが、間隔が空いていてもよい。後者の場合は密閉された空気層が冷熱の伝達媒体となる。
以上の構成では、太陽電池から電力を供給されるペルチェ素子が冷媒配管のカバーを兼ねている。通常、ビル用マルチの冷媒配管を屋外配管する場合、配管部分の風雨からの保護と見栄えを良くするため、プラスチック製もしくは鋼板製のカバーを掛けているが、このシステムでは、冷媒液配管部分がペルチェ素子(内蔵)のカバーで囲む方法とすることで、上記目的を満足し、またペルチェ素子の取付けを簡易に行えるようにしている。
FIG. 2 shows another embodiment. Here, an example is shown in which the Peltier element used in the embodiment of FIG. 1 is configured as a cooling unit (the system configuration is not changed). That is, a rectangular cylindrical cover 14a is constituted by four plate-like Peltier elements 4 surrounding the outer wall of the refrigerant outgoing pipe 5a. The cylindrical cover 14a may be a long (eg, 3 m) integral, but in the example of FIG. 2, 16 short (eg, 20 cm) cylindrical cover 14a are sandwiched with fins 14b serving as heat sinks therebetween. Connected and formed. As the fins, those having good corrosion resistance and thermal conductivity such as aluminum, galvanized steel, and stainless steel are preferable. The fins are attached to the heat radiation surface (outer wall surface of the cylinder cover) of the Peltier element that forms the cylinder cover 14a, I'm missing. Furthermore, a cylindrical body that is integrally formed with the fin using the same material as the fin described above may be overlapped on the outside of the Peltier element. In any case, the cooling capacity of the Peltier element is adjusted by the mounting length so that the temperature of the liquid refrigerant is between 10 and 40 ° C.
The opening in the tube axis direction of the cylinder cover 14a is closed with a cap so as not to reduce the heat absorption efficiency. For this construction, for example, a soft and adhesive cap is preferable so that no gap is generated between the refrigerant forward pipe 5a and the cylindrical cover 14a. Thus, the cylinder cover 14a is formed airtight. Here, the endothermic surface of the Peltier element may be in contact with the outer wall of the refrigerant refrigerant forward pipe 5a, but may be spaced. In the latter case, a sealed air layer serves as a cold heat transfer medium.
In the above configuration, the Peltier element supplied with electric power from the solar cell also serves as a cover for the refrigerant pipe. Usually, when building refrigerant piping for buildings is piped outdoors, a plastic or steel plate cover is used to protect the piping portion from wind and rain and to improve its appearance. By using a method of enclosing with a Peltier element (built-in) cover, the above object is satisfied, and the Peltier element can be easily attached.

図3に示す実施形態では、筒カバー14aと冷媒往管5aとの間に充填材14cを収容したものである。充填材としては潜熱蓄熱カプセルのほかアンモニアやパーフルオロカーボンのような、ヒートパイプで使用される作動流体が採用できる。かかる構成により、管の外表面とペルチェ素子との間で熱が移動しやすいような構造になっている   In the embodiment shown in FIG. 3, a filler 14c is accommodated between the cylinder cover 14a and the refrigerant forward pipe 5a. As the filler, working fluids used in heat pipes such as ammonia and perfluorocarbon as well as latent heat storage capsules can be adopted. With this configuration, the heat is easily transferred between the outer surface of the tube and the Peltier element.

図4に示す実施形態では、太陽電池パネルを、室外機を覆うように室外機の上方に適宜の支持架台を介して、太陽光を全面に受けるよう傾斜して設けている。太陽電池パネルの下端は室外機の下端より上の位置にあることが好ましいが本例のように太陽電池パネルの下端が室外機の凝縮器の上端より高い位置で、室外機から日射の方向に間隔をおいて傾斜して設置されると一層好ましい。太陽電池、室外機共に屋上に設置されることが多く、このように太陽電池を室外機の上部に設置することで太陽電池自体が日よけの役割をはたすため、室外機の直射日光による能力低下を防ぐことができる。   In the embodiment shown in FIG. 4, the solar cell panel is provided to be inclined so as to receive the entire surface of the solar cell through an appropriate support frame so as to cover the outdoor unit. It is preferable that the lower end of the solar cell panel is located above the lower end of the outdoor unit, but the lower end of the solar cell panel is higher than the upper end of the condenser of the outdoor unit as in this example, and in the direction of solar radiation from the outdoor unit. It is more preferable that the projectors are installed at an interval and inclined. Since both solar cells and outdoor units are often installed on the rooftop, the solar cell itself plays the role of sun protection by installing the solar cell on the top of the outdoor unit in this way, so the capacity of the outdoor unit due to direct sunlight Decline can be prevented.

