JP4870771B2 - Optical fiber temperature distribution measuring device, optical fiber temperature distribution measuring method, and optical fiber temperature distribution measuring system - Google Patents

Optical fiber temperature distribution measuring device, optical fiber temperature distribution measuring method, and optical fiber temperature distribution measuring system Download PDF

Info

Publication number
JP4870771B2
JP4870771B2 JP2008535413A JP2008535413A JP4870771B2 JP 4870771 B2 JP4870771 B2 JP 4870771B2 JP 2008535413 A JP2008535413 A JP 2008535413A JP 2008535413 A JP2008535413 A JP 2008535413A JP 4870771 B2 JP4870771 B2 JP 4870771B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
intensity
measured
stokes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008535413A
Other languages
Japanese (ja)
Other versions
JPWO2008035784A1 (en
Inventor
英彦 米田
剛 伊木
裕史 小谷野
文義 大久保
司明 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
J Power Systems Corp
Original Assignee
Sumitomo Electric Industries Ltd
J Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2006/318858 external-priority patent/WO2008035436A1/en
Application filed by Sumitomo Electric Industries Ltd, J Power Systems Corp filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008535413A priority Critical patent/JP4870771B2/en
Publication of JPWO2008035784A1 publication Critical patent/JPWO2008035784A1/en
Application granted granted Critical
Publication of JP4870771B2 publication Critical patent/JP4870771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、光ファイバの温度分布を光学的に遠隔測定するための光ファイバ温度分布測定装置、光ファイバ温度分布測定方法および光ファイバ温度分布測定システムに関する。
本出願は、国際出願番号PCT/JP2006/318858に基づいており、この国際出願の全内容は、本出願において参照され導入される。
The present invention relates to an optical fiber temperature distribution measuring device, an optical fiber temperature distribution measuring method, and an optical fiber temperature distribution measuring system for optically remotely measuring the temperature distribution of an optical fiber.
This application is based on international application number PCT / JP2006 / 318858, the entire contents of which are referenced and introduced in this application.

光ファイバの温度分布を光学的に遠隔測定するための光ファイバの温度分布測定方法として、OTDR(Optical Time Domain Reflectometry)による距離測定の原理と、ラマン散乱光の検出による温度測定の原理とを組み合わせた方法が知られている(例えば、特許文献1および非特許文献1参照。)。   As a method for measuring the temperature distribution of an optical fiber for optically measuring the temperature distribution of the optical fiber, a combination of the principle of distance measurement by OTDR (Optical Time Domain Reflectometry) and the principle of temperature measurement by detection of Raman scattered light is combined. Are known (see, for example, Patent Document 1 and Non-Patent Document 1).

図14Aおよび図14Bは、特許文献1に記載された光ファイバの温度分布測定の原理を示す説明図であり、図14Aは、温度分布の測定原理図であり、図14Bは、後方散乱光の波長分布図である。温度分布の測定は、被測定光ファイバ2を、入射パルス光4が通過し、散乱点5において生じた後方散乱光6を光路変換して波長分離器(図示せず)に出力光7として出力するビームスプリッタ3と、波長分離器から出力される信号を検出する信号検出部(図示せず)、信号処理部(図示せず)等を備える構成を用いて行われる。   14A and 14B are explanatory diagrams showing the principle of temperature distribution measurement of an optical fiber described in Patent Document 1, FIG. 14A is a principle diagram of measurement of temperature distribution, and FIG. 14B is a diagram of backscattered light. It is a wavelength distribution diagram. In measuring the temperature distribution, the incident pulsed light 4 passes through the optical fiber 2 to be measured, and the backscattered light 6 generated at the scattering point 5 is optically converted and output as an output light 7 to a wavelength separator (not shown). This is performed using a configuration including a beam splitter 3, a signal detection unit (not shown) that detects a signal output from the wavelength separator, a signal processing unit (not shown), and the like.

次に、光ファイバの温度分布の測定方法を説明する。まず、被測定光ファイバ2に光源(図示せず)により発生させた波長λの入射パルス光4を入射すると、伝播の過程である散乱点5において後方散乱光6が現れ、入射端側に戻ってくる。ここで、入射端からある散乱点5までの距離をL、入射パルス光4の入射時点から後方散乱光6の検出時点までの時間をt、被測定光ファイバ2の屈折率をn、真空中の光速をC、被測定光ファイバ2中の光速をCとすると、
C=C/n−−−−(1)
L=C・t/2−−−−(2)
となる。したがって、(2)式により散乱点5の位置が定量的に求められる。
Next, a method for measuring the temperature distribution of the optical fiber will be described. First, when incident pulsed light 4 having a wavelength λ 0 generated by a light source (not shown) is incident on the optical fiber 2 to be measured, backscattered light 6 appears at a scattering point 5 that is a propagation process, and is incident on the incident end side. Come back. Here, the distance from the incident end to the scattering point 5 is L, the time from the incident time of the incident pulsed light 4 to the detection time of the backscattered light 6 is t, the refractive index of the optical fiber 2 to be measured is n, and in vacuum Is C 0 and the speed of light in the optical fiber 2 to be measured is C,
C = C 0 / n ---- (1)
L = C · t / 2 −−−−− (2)
It becomes. Therefore, the position of the scattering point 5 is quantitatively determined by the equation (2).

一方、後方散乱光6には、図14Bに示すように、レーリー光20、ストークス光21、および反ストークス光22が含まれる。入射パルス光4の波長をλとするとレーリー光20の波長はλとなり、波長シフト量をΔλとすると、ストークス光21の波長λと反ストークス光22の波長λASは、
λ+Δλ−−−−(3)
λAS−Δλ−−−−(4)
となる。
On the other hand, the backscattered light 6 includes Rayleigh light 20, Stokes light 21, and anti-Stokes light 22, as shown in FIG. 14B. Wavelength lambda 0 next to the Rayleigh light 20 when the wavelength is lambda 0 of the incident pulse light 4, and the wavelength shift amount and [Delta] [lambda], the wavelength lambda AS wavelength lambda S and the anti-Stokes light 22 of the Stokes light 21,
λ S = λ 0 + Δλ −−−− (3)
λ AS = λ 0 −Δλ −−−− (4)
It becomes.

そして、ある散乱点において生じる後方散乱光中の波長λのストークス光21の受光強度をI、波長λASの反ストークス光22の受光強度をIASで表わすと、ストークス光21の受光強度Iと反ストークス光22の受光強度IASの比は、被測定光ファイバ2中の散乱点5の絶対温度Tに依存し、
AS/I=A・exp(−h・C・Δλ/k・T)−−−−(5)
に示す関係となる。ここで、hはプランク定数(J・S)、Δλはラマンシフト量(m−1)、kはボルツマン定数(J/K)、Tは絶対温度(K),Aは測定系の性能によって定まる定数である。したがって、散乱点の温度が定量的に求められる。また、反ストークス光22のみでも被測定光ファイバ2中の散乱点5の絶対温度Tの関数となり、
AS=B・(1/(exp(h・C・Δλ/kT)−1))−−−−(6)
に示す関係となる。ここでBは測定系の性能によって定まる定数である。以上から、散乱点5の温度は定量的に求めることができる。
なお、測定装置から離れた光ファイバ内のある散乱点で発生したストークス光、反ストークス光は光ファイバ伝播中に光ファイバによる吸収、散乱等により減衰する。従来技術ではストークス光、反ストークス光の光ファイバ伝播中のこれらの減衰量を単位距離当たりで一定とみなして補正している。
When representing the received light intensity of the Stokes light 21 of the wavelength lambda S in backscattering light generated in the scattering points with I S, the reverse light-receiving intensity of the Stokes light 22 having a wavelength lambda AS in I AS, receiving intensity of the Stokes light 21 the ratio of the received light intensity I aS the I S and the anti-Stokes light 22 is dependent on the absolute temperature T of the scattering point 5 in 2 optical fiber to be measured,
I AS / I S = A · exp (−h · C · Δλ / k B · T) ---- (5)
The relationship shown in Here, h is the Planck constant (J · S), Δλ is the Raman shift amount (m −1 ), k B is the Boltzmann constant (J / K), T is the absolute temperature (K), and A is the performance of the measurement system. It is a fixed constant. Accordingly, the temperature of the scattering point is quantitatively determined. Further, only the anti-Stokes light 22 is a function of the absolute temperature T of the scattering point 5 in the optical fiber 2 to be measured,
I AS = B · (1 / (exp (h · C · Δλ / k B T) −1)) −−−− (6)
The relationship shown in Here, B is a constant determined by the performance of the measurement system. From the above, the temperature of the scattering point 5 can be obtained quantitatively.
Note that Stokes light and anti-Stokes light generated at a certain scattering point in the optical fiber away from the measuring device are attenuated by absorption and scattering by the optical fiber during propagation of the optical fiber. In the prior art, the amount of attenuation of Stokes light and anti-Stokes light during propagation through the optical fiber is corrected by regarding it as constant per unit distance.

従来の光ファイバの温度分布測定方法によれば、上記のように散乱点の位置および温度を求めることができる。
特許第3063063号公報 J.P.Dakin, et al: Distributed Optical Fibre Raman Temperature Sensor using a Semiconductor Light Source and Detector 「ELECTRONICS LETTERS」1985年6月20日、Vol.21 No.13 p.569-570
According to the conventional method for measuring the temperature distribution of an optical fiber, the position and temperature of the scattering point can be obtained as described above.
Japanese Patent No. 3030663 JPDakin, et al: Distributed Optical Fiber Raman Temperature Sensor using a Semiconductor Light Source and Detector `` ELECTRONICS LETTERS '' June 20, 1985, Vol.21 No.13 p.569-570

しかし、従来の光ファイバの温度分布測定方法には以下の問題がある。図14Aは従来技術の光ファイバの測定原理を示すが、実際の温度分布測定の際に、被測定光ファイバ2が水素雰囲気中にある(測定雰囲気30に水素が含まれている)場合、被測定光ファイバ2中に水素分子が拡散する。そしてこの拡散した水素分子によって散乱点5で発生して装置側に戻っていく後方散乱光6が吸収され、信号検出部で検出される受光強度が低下する。なお、散乱点5自体が水素雰囲気にない場合であっても、散乱点5から装置までの間のある部分において被測定光ファイバが水素雰囲気中にあれば、受光強度の低下が発生する。この水素分子吸収による受光強度の低下量、すなわち光伝送損失の増加量は波長依存性を有するため、散乱点の測定温度に対応するストークス光と反ストークス光の受光強度が水素分子に起因する異なる光伝送損失を含んだ値となり、正確な温度情報が得られないという問題がある。なお、参考文献(N. Uchida and N. Uesugi, “Infrared Optical Loss Increase in Silica Fibers due to Hydrogen”, J. Lightwave Technol., Vol LT-4, No.8, pp.1132-1138, Aug. 1986.)にも開示されている通り、水素雰囲気中での光伝送損失には、光ファイバ内に拡散した水素分子によるの分子振動に起因する吸収損失(水素分子吸収)と、水素分子と光ファイバとの化学反応の結果生じる光伝送損失であって、OH基形成に起因するOH基吸収損失等の損失とがある。本発明における水素分子による光伝送損失の増加は、特に記載の無い限り、この水素分子吸収による光伝送損失の増加を意味する。   However, the conventional optical fiber temperature distribution measuring method has the following problems. FIG. 14A shows the measurement principle of an optical fiber according to the prior art. When the measured optical fiber 2 is in a hydrogen atmosphere (when hydrogen is contained in the measurement atmosphere 30) during actual temperature distribution measurement, Hydrogen molecules diffuse into the measurement optical fiber 2. Then, the backscattered light 6 generated at the scattering point 5 and returning to the apparatus side is absorbed by the diffused hydrogen molecules, and the received light intensity detected by the signal detection unit decreases. Even if the scattering point 5 itself is not in a hydrogen atmosphere, if the optical fiber to be measured is in a hydrogen atmosphere in a certain portion between the scattering point 5 and the apparatus, the received light intensity is reduced. The amount of decrease in received light intensity due to absorption of hydrogen molecules, that is, the amount of increase in optical transmission loss is wavelength-dependent, so the received light intensity of Stokes light and anti-Stokes light corresponding to the measurement temperature of the scattering point is different due to hydrogen molecules. There is a problem in that accurate temperature information cannot be obtained because the value includes optical transmission loss. References (N. Uchida and N. Uesugi, “Infrared Optical Loss Increase in Silica Fibers due to Hydrogen”, J. Lightwave Technol., Vol LT-4, No.8, pp.1132-1138, Aug. 1986 .)), The optical transmission loss in the hydrogen atmosphere includes absorption loss (hydrogen molecule absorption) caused by molecular vibration caused by hydrogen molecules diffused in the optical fiber, and hydrogen molecules and optical fiber. Light transmission loss resulting from a chemical reaction with OH group, such as OH group absorption loss due to OH group formation. In the present invention, an increase in optical transmission loss due to hydrogen molecules means an increase in optical transmission loss due to absorption of hydrogen molecules unless otherwise specified.

水素分子の存在に基づく光伝送への影響の一例として、図15Aおよび図15Bは水素分子が存在する場合の距離と測定装置で検出される受光強度を示し、図15Aはストークス光の特性図であり、図15Bは反ストークス光の特性図である。図16は水素分子が存在する場合の距離と従来技術で算出された温度測定値の関係を示す。   As an example of the influence on the optical transmission based on the presence of hydrogen molecules, FIGS. 15A and 15B show the distance in the presence of hydrogen molecules and the received light intensity detected by the measuring device, and FIG. 15A is a characteristic diagram of Stokes light. FIG. 15B is a characteristic diagram of anti-Stokes light. FIG. 16 shows the relationship between the distance when hydrogen molecules are present and the temperature measurement value calculated by the prior art.

図15Aおよび図15Bに示す被測定光ファイバの距離と受光強度の関係においては、水素分圧が0MPa,0.04MPa,0.07MPa,および0.09MPaと異なる条件でのストークス光と反ストークス光の特性がそれぞれ示されている。図15Aに示すように、ストークス光は、被測定光ファイバの長さ(距離)の増加にしたがって減衰により受光強度が低下し、かつ水素分圧の上昇にしたがって受光強度の低下が著しくなる傾向があることがわかる。また、図15Bに示すように、反ストークス光についても同様の傾向があることがわかる。   15A and 15B, the Stokes light and the anti-Stokes light under conditions where the hydrogen partial pressure is different from 0 MPa, 0.04 MPa, 0.07 MPa, and 0.09 MPa in the relationship between the distance of the optical fiber to be measured and the received light intensity. The characteristics of each are shown. As shown in FIG. 15A, the Stokes light tends to decrease in received light intensity due to attenuation as the length (distance) of the optical fiber to be measured increases, and to significantly decrease the received light intensity as the hydrogen partial pressure increases. I know that there is. In addition, as shown in FIG. 15B, it can be seen that the same tendency exists for the anti-Stokes light.

このように、被測定光ファイバ中に水素分子が拡散することによって光伝送損失が増加し、図16に示すように温度測定値と真値との間に誤差が生じる。この誤差は被測定光ファイバの距離と水素分圧がそれぞれ大であるほど顕著になる。   In this way, the optical transmission loss increases due to the diffusion of hydrogen molecules in the optical fiber to be measured, and an error occurs between the measured temperature value and the true value as shown in FIG. This error becomes more prominent as the distance of the optical fiber to be measured and the hydrogen partial pressure are larger.

従って、本発明の目的は、光ファイバが水素雰囲気中にある場合であっても正確な温度を測定することができる光ファイバ温度分布測定装置、光ファイバ温度分布測定方法および光ファイバ温度分布測定システムを提供することにある。   Accordingly, an object of the present invention is to provide an optical fiber temperature distribution measuring apparatus, an optical fiber temperature distribution measuring method, and an optical fiber temperature distribution measuring system capable of measuring an accurate temperature even when the optical fiber is in a hydrogen atmosphere. Is to provide.

本発明の第1の特徴によれば、被測定光ファイバにパルス光を入射する光源と、前記パルス光の入射に基づいて前記被測定光ファイバ内で生じた後方散乱光に含まれる所定の光の受光強度を検出する信号検出部と、前記所定の光の受光強度に基づいて前記被測定光ファイバの水素分子吸収による受光強度の変化量に応じた値を算出し、前記値に基づいて前記被測定光ファイバの温度に応じた前記所定の光の受光強度を補正する信号処理部とを有し、前記信号処理部は、ストークス光の受光強度の変化量に応じた値に基づいて、前記被測定光ファイバの温度に応じた反ストークス光の受光強度を補正し、又は前記信号処理部は、前記光源が出力する温度測定用パルス光の波長に基づいて得られる受光強度の変化量に応じた値に基づいて、前記被測定光ファイバの温度に応じた前記所定の光の受光強度を補正する光ファイバ温度分布測定装置を提供する。 According to the first aspect of the present invention, the light source that makes the pulsed light incident on the optical fiber to be measured, and the predetermined light included in the backscattered light generated in the optical fiber to be measured based on the incidence of the pulsed light A signal detection unit for detecting the received light intensity of the light, and calculating a value corresponding to a change amount of the received light intensity due to absorption of hydrogen molecules of the optical fiber to be measured based on the received light intensity of the predetermined light, and based on the value have a signal processing unit that corrects the received light intensity of the predetermined light corresponding to the temperature of the measured optical fiber, the signal processing unit on the basis of the value corresponding to the amount of change of the received light intensity of the Stokes light, the The received light intensity of the anti-Stokes light corresponding to the temperature of the optical fiber to be measured is corrected, or the signal processing unit responds to the amount of change in received light intensity obtained based on the wavelength of the temperature measuring pulse light output from the light source. Based on the measured value. To provide an optical fiber temperature distribution measuring apparatus for correcting a received light intensity of the predetermined light corresponding to the temperature of the constant light fiber.