以上の実施形態は、ペルチェ素子4を空気で冷却するものであったが、本発明はペルチェ素子4を水で冷却する水冷方式である。図5の実施形態ではその例を示している。この例では、太陽電池2とペルチェ素子4が後述する構成で一体化された冷却ユニット24を構成している。室内機3aの構成は前述の実施形態と同じである。室内機3aに冷媒往管5aと冷媒還管5bからなる冷媒管5が接続されることも同様であるが、本例では冷媒往管5aが太陽電池2とペルチェ素子4を一体化した冷却ユニット24に接続され、この冷却ユニット24が冷却水配管を介して冷却塔8に接続され、ユニット内に冷却水を導く点で異なっている。なお、冷却ユニットと冷却塔8の間に熱交換器を設ければ、冷却システムの系内を密閉系で構築でき、系内の汚れ等を防止できる。
なお、図5では圧縮機3b1と凝縮器3b2を機内に備える室外機3bが図示され、冷媒は室内機3a→冷却ユニット24→室外機3bの順で循環するが、これは例えばターボ冷凍機を用いた中央熱源方式からパッケージエアコンによる個別空調方式に改修する場合等に、既設の冷却塔を使用して効果を高める例である。この意味で冷却塔8はエアワッシャ等の既設の気液接触手段や別の系統の冷水還管(例えば工場であれば生産装置を冷却した後の水)や消火用水も用いられ、熱交換器を介する方式では手洗い水のような雑用水・再利用水、さらにまた場合によってはトイレ排水等の汚水を用いることもできる。
Although the above embodiment cooled the Peltier device 4 with air, this invention is a water cooling system which cools the Peltier device 4 with water. An example is shown in the embodiment of FIG. In this example, a solar cell 2 and a Peltier element 4 constitute a cooling unit 24 that is integrated in a configuration that will be described later. The configuration of the indoor unit 3a is the same as that of the above-described embodiment. Similarly, the refrigerant pipe 5 including the refrigerant forward pipe 5a and the refrigerant return pipe 5b is connected to the indoor unit 3a. In this example, the refrigerant forward pipe 5a is a cooling unit in which the solar cell 2 and the Peltier element 4 are integrated. The cooling unit 24 is connected to the cooling tower 8 via a cooling water pipe, and the cooling water is guided into the unit. If a heat exchanger is provided between the cooling unit and the cooling tower 8, the inside of the cooling system can be constructed in a closed system, and contamination in the system can be prevented.
In FIG. 5, an outdoor unit 3b including a compressor 3b1 and a condenser 3b2 is illustrated, and the refrigerant circulates in the order of the indoor unit 3a → the cooling unit 24 → the outdoor unit 3b. This is an example in which the existing cooling tower is used to enhance the effect when refurbishing from the central heat source method used to the individual air conditioning method using a packaged air conditioner. In this sense, the cooling tower 8 uses existing gas-liquid contact means such as an air washer, another system of chilled water return pipe (for example, water after cooling the production apparatus in the case of a factory) and water for fire extinguishing. In the case of the method using water, miscellaneous water such as hand-washing water, reused water, and in some cases, sewage such as toilet drainage can be used.

図6に冷却ユニットの詳細を示す。太陽電池から電力を供給されるペルチェ素子さらに放熱のための冷却水配管がユニット化されている。具体的には、太陽光の照射される側から、太陽電池パネル24aが最も近い位置にユニット表面部として形成され、その背面に冷却水流路24b、ペルチェ素子24c、冷媒流路24dの順でケーンシングの内部に設けられている。ケーシングの一面はパネル24aの面となっている。冷却水流路24bと冷媒流路24dはペルチェ素子24cを挟んで、流れの向きが直交するようにそれぞれ配管接続されている。また、冷却水流路24bと冷媒流路24dは空洞室でもよく、それぞれ往管(冷媒の場合は液冷媒管)が導かれ熱交換後にそれぞれ各流路の出口から出る構成とすることができる。ただし、ここではそれぞれコイル(熱交換器)を各流路部に納め、前述の作動流体を用いた構成としている。なお、冷却水流路24bには流量調整弁が、冷媒流路24dには逆止弁がそれぞれ介装される。そしてペルチェ素子24cは放熱面を冷却水流路24bに、吸熱面を冷媒流路24dに面するように配置されている。
太陽電池で発電された直流電流は、ペルチェ素子に供給され、冷媒配管の冷却に使用される。冷媒配管からペルチェ素子が奪った熱と太陽電池の発電による発熱を冷却水で奪い、奪った熱を冷却塔で放熱するような仕組みになっている。冷却水による水冷方式の採用は、空冷と比較し太陽電池の効率とペルチェ素子の放熱の向上に貢献する。
水冷システムの概略エネルギーフローを図7に示すとおりである。なお、冷却ユニットの設置は図4の説明の太陽電池2の位置に冷却ユニット24を設置する態様を例示できる。
FIG. 6 shows details of the cooling unit. A Peltier element to which electric power is supplied from a solar cell and a cooling water pipe for heat dissipation are unitized. Specifically, the solar cell panel 24a is formed as a unit surface portion at the closest position from the sunlight irradiation side, and the rear surface of the cooling water flow path 24b, the Peltier element 24c, and the refrigerant flow path 24d are canned. Is provided inside. One surface of the casing is a surface of the panel 24a. The cooling water flow path 24b and the refrigerant flow path 24d are connected by piping so that the flow directions are orthogonal to each other with the Peltier element 24c interposed therebetween. Further, the cooling water flow path 24b and the refrigerant flow path 24d may be hollow chambers, and can be configured so that each forward pipe (liquid refrigerant pipe in the case of a refrigerant) is led out from the outlet of each flow path after heat exchange. However, here, a coil (heat exchanger) is housed in each flow path portion, and the above-described working fluid is used. A flow rate adjusting valve is interposed in the cooling water passage 24b, and a check valve is interposed in the refrigerant passage 24d. The Peltier element 24c is disposed so that the heat radiation surface faces the cooling water flow path 24b and the heat absorption surface faces the refrigerant flow path 24d.
The direct current generated by the solar cell is supplied to the Peltier element and used for cooling the refrigerant piping. The cooling pipe removes the heat taken by the Peltier element from the refrigerant piping and the heat generated by the solar cell power generation, and the cooled heat is dissipated by the cooling tower. Adoption of a water cooling method using cooling water contributes to an improvement in solar cell efficiency and heat dissipation of the Peltier element compared to air cooling.
The schematic energy flow of the water cooling system is as shown in FIG. In addition, the installation of a cooling unit can illustrate the aspect which installs the cooling unit 24 in the position of the solar cell 2 of description of FIG.

本発明は、空調システムその他の冷却システムにおいて、冷却能力の低下を防止する用途に適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to an application for preventing a decrease in cooling capacity in an air conditioning system and other cooling systems.

本発明を適用した冷却システムの基本的な装置構成図である。It is a basic apparatus block diagram of the cooling system to which this invention is applied. 本発明の実施形態に係る冷却ユニットの斜視図である。It is a perspective view of the cooling unit which concerns on embodiment of this invention. 本発明の実施形態に係る冷却ユニットの断面図である。It is sectional drawing of the cooling unit which concerns on embodiment of this invention. 本発明を適用した冷却システムの実施例を示す図である。It is a figure which shows the Example of the cooling system to which this invention is applied. 本発明のペルチェ素子の冷却を水冷方式にした場合の基本的な装置構成図である。It is a basic device block diagram at the time of cooling the Peltier device of the present invention by a water cooling system. 図5に係る冷却ユニットの詳細図である。It is detail drawing of the cooling unit which concerns on FIG. 本発明の水冷システムの概略エネルギーフローを示す図である。It is a figure which shows the general energy flow of the water cooling system of this invention.