前記信号検出部は、前記所定の光として前記後方散乱光に含まれるストークス光および反ストークス光の受光強度を検出してもよい。   The signal detection unit may detect the received light intensity of Stokes light and anti-Stokes light included in the backscattered light as the predetermined light.

前記信号検出部は、前記所定の光として前記後方散乱光に含まれるストークス光、反ストークス光、およびレーリー光の受光強度を検出してもよい。   The signal detection unit may detect received light intensity of Stokes light, anti-Stokes light, and Rayleigh light included in the backscattered light as the predetermined light.

前記信号処理部は、他の光源が出力する1240nm光の波長に基づいて得られる受光強度の変化量に応じた値に基づいて前記被測定光ファイバの温度に応じた前記所定の光の受光強度を補正してもよい。   The signal processing unit receives light intensity of the predetermined light according to the temperature of the optical fiber to be measured based on a value corresponding to a change amount of light reception intensity obtained based on a wavelength of 1240 nm light output from another light source. May be corrected.

更に、本発明の第2の特徴によれば、純石英コア光ファイバからなる前記被測定光ファイバと、本発明の第1の特徴による光ファイバ温度分布測定装置とを用いる光ファイバ温度分布測定システムを提供する。   Furthermore, according to the second feature of the present invention, an optical fiber temperature distribution measuring system using the optical fiber to be measured comprising a pure silica core optical fiber and the optical fiber temperature distribution measuring device according to the first feature of the present invention. I will provide a.

また、本発明の第3の特徴によれば、光源から被測定光ファイバにパルス光を入射し、前記パルス光の入射に基づいて前記被測定光ファイバ内で生じた後方散乱光に含まれる所定の光の受光強度を検出し、前記所定の光の受光強度に基づいて前記被測定光ファイバの水素分子吸収による受光強度の変化量に応じた値を算出し、前記値に基づいて前記被測定光ファイバの温度に応じた前記所定の光の受光強度を補正し、
前記所定の光の受光強度の補正は、前記所定の光として前記後方散乱光に含まれるストークス光に基づいて前記被測定光ファイバの温度に応じた反ストークス光の受光強度を補正するか、前記所定の光として前記後方散乱光に含まれるレーリー光に基づいて前記被測定光ファイバの温度に応じたストークス光および反ストークス光の受光強度を補正するか、又は前記所定の光として前記後方散乱光に含まれる1240nm光のレーリー光に基づいて前記被測定光ファイバの温度に応じたストークス光および反ストークス光の受光強度を補正する光ファイバ温度分布測定方法を提供する。
According to the third aspect of the present invention, the pulsed light is incident on the optical fiber to be measured from the light source, and the predetermined amount included in the backscattered light generated in the optical fiber to be measured based on the incidence of the pulsed light. And detecting a light receiving intensity of the light, calculating a value according to a change amount of the light receiving intensity due to absorption of hydrogen molecules of the optical fiber to be measured based on the light receiving intensity of the predetermined light, and measuring the light to be measured based on the value Correct the received light intensity of the predetermined light according to the temperature of the optical fiber ,
The correction of the light reception intensity of the predetermined light is performed by correcting the light reception intensity of the anti-Stokes light according to the temperature of the optical fiber to be measured based on the Stokes light included in the backscattered light as the predetermined light, or The received light intensity of Stokes light and anti-Stokes light corresponding to the temperature of the optical fiber to be measured is corrected based on Rayleigh light included in the backscattered light as predetermined light, or the backscattered light as the predetermined light An optical fiber temperature distribution measuring method for correcting received light intensity of Stokes light and anti-Stokes light according to the temperature of the optical fiber to be measured based on Rayleigh light of 1240 nm light included in the optical fiber is provided.

さらに、本発明の第4の特徴によれば、被測定光ファイバにパルス光を入射する光源と、 前記パルス光の入射に基づいて前記被測定光ファイバ内で生じた後方散乱光に含まれる光であり、反ストークス光と参照光を含む複数の所定の光の受光強度を検出する信号検出部と、前記反ストークス光の受光強度を用いて前記被測定光ファイバの温度分布を計算する信号処理部とを有し、前記信号処理部は、前記被測定光ファイバの水素分子吸収による前記参照光の受光強度の変化量を各地点毎に算出し、前記反ストークス光の受光強度に対し、水素分子吸収による前記参照光の受光強度の変化量に基づいて計算された、水素分子吸収による前記反ストークス光の受光強度の変化量を各地点毎に加算する補正を行う補正部と、前記補正された反ストークス光の受光強度を使用して前記温度分布の計算をする温度分布計算部とを有する光ファイバ温度分布測定装置を提供する。   Furthermore, according to the fourth aspect of the present invention, a light source that makes pulsed light incident on the optical fiber to be measured, and light included in backscattered light generated in the optical fiber to be measured based on the incidence of the pulsed light A signal detector for detecting the received light intensity of a plurality of predetermined lights including anti-Stokes light and reference light, and signal processing for calculating the temperature distribution of the optical fiber to be measured using the received light intensity of the anti-Stokes light The signal processing unit calculates the amount of change in the received light intensity of the reference light due to absorption of hydrogen molecules in the optical fiber to be measured for each point, and the hydrogen intensity relative to the received light intensity of the anti-Stokes light is calculated. A correction unit that performs correction for adding the amount of change in the light intensity of the anti-Stokes light due to hydrogen molecule absorption calculated based on the amount of change in the light intensity of the reference light due to molecular absorption; Anti-strike Using the received light intensity of the box beam to provide an optical fiber temperature distribution measuring device having a temperature distribution calculator for the calculation of the temperature distribution.

前記水素分子吸収による前記反ストークス光の受光強度の変化量は、前記水素分子吸収による前記参照光の受光強度の変化量に所定の係数を乗じて計算してもよい。 The amount of change in the light reception intensity of the anti-Stokes light due to the hydrogen molecule absorption may be calculated by multiplying the amount of change in the light reception intensity of the reference light due to the hydrogen molecule absorption by a predetermined coefficient.

前記所定の係数は、前記水素分子吸収による前記反ストークス光の受光強度の変化量を前記水素分子吸収による参照光の受光強度の変化量で割った値とする係数演算部を更に有してもよい。 The predetermined coefficient may further include a coefficient calculation unit that sets a value obtained by dividing the amount of change in the light intensity of the anti-Stokes light due to the absorption of hydrogen molecules by the amount of change in the light intensity of the reference light due to the absorption of hydrogen molecules. Good.

前記所定の係数を、前記被測定光ファイバの近傍に配置した温度センサにより測定された測定温度に基づいて、前記測定温度となるように前記反ストークス光の受光強度を補正する値として算出する係数演算部を有してもよい。   A coefficient for calculating the predetermined coefficient as a value for correcting the light reception intensity of the anti-Stokes light so as to become the measurement temperature based on a measurement temperature measured by a temperature sensor arranged in the vicinity of the optical fiber to be measured. You may have a calculating part.

前記所定の係数を外部から入力する係数データ取り込み部を更に有してもよい。 You may further have the coefficient data acquisition part which inputs the said predetermined coefficient from the outside.

温度差による前記参照光の受光強度の変化量を決定し、前記被測定光ファイバの各地点での前記参照光の受光強度に前記温度差による前記参照光の受光強度の変化量を加算する参照光補正部を更に有してもよい。 A reference for determining a change amount of the light intensity of the reference light due to a temperature difference, and adding a change amount of the light intensity of the reference light due to the temperature difference to the light intensity of the reference light at each point of the measured optical fiber. You may further have a light correction part.

前回測定での温度分布測定結果に基づき、前記温度差による参照光の受光強度の変化量を決定してもよい。 Based on the temperature distribution measurement result in the previous measurement, the amount of change in the received light intensity of the reference light due to the temperature difference may be determined.

最新の測定の温度分布測定結果に基づき、前記温度差による参照光の受光強度の変化量を決定してもよい。 The amount of change in the received light intensity of the reference light due to the temperature difference may be determined based on the latest temperature distribution measurement result.

さらに、本発明の第5の特徴によれば、純石英コアを有する光ファイバである前記被測定光ファイバと、本発明の第4の特徴による光ファイバ温度分布測定装置とを用いる光ファイバ温度分布測定システムを提供する。 Furthermore, according to a fifth aspect of the present invention, an optical fiber temperature distribution using the optical fiber to be measured, which is an optical fiber having a pure silica core, and the optical fiber temperature distribution measuring apparatus according to the fourth aspect of the present invention. Provide a measurement system.

本発明の第6の特徴によれば、光源から被測定光ファイバにパルス光を入射し、前記パルス光の入射に基づいて前記被測定光ファイバ内で生じた後方散乱光に含まれる光であり、反ストークス光と参照光を含む複数の所定の光の受光強度を検出し、前記反ストークス光の受光強度を用いて前記被測定光ファイバの温度分布を計算する光ファイバ温度分布測定方法であり、前記被測定光ファイバの水素分子吸収による前記参照光の受光強度の変化量を各地点で算出し、前記反ストークス光の受光強度に対して、前記水素分子吸収による前記参照光の受光強度の変化量に基づいて計算された、水素分子吸収による前記反ストークス光の受光強度の変化量を各地点毎に加算する補正を行い、前記補正された反ストークス光の受光強度を使用して前記温度分布の計算をする光ファイバ温度分布測定方法を提供する。   According to the sixth aspect of the present invention, the light included in the backscattered light that is incident on the optical fiber to be measured from the light source and is generated in the optical fiber to be measured based on the incidence of the pulsed light. An optical fiber temperature distribution measuring method for detecting a light receiving intensity of a plurality of predetermined lights including an anti-Stokes light and a reference light and calculating a temperature distribution of the optical fiber to be measured using the light receiving intensity of the anti-Stokes light. The amount of change in received light intensity of the reference light due to absorption of hydrogen molecules in the optical fiber to be measured is calculated at each point, and the received light intensity of the reference light due to absorption of hydrogen molecules is compared with the received light intensity of the anti-Stokes light. The amount of change in the received light intensity of the anti-Stokes light due to absorption of hydrogen molecules calculated based on the amount of change is corrected for each point, and the received light intensity of the anti-Stokes light corrected is used to To provide an optical fiber temperature distribution measuring method of the calculation of degrees distribution.

前記水素分子吸収による前記反ストークス光の受光強度の変化量は、前記水素分子吸収による前記参照光の受光強度の変化量に所定の係数を乗じて計算してもよい。 The amount of change in the light reception intensity of the anti-Stokes light due to the hydrogen molecule absorption may be calculated by multiplying the amount of change in the light reception intensity of the reference light due to the hydrogen molecule absorption by a predetermined coefficient.

前記所定の係数は、前記水素分子吸収による前記反ストークス光の受光強度の変化量を前記水素分子吸収による前記参照光の受光強度の変化量で割った値としてもよい。   The predetermined coefficient may be a value obtained by dividing the amount of change in the light reception intensity of the anti-Stokes light due to the hydrogen molecule absorption by the amount of change in the light reception intensity of the reference light due to the hydrogen molecule absorption.

前記所定の係数を、前記被測定光ファイバの近傍に配置された温度センサによって測定された測定温度に基づき、前記測定温度となるように前記反ストークス光の受光強度を補正する値として算出してもよい。 The predetermined coefficient is calculated as a value for correcting the light reception intensity of the anti-Stokes light so as to be the measurement temperature based on a measurement temperature measured by a temperature sensor disposed in the vicinity of the optical fiber to be measured. Also good.

また、前記所定の係数を外部から入力してもよい。 The predetermined coefficient may be input from the outside.

初回の温度分布の測定を被測定光ファイバへの水素分子が拡散しておらず水素分子吸収の影響が少ない段階で行い、2回目の温度分測定の際に、初回の温度分布の測定結果を基に前記温度差による参照光の受光強度の変化量を決定し、前記被測定光ファイバの各地点での前記参照光の受光強度に前記温度差による参照光の受光強度の変化量を加算してもよい。 The first temperature distribution measurement is performed at a stage where hydrogen molecules are not diffused into the optical fiber to be measured and the influence of hydrogen molecule absorption is small, and the first temperature distribution measurement result is obtained at the second temperature measurement. The amount of change in the received light intensity of the reference light due to the temperature difference is determined, and the amount of change in the received light intensity of the reference light due to the temperature difference is added to the received light intensity of the reference light at each point of the measured optical fiber. May be.

光ファイバは、図17Aおよび図17Bに示すように、波長によって光伝送損失が異なる。さらに、図示するように光ファイバが水素分圧の異なる雰囲気中(0MPa,0.05MPa,0.09MPa,0.15MPa,および0.20MPa)に曝されることで光伝送損失が変化する。図17Aおよび図17Bに示されるように、水素分圧が上昇すると光伝送損失も増加する傾向がある。   As shown in FIGS. 17A and 17B, the optical fiber has different optical transmission loss depending on the wavelength. Further, as shown in the figure, the optical transmission loss changes when the optical fiber is exposed to atmospheres having different hydrogen partial pressures (0 MPa, 0.05 MPa, 0.09 MPa, 0.15 MPa, and 0.20 MPa). As shown in FIGS. 17A and 17B, when the hydrogen partial pressure increases, the optical transmission loss tends to increase.

図18Aおよび図18Bは、図17Aおよび図17Bに示される傾向を明確にするために、水素が存在しない状態(すなわち0MPa)での光伝送損失を基準として、光ファイバの光伝送損失の増加量を水素分圧毎(0.05MPa,0.09MPa,0.15MPa,および0.20MPa)に示したものである。さらに図19Aおよび図19Bに、石英光ファイバにおける光伝送損失が小となる1550nmを基準として、他の波長850nm、1240nm、1300nm、1450nm、1650nm、および1690nmにおける光伝送損失の増加量の割合を例示する。これらの図表から光ファイバの光伝送損失の増加量は水素分圧に比例することが判る。   FIGS. 18A and 18B show an increase in the optical transmission loss of the optical fiber based on the optical transmission loss in the absence of hydrogen (ie, 0 MPa) in order to clarify the tendency shown in FIGS. 17A and 17B. For each hydrogen partial pressure (0.05 MPa, 0.09 MPa, 0.15 MPa, and 0.20 MPa). Further, FIG. 19A and FIG. 19B illustrate the ratio of the increase in optical transmission loss at other wavelengths of 850 nm, 1240 nm, 1300 nm, 1450 nm, 1650 nm, and 1690 nm with reference to 1550 nm at which the optical transmission loss in the quartz optical fiber is small. To do. From these charts, it can be seen that the increase in the optical transmission loss of the optical fiber is proportional to the hydrogen partial pressure.

このことから、ある波長jにおける水素分子による光ファイバの光伝送損失の増加量ΔLと、他の波長iにおける水素分子による光ファイバの光伝送損失の増加量ΔLとは
ΔL/ΔL=k (kは定数)−−−−(7)
の関係を有する。波長iと波長jの光伝送損失の増加量に対応する比kが定まると、他の波長iの水素分子による光伝送損失の増加量ΔLを求めることができる。なお、光伝送損失の増加量ΔLj、ΔLは水素分子による吸収によるものであり、kは光ファイバの種類に依存しない。また、kは波長に依存するが、温度の大小や水素量の大小に依存しない。
また、他の波長iの水素分子による光伝送損失の増加量が定まれば、ある波長jの水素分子による光伝送損失の増加量を求めることもできる。そこで、他の波長iの光を参照光として用いて、他の波長iの水素分子による受光強度の変化量とある波長jの水素分子による受光強度の変化量との比に基づき定数kを算出した上で、他の波長iの水素分子による受光強度の変化量を測定することで、ある波長jの水素分子による受光強度の変化量を算出することができる。また、過去の測定結果から定数kを決定すれば、kを算出するための測定を都度実施することなく、他の波長iの水素分子による受光強度の変化量を測定することで、ある波長jの水素分子による受光強度の変化量を算出することもできる。
Therefore, the increase amount [Delta] L j of the optical transmission loss of the optical fiber by the hydrogen molecules at a given wavelength j, the increment [Delta] L i of the optical transmission loss of the optical fiber by the hydrogen molecules at other wavelengths i ΔL j / ΔL i = K (k is a constant) ---- (7)
Have the relationship. When the ratio k corresponding to the increase in the optical transmission loss at the wavelength i and the wavelength j is determined, the increase ΔL i in the optical transmission loss due to hydrogen molecules at other wavelengths i can be obtained. The increase amounts ΔL j and ΔL i of optical transmission loss are due to absorption by hydrogen molecules, and k does not depend on the type of optical fiber. Further, k depends on the wavelength, but does not depend on the temperature or the amount of hydrogen.
Further, if the amount of increase in optical transmission loss due to hydrogen molecules of other wavelengths i is determined, the amount of increase in optical transmission loss due to hydrogen molecules of a certain wavelength j can also be obtained. Therefore, the constant k is calculated based on the ratio of the amount of change in received light intensity due to hydrogen molecules at other wavelengths i to the amount of change in light intensity received by hydrogen molecules at a certain wavelength j using light of other wavelengths i as reference light. Then, by measuring the amount of change in received light intensity due to hydrogen molecules of other wavelengths i, the amount of change in light intensity received by hydrogen molecules of a certain wavelength j can be calculated. In addition, if the constant k is determined from the past measurement results, it is possible to measure the amount of change in the received light intensity by hydrogen molecules of other wavelengths i without performing the measurement for calculating k each time. It is also possible to calculate the amount of change in received light intensity due to hydrogen molecules.

本発明によれば、光ファイバが水素雰囲気中にある場合であっても正確に温度を測定することができる。   According to the present invention, the temperature can be accurately measured even when the optical fiber is in a hydrogen atmosphere.

図1は、本発明の第1の実施の形態に係る光ファイバ温度分布測定システムを示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an optical fiber temperature distribution measuring system according to a first embodiment of the present invention. 図2は、第1の実施の形態に係るストークス光の受光強度IS0(x)および反ストークス光の受光強度IAS0(x)を求めるフローチャートである。FIG. 2 is a flowchart for obtaining the Stokes light reception intensity I S0 (x) and the anti-Stokes light reception intensity I AS0 (x) according to the first embodiment. 図3は、第1の実施の形態に係るk値を決定するフローチャートである。FIG. 3 is a flowchart for determining the k value according to the first embodiment. 図4は、第1の実施の形態に係る光ファイバ温度分布測定システムでの温度測定手順を示すフローチャートである。FIG. 4 is a flowchart showing a temperature measurement procedure in the optical fiber temperature distribution measurement system according to the first embodiment. 図5Aは、反ストークス光の受光強度に基づく温度測定において、反ストークス光の受光強度の補正を行わない場合の温度測定結果を示す特性図である。FIG. 5A is a characteristic diagram illustrating a temperature measurement result in a case where the correction of the light reception intensity of the anti-Stokes light is not performed in the temperature measurement based on the light reception intensity of the anti-Stokes light. 図5Bは、反ストークス光の受光強度に基づく温度測定において、反ストークス光の受光強度の補正を行った場合の温度測定結果を示す特性図である。FIG. 5B is a characteristic diagram showing a temperature measurement result when the light intensity of the anti-Stokes light is corrected in the temperature measurement based on the light intensity of the anti-Stokes light. 図6は、本発明の第2の実施の形態に係る光ファイバ温度分布測定システムを示す概略構成図である。FIG. 6 is a schematic configuration diagram showing an optical fiber temperature distribution measuring system according to the second embodiment of the present invention. 図7は、第2の実施の形態に係るストークス光の受光強度IS0(x)、反ストークス光の受光強度IAS0(x)、およびレーリー光の受光強度IR0(x)を求めるフローチャートである。FIG. 7 is a flowchart for obtaining the Stokes light reception intensity I S0 (x), the anti-Stokes light reception intensity I AS0 (x), and the Rayleigh light reception intensity I R0 (x) according to the second embodiment. is there. 図8は、第2の実施の形態に係るl値、m値を決定するフローチャートである。FIG. 8 is a flowchart for determining the l value and the m value according to the second embodiment. 図9は、第2の実施の形態に係る光ファイバ温度分布測定システムでの温度測定手順を示すフローチャートである。FIG. 9 is a flowchart showing a temperature measurement procedure in the optical fiber temperature distribution measurement system according to the second embodiment. 図10は、本発明の第3の実施の形態に係る光ファイバ温度分布測定システムを示す概略構成図である。FIG. 10 is a schematic configuration diagram showing an optical fiber temperature distribution measuring system according to the third embodiment of the present invention. 図11は、第3の実施の形態に係るストークス光の受光強度IS0(x)、反ストークス光の受光強度IAS0(x)、および1240nm光のレーリー光の受光強度IR‘0(x)を求めるフローチャートである。11, third Stokes light of the received light intensity I S0 according to the embodiment of (x), the anti-Stokes light of the received light intensity I AS0 (x), and the light-receiving intensity of the Rayleigh light 1240nm light I R'0 (x ) Is a flowchart for obtaining. 図12は、第3の実施の形態に係るn値、o値を決定するフローチャートである。FIG. 12 is a flowchart for determining the n value and the o value according to the third embodiment. 図13は、第3の実施の形態に係る光ファイバ温度分布測定システムでの温度測定手順を示すフローチャートである。FIG. 13 is a flowchart showing a temperature measurement procedure in the optical fiber temperature distribution measurement system according to the third embodiment. 図14Aは、従来技術の光ファイバの温度分布測定の原理を示す図である。FIG. 14A is a diagram showing the principle of temperature distribution measurement of a conventional optical fiber. 図14Bは、従来技術の光ファイバの後方散乱光の波長分布図である。FIG. 14B is a wavelength distribution diagram of backscattered light of a conventional optical fiber. 図15Aは、水素分子が存在する場合のストークス光の距離と受光強度の関係を示す特性図である。FIG. 15A is a characteristic diagram showing the relationship between the distance of Stokes light and the light reception intensity when hydrogen molecules are present. 図15Bは、水素分子が存在する場合の反ストークス光の距離と受光強度の関係を示す特性図である。FIG. 15B is a characteristic diagram showing the relationship between the distance of the anti-Stokes light and the received light intensity when hydrogen molecules are present. 図16は、被測定光ファイバ中に水素分子が拡散することによる温度測定値と距離の関係を示す図である。FIG. 16 is a diagram showing the relationship between the measured temperature value and the distance due to the diffusion of hydrogen molecules in the optical fiber to be measured. 図17Aは、被測定光ファイバの波長に対する光伝送損失量を示す特性図である。FIG. 17A is a characteristic diagram showing the amount of optical transmission loss with respect to the wavelength of the optical fiber to be measured. 図17Bは、被測定光ファイバの各波長に対する光伝送損失量を示す表である。FIG. 17B is a table showing optical transmission loss amounts for each wavelength of the optical fiber to be measured. 図18Aは、被測定光ファイバの波長に対する光伝送損失増加量を示す特性図である。FIG. 18A is a characteristic diagram showing an increase in optical transmission loss with respect to the wavelength of the optical fiber to be measured. 図18Bは、被測定光ファイバの各波長に対する光伝送損失増加量を示す表である。FIG. 18B is a table showing an increase in optical transmission loss for each wavelength of the optical fiber under measurement. 図19Aは、1550nmを基準としたときの他の波長における光伝送損失増加量の割合を示す特性図である。FIG. 19A is a characteristic diagram showing the rate of increase in optical transmission loss at other wavelengths with 1550 nm as a reference. 図19Bは、1550nmを基準としたときの他の波長における光伝送損失増加量の割合を示す表である。FIG. 19B is a table showing the ratio of the increase in optical transmission loss at other wavelengths with 1550 nm as a reference. 図20は、本発明の第4の実施の形態に係る光ファイバ温度分布測定システムを示す概略構成図である。FIG. 20 is a schematic configuration diagram showing an optical fiber temperature distribution measuring system according to the fourth embodiment of the present invention. 図21は、本発明の第5の実施の形態に係る光ファイバ温度分布測定システムを示す概略構成図である。FIG. 21 is a schematic configuration diagram showing an optical fiber temperature distribution measurement system according to the fifth embodiment of the present invention. 図22は、本発明の第6の実施の形態に係る光ファイバ温度分布測定システムを示す概略構成図である。FIG. 22 is a schematic configuration diagram showing an optical fiber temperature distribution measurement system according to the sixth embodiment of the present invention. 図23は、本発明の第7の実施の形態に係る光ファイバ温度分布測定システムを示す概略構成図である。FIG. 23 is a schematic configuration diagram showing an optical fiber temperature distribution measuring system according to the seventh embodiment of the present invention.

符号の説明Explanation of symbols

1 光源
1A 1240nm光源
1B 温度測定用光源
2 被測定光ファイバ
3 ビームスプリッタ
4 入射パルス光
5 散乱点
6 後方散乱光
7 出力光
8 波長分離部
9 信号検出部
9A ストークス光検出部
9B 反ストークス光検出部
9C レーリー光検出部
9D 1240nm光検出部
9E 参照光検出部
10 信号処理部
10A 補正部
10B 温度分布計算部
10C 係数演算部
10D 係数データ取り込み部
10E 参照光補正部
11 表示部
12 温度センサ
13 温度変換部
20 レーリー光
21 ストークス光
22 反ストークス光
30 測定雰囲気
DESCRIPTION OF SYMBOLS 1 Light source 1A 1240nm light source 1B Temperature measuring light source 2 Optical fiber 3 to be measured 3 Beam splitter 4 Incident pulse light 5 Scattering point 6 Back scattered light 7 Output light 8 Wavelength separation part 9 Signal detection part 9A Stokes light detection part 9B Anti-Stokes light detection Unit 9C Rayleigh light detection unit 9D 1240nm light detection unit 9E reference light detection unit 10 signal processing unit 10A correction unit 10B temperature distribution calculation unit 10C coefficient calculation unit 10D coefficient data capturing unit 10E reference light correction unit 11 display unit 12 temperature sensor 13 temperature Conversion unit 20 Rayleigh light 21 Stokes light 22 Anti-Stokes light 30 Measurement atmosphere

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る光ファイバ温度分布測定システムを示す概略構成図である。本実施の形態における光ファイバ温度分布測定システムは、光源1と、被測定光ファイバ2と、入射パルス光4を被測定光ファイバ2へ入射するとともに、被測定光ファイバ2の散乱点5において生じた後方散乱光6を光路変換し、出力光7として波長分離部8に出力するビームスプリッタ3と、ビームスプリッタ3から出力された光をストークス光と反ストークス光に分離する波長分離部8と、波長分離部8で分離されたストークス光を検出するストークス光検出部9Aと反ストークス光を検出する反ストークス光検出部9Bとを有する信号検出部9と、入射パルス光4の入射タイミングと被測定光ファイバ2内の散乱点5において生じた後方散乱光6の検出タイミングとの時間差に基づき入射端から被測定光ファイバ2の散乱点(測定点)5までの距離を算出するとともに、信号検出部9により検出した信号から反ストークス光の受光強度を補正して被測定光ファイバ2の温度を計算する信号処理部10と、信号処理部10における計算結果等を表示する表示部11とを備える。同図においては、被測定光ファイバ2が水素雰囲気中にある状態を示している。なお、本発明における光ファイバ温度分布測定装置とは、図1において、被測定光ファイバ2を除く、光源1、ビームスプリッタ3、波長分離部8、信号検出部9、信号処理部10、および表示部11から構成される部分を指す。また、光ファイバ温度分布測定システムとは、光ファイバ温度分布測定装置と被測定光ファイバ2を含む全体を指すものとする。
(First embodiment)
FIG. 1 is a schematic configuration diagram showing an optical fiber temperature distribution measuring system according to a first embodiment of the present invention. The optical fiber temperature distribution measurement system according to the present embodiment causes the light source 1, the optical fiber 2 to be measured, and the incident pulsed light 4 to enter the optical fiber 2 to be measured and is generated at the scattering point 5 of the optical fiber 2 to be measured. A beam splitter 3 that converts the path of the backscattered light 6 and outputs the output light 7 to the wavelength separation unit 8; a wavelength separation unit 8 that separates the light output from the beam splitter 3 into Stokes light and anti-Stokes light; A signal detector 9 having a Stokes light detector 9A for detecting the Stokes light separated by the wavelength separator 8 and an anti-Stokes light detector 9B for detecting the anti-Stokes light, the incident timing of the incident pulsed light 4, and the measurement target Based on the time difference from the detection timing of the backscattered light 6 generated at the scattering point 5 in the optical fiber 2, the scattering point (measurement point) of the measured optical fiber 2 from the incident end. 5, a signal processing unit 10 that calculates the temperature of the optical fiber 2 to be measured by correcting the light reception intensity of the anti-Stokes light from the signal detected by the signal detection unit 9, and a calculation in the signal processing unit 10 And a display unit 11 for displaying results and the like. In the figure, a state in which the optical fiber 2 to be measured is in a hydrogen atmosphere is shown. The optical fiber temperature distribution measuring device in the present invention is the light source 1, the beam splitter 3, the wavelength separation unit 8, the signal detection unit 9, the signal processing unit 10, and the display excluding the measured optical fiber 2 in FIG. The part comprised from the part 11 is pointed out. Further, the optical fiber temperature distribution measuring system refers to the whole including the optical fiber temperature distribution measuring device and the measured optical fiber 2.

図2から図4は、図1に示す光ファイバ温度分布測定システムでの温度測定手順を示すフローチャートであり、以下に、図2から図4を参照しつつ、ストークス光により反ストークス光の受光強度を補正する、被測定光ファイバの温度測定について説明する。   2 to 4 are flowcharts showing a temperature measurement procedure in the optical fiber temperature distribution measurement system shown in FIG. 1. Hereinafter, referring to FIGS. 2 to 4, the received light intensity of anti-Stokes light by Stokes light is shown. The temperature measurement of the optical fiber to be measured for correcting the above will be described.

まず、測定に使用する被測定光ファイバ2を水素のない雰囲気中(測定雰囲気30において水素のない状態)にて光源1に接続し(S1)、光源1から被測定光ファイバ2に波長λの入射パルス光4を入射する(S2)。被測定光ファイバ2では、伝播の過程で散乱点5において生じた後方散乱光6(λ,λ+Δλ,λ−Δλ)が現れ、入射端側に戻ってくる。ビームスプリッタ3は、後方散乱光6を光路変換して波長分離部8に出力する(S3)。   First, the optical fiber 2 to be measured used for measurement is connected to the light source 1 in a hydrogen-free atmosphere (a state in which no hydrogen is present in the measurement atmosphere 30) (S1). Incident pulsed light 4 is incident (S2). In the optical fiber 2 to be measured, backscattered light 6 (λ, λ + Δλ, λ−Δλ) generated at the scattering point 5 in the course of propagation appears and returns to the incident end side. The beam splitter 3 optically converts the backscattered light 6 and outputs it to the wavelength separator 8 (S3).

波長分離部8は、後方散乱光6に含まれるストークス光(λ+Δλ)と反ストークス光(λ−Δλ)とを分離して信号検出部9に出力する(S4)。信号検出部9は、ストークス光検出部9Aにおいてストークス光を受光し、その受光強度IS0(x)を検出する。ここでxは入射端から散乱点5までの距離を示す。また、反ストークス光検出部9Bにおいて反ストークス光を受光し、その受光強度IAS0(x)を検出する(S5)。The wavelength separation unit 8 separates the Stokes light (λ + Δλ) and the anti-Stokes light (λ−Δλ) included in the backscattered light 6 and outputs them to the signal detection unit 9 (S4). The signal detection unit 9 receives the Stokes light at the Stokes light detection unit 9A, and detects the received light intensity I S0 (x). Here, x represents the distance from the incident end to the scattering point 5. Further, the anti-Stokes light detector 9B receives the anti-Stokes light and detects its received light intensity I AS0 (x) (S5).

次に、被測定光ファイバ2を水素雰囲気中(測定雰囲気30に水素が存在する状態)にて光源1に接続し(S6)、光源1から被測定光ファイバ2に波長λの入射パルス光4を入射する(S7)。入射パルス光4に基づいて被測定光ファイバ2のある散乱点5で生じた後方散乱光6(λ,λ+Δλ,λ−Δλ)が現れ、入射端側に戻ってくる。ビームスプリッタ3は、後方散乱光6を光路変換して波長分離部8に出力する(S8)。   Next, the optical fiber 2 to be measured is connected to the light source 1 in a hydrogen atmosphere (a state in which hydrogen is present in the measurement atmosphere 30) (S6), and the incident pulsed light 4 having the wavelength λ from the light source 1 to the optical fiber 2 to be measured. Is incident (S7). Back scattered light 6 (λ, λ + Δλ, λ−Δλ) generated at a scattering point 5 of the measured optical fiber 2 based on the incident pulsed light 4 appears and returns to the incident end side. The beam splitter 3 optically converts the backscattered light 6 and outputs it to the wavelength separator 8 (S8).

波長分離部8は、後方散乱光6に含まれるストークス光(λ+Δλ)と反ストークス光(λ−Δλ)とを分離して信号検出部9に出力する(S9)。信号検出部9は、ストークス光検出部9Aにおいてストークス光を受光し、その受光強度IS1(x)を検出する。また、反ストークス光検出部9Bにおいて反ストークス光を受光し、その受光強度IAS1(x)を検出する(S10)。The wavelength separation unit 8 separates the Stokes light (λ + Δλ) and the anti-Stokes light (λ−Δλ) included in the backscattered light 6 and outputs them to the signal detection unit 9 (S9). The signal detection unit 9 receives the Stokes light in the Stokes light detection unit 9A, and detects the received light intensity I S1 (x). Further, the anti-Stokes light detector 9B receives the anti-Stokes light and detects its received light intensity I AS1 (x) (S10).