符号の説明Explanation of symbols

1 冷却システム
2 太陽電池
3 パッケージエアコン
3a 室内機
3b 室外機
3b1 圧縮機
3b2 凝縮器
4 冷却ユニット
8 冷却塔
14、24 冷却ユニット
DESCRIPTION OF SYMBOLS 1 Cooling system 2 Solar cell 3 Package air conditioner 3a Indoor unit 3b Outdoor unit 3b1 Compressor 3b2 Condenser 4 Cooling unit 8 Cooling towers 14 and 24 Cooling unit

Claims (5)

圧縮機と冷房時に凝縮器として機能する排熱用熱交換器を備えた室外機と、熱利用側熱交換器を備えた室内機と減圧装置からなるパッケージエアコンによる冷却システムにおいて、さらに太陽電池を付設し、圧縮機の出口の下流または凝縮器の下流と室内機近傍の膨張弁との間の冷媒往管に、冷媒を過冷却するペルチェ素子を屋外に、前記管路の少なくとも一部を覆うように設け、前記ペルチェ素子は、吸熱面を前記冷媒往管の管外壁側とする一方、放熱面を前記筒体カバーの外壁面として水で冷却する構成とし、さらに前記ペルチェ素子に前記太陽電池から直流電源を供給するようにしたことを特徴とする、太陽電池を用いたパッケージエアコン性能低下防止システム。 In a cooling system using a packaged air conditioner composed of an outdoor unit equipped with a compressor and a heat exchanger for exhaust heat functioning as a condenser during cooling, an indoor unit equipped with a heat utilization side heat exchanger, and a decompression device, further solar cells A Peltier element that supercools the refrigerant is provided outside the refrigerant outlet pipe between the outlet of the compressor or downstream of the condenser and the expansion valve near the indoor unit , and covers at least a part of the pipe. The Peltier element is configured such that the heat absorption surface is on the pipe outer wall side of the refrigerant forward pipe, the heat dissipation surface is cooled with water as the outer wall surface of the cylindrical body cover, and the solar cell is connected to the Peltier element. A package air conditioner performance deterioration prevention system using solar cells, characterized in that a direct current power supply is supplied from a solar cell. 前記太陽電池は、建物の冷房負荷の大きな時間帯に対応した方位に設置され前記ペルチェ素子は冷却ユニットとして前記管路に沿って短く構成した前記筒体カバーを接続して前記管路を連続的に覆い、かつ、前記冷却ユニットの外壁から外側に向けてフィンが筒体カバーの間に挟まれることで断続的に取り付けられていることを特徴とする、請求項1に記載の太陽電池を用いたパッケージエアコン性能低下防止システム。 The solar cell is installed in a direction corresponding to a time zone when the cooling load of the building is large , and the Peltier element is connected to the cylindrical body cover which is configured to be short along the pipeline as a cooling unit, and the pipeline is continuous. The solar cell according to claim 1, wherein the solar cell according to claim 1, wherein the solar cell is intermittently attached by being covered and fins are sandwiched between cylindrical covers outward from the outer wall of the cooling unit. The package air conditioner performance deterioration prevention system used. 前記冷却ユニットは矩形の外形であり、前記冷却ユニットとその内部の前記管路の間には、潜熱蓄熱カプセルまたは相変化可能な作動流体が充填されていることを特徴とする、請求項2に記載の太陽電池を用いたパッケージエアコン性能低下防止システム。 The cooling unit has a rectangular outer shape, and a latent heat storage capsule or a phase-changeable working fluid is filled between the cooling unit and the pipe in the cooling unit. Package air conditioner performance deterioration prevention system using the solar cell described. 記太陽電池と前記ペルチェ素子とは一体化され、この一体化されたペルチェ素子の放熱面と太陽電池裏面の間に冷却水を供給することで、ペルチェ素子の吸熱効率および太陽電池の発電効率を上げ、前記冷媒を冷却することを特徴とする、請求項1、2、または3に記載の太陽電池を用いたパッケージエアコン性能低下防止システム。 It is integrated from the previous SL solar cell and the Peltier element, by supplying the cooling water between the radiating surface and a rear surface of a solar cell of the integrated Peltier element, the power generation efficiency of the endothermic efficiency and solar cell of the Peltier element The package air conditioner performance deterioration prevention system using a solar cell according to claim 1, 2, or 3 , wherein the refrigerant is cooled. 前記水冷却手段は冷却塔であり、前記太陽電池と前記冷却ユニットが一体化されたユニットは日射を受ける面を太陽電池、その背面を冷却ユニットの関係で一体化され、かつ、前記冷却ユニットは前記ペルチェ素子を挟んで日射を受ける側に水、その背面側に冷媒が導かれ、前記水は冷却塔、前記冷媒は前記管路との間を循環するよう構成されたことを特徴とする、請求項に記載の太陽電池を用いたパッケージエアコン性能低下防止システム。 The water cooling means is a cooling tower, a unit in which the solar cell and the cooling unit are integrated is a solar cell on the surface that receives solar radiation, and the back surface thereof is integrated in relation to the cooling unit, and the cooling unit is Water is introduced to the side that receives solar radiation across the Peltier element, and a refrigerant is guided to the back side of the Peltier element, and the water is configured to circulate between the cooling tower and the refrigerant. The package air-conditioner performance fall prevention system using the solar cell of Claim 4 .
JP2006082318A 2006-03-24 2006-03-24 Package air conditioner performance degradation prevention system using solar cells Active JP4873293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082318A JP4873293B2 (en) 2006-03-24 2006-03-24 Package air conditioner performance degradation prevention system using solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082318A JP4873293B2 (en) 2006-03-24 2006-03-24 Package air conditioner performance degradation prevention system using solar cells