次に、水素分子によるストークス光の受光強度の変化量ΔI(x)即ち、水素雰囲気中の被測定光ファイバ2によるストークス光の受光強度IS1(x)と水素のない雰囲気中の被測定光ファイバ2によるストークス光の受光強度IS0(x)との差を求める(ΔI(x)=IS1(x)−IS0(x))。同様に水素分子による反ストークス光の受光強度の変化量ΔIAS(x)、即ち、水素雰囲気中の被測定光ファイバ2による反ストークス光の受光強度IAS1(x)と水素のない雰囲気中の被測定光ファイバ2による反ストークス光の受光強度IAS0(x)との差を求める(ΔIAS(x)=IAS1(x)−IAS0(x))。更に、水素分子によるストークス光の受光強度の変化量ΔI(x)と反ストークス光の受光強度の変化量ΔIAS(x)の比、
ΔIAS(x)/ΔI(x)=k −−−−(8)
を求める(S11)。
なお、kの値は、上記のようにストークス光と反ストークス光の受光強度の変化量から求めることができるが、図18Aおよび図18Bならびに図19Aおよび図19Bに示される、水素分子による光ファイバの光伝送損失増加量の波長依存性データから求めることもできる。
Next, the change amount ΔI S (x) of the received light intensity of the Stokes light by the hydrogen molecules, that is, the received light intensity I S1 (x) of the Stokes light by the measured optical fiber 2 in the hydrogen atmosphere and the measured value in the atmosphere without hydrogen. A difference from the received light intensity I S0 (x) of the Stokes light by the optical fiber 2 is obtained (ΔI S (x) = I S1 (x) −I S0 (x)). Similarly, the amount of change ΔI AS (x) of the light reception intensity of anti-Stokes light by hydrogen molecules, that is, the light reception intensity I AS1 (x) of anti-Stokes light by the optical fiber 2 to be measured in a hydrogen atmosphere and in an atmosphere without hydrogen A difference from the light reception intensity I AS0 (x) of the anti-Stokes light by the measured optical fiber 2 is obtained (ΔI AS (x) = I AS1 (x) −I AS0 (x)). Furthermore, the ratio of the change amount ΔI S (x) of the light intensity of Stokes light due to hydrogen molecules to the change amount ΔI AS (x) of the light intensity of the anti-Stokes light,
ΔI AS (x) / ΔI S (x) = k −−−− (8)
Is obtained (S11).
Note that the value of k can be obtained from the amount of change in the received light intensity of Stokes light and anti-Stokes light as described above, but the optical fiber made of hydrogen molecules shown in FIGS. 18A and 18B and FIGS. 19A and 19B. It can also be obtained from the wavelength dependence data of the increase in optical transmission loss.

次に、被測定光ファイバ2を、実際に測定を行う水素雰囲気中(実際に測定を行う測定雰囲気30に水素がある状態)において光源1に接続し(S12)、光源1から被測定光ファイバ2に波長λの入射パルス光4を入射する(S13)。ビームスプリッタ3は、入射パルス光4に基づいて生じる後方散乱光6を光路変換して波長分離部8に出力し(S14)、ストークス光と反ストークス光とを分離して信号検出部9に出力する(S15)。信号検出部9は、ストークス光検出部9Aにおいてストークス光を受光して受光強度I(x)を検出し、反ストークス光検出部9Bにおいて反ストークス光を受光して受光強度IAS(x)を検出する(S16)。Next, the optical fiber 2 to be measured is connected to the light source 1 in a hydrogen atmosphere where the measurement is actually performed (the hydrogen is present in the measurement atmosphere 30 where the measurement is actually performed) (S12). The incident pulsed light 4 of wavelength λ is incident on 2 (S13). The beam splitter 3 optically converts the backscattered light 6 generated based on the incident pulsed light 4 and outputs it to the wavelength separator 8 (S14), separates the Stokes light and the anti-Stokes light, and outputs them to the signal detector 9. (S15). The signal detector 9 receives the Stokes light at the Stokes light detector 9A and detects the received light intensity I S (x), and the anti-Stokes light detector 9B receives the anti-Stokes light and receives the received light intensity I AS (x). Is detected (S16).

次に、信号処理部10でストークス光と反ストークス光の受光強度に基づく信号を演算処理することにより、被測定光ファイバ2の温度を求める。
水素の影響を除いた反ストークス光の受光強度をIAS’(x)とすると、
AS’(x)=IAS(x)−ΔIAS(x) −−−−(9)
(8)式より、ΔIAS(x)=k・ΔI(x)であるので、これを(9)式に代入し、
AS’(x)=IAS(x)−k・ΔI(x) −−−−(10)
また、ストークス光の水素分子による受光強度の変化量は、
ΔI(x)=IS1(x)−IS0(x) −−−−(11)
より求められるので、これを(10)式に代入し、
AS’(x)=IAS(x)−k・(IS1(x)−IS0(x)) −−−−(12)
となり、ストークス光の受光強度の変化を用いて水素の影響を除いた反ストークス光の受光強度が得られる(S17)。
Next, the signal processing unit 10 computes a signal based on the received light intensity of the Stokes light and the anti-Stokes light, thereby obtaining the temperature of the optical fiber 2 to be measured.
If the received light intensity of anti-Stokes light excluding the influence of hydrogen is I AS ′ (x),
I AS '(x) = I AS (x) −ΔI AS (x) −−−− (9)
From the equation (8), ΔI AS (x) = k · ΔI S (x), so this is substituted into the equation (9),
I AS ′ (x) = I AS (x) −k · ΔI S (x) −−−− (10)
In addition, the amount of change in received light intensity due to hydrogen molecules of Stokes light is
ΔI S (x) = I S1 (x) −I S0 (x) −−−− (11)
Substituting this into equation (10)
I AS ′ (x) = I AS (x) −k · (I S1 (x) −I S0 (x)) −−−− (12)
Thus, the received light intensity of the anti-Stokes light excluding the influence of hydrogen is obtained using the change in the received light intensity of the Stokes light (S17).

このようにして得られる補正された反ストークス光の受光強度は、前述したように被測定光ファイバ2中における散乱点5の絶対温度Tの関数となることから、(6)式に基づいて散乱点5の温度を正確に求めることができる(S18)。   Since the received light intensity of the corrected anti-Stokes light thus obtained is a function of the absolute temperature T of the scattering point 5 in the optical fiber 2 to be measured as described above, it is scattered based on the equation (6). The temperature at point 5 can be accurately obtained (S18).

図5Aおよび図5Bは、反ストークス光の受光強度に基づく温度測定について示す特性図であり、図5Aは反ストークス光の受光強度の補正を行わない温度測定結果を示し、図5Bは反ストークス光の受光強度の補正を行った温度測定結果を示す。ここでは、水素分圧0MPa、0.04MPa、0.07MPa、および0.09MPaにおける温度測定結果を示している。   5A and 5B are characteristic diagrams showing temperature measurement based on the light reception intensity of the anti-Stokes light, FIG. 5A shows a temperature measurement result without correcting the light reception intensity of the anti-Stokes light, and FIG. 5B shows the anti-Stokes light. The temperature measurement result which performed correction | amendment of the received light intensity of is shown. Here, temperature measurement results at hydrogen partial pressures of 0 MPa, 0.04 MPa, 0.07 MPa, and 0.09 MPa are shown.

(第1の実施の形態の効果)
第1の実施の形態によれば、水素のない雰囲気中および水素雰囲気中で被測定光ファイバ2の温度測定を行うことにより得られるストークス光と反ストークス光の受光強度に基づき、被測定光ファイバ2の水素分子吸収に基づく受光強度の変化量に対応する値(比)kが求められ、実際に測定を行う水素雰囲気中で被測定光ファイバ2に入射パルス光4を入射して得られる反ストークス光の受光強度を、ストークス光の受光強度を用いて補正することが可能になる。
(Effects of the first embodiment)
According to the first embodiment, the optical fiber under measurement is based on the received intensity of the Stokes light and the anti-Stokes light obtained by measuring the temperature of the optical fiber 2 under measurement in a hydrogen-free atmosphere and in a hydrogen atmosphere. The value (ratio) k corresponding to the amount of change in the received light intensity based on the hydrogen molecule absorption of 2 is obtained, and the reaction obtained by making the incident pulsed light 4 incident on the optical fiber 2 to be measured in a hydrogen atmosphere in which measurement is actually performed. The light reception intensity of Stokes light can be corrected using the light reception intensity of Stokes light.

したがって、図5Aの測定結果に示す水素分子による光伝送損失を含む温度測定結果から、図5Bの測定結果に示すように、測定環境における水素の影響を除いた正確な温度測定の結果を得ることができる。   Therefore, as shown in the measurement result of FIG. 5B, the accurate temperature measurement result excluding the influence of hydrogen in the measurement environment is obtained from the temperature measurement result including the optical transmission loss due to hydrogen molecules shown in the measurement result of FIG. 5A. Can do.

(第2の実施の形態)
図6は、本発明の第2の実施の形態に係る光ファイバ温度分布測定システムを示す概略構成図である。第2の実施の形態は、ビームスプリッタ3から出力された光をストークス光、反ストークス光、およびレーリー光に分離する波長分離部8と、波長分離部8で分離されたストークス光を検出するストークス光検出部9Aと、反ストークス光を検出する反ストークス光検出部9Bと、レーリー光を検出するレーリー光検出部9Cとを有する信号検出部9を有する点で、第1の実施の形態と相違している。図6においても、被測定光ファイバ2が水素雰囲気中にある状態を示している。なお、以下の説明では、第1の実施の形態と同一の構成および同様の機能を有する部分については共通の符号を付している。
(Second Embodiment)
FIG. 6 is a schematic configuration diagram showing an optical fiber temperature distribution measuring system according to the second embodiment of the present invention. In the second embodiment, a wavelength separation unit 8 that separates light output from the beam splitter 3 into Stokes light, anti-Stokes light, and Rayleigh light, and Stokes light that is separated by the wavelength separation unit 8 are detected. It differs from the first embodiment in that it has a signal detector 9 having a light detector 9A, an anti-Stokes light detector 9B for detecting anti-Stokes light, and a Rayleigh light detector 9C for detecting Rayleigh light. is doing. FIG. 6 also shows a state where the optical fiber 2 to be measured is in a hydrogen atmosphere. In the following description, parts having the same configuration and the same function as those of the first embodiment are denoted by common reference numerals.

図7から図9は、図6に示す光ファイバ温度分布測定システムでの温度測定手順を示すフローチャートであり、以下に、図7から図9を参照しつつ、レーリー光の受光強度に基づきストークス光と反ストークス光の受光強度を補正する被測定光ファイバの温度測定について説明する。   FIGS. 7 to 9 are flowcharts showing a temperature measurement procedure in the optical fiber temperature distribution measurement system shown in FIG. 6. Hereinafter, referring to FIGS. 7 to 9, the Stokes light is based on the received light intensity of Rayleigh light. Next, temperature measurement of the optical fiber to be measured for correcting the received light intensity of the anti-Stokes light will be described.

まず、測定に使用する被測定光ファイバ2を水素のない雰囲気中にて光源1に接続し(S20)、光源1から被測定光ファイバ2に波長λの入射パルス光4を入射する(S21)。被測定光ファイバ2では、ある散乱点5において伝播の過程で生じた後方散乱光6(λ,λ+Δλ,λ−Δλ)が現れ、入射端側に戻ってくる。ビームスプリッタ3は、後方散乱光6を光路変換して波長分離部8に出力する(S22)。   First, the optical fiber 2 to be measured used for measurement is connected to the light source 1 in an atmosphere without hydrogen (S20), and the incident pulsed light 4 having the wavelength λ is incident on the optical fiber 2 to be measured from the light source 1 (S21). . In the optical fiber 2 to be measured, backscattered light 6 (λ, λ + Δλ, λ−Δλ) generated in the propagation process at a certain scattering point 5 appears and returns to the incident end side. The beam splitter 3 optically converts the backscattered light 6 and outputs it to the wavelength separation unit 8 (S22).

波長分離部8は、後方散乱光6に含まれるストークス光(λ+Δλ)、反ストークス光(λ−Δλ)およびレーリー光(λ)を分離して信号検出部9に出力する(S23)。信号検出部9は、ストークス光検出部9Aにおいてストークス光を受光し受光強度IS0(x)を検出し、反ストークス光検出部9Bにおいて反ストークス光を受光し受光強度IAS0(x)を検出し、レーリー光検出部9Cにおいてレーリー光を受光し受光強度IR0(x)を検出する(S24)。The wavelength separation unit 8 separates the Stokes light (λ + Δλ), the anti-Stokes light (λ−Δλ), and the Rayleigh light (λ) included in the backscattered light 6 and outputs them to the signal detection unit 9 (S23). The signal detector 9 receives the Stokes light at the Stokes light detector 9A and detects the received light intensity I S0 (x), and the anti-Stokes light detector 9B receives the anti-Stokes light and detects the received light intensity I AS0 (x). Then, the Rayleigh light detection unit 9C receives the Rayleigh light and detects the received light intensity I R0 (x) (S24).

次に、被測定光ファイバ2を水素雰囲気中にて光源1に接続し(S25)、光源1から被測定光ファイバ2に波長λの入射パルス光4を入射する(S26)。入射パルス光4に基づいて被測定光ファイバ2のある散乱点5で生じた後方散乱光6(λ,λ+Δλ,λ−Δλ)が現れ、入射端側に戻ってくる。ビームスプリッタ3は、後方散乱光6を光路変換して波長分離部8に出力する(S27)。   Next, the optical fiber 2 to be measured is connected to the light source 1 in a hydrogen atmosphere (S25), and incident pulsed light 4 having a wavelength λ is incident from the light source 1 to the optical fiber 2 to be measured (S26). Back scattered light 6 (λ, λ + Δλ, λ−Δλ) generated at a scattering point 5 of the measured optical fiber 2 based on the incident pulsed light 4 appears and returns to the incident end side. The beam splitter 3 optically converts the backscattered light 6 and outputs it to the wavelength separator 8 (S27).

波長分離部8は、後方散乱光6に含まれるストークス光(λ+Δλ)、反ストークス光(λ−Δλ)およびレーリー光(λ)を分離して信号検出部9に出力する(S28)。信号検出部9では、ストークス光検出部9Aにおいてストークス光を受光し受光強度IS1(x)を検出し、反ストークス光検出部9Bにおいて反ストークス光を受光し受光強度IAS1(x)を検出し、レーリー光検出部9Cにおいてレーリー光を受光し受光強度IR1(x)を検出する(S29)。The wavelength separation unit 8 separates the Stokes light (λ + Δλ), the anti-Stokes light (λ−Δλ), and the Rayleigh light (λ) included in the backscattered light 6 and outputs them to the signal detection unit 9 (S28). In the signal detector 9, the Stokes light detector 9A receives the Stokes light and detects the received light intensity I S1 (x), and the anti-Stokes light detector 9B receives the anti-Stokes light and detects the received light intensity I AS1 (x). The Rayleigh light detector 9C receives the Rayleigh light and detects the received light intensity I R1 (x) (S29).

次に、水素分子によるストークス光の受光強度の変化量ΔI(x)即ち、水素雰囲気中の被測定光ファイバ2によるストークス光の受光強度IS1(x)と水素のない雰囲気中の被測定光ファイバ2によるストークス光の受光強度IS0(x)との差を求める(ΔI(x)=IS1(x)−IS0(x))。同様に水素分子によるレーリー光の受光強度の変化量ΔI(x)、即ち、水素雰囲気中の被測定光ファイバ2によるレーリー光の受光強度IR1(x)と水素のない雰囲気中の被測定光ファイバ2によるレーリー光の受光強度IR0(x)との差を求める(ΔI(x)=IR1(x)−IR0(x))。更に、被測定光ファイバ2について、水素分子によるレーリー光の受光強度の変化量ΔI(x)に対するストークス光の受光強度の変化量ΔI(x)の比、
ΔI(x)/ΔI(x)=l −−−−(13)
を求める(S30)。
Next, the change amount ΔI S (x) of the received light intensity of the Stokes light by the hydrogen molecules, that is, the received light intensity I S1 (x) of the Stokes light by the measured optical fiber 2 in the hydrogen atmosphere and the measured value in the atmosphere without hydrogen. A difference from the received light intensity I S0 (x) of the Stokes light by the optical fiber 2 is obtained (ΔI S (x) = I S1 (x) −I S0 (x)). Similarly, the amount of change ΔI R (x) in the light receiving intensity of Rayleigh light by hydrogen molecules, that is, the light receiving intensity I R1 (x) of Rayleigh light by the optical fiber 2 to be measured in a hydrogen atmosphere and the measurement in an atmosphere without hydrogen. A difference from the light receiving intensity I R0 (x) of the Rayleigh light by the optical fiber 2 is obtained (ΔI R (x) = I R1 (x) −I R0 (x)). Further, for the optical fiber 2 to be measured, the ratio of the change amount ΔI S (x) of the Stokes light reception intensity to the change amount ΔI R (x) of the Rayleigh light reception intensity due to hydrogen molecules,
ΔI S (x) / ΔI R (x) = l −−−− (13)
Is obtained (S30).

次に、水素分子による反ストークス光の受光強度の変化量ΔIAS(x)即ち、水素雰囲気中の被測定光ファイバ2による反ストークス光の受光強度IAS1(x)と水素のない雰囲気中の被測定光ファイバ2による反ストークス光の受光強度IAS0(x)との差を求める(ΔIAS(x)=IAS1(x)−IAS0(x))。更に、被測定光ファイバ2について、水素分子によるレーリー光の受光強度の変化量ΔI(x)に対する反ストークス光の受光強度の変化量ΔIAS(x)の比、
ΔIAS(x)/ΔI(x)=m −−−−(14)
を求める(S31)。
Next, the amount of change ΔI AS (x) of the light intensity of the anti-Stokes light due to hydrogen molecules, that is, the light intensity I AS1 (x) of the anti-Stokes light by the optical fiber 2 to be measured in the hydrogen atmosphere A difference from the light reception intensity I AS0 (x) of the anti-Stokes light by the measured optical fiber 2 is obtained (ΔI AS (x) = I AS1 (x) −I AS0 (x)). Further, for the optical fiber 2 to be measured, the ratio of the change amount ΔI AS (x) of the light intensity of the anti-Stokes light to the change amount ΔI R (x) of the Rayleigh light intensity due to hydrogen molecules,
ΔI AS (x) / ΔI R (x) = m −−−− (14)
Is obtained (S31).

次に、被測定光ファイバ2を実際に測定を行う水素雰囲気中にて光源1に接続し(S32)、光源1から被測定光ファイバ2に波長λの入射パルス光4を入射する(S33)。ビームスプリッタ3は、入射パルス光4に基づいて生じる後方散乱光6を光路変換して波長分離部8に出力し(S34)、ストークス光、反ストークス光およびレーリー光を分離して信号検出部9に出力する(S35)。信号検出部9は、ストークス光検出部9Aにおいてストークス光を受光し受光強度I(x)を検出し、反ストークス光検出部9Bにおいて反ストークス光を受光し受光強度IAS(x)を検出し、レーリー光検出部9Cにおいてレーリー光を受光し受光強度I(x)を検出する(S36)。Next, the optical fiber 2 to be measured is connected to the light source 1 in a hydrogen atmosphere in which measurement is actually performed (S32), and incident pulsed light 4 having a wavelength λ is incident on the optical fiber 2 to be measured from the light source 1 (S33). . The beam splitter 3 converts the path of the backscattered light 6 generated based on the incident pulsed light 4 and outputs it to the wavelength separating unit 8 (S34), and separates the Stokes light, the anti-Stokes light, and the Rayleigh light to generate the signal detecting unit 9 (S35). The signal detector 9 receives the Stokes light at the Stokes light detector 9A and detects the received light intensity I S (x), and the anti-Stokes light detector 9B receives the anti-Stokes light and detects the received light intensity I AS (x). Then, the Rayleigh light detection unit 9C receives the Rayleigh light and detects the received light intensity I R (x) (S36).

次に、信号処理部10でストークス光、反ストークス光およびレーリー光の受光強度に基づく信号を演算処理することにより、被測定光ファイバ2の温度を求める。
水素の影響を除いたストークス光の受光強度をI’(x)とすると、
’(x)=I(x)−ΔI(x) −−−−(15)
(13)式より、ΔI(x)=l・ΔI(x)であるので、これを(15)式に代入し、
’(x)=I(x)−l・ΔI(x) −−−−(16)
また、レーリー光の水素分子による受光強度の変化量は、
ΔI(x)=IR1(x)−IR0(x) −−−−(17)
より求められるので、これを(16)式に代入し、
’(x)=I(x)−l・(IR1(x)−IR0(x)) −−−−(18)
となり、レーリー光の受光強度変化を用いて水素の影響を除いたストークス光の受光強度が得られる(S37)。
Next, the signal processing unit 10 computes a signal based on the received light intensity of Stokes light, anti-Stokes light, and Rayleigh light, thereby obtaining the temperature of the optical fiber 2 to be measured.
When the received light intensity of Stokes light excluding the influence of hydrogen is I S ′ (x),
I S '(x) = I S (x) -ΔI S (x) ---- (15)
From the equation (13), ΔI S (x) = l · ΔI R (x), so this is substituted into the equation (15),
I S '(x) = I S (x) -l · ΔI R (x) ---- (16)
In addition, the amount of change in the received light intensity due to hydrogen molecules in Rayleigh light is
ΔI R (x) = I R1 (x) −I R0 (x) −−−− (17)
Substituting this into equation (16)
I S '(x) = I S (x) -l · (I R1 (x) -I R0 (x)) ---- (18)
Thus, the received light intensity of Stokes light excluding the influence of hydrogen is obtained using the change in the received light intensity of Rayleigh light (S37).

次に、水素の影響を除いた反ストークス光の受光強度をIAS’(x)とすると、
AS’(x)=IAS(x)−ΔIAS(x) −−−−(19)
(14)式より、ΔIAS(x)=m・ΔI(x)であるので、これを(19)式に代入し、
AS’(x)=IAS(x)−m・ΔI(x) −−−−(20)
また、レーリー光の水素分子による受光強度の変化量は、
ΔI(x)=IR1(x)−IR0(x) −−−−(21)
より求められるので、これを(20)式に代入し、
AS’(x)=IAS(x)−m・(IR1(x)−IR0(x)) −−−−(22)
となり、レーリー光の受光強度の変化を用いて水素の影響を除いた反ストークス光の受光強度が得られる(S38)。
Next, assuming that the light receiving intensity of the anti-Stokes light excluding the influence of hydrogen is I AS ′ (x),
I AS '(x) = I AS (x) −ΔI AS (x) −−−− (19)
From the equation (14), ΔI AS (x) = m · ΔI R (x), so this is substituted into the equation (19),
I AS ′ (x) = I AS (x) −m · ΔI R (x) −−−− (20)
In addition, the amount of change in the received light intensity due to hydrogen molecules in Rayleigh light is
ΔI R (x) = I R1 (x) −I R0 (x) −−−− (21)
Substituting this into equation (20)
I AS ′ (x) = I AS (x) −m · (I R1 (x) −I R0 (x)) −−−− (22)
Thus, the received light intensity of anti-Stokes light excluding the influence of hydrogen is obtained using the change in the received light intensity of Rayleigh light (S38).

このようにして得られる補正されたストークス光と反ストークス光は、前述したように被測定光ファイバ2中における散乱点5の絶対温度Tの関数となることから、(5)式に基づいて散乱点5の温度を正確に求めることができる(S39)。   The corrected Stokes light and anti-Stokes light obtained in this way are a function of the absolute temperature T of the scattering point 5 in the optical fiber 2 to be measured as described above, and are thus scattered based on the equation (5). The temperature at point 5 can be accurately obtained (S39).

(第2の実施の形態の効果)
第2の実施の形態によれば、水素のない雰囲気中および水素雰囲気中で被測定光ファイバ2の温度測定を行うことにより得られるストークス光、反ストークス光およびレーリー光の受光強度に基づき被測定光ファイバ2の水素分子吸収による受光強度の変化量に対応する値(比)l,mが求められるので、実際に測定を行う水素雰囲気中で被測定光ファイバ2に入射パルス光4を入射して得られる反ストークス光の受光強度とストークス光の受光強度をレーリー光の受光強度を用いて補正することが可能になる。レーリー光はストークス光、反ストークス光に比べて温度依存性が極めて少ないため、光ファイバの周囲温度に係わらず値(比)l、mを適用することができる。また、本実施形態に基づく簡易的な形態として、ストークス光を利用せず、レーリー光と反ストークス光に基づき温度測定を行う実施形態も考えられる。
(Effect of the second embodiment)
According to the second embodiment, the measurement target is based on the received light intensity of Stokes light, anti-Stokes light, and Rayleigh light obtained by measuring the temperature of the optical fiber 2 to be measured in an atmosphere without hydrogen and in a hydrogen atmosphere. Since values (ratio) l and m corresponding to the amount of change in received light intensity due to absorption of hydrogen molecules in the optical fiber 2 are obtained, the incident pulse light 4 is incident on the optical fiber 2 to be measured in a hydrogen atmosphere in which measurement is actually performed. It is possible to correct the received light intensity of anti-Stokes light and the received light intensity of Stokes light using the received light intensity of Rayleigh light. Since Rayleigh light is extremely less temperature dependent than Stokes light and anti-Stokes light, the values (ratio) l and m can be applied regardless of the ambient temperature of the optical fiber. Further, as a simple form based on this embodiment, an embodiment in which temperature measurement is performed based on Rayleigh light and anti-Stokes light without using Stokes light is also conceivable.

(第3の実施の形態)
図10は、本発明の第3の実施の形態に係る光ファイバ温度分布測定システムを示す概略構成図である。第3の実施の形態では、受光強度の変化量を測定するための参照光として、温度測定用の光の波長λとは異なる波長λrの光を使用する。具体的には、図18Aに示すように、1240nmは水素分子による光伝送損失の増加が顕著に現れる波長であるため、波長1240nmの光を参照光として使用する。第3の実施の形態は、被測定光ファイバ2にビームスプリッタ3を介して1240nm光を入射する1240nm光源1Aと、温度測定用光源1Bと、ビームスプリッタ3から出力された光をストークス光、反ストークス光、および1240nm光に分離する波長分離部8と、波長分離部8で分離されたストークス光を検出するストークス光検出部9Aと、反ストークス光を検出する反ストークス光検出部9Bと、1240nm光を検出する1240nm光検出部9Dとを有する信号検出部9を有する点で、第1の実施の形態と相違する。図10においても、被測定光ファイバ2が水素雰囲気中にある状態を示している。
(Third embodiment)
FIG. 10 is a schematic configuration diagram showing an optical fiber temperature distribution measuring system according to the third embodiment of the present invention. In the third embodiment, light having a wavelength λr different from the wavelength λ of the temperature measurement light is used as the reference light for measuring the amount of change in the received light intensity. Specifically, as shown in FIG. 18A, since 1240 nm is a wavelength at which an increase in optical transmission loss due to hydrogen molecules appears remarkably, light having a wavelength of 1240 nm is used as reference light. In the third embodiment, the 1240 nm light source 1A that makes 1240 nm light incident on the optical fiber 2 to be measured via the beam splitter 3, the light source 1B for temperature measurement, and the light output from the beam splitter 3 are converted into Stokes light and antireflective light. A wavelength separation unit 8 that separates into Stokes light and 1240 nm light, a Stokes light detection unit 9A that detects Stokes light separated by the wavelength separation unit 8, an anti-Stokes light detection unit 9B that detects anti-Stokes light, and 1240 nm The second embodiment is different from the first embodiment in that it includes a signal detection unit 9 including a 1240 nm light detection unit 9D that detects light. FIG. 10 also shows a state in which the optical fiber 2 to be measured is in a hydrogen atmosphere.

図11から図13は、図10に示す光ファイバ温度分布測定システムでの温度測定手順を示すフローチャートであり、以下に、図11から図13を参照しつつ、1240nm光のレーリー光に基づきストークス光および反ストークス光の受光強度を補正する、被測定光ファイバの温度測定について説明する。   FIG. 11 to FIG. 13 are flowcharts showing a temperature measurement procedure in the optical fiber temperature distribution measurement system shown in FIG. 10. Hereinafter, referring to FIG. 11 to FIG. 13, Stokes light based on Rayleigh light of 1240 nm light. The temperature measurement of the optical fiber to be measured for correcting the received light intensity of the anti-Stokes light will be described.

まず、測定に使用する被測定光ファイバ2を水素のない雰囲気中にて1240nm光源1Aに接続し(S40)、1240nm光源1Aから被測定光ファイバ2に波長λr(=1240nm)の入射パルス光4を入射する(S41)。被測定光ファイバ2では、ある散乱点5において伝播の過程で生じた後方散乱光6(λr,λr+Δλr,λr−Δλr)が現れ、入射端側に戻ってくる。ビームスプリッタ3は、後方散乱光6を光路変換して波長分離部8に出力する(S42)。   First, the optical fiber 2 to be measured used for measurement is connected to the 1240 nm light source 1A in an atmosphere free of hydrogen (S40), and the incident pulsed light 4 having the wavelength λr (= 1240 nm) from the 1240 nm light source 1A to the optical fiber 2 to be measured. Is incident (S41). In the measured optical fiber 2, backscattered light 6 (λr, λr + Δλr, λr−Δλr) generated in the propagation process at a certain scattering point 5 appears and returns to the incident end side. The beam splitter 3 optically converts the backscattered light 6 and outputs it to the wavelength separator 8 (S42).

波長分離部8は、後方散乱光6に含まれる1240nm光のレーリー光を分離して信号検出部9に出力する(S43)。信号検出部9では、1240nm光検出部9Dにおいて1240nm光のレーリー光を受光し、その受光強度IR’0(x)を検出する(S44)。The wavelength separation unit 8 separates the Rayleigh light of 1240 nm light included in the backscattered light 6 and outputs it to the signal detection unit 9 (S43). In the signal detector 9, the 1240 nm light detector 9D receives Rayleigh light of 1240 nm light, and detects the received light intensity I R′0 (x) (S44).

次に、被測定光ファイバ2を水素のない雰囲気中にて温度測定用光源1Bに接続し(S45)、温度測定用光源1Bから被測定光ファイバ2に波長λの入射パルス光4を入射する(S46)。ビームスプリッタ3は、入射パルス光4の入射に基づいて被測定光ファイバ2の散乱点5において生じる後方散乱光6(λ,λ+Δλ,λ−Δλ)を光路変換して波長分離部8に出力する(S47)。   Next, the optical fiber 2 to be measured is connected to the temperature measuring light source 1B in an atmosphere without hydrogen (S45), and the incident pulsed light 4 having the wavelength λ is incident on the optical fiber 2 to be measured from the temperature measuring light source 1B. (S46). The beam splitter 3 changes the optical path of the backscattered light 6 (λ, λ + Δλ, λ−Δλ) generated at the scattering point 5 of the measured optical fiber 2 based on the incident pulsed light 4 and outputs it to the wavelength separation unit 8. (S47).

波長分離部8は、後方散乱光6に含まれるストークス光(λ+Δλ)と反ストークス光(λ−Δλ)を分離して信号検出部9に出力する(S48)。信号検出部9は、ストークス光検出部9Aにおいてストークス光を受光し受光強度IS0(x)を検出し、反ストークス光検出部9Bにおいて反ストークス光を受光し受光強度IAS0(x)を検出する(S49)。The wavelength separator 8 separates the Stokes light (λ + Δλ) and the anti-Stokes light (λ−Δλ) included in the backscattered light 6 and outputs them to the signal detector 9 (S48). The signal detector 9 receives the Stokes light at the Stokes light detector 9A and detects the received light intensity I S0 (x), and the anti-Stokes light detector 9B receives the anti-Stokes light and detects the received light intensity I AS0 (x). (S49).

次に、測定に使用する被測定光ファイバ2を水素雰囲気中にて1240nm光源1Aに接続し(S50)、水素のない雰囲気中で行った操作と同様に被測定光ファイバ2へ波長λr(=1240nm)の入射パルス光4を入射し、そのことに基づいて生じる後方散乱光6からレーリー光を分離して信号検出部9の1240nm光検出部9Dで1240nm光のレーリー光を受光し、その受光強度IR’1(x)を検出する(S51)。Next, the optical fiber 2 to be measured is connected to the 1240 nm light source 1A in a hydrogen atmosphere (S50), and the wavelength λr (= 1240 nm) incident pulsed light 4 is incident, Rayleigh light is separated from backscattered light 6 generated based on the incident light, and 1240 nm light detecting unit 9D of signal detecting unit 9 receives 1240 nm light of Rayleigh light. The intensity I R′1 (x) is detected (S51).

次に、測定に使用する被測定光ファイバ2を水素雰囲気中にて温度測定用光源1Bに接続し(S52)、水素のない雰囲気中で行った操作と同様に被測定光ファイバ2へ波長λの入射パルス光4を入射し、そのことに基づいて生じる後方散乱光6からストークス光および反ストークス光を分離して信号検出部9に出力する。信号検出部9は、ストークス光検出部9Aにおいてストークス光を受光し、その受光強度IS1(x)を検出する。また、反ストークス光検出部9Bにおいて反ストークス光を受光し、その受光強度IAS1(x)を検出する(S53)。Next, the optical fiber 2 to be measured is connected to the temperature measurement light source 1B in a hydrogen atmosphere (S52), and the wavelength λ is applied to the optical fiber 2 to be measured in the same manner as the operation performed in an atmosphere without hydrogen. , The Stokes light and the anti-Stokes light are separated from the backscattered light 6 generated based on the incident pulsed light 4 and output to the signal detector 9. The signal detection unit 9 receives the Stokes light in the Stokes light detection unit 9A, and detects the received light intensity I S1 (x). Further, the anti-Stokes light detector 9B receives the anti-Stokes light and detects the received light intensity I AS1 (x) (S53).

次に、被測定光ファイバ2について、水素分子による1240nm光のレーリー光の受光強度の変化量ΔIR’(x)に対する波長λの入射パルス光4のストークス光の受光強度の変化量ΔI(x)の比、
ΔI(x)/ΔIR’(x)=n −−−−(23)
を求める(S54)。
Next, with respect to the optical fiber 2 to be measured, the change amount ΔI S of the Stokes light reception intensity of the incident pulsed light 4 having the wavelength λ with respect to the change amount ΔI R ′ (x) of the Rayleigh light of 1240 nm light due to hydrogen molecules. x) ratio,
ΔI S (x) / ΔI R ′ (x) = n −−−− (23)
Is obtained (S54).

次に、被測定光ファイバ2について、水素分子による1240nm光のレーリー光の受光強度の変化量ΔIR’(x)に対する波長λの入射パルス光4の反ストークス光の受光強度の変化量ΔIAS(x)の比、
ΔIAS(x)/ΔIR’(x)=o −−−−(24)
を求める(S55)。
Next, for the optical fiber 2 to be measured, the change amount ΔI AS of the light intensity of the anti-Stokes light of the incident pulsed light 4 of the wavelength λ with respect to the change amount ΔI R ′ (x) of the Rayleigh light of 1240 nm light due to hydrogen molecules. The ratio of (x),
ΔI AS (x) / ΔI R ′ (x) = o −−−− (24)
Is obtained (S55).