Publications (2)

Publication Number Publication Date
JP2007255813A JP2007255813A (en) 2007-10-04
JP4873293B2 true JP4873293B2 (en) 2012-02-08

Family

ID=38630231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082318A Active JP4873293B2 (en) 2006-03-24 2006-03-24 Package air conditioner performance degradation prevention system using solar cells

Country Status (1)

Country Link
JP (1) JP4873293B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402360B2 (en) * 2009-07-31 2014-01-29 富士電機株式会社 Cooling system
JP5240257B2 (en) * 2010-08-26 2013-07-17 ダイキン工業株式会社 Cooling system
JP5177254B2 (en) * 2010-12-28 2013-04-03 ダイキン工業株式会社 Cooling system
JP2012197978A (en) * 2011-03-22 2012-10-18 Toyota Industries Corp Heat pump system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3305777B2 (en) * 1992-12-03 2002-07-24 株式会社小松製作所 Light / heat combined panel
JPH06331160A (en) * 1993-05-19 1994-11-29 Kiyoshi Yanagimachi Assembly for electronic cooling element
JPH10300133A (en) * 1997-04-22 1998-11-13 Sharp Corp Air conditioner
JP3979531B2 (en) * 2003-04-15 2007-09-19 日本ブロアー株式会社 Electronic cooling device
EP1669697A1 (en) * 2004-12-09 2006-06-14 Delphi Technologies, Inc. Thermoelectrically enhanced CO2 cycle

Also Published As

Publication number Publication date
JP2007255813A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP6234595B2 (en) Solar air conditioning system
JP6271026B2 (en) Power electronic element cooling system and distributed power generation system
JP2008157483A (en) Photovoltaic heat pump system
WO2011069389A1 (en) Heat dissipater, heat dissipation method for communication device, and communication device
JP4873293B2 (en) Package air conditioner performance degradation prevention system using solar cells
US11274859B2 (en) Active daytime radiative cooling for air conditioning and refrigeration systems
JP4994754B2 (en) Heat source system
JP2012059952A (en) Electronic apparatus cooling structure
JP3653256B2 (en) Hybrid energy system
US20230118671A1 (en) Photovoltaic air conditioning system
KR101964943B1 (en) Low-temperature warehouse using solar power generation unit
WO2007006819A1 (en) Thermodynamic/photovoltaic solar panel
JP3052990B2 (en) Outdoor unit for air heat source heat pump
ES2262391B1 (en) AIR-CONDITIONING SYSTEM.
CN216700787U (en) Heat dissipation device and photovoltaic air conditioner
CN217357307U (en) Photoelectric ice cold storage system
JP2005147658A (en) Hybrid energy system
CN220753560U (en) Air-cooled battery pack based on heat pipe heat dissipation
CN108124410A (en) A kind of photovoltaic gateway machine radiator
JP2005241079A (en) Solar power generator
JP2008286162A (en) Energy system, cogeneration system, and solar battery module
JP5634116B2 (en) Power conversion device for solar power generation system
CN114777234A (en) Photoelectric ice cold storage system
CN115833743A (en) Heat dissipation device, control method, control system and medium thereof, photovoltaic module and system
JP2015175594A (en) Peltier device cooling and heating apparatus with semiconductor element of one of thermionic element as energy source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150