次に、被測定光ファイバ2を実際に測定を行う水素雰囲気中において、1240nm光源1Aに接続し(S56)、1240nm光源1Aから被測定光ファイバ2に波長λr(=1240nm)の入射パルス光4を入射し、散乱点5で生じた後方散乱光6から1240nm光のレーリー光を分離して信号検出部9に出力する。信号検出部9は、1240nm光検出部9Dにおいて1240nm光のレーリー光を受光し、その受光強度IR’(x)を検出する(S57)。Next, the optical fiber 2 to be measured is connected to the 1240 nm light source 1A in a hydrogen atmosphere where the measurement is actually performed (S56), and the incident pulsed light 4 having the wavelength λr (= 1240 nm) is input from the 1240 nm light source 1A to the optical fiber 2 to be measured. , And the Rayleigh light of 1240 nm light is separated from the backscattered light 6 generated at the scattering point 5 and output to the signal detection unit 9. The signal detection unit 9 receives the Rayleigh light of 1240 nm light in the 1240 nm light detection unit 9D, and detects the received light intensity I R ′ (x) (S57).

次に、被測定光ファイバ2を実際に測定を行う水素雰囲気中において、温度測定用光源1Bに接続し(S58)、温度測定用光源1Bから被測定光ファイバ2に波長λの入射パルス光4を入射し、散乱点5で生じた後方散乱光6からストークス光と反ストークス光とを分離して信号検出部9に出力する。信号検出部9は、ストークス光検出部9Aにおいてストークス光を受光し受光強度I(x)を検出し、反ストークス光検出部9Bにおいて反ストークス光を受光し受光強度IAS(x)を検出する(S59)。Next, the optical fiber 2 to be measured is connected to the temperature measuring light source 1B in a hydrogen atmosphere where the measurement is actually performed (S58), and the incident pulsed light 4 having the wavelength λ is applied from the temperature measuring light source 1B to the optical fiber 2 to be measured. , And the Stokes light and the anti-Stokes light are separated from the backscattered light 6 generated at the scattering point 5 and output to the signal detector 9. The signal detector 9 receives the Stokes light at the Stokes light detector 9A and detects the received light intensity I S (x), and the anti-Stokes light detector 9B receives the anti-Stokes light and detects the received light intensity I AS (x). (S59).

次に、信号処理部10で波長λの入射パルス光4のストークス光および反ストークス光と、1240nm光のレーリー光の受光強度に基づく信号を演算処理することにより、被測定光ファイバ2の温度を求める。
水素の影響を除いた波長λの入射パルス光4のストークス光の受光強度をI’(x)とすると、
’(x)=I(x)−ΔI(x) −−−−(25)
(23)式より、ΔI(x)=n・ΔIR’(x)であるので、これを(25)式に代入し、
’(x)=I(x)−n・ΔI(x) −−−−(26)
また、1240nm光のレーリー光の光伝送損失量は、
ΔIR’(x)=IR’1(x)−IR’0(x) −−−−(27)
より求められるので、これを(26)式に代入し、
’(x)=I(x)−n・(IR’1(x)−IR’0(x)) −−−−(28)
となり、波長λの入射パルス光4のストークス光の受光強度を1240nm光のレーリー光の受光強度によって補正した値が得られる(S60)。
Next, the signal processing unit 10 calculates the temperature of the optical fiber 2 to be measured by processing signals based on the received intensity of the Stokes light and anti-Stokes light of the incident pulsed light 4 having the wavelength λ and the Rayleigh light of 1240 nm light. Ask.
When the received light intensity of the Stokes light of the incident pulsed light 4 having the wavelength λ excluding the influence of hydrogen is I S ′ (x),
I S '(x) = I S (x) -ΔI S (x) ---- (25)
From the equation (23), ΔI S (x) = n · ΔI R ′ (x), so this is substituted into the equation (25),
I S '(x) = I S (x) -n · ΔI R (x) ---- (26)
In addition, the optical transmission loss amount of Rayleigh light of 1240 nm light is
ΔI R ′ (x) = I R′1 (x) −I R′0 (x) −−−− (27)
Substituting this into equation (26)
I S '(x) = I S (x) -n · (I R'1 (x) -I R'0 (x)) ---- (28)
Thus, a value obtained by correcting the light reception intensity of the Stokes light of the incident pulsed light 4 having the wavelength λ with the light reception intensity of the Rayleigh light of 1240 nm light is obtained (S60).

次に、水素の影響を除いた波長λの入射パルス光4の反ストークス光の受光強度をIAS’(x)とすると、
AS’(x)=IAS(x)−ΔIAS(x) −−−−(29)
(24)式より、ΔIAS(x)=o・ΔIR’(x)であるので、これを(29)式に代入し、
AS’(x)=IAS(x)−o・ΔIR’(x) −−−−(30)
また、1240nm光のレーリー光の光伝送損失量は、
ΔIR’(x)=IR’1(x)−IR’0(x) −−−−(31)
より求められるので、これを(30)式に代入し、
AS’(x)=IAS(x)−o・(IR’1(x)−IR’0(x)) −−−−(32)
となり、波長λの入射パルス光4の反ストークス光の受光強度を1240nm光のレーリー光の受光強度によって補正した値が得られる(S61)。
Next, assuming that the light receiving intensity of the anti-Stokes light of the incident pulsed light 4 having the wavelength λ excluding the influence of hydrogen is I AS ′ (x)
I AS '(x) = I AS (x) −ΔI AS (x) −−−− (29)
From the equation (24), ΔI AS (x) = o · ΔI R ′ (x), so this is substituted into the equation (29),
I AS ′ (x) = I AS (x) −o · ΔI R ′ (x) −−−− (30)
In addition, the optical transmission loss amount of Rayleigh light of 1240 nm light is
ΔI R ′ (x) = I R′1 (x) −I R′0 (x) −−−− (31)
Substituting this into equation (30)
I AS '(x) = I AS (x) -o · (I R'1 (x) -I R'0 (x)) ---- (32)
Thus, a value obtained by correcting the light reception intensity of the anti-Stokes light of the incident pulsed light 4 having the wavelength λ with the light reception intensity of the Rayleigh light of 1240 nm light is obtained (S61).

このようにして得られる補正されたストークス光と反ストークス光は、前述したように被測定光ファイバ2中における散乱点5の絶対温度Tの関数となることから、(5)式に基づいて散乱点5の温度を正確に求めることができる(S62)。   The corrected Stokes light and anti-Stokes light obtained in this way are a function of the absolute temperature T of the scattering point 5 in the optical fiber 2 to be measured as described above, and are thus scattered based on the equation (5). The temperature at point 5 can be accurately obtained (S62).

(第3の実施の形態の効果)
第3の実施の形態によれば、水素のない雰囲気中および水素雰囲気中で被測定光ファイバ2の温度測定を行うことにより得られる波長λの入射パルス光4のストークス光および反ストークス光の受光強度と1240nm光のレーリー光の受光強度に基づき、被測定光ファイバ2の水素分子吸収に基づく受光強度の変化量に応じた値(比)n,oが求められる。したがって、実際に測定を行う水素雰囲気中で被測定光ファイバ2に波長λの入射パルス光4を入射することに基づいて得られる反ストークス光の受光強度とストークス光の受光強度とを、1240nm光のレーリー光の受光強度に基づいて補正することが可能になる。図18Aに示すように、1240nm光は水素分子による光伝送損失の増加が顕著に現れる波長なので、感度良く補正することができる。
(Effect of the third embodiment)
According to the third embodiment, the Stokes light and the anti-Stokes light of the incident pulsed light 4 having the wavelength λ obtained by measuring the temperature of the optical fiber 2 to be measured in an atmosphere without hydrogen and in a hydrogen atmosphere. Based on the intensity and the light receiving intensity of Rayleigh light of 1240 nm light, values (ratio) n, o corresponding to the amount of change in the light receiving intensity based on the hydrogen molecule absorption of the optical fiber 2 to be measured are obtained. Accordingly, the light intensity of the anti-Stokes light and the light intensity of the Stokes light obtained based on the incident pulsed light 4 having the wavelength λ incident on the optical fiber 2 to be measured in the hydrogen atmosphere in which the measurement is actually performed are 1240 nm light. It becomes possible to correct based on the light receiving intensity of the Rayleigh light. As shown in FIG. 18A, 1240 nm light has a wavelength at which an increase in optical transmission loss due to hydrogen molecules appears remarkably, and therefore can be corrected with high sensitivity.

また、本実施形態に基づく簡易的な形態として、波長λの入射パルス光4のストークス光を利用せず、1240nm光のレーリー光と波長λの入射パルス光4の反ストークス光に基づき温度測定を行う実施形態も考えられる。さらに、本実施の形態では、1240nm光源1Aと温度測定用光源1Bを別々の光源として構成しているが、1240nm光源と温度測定用光源を備えた単一の光源ユニットを被測定光ファイバ2に接続し、2つの光源を切り替えるように構成することもできる。また、温度測定用光源1Bの波長を変化させ、1240nm光と温度測定用の他の波長の光信号を時分割で連続して被測定光ファイバ2に入射するように構成することもできる。   Further, as a simple form based on the present embodiment, temperature measurement is not performed based on the Rayleigh light of 1240 nm light and the anti-Stokes light of incident pulse light 4 of wavelength λ, without using the Stokes light of incident pulse light 4 of wavelength λ. Embodiments to perform are also conceivable. Further, in the present embodiment, the 1240 nm light source 1A and the temperature measuring light source 1B are configured as separate light sources, but a single light source unit including the 1240 nm light source and the temperature measuring light source is used as the optical fiber 2 to be measured. It is also possible to connect and switch between the two light sources. Alternatively, the wavelength of the temperature measurement light source 1B may be changed so that 1240 nm light and an optical signal of another wavelength for temperature measurement are successively incident on the optical fiber 2 to be measured in a time division manner.

(第4の実施の形態)
図20は第4の実施の形態に係る光ファイバ温度分布計測システムを示す概略構成図である。第4の実施の形態は、ビームスプリッタ3から出力された光を参照光および反ストークス光に分離する波長分離部8と、波長分離部8で分離された参照光を検出する参照光検出部9Eを更に有する信号処理部9とを、反ストークス光の受光強度を用いて被測定光ファイバ2の温度分布を計算する信号処理部10とを備え、信号処理部10は被測定光ファイバ2の水素分子吸収による参照光の受光強度の変化量を測定地点毎に算出し、反ストークス光の受光強度に対して、参照光の受光強度の変化量に基づいて計算された水素分子吸収損失の影響による反ストークス光の受光強度の変化量を各測定地点に加算する補正を行う補正部10Aと、補正された反ストークス光の受光強度に基づき温度分布の計算をする温度分布計算部10Bとを有する点で、第1の実施の形態と相違している。図20においても、被測定光ファイバ2が水素雰囲気中にある状態を示している。
(Fourth embodiment)
FIG. 20 is a schematic configuration diagram showing an optical fiber temperature distribution measuring system according to the fourth embodiment. In the fourth embodiment, a wavelength separator 8 that separates light output from the beam splitter 3 into reference light and anti-Stokes light, and a reference light detector 9E that detects the reference light separated by the wavelength separator 8. The signal processing unit 9 further includes a signal processing unit 10 that calculates the temperature distribution of the optical fiber 2 to be measured using the received light intensity of the anti-Stokes light, and the signal processing unit 10 includes hydrogen of the optical fiber 2 to be measured. The amount of change in the received light intensity of the reference light due to molecular absorption is calculated for each measurement point, and the effect of the hydrogen molecule absorption loss calculated based on the change in the received light intensity of the reference light against the light intensity of the anti-Stokes light. A correction unit 10A that performs correction to add the amount of change in the light reception intensity of the anti-Stokes light to each measurement point, and a temperature distribution calculation unit 10B that calculates a temperature distribution based on the light reception intensity of the corrected anti-Stokes light. In is different from the first embodiment. FIG. 20 also shows a state where the optical fiber 2 to be measured is in a hydrogen atmosphere.

ここで、「水素分子吸収損失の影響に応じた反ストークス光の受光強度の変化量を加算する補正」とは、
AS’(x)=IAS(x)−ΔIAS(x) −−−−(33)
であって、
AS’(x)=IAS(x)−p・ΔIRf(x) −−−−(34)
(pは定数、ΔIRf(x)=IRf1(x)−IRf0(x))
に基づく補正を意味する。ここで、ΔIRf(x)は参照光の受光強度の変化量であり、水素のない雰囲気中の被測定光ファイバ2の参照光の受光強度IRf0(x)と水素雰囲気中の被測定光ファイバ2の参照光の受光強度IRf1(x)の差から求められる。上記の通り、水素分子吸収損失の影響による反ストークス光の受光強度の変化量ΔIAS(x)は、水素分子吸収損失による参照光の受光強度の変化量ΔIRf(x)に係数pを乗じて算出することができる。なお、第1の実施の形態と同一の構成および同様の機能を有する部分について共通の符号を付している。また、参照光とは、温度測定用光源1から入射する入射パルス光4の反ストークス光以外の光であって、ストークス光、レーリー光、あるいは他の波長の光(例えば1240nmの光)を意味する。
Here, “correction to add the amount of change in the light intensity of anti-Stokes light depending on the influence of hydrogen molecule absorption loss”
I AS ′ (x) = I AS (x) −ΔI AS (x) −−−− (33)
Because
I AS ′ (x) = I AS (x) −p · ΔI Rf (x) −−−− (34)
(P is a constant, ΔI Rf (x) = I Rf1 (x) -I Rf0 (x))
Means correction based on. Here, ΔI Rf (x) is the amount of change in the received light intensity of the reference light, and the received light intensity I Rf0 (x) of the reference light of the measured optical fiber 2 in the atmosphere without hydrogen and the measured light in the hydrogen atmosphere. It is obtained from the difference in the received light intensity I Rf1 (x) of the reference light of the fiber 2. As described above, the change amount ΔI AS (x) of the received light intensity of the anti-Stokes light due to the influence of the hydrogen molecule absorption loss is obtained by multiplying the change amount ΔI Rf (x) of the received light intensity of the reference light due to the hydrogen molecule absorption loss by the coefficient p. Can be calculated. In addition, the same code | symbol is attached | subjected about the part which has the same structure and 1st function as 1st Embodiment. The reference light means light other than the anti-Stokes light of the incident pulsed light 4 incident from the temperature measurement light source 1, and means Stokes light, Rayleigh light, or light of other wavelengths (for example, light of 1240 nm). To do.

また、信号処理部10は、水素分子吸収による反ストークス光の受光強度の変化量ΔIAS(x)を水素分子吸収による参照光の受光強度の変化量ΔIRf(x)で割って係数pを計算する係数演算部10Cを更に有してもよい。また、第4の実施の形態は、他の各実施の形態について適用してもよい。Further, the signal processing unit 10 divides the change amount ΔI AS (x) of the received light intensity of the anti-Stokes light due to the absorption of hydrogen molecules by the change amount ΔI Rf (x) of the received light intensity of the reference light due to the absorption of hydrogen molecules. You may further have the coefficient calculating part 10C to calculate. Further, the fourth embodiment may be applied to other embodiments.

(第5の実施の形態)
図21は、本発明の第5の実施の形態に係る光ファイバ温度分布測定システムを示す概略構成図である。第5の実施の形態は、水素雰囲気中にある被測定光ファイバ2の近傍に設置され、被測定光ファイバ2の温度を測定する1個または複数個の温度センサ12と、温度センサ12からの信号を温度に変換する温度変換部13を更に有する点で、第4の実施の形態と相違する。図21においても、被測定光ファイバ2が水素雰囲気中にある状態を示している。なお、第4の実施の形態と同一の構成および同様の機能を有する部分について共通の符号を付している。
(Fifth embodiment)
FIG. 21 is a schematic configuration diagram showing an optical fiber temperature distribution measurement system according to the fifth embodiment of the present invention. In the fifth embodiment, one or a plurality of temperature sensors 12 that are installed in the vicinity of the optical fiber 2 to be measured in a hydrogen atmosphere and measure the temperature of the optical fiber 2 to be measured; This is different from the fourth embodiment in that it further includes a temperature conversion unit 13 that converts a signal into a temperature. FIG. 21 also shows a state where the optical fiber 2 to be measured is in a hydrogen atmosphere. In addition, the same code | symbol is attached | subjected about the part which has the same structure and the same function as 4th Embodiment.

第5の実施の形態において、補正部10Aは、水素分子による参照光の受光強度の変化量ΔIRf(x)に所定の係数pを乗じて水素分子による反ストークス光の受光強度の変化量ΔIAS(x)を算出し、算出結果に基づき反ストークス光の受光強度を補正する。温度分布計算部10Bは、補正された反ストークス光の受光強度に基づいて、測定地点における被測定光ファイバ2の温度を計算する。温度センサ12は、被測定光ファイバ2の測定地点における温度を測定し、温度変換部13に温度を示す信号を有線または無線により温度変換部13に送信する。温度変換部13は、温度センサ12から受信した信号を温度に変換する。係数演算部10Cは、温度センサ12で測定した被測定光ファイバ2の温度と温度分布計算部10Bで計算した被測定光ファイバ2の温度の計算結果が一致するように、補正のための係数pを算出する。In the fifth embodiment, the correction unit 10A multiplies the change amount ΔI Rf (x) of the received light intensity of the reference light by the hydrogen molecule by a predetermined coefficient p to change the received light intensity of the anti-Stokes light ΔI by the hydrogen molecule ΔI. AS (x) is calculated, and the received intensity of the anti-Stokes light is corrected based on the calculation result. The temperature distribution calculation unit 10B calculates the temperature of the optical fiber 2 to be measured at the measurement point based on the corrected received light intensity of the anti-Stokes light. The temperature sensor 12 measures the temperature at the measurement point of the optical fiber 2 to be measured, and transmits a signal indicating the temperature to the temperature converter 13 to the temperature converter 13 by wire or wirelessly. The temperature conversion unit 13 converts the signal received from the temperature sensor 12 into a temperature. The coefficient calculation unit 10C corrects the coefficient p for correction so that the calculation result of the temperature of the optical fiber 2 to be measured measured by the temperature sensor 12 and the temperature of the optical fiber 2 to be measured calculated by the temperature distribution calculation unit 10B match. Is calculated.

第5の実施の形態では、被測定光ファイバ2の近傍に設置された温度センサ12が検出した光ファイバ2の測定温度に基づいて係数pを算出するため、実際の温度測定の前に水素のない雰囲気中と水素雰囲気中で反ストークス光および参照光の受光強度の変化を測定し、これらの測定結果に基づき係数pを算出することなく、被測定光ファイバ2の温度測定を行うことができる。したがって、光源1の出力波長の変化等に起因して係数pの値が変化する場合でも、その影響を受けることなく、反ストークス光の受光強度の正確な補正を行うことができる。また、複数の温度センサ12を設けることにより、被測定光ファイバ2の各測定地点間の温度差が大きい場合であっても、高精度の補正を行うことができる。また、第5の実施の形態は、他の各実施の形態について適用してもよい。   In the fifth embodiment, the coefficient p is calculated based on the measured temperature of the optical fiber 2 detected by the temperature sensor 12 installed in the vicinity of the optical fiber 2 to be measured. It is possible to measure the temperature of the optical fiber 2 to be measured without measuring the change in the received light intensity of the anti-Stokes light and the reference light in a hydrogen atmosphere and in a hydrogen atmosphere without calculating the coefficient p based on these measurement results. . Therefore, even when the value of the coefficient p changes due to a change in the output wavelength of the light source 1, the received light intensity of the anti-Stokes light can be accurately corrected without being affected by the change. Further, by providing a plurality of temperature sensors 12, even when the temperature difference between the measurement points of the optical fiber 2 to be measured is large, highly accurate correction can be performed. In addition, the fifth embodiment may be applied to other embodiments.

(第6の実施の形態)
図22は、第6の実施の形態に係る光ファイバ温度分布計測システムを示す概略構成図である。第6の実施の形態は、信号処理部10が、反ストークス光の受光強度に対して、水素分子による参照光の受光強度の変化量に基づいて計算された水素分子による反ストークス光の受光強度の変化量を測定地点毎に加算する際に、補正に用いる係数pを外部から入力する係数データ取り込み部10Dを更に有する点で、第4の実施の形態と相違している。図22においても、被測定光ファイバ2が水素雰囲気中にある状態を示している。なお、第4の実施の形態と同一の構成および同様の機能を有する部分について共通の符号を付している。また、第6の実施の形態は、他の各実施の形態について適用してもよい。
(Sixth embodiment)
FIG. 22 is a schematic configuration diagram showing an optical fiber temperature distribution measurement system according to the sixth embodiment. In the sixth embodiment, the light processing intensity of the anti-Stokes light by the hydrogen molecule calculated by the signal processing unit 10 based on the change amount of the light receiving intensity of the reference light by the hydrogen molecule with respect to the light reception intensity of the anti-Stokes light. The difference from the fourth embodiment is that it further includes a coefficient data capturing unit 10D that inputs a coefficient p used for correction from the outside when adding the amount of change for each measurement point. FIG. 22 also shows a state where the optical fiber 2 to be measured is in a hydrogen atmosphere. In addition, the same code | symbol is attached | subjected about the part which has the same structure and the same function as 4th Embodiment. In addition, the sixth embodiment may be applied to other embodiments.

(第7の実施の形態)
図23は、第7の実施の形態に係る光ファイバ温度分布計測システムを示す概略構成図である。ストークス光は反ストークス光の温度依存性よりは低いが温度依存性を有する。このため、(11)式において、水素のない雰囲気中のストークス光の受光強度IS0(x)と水素雰囲気中のストークス光の受光強度IS1(x)を測定する際に、被測定光ファイバ2の周囲温度に差がある場合、この周囲温度の差に起因するストークス光の受光強度の差によって、(11)式により算出されたストークス光の受光強度の変化量に誤差を生ずる。しかし、(11)式により算出されたストークス光の受光強度の変化量から、この周囲温度の差に起因する受光強度の差を差し引くことにより、誤差の問題を解決することができる。
(Seventh embodiment)
FIG. 23 is a schematic configuration diagram showing an optical fiber temperature distribution measurement system according to the seventh embodiment. Stokes light has a temperature dependence that is lower than the temperature dependence of anti-Stokes light. For this reason, in the equation (11), when measuring the received light intensity I S0 (x) of the Stokes light in the hydrogen-free atmosphere and the received light intensity I S1 (x) of the Stokes light in the hydrogen atmosphere, the optical fiber to be measured When there is a difference between the two ambient temperatures, an error occurs in the amount of change in the Stokes light reception intensity calculated by the equation (11) due to the difference in the Stokes light reception intensity caused by the difference in the ambient temperature. However, the error problem can be solved by subtracting the difference in received light intensity caused by the difference in ambient temperature from the amount of change in received light intensity of the Stokes light calculated by the equation (11).

第7の実施の形態は、信号処理部10が、被測定光ファイバ2の周囲温度の差による参照光の受光強度の変化量を決定し、参照光の受光強度に対して、被測定光ファイバ2の各測定地点において、周囲温度の差による参照光の受光強度の変化量を加算する参照光補正部10Eを更に有する点で、第4の実施の形態と相違する。図23においても、被測定光ファイバ2が水素雰囲気中にある状態を示している。なお、第4の実施の形態と同一の構成および同様の機能を有する部分について共通の符号を付している。   In the seventh embodiment, the signal processing unit 10 determines the amount of change in the received light intensity of the reference light due to the difference in ambient temperature of the measured optical fiber 2, and the measured optical fiber with respect to the received light intensity of the reference light Each of the measurement points 2 is different from the fourth embodiment in that it further includes a reference light correction unit 10E that adds a change amount of the received light intensity of the reference light due to a difference in ambient temperature. FIG. 23 also shows a state in which the optical fiber 2 to be measured is in a hydrogen atmosphere. In addition, the same code | symbol is attached | subjected about the part which has the same structure and the same function as 4th Embodiment.

第7の実施の形態において、被測定光ファイバ2の周囲温度の差による参照光の受光強度の変化量は以下のように求めることができる。まず、初回の温度分布の測定を、被測定光ファイバ2に水素分子が拡散しておらず水素分子吸収の影響の少ない段階で行う。次に、2回目の温度分布の測定の際には、初回の温度分布の測定で得られた結果に基づいて、周囲温度の差による参照光の受光強度の変化量を決定する。更に、次回以降の測定では、前回の温度分布の測定で得られた結果に基づいて温度差による参照光の受光強度の変化量を決定し、同様の工程を繰り返すことができる。   In the seventh embodiment, the amount of change in the received light intensity of the reference light due to the difference in ambient temperature of the measured optical fiber 2 can be obtained as follows. First, the first temperature distribution measurement is performed at a stage where hydrogen molecules are not diffused in the optical fiber 2 to be measured and the influence of hydrogen molecule absorption is small. Next, when measuring the temperature distribution for the second time, the amount of change in the received light intensity of the reference light due to the difference in ambient temperature is determined based on the result obtained by the first temperature distribution measurement. Furthermore, in the next and subsequent measurements, the amount of change in the received light intensity of the reference light due to the temperature difference can be determined based on the result obtained in the previous temperature distribution measurement, and the same process can be repeated.

また、最新の温度分布の測定の結果、参照光の受光強度を測定する被測定光ファイバ2の周囲温度が信号処理部10で設定した周囲温度と異なることが判明した場合には、最新の測定温度に基づいて参照光の受光強度を測定する際の周囲温度を設定する。更に、予め測定された、周囲温度と周囲温度の差による参照光の受光強度の変化量の関係データに基づいて、周囲温度の差による参照光の受光強度の変化量を補正する。この補正された参照光の受光強度に基づいて、再度、被測定光ファイバ2の温度分布を測定する。   Further, when it is determined that the ambient temperature of the measured optical fiber 2 for measuring the received light intensity of the reference light is different from the ambient temperature set by the signal processing unit 10 as a result of the latest temperature distribution measurement, the latest measurement is performed. Based on the temperature, the ambient temperature for measuring the received light intensity of the reference light is set. Furthermore, the amount of change in the received light intensity of the reference light due to the difference in ambient temperature is corrected based on the relationship data of the change in the received light intensity of the reference light due to the difference between the ambient temperature and the ambient temperature. Based on the corrected received light intensity of the reference light, the temperature distribution of the measured optical fiber 2 is measured again.

なお、水素分子吸収の影響の少ない雰囲気中では従来技術によって温度を測定することができるため、この測定温度を周囲温度の差による参照光の受光強度の変化量を補正する際の初期温度とすることができる。また、参照光補正部10Eは、第5および第6の実施形態においても適用することができる。   Since the temperature can be measured by the conventional technique in an atmosphere where there is little influence of hydrogen molecule absorption, this measurement temperature is used as the initial temperature when correcting the amount of change in the received light intensity of the reference light due to the difference in ambient temperature. be able to. The reference light correction unit 10E can also be applied to the fifth and sixth embodiments.

第1から第7の実施の形態において使用される温度測定用光源の光源波長は、850nm帯、1060nm帯、1300nm帯、1550nm帯等があるが、本発明はこれらの波長に限定されるものではない。   The light source wavelengths of the temperature measurement light sources used in the first to seventh embodiments include the 850 nm band, the 1060 nm band, the 1300 nm band, the 1550 nm band, and the like, but the present invention is not limited to these wavelengths. Absent.

なお、第1から第7の実施の形態において使用される被測定光ファイバ2としては、種々の光ファイバを使用することができるが、特に、純石英コアファイバを使用することが好ましい。
水素雰囲気中においては水素分子の拡散による光伝送損失の増加に加えて、前述の参考文献(N. Uchida and N. Uesugi, “Infrared Optical Loss Increase in Silica Fibers due to Hydrogen”, J. Lightwave Technol., Vol LT-4, No.8, pp.1132-1138, Aug. 1986.)にも開示されている通り、水素分子と光ファイバの中のガラス欠陥との化学反応の結果、OH基形成に起因するOH基吸収損失等の吸収損失が増加するという課題がある。これらの吸収損失による誤差に対しては、本発明による受光強度の補正は有効ではない。一方、純石英コアファイバではこれらの吸収損失の増加がほとんど発生しないことが知られている。このことは、例えば、参考文献(H. Kanamori et al “Transmission Characteristics and Reliability of Pure-Silica-Core Single-Mode Fibers”, J. Lightwave Technol., Vol LT-4, No.8, pp.1144-1150, Aug. 1986. )などに開示されている。したがって、水素と化学反応しない純石英コアファイバを用いることで、水素分子と光ファイバとの化学反応の結果生じる吸収損失を防ぐことができるので、水素分子吸収の影響を補正する本発明の温度分布測定システム用ファイバとして純石英コアファイバを適用することは有効である。
したがって、本発明の温度分布測定システムに純石英コアファイバを使用した場合には、他の光ファイバを使用した場合に比べて、より誤差を低減できるという効果がある。
Various optical fibers can be used as the optical fiber 2 to be measured used in the first to seventh embodiments, but it is particularly preferable to use a pure quartz core fiber.
In a hydrogen atmosphere, in addition to the increase in optical transmission loss due to diffusion of hydrogen molecules, the above-mentioned reference (N. Uchida and N. Uesugi, “Infrared Optical Loss Increase in Silica Fibers due to Hydrogen”, J. Lightwave Technol. , Vol LT-4, No.8, pp.1132-1138, Aug. 1986), as a result of chemical reaction between hydrogen molecules and glass defects in the optical fiber, There is a problem that the absorption loss such as the OH group absorption loss due to the increase. The correction of received light intensity according to the present invention is not effective for errors due to these absorption losses. On the other hand, it is known that the increase in absorption loss hardly occurs in the pure silica core fiber. This is described, for example, in the reference (H. Kanamori et al “Transmission Characteristics and Reliability of Pure-Silica-Core Single-Mode Fibers”, J. Lightwave Technol., Vol LT-4, No. 8, pp. 1144- 1150, Aug. 1986)). Therefore, by using a pure silica core fiber that does not chemically react with hydrogen, absorption loss resulting from a chemical reaction between hydrogen molecules and an optical fiber can be prevented, so that the temperature distribution of the present invention that corrects the influence of hydrogen molecule absorption is corrected. It is effective to apply a pure silica core fiber as a measurement system fiber.
Therefore, when a pure silica core fiber is used in the temperature distribution measuring system of the present invention, there is an effect that an error can be further reduced as compared with the case where another optical fiber is used.

本発明の光ファイバ温度分布測定装置、光ファイバ温度分布測定方法および光ファイバ温度分布測定システムによると、水素雰囲気中におけるストークス光および反ストークス光の水素分子による光伝送損失を補正することができるので、水素雰囲気中であっても正確な温度測定が可能になる。   According to the optical fiber temperature distribution measuring device, the optical fiber temperature distribution measuring method, and the optical fiber temperature distribution measuring system of the present invention, it is possible to correct optical transmission loss due to hydrogen molecules of Stokes light and anti-Stokes light in a hydrogen atmosphere. Even in a hydrogen atmosphere, accurate temperature measurement is possible.

Claims (24)

被測定光ファイバにパルス光を入射する光源と、
前記パルス光の入射に基づいて前記被測定光ファイバ内で生じた後方散乱光に含まれる所定の光の受光強度を検出する信号検出部と、
前記所定の光の受光強度に基づいて前記被測定光ファイバの水素分子吸収による受光強度の変化量に応じた値を算出し、前記値に基づいて前記被測定光ファイバの温度に応じた前記所定の光の受光強度を補正する信号処理部とを有し、
前記信号処理部は、ストークス光の受光強度の変化量に応じた値に基づいて、前記被測定光ファイバの温度に応じた反ストークス光の受光強度を補正する光ファイバ温度分布測定装置。
A light source for inputting pulsed light into the optical fiber to be measured;
A signal detection unit that detects a light receiving intensity of predetermined light included in backscattered light generated in the measured optical fiber based on incidence of the pulsed light;
A value corresponding to the amount of change in received light intensity due to absorption of hydrogen molecules in the measured optical fiber is calculated based on the received light intensity of the predetermined light, and the predetermined value corresponding to the temperature of the measured optical fiber is calculated based on the value. the received light intensity of the light to have a signal processing unit for correcting the,
The said signal processing part is an optical fiber temperature distribution measuring apparatus which correct | amends the light reception intensity | strength of the anti-Stokes light according to the temperature of the said to-be-measured optical fiber based on the value according to the variation | change_quantity of the light reception intensity | strength of Stokes light .
被測定光ファイバにパルス光を入射する光源と、
前記パルス光の入射に基づいて前記被測定光ファイバ内で生じた後方散乱光に含まれる所定の光の受光強度を検出する信号検出部と、
前記所定の光の受光強度に基づいて前記被測定光ファイバの水素分子吸収による受光強度の変化量に応じた値を算出し、前記値に基づいて前記被測定光ファイバの温度に応じた前記所定の光の受光強度を補正する信号処理部とを有し、
前記信号処理部は、前記光源が出力する温度測定用パルス光の波長に基づいて得られる受光強度の変化量に応じた値に基づいて、前記被測定光ファイバの温度に応じた前記所定の光の受光強度を補正する光ファイバ温度分布測定装置。
A light source for inputting pulsed light into the optical fiber to be measured;
A signal detection unit that detects a light receiving intensity of predetermined light included in backscattered light generated in the measured optical fiber based on incidence of the pulsed light;
A value corresponding to the amount of change in received light intensity due to absorption of hydrogen molecules in the measured optical fiber is calculated based on the received light intensity of the predetermined light, and the predetermined value corresponding to the temperature of the measured optical fiber is calculated based on the value. the received light intensity of the light to have a signal processing unit for correcting the,
The signal processing unit is configured to output the predetermined light according to the temperature of the optical fiber to be measured based on a value corresponding to a change amount of received light intensity obtained based on a wavelength of temperature measurement pulsed light output from the light source. Optical fiber temperature distribution measuring device that corrects the received light intensity .
前記信号検出部は、前記所定の光として前記後方散乱光に含まれるストークス光および反ストークス光の受光強度を検出する請求項1又は2に記載の光ファイバ温度分布測定装置。The optical fiber temperature distribution measuring device according to claim 1 or 2 , wherein the signal detection unit detects the received light intensity of Stokes light and anti-Stokes light included in the backscattered light as the predetermined light. 前記信号検出部は、前記所定の光として前記後方散乱光に含まれるストークス光、反ストークス光、およびレーリー光の受光強度を検出する請求項1又は2に記載の光ファイバ温度分布測定装置。 3. The optical fiber temperature distribution measuring device according to claim 1, wherein the signal detection unit detects received light intensity of Stokes light, anti-Stokes light, and Rayleigh light included in the backscattered light as the predetermined light. 前記信号処理部は、他の光源が出力する1240nm光の波長に基づいて得られる受光
強度の変化量に応じた値に基づいて前記被測定光ファイバの温度に応じた前記所定の光の
受光強度を補正する請求項1又は2に記載の光ファイバ温度分布測定装置。
The signal processing unit receives light intensity of the predetermined light according to the temperature of the optical fiber to be measured based on a value corresponding to a change amount of light reception intensity obtained based on a wavelength of 1240 nm light output from another light source. The optical fiber temperature distribution measuring device according to claim 1 or 2 , wherein the optical fiber temperature distribution is corrected.
純石英コア光ファイバからなる前記被測定光ファイバと、請求項1乃至5のいずれか1項に記載の光ファイバ温度分布測定装置とを用いる光ファイバ温度分布測定システム。An optical fiber temperature distribution measuring system using the measured optical fiber made of a pure silica core optical fiber and the optical fiber temperature distribution measuring apparatus according to any one of claims 1 to 5 . 光源から被測定光ファイバにパルス光を入射し、
前記パルス光の入射に基づいて前記被測定光ファイバ内で生じた後方散乱光に含まれる所定の光の受光強度を検出し、
前記所定の光の受光強度に基づいて前記被測定光ファイバの水素分子吸収による受光強度の変化量に応じた値を算出し、
前記値に基づいて前記被測定光ファイバの温度に応じた前記所定の光の受光強度を補正し、
前記所定の光の受光強度の補正は、前記所定の光として前記後方散乱光に含まれるストークス光に基づいて前記被測定光ファイバの温度に応じた反ストークス光の受光強度を補正する光ファイバ温度分布測定方法。
Pulse light is incident on the optical fiber to be measured from the light source,
Detecting the received light intensity of the predetermined light included in the backscattered light generated in the measured optical fiber based on the incidence of the pulsed light;
Based on the received light intensity of the predetermined light, a value corresponding to the amount of change in received light intensity due to absorption of hydrogen molecules in the optical fiber to be measured is calculated,
Based on the value, the received light intensity of the predetermined light corresponding to the temperature of the optical fiber to be measured is corrected ,
The correction of the light reception intensity of the predetermined light is performed by correcting the light reception intensity of the anti-Stokes light according to the temperature of the optical fiber to be measured based on the Stokes light included in the backscattered light as the predetermined light. Distribution measurement method.
光源から被測定光ファイバにパルス光を入射し、
前記パルス光の入射に基づいて前記被測定光ファイバ内で生じた後方散乱光に含まれる所定の光の受光強度を検出し、
前記所定の光の受光強度に基づいて前記被測定光ファイバの水素分子吸収による受光強度の変化量に応じた値を算出し、
前記値に基づいて前記被測定光ファイバの温度に応じた前記所定の光の受光強度を補正し、
前記所定の光の受光強度の補正は、前記所定の光として前記後方散乱光に含まれるレーリー光に基づいて前記被測定光ファ
イバの温度に応じたストークス光および反ストークス光の受光強度を補正する光ファイバ温度分布測定方法。
Pulse light is incident on the optical fiber to be measured from the light source,
Detecting the received light intensity of the predetermined light included in the backscattered light generated in the measured optical fiber based on the incidence of the pulsed light;
Based on the received light intensity of the predetermined light, a value corresponding to the amount of change in received light intensity due to absorption of hydrogen molecules in the optical fiber to be measured is calculated,
Based on the value, the received light intensity of the predetermined light corresponding to the temperature of the optical fiber to be measured is corrected ,
The correction of the light receiving intensity of the predetermined light is performed based on the Rayleigh light included in the backscattered light as the predetermined light.
An optical fiber temperature distribution measuring method for correcting received light intensity of Stokes light and anti-Stokes light according to the temperature of Iva .
光源から被測定光ファイバにパルス光を入射し、
前記パルス光の入射に基づいて前記被測定光ファイバ内で生じた後方散乱光に含まれる所定の光の受光強度を検出し、
前記所定の光の受光強度に基づいて前記被測定光ファイバの水素分子吸収による受光強度の変化量に応じた値を算出し、
前記値に基づいて前記被測定光ファイバの温度に応じた前記所定の光の受光強度を補正し、
前記所定の光の受光強度の補正は、前記所定の光として前記後方散乱光に含まれる1240nm光のレーリー光に基づいて前記被測定光ファイバの温度に応じたストークス光および反ストークス光の受光強度を補正する光ファイバ温度分布測定方法。
Pulse light is incident on the optical fiber to be measured from the light source,
Detecting the received light intensity of the predetermined light included in the backscattered light generated in the measured optical fiber based on the incidence of the pulsed light;
Based on the received light intensity of the predetermined light, a value corresponding to the amount of change in received light intensity due to absorption of hydrogen molecules in the optical fiber to be measured is calculated,
Based on the value, the received light intensity of the predetermined light corresponding to the temperature of the optical fiber to be measured is corrected ,
The correction of the light reception intensity of the predetermined light is based on the Rayleigh light of 1240 nm light included in the backscattered light as the predetermined light, and the light reception intensity of Stokes light and anti-Stokes light according to the temperature of the optical fiber to be measured. Fiber temperature distribution measurement method for correcting
被測定光ファイバにパルス光を入射する光源と、
前記パルス光の入射に基づいて前記被測定光ファイバ内で生じた後方散乱光に含まれる光であり、反ストークス光と参照光を含む複数の所定の光の受光強度を検出する信号検出部と、
前記反ストークス光の受光強度を用いて前記被測定光ファイバの温度分布を計算する信号処理部とを有し、
前記信号処理部は、前記被測定光ファイバの水素分子吸収による前記参照光の受光強度の変化量を各地点毎に算出し、前記反ストークス光の受光強度に対し、水素分子吸収による前記参照光の受光強度の変化量に基づいて計算された、水素分子吸収による前記反ストークス光の受光強度の変化量を各地点毎に加算する補正を行う補正部と、前記補正された反ストークス光の受光強度を使用して前記温度分布の計算をする温度分布計算部とを有する光ファイバ温度分布測定装置。
A light source for inputting pulsed light into the optical fiber to be measured;
A signal detection unit that detects light reception intensities of a plurality of predetermined lights that are included in backscattered light generated in the optical fiber to be measured based on incidence of the pulsed light and that include anti-Stokes light and reference light; ,
A signal processing unit that calculates the temperature distribution of the optical fiber to be measured using the light reception intensity of the anti-Stokes light,
The signal processing unit calculates the amount of change in received light intensity of the reference light due to absorption of hydrogen molecules in the optical fiber to be measured for each point, and the reference light due to absorption of hydrogen molecules with respect to the received light intensity of the anti-Stokes light. A correction unit that performs correction to add the amount of change in the light reception intensity of the anti-Stokes light due to absorption of hydrogen molecules calculated based on the amount of change in the light reception intensity of each light, and light reception of the corrected anti-Stokes light An optical fiber temperature distribution measuring device comprising: a temperature distribution calculating unit that calculates the temperature distribution using intensity.
前記水素分子吸収による前記反ストークス光の受光強度の変化量は、前記水素分子吸収による前記参照光の受光強度の変化量に所定の係数を乗じて計算する請求項10記載の光ファイバ温度分布測定装置。The optical fiber temperature distribution measurement according to claim 10 , wherein the amount of change in the light reception intensity of the anti-Stokes light due to the absorption of hydrogen molecules is calculated by multiplying the amount of change in the light reception intensity of the reference light due to the absorption of hydrogen molecules by a predetermined coefficient. apparatus. 前記所定の係数は、前記水素分子吸収による前記反ストークス光の受光強度の変化量を前記水素分子吸収による参照光の受光強度の変化量で割った値とする係数演算部を有する請求項11記載の光ファイバ温度分布測定装置。The predetermined coefficients, according to claim 11, further comprising a coefficient calculating section for a value obtained by dividing the change amount of the received light intensity of the reference light amount of change in the received light intensity of the anti-Stokes light by the hydrogen molecules absorbed by the hydrogen molecular absorption Optical fiber temperature distribution measuring device. 前記所定の係数を、前記被測定光ファイバの近傍に配置した温度センサにより測定された測定温度に基づいて、前記測定温度となるように前記反ストークス光の受光強度を補正する値として算出する係数演算部を有する請求項11記載の光ファイバ温度分布測定装置。A coefficient for calculating the predetermined coefficient as a value for correcting the light reception intensity of the anti-Stokes light so as to become the measurement temperature based on a measurement temperature measured by a temperature sensor arranged in the vicinity of the optical fiber to be measured. The optical fiber temperature distribution measuring device according to claim 11 , further comprising an arithmetic unit. 前記所定の係数を外部から入力する係数データ取り込み部を有する請求項11記載の光ファイバ温度分布測定装置。The optical fiber temperature distribution measuring device according to claim 11, further comprising a coefficient data capturing unit that inputs the predetermined coefficient from the outside. 温度差による前記参照光の受光強度の変化量を決定し、前記被測定光ファイバの各地点での前記参照光の受光強度に前記温度差による前記参照光の受光強度の変化量を加算する参照光補正部を有することを特徴とする請求項11記載の光ファイバ温度分布測定装置。A reference for determining a change amount of the light intensity of the reference light due to a temperature difference, and adding a change amount of the light intensity of the reference light due to the temperature difference to the light intensity of the reference light at each point of the measured optical fiber. 12. The optical fiber temperature distribution measuring device according to claim 11 , further comprising an optical correction unit. 前回測定での温度分布測定結果に基づき、前記温度差による参照光の受光強度の変化量
を決定することを特徴とする請求項15記載の光ファイバ温度分布測定装置。
The optical fiber temperature distribution measuring device according to claim 15 , wherein a change amount of the received light intensity of the reference light due to the temperature difference is determined based on a temperature distribution measurement result in the previous measurement.
最新の測定の温度分布測定結果に基づき、前記温度差による参照光の受光強度の変化量
を決定することを特徴とする請求項15記載の光ファイバ温度分布測定装置。
16. The optical fiber temperature distribution measuring device according to claim 15 , wherein the amount of change in received light intensity of the reference light due to the temperature difference is determined based on the latest temperature distribution measurement result.
純石英コアを有する光ファイバである前記被測定光ファイバと、請求項10記載の光フ
ァイバ温度分布測定装置とを用いる光ファイバ温度分布測定システム。
An optical fiber temperature distribution measurement system using the optical fiber to be measured, which is an optical fiber having a pure quartz core, and the optical fiber temperature distribution measurement device according to claim 10 .
光源から被測定光ファイバにパルス光を入射し、
前記パルス光の入射に基づいて前記被測定光ファイバ内で生じた後方散乱光に含まれる光であり、反ストークス光と参照光を含む複数の所定の光の受光強度を検出し、
前記反ストークス光の受光強度を用いて前記被測定光ファイバの温度分布を計算する光ファイバ温度分布測定方法であり、
前記被測定光ファイバの水素分子吸収による前記参照光の受光強度の変化量を各地点で算出し、前記反ストークス光の受光強度に対して、前記水素分子吸収による前記参照光の受光強度の変化量に基づいて計算された、水素分子吸収による前記反ストークス光の受光強度の変化量を各地点毎に加算する補正を行い、
前記補正された反ストークス光の受光強度を使用して前記温度分布の計算をする光ファイバ温度分布測定方法。
Pulse light is incident on the optical fiber to be measured from the light source,
It is light included in backscattered light generated in the measured optical fiber based on the incidence of the pulsed light, and detects the received light intensity of a plurality of predetermined lights including anti-Stokes light and reference light,
An optical fiber temperature distribution measurement method for calculating a temperature distribution of the optical fiber to be measured using a light receiving intensity of the anti-Stokes light,
The amount of change in the received light intensity of the reference light due to the absorption of hydrogen molecules in the optical fiber to be measured is calculated at each point, and the change in the received light intensity of the reference light due to the absorption of hydrogen molecules with respect to the received light intensity of the anti-Stokes light. The amount of change in received light intensity of the anti-Stokes light due to absorption of hydrogen molecules calculated based on the amount is corrected for each point,
An optical fiber temperature distribution measuring method for calculating the temperature distribution by using the received light intensity of the corrected anti-Stokes light.
前記水素分子吸収による前記反ストークス光の受光強度の変化量は、前記水素分子吸収による前記参照光の受光強度の変化量に所定の係数を乗じて計算する請求項19記載の光ファイバ温度分布測定方法。20. The optical fiber temperature distribution measurement according to claim 19 , wherein the amount of change in the light reception intensity of the anti-Stokes light due to the absorption of hydrogen molecules is calculated by multiplying the amount of change in the light reception intensity of the reference light due to the absorption of hydrogen molecules by a predetermined coefficient. Method. 前記所定の係数は、前記水素分子吸収による前記反ストークス光の受光強度の変化量を前記水素分子吸収による前記参照光の受光強度の変化量で割った値とする請求項20記載の光ファイバ温度分布測定方法。21. The optical fiber temperature according to claim 20 , wherein the predetermined coefficient is a value obtained by dividing a change amount of the light reception intensity of the anti-Stokes light due to the hydrogen molecule absorption by a change amount of the light reception intensity of the reference light due to the hydrogen molecule absorption. Distribution measurement method. 前記所定の係数を、前記被測定光ファイバの近傍に配置された温度センサによって測定された測定温度に基づき、前記測定温度となるように前記反ストークス光の受光強度を補正する値として算出する請求項20記載の光ファイバ温度分布測定方法。The predetermined coefficient is calculated as a value for correcting the light reception intensity of the anti-Stokes light so as to be the measured temperature based on a measured temperature measured by a temperature sensor disposed in the vicinity of the measured optical fiber. Item 20. An optical fiber temperature distribution measuring method according to Item 20 . 前記所定の係数を外部から入力する請求項20記載の光ファイバ温度分布測定方法。21. The optical fiber temperature distribution measuring method according to claim 20, wherein the predetermined coefficient is inputted from the outside. 初回の温度分布の測定を被測定光ファイバへの水素分子が拡散しておらず水素分子吸収の影響が少ない段階で行い、2回目の温度分測定の際に、初回の温度分布の測定結果を基に前記温度差による参照光の受光強度の変化量を決定し、前記被測定光ファイバの各地点での前記参照光の受光強度に前記温度差による参照光の受光強度の変化量を加算することを特徴とする請求項19記載の光ファイバ温度分布測定方法。The first temperature distribution measurement is performed at a stage where hydrogen molecules are not diffused into the optical fiber to be measured and the influence of hydrogen molecule absorption is small, and the first temperature distribution measurement result is obtained at the second temperature measurement. The amount of change in the received light intensity of the reference light due to the temperature difference is determined, and the amount of change in the received light intensity of the reference light due to the temperature difference is added to the received light intensity of the reference light at each point of the measured optical fiber. The optical fiber temperature distribution measuring method according to claim 19 .
JP2008535413A 2006-09-22 2007-09-21 Optical fiber temperature distribution measuring device, optical fiber temperature distribution measuring method, and optical fiber temperature distribution measuring system Active JP4870771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008535413A JP4870771B2 (en) 2006-09-22 2007-09-21 Optical fiber temperature distribution measuring device, optical fiber temperature distribution measuring method, and optical fiber temperature distribution measuring system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2006/318858 2006-09-22
PCT/JP2006/318858 WO2008035436A1 (en) 2006-09-22 2006-09-22 Device for measuring temperature distribution of optical fiber and method for measuring temperature distribution of optical fiber
PCT/JP2007/068454 WO2008035784A1 (en) 2006-09-22 2007-09-21 Optical fiber temperature distribution measuring apparatus, optical fiber temperature distribution measuring method and optical fiber temperature distribution measuring system
JP2008535413A JP4870771B2 (en) 2006-09-22 2007-09-21 Optical fiber temperature distribution measuring device, optical fiber temperature distribution measuring method, and optical fiber temperature distribution measuring system

Publications (2)

Publication Number Publication Date
JPWO2008035784A1 JPWO2008035784A1 (en) 2010-01-28
JP4870771B2 true JP4870771B2 (en) 2012-02-08

Family

ID=45782014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008535413A Active JP4870771B2 (en) 2006-09-22 2007-09-21 Optical fiber temperature distribution measuring device, optical fiber temperature distribution measuring method, and optical fiber temperature distribution measuring system

Country Status (1)

Country Link
JP (1) JP4870771B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201129A (en) * 1989-01-30 1990-08-09 Tokyo Electric Power Co Inc:The Optical fiber system distribution type temperature sensor
JPH11326670A (en) * 1998-03-19 1999-11-26 Sumitomo Electric Ind Ltd Pure quartz-glass core optical fiber and optical fiber transmission line
US6807324B2 (en) * 2002-05-21 2004-10-19 Weatherford/Lamb, Inc. Method and apparatus for calibrating a distributed temperature sensing system

Also Published As

Publication number Publication date
JPWO2008035784A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
US7874725B2 (en) Optical fiber temperature distribution measuring apparatus, method for measuring optical fiber temperature distribution, and optical fiber temperature distribution measuring system
CA2692804C (en) Dual source auto-correction in distributed temperature systems
US5945666A (en) Hybrid fiber bragg grating/long period fiber grating sensor for strain/temperature discrimination
US10330525B2 (en) Optical fiber vibration measurement system in multiphase flows with related method to monitor multiphase flows
JP4008470B2 (en) Measuring method and apparatus for measuring polarization mode dispersion of optical fiber
JP5315347B2 (en) Optical fiber sensing system
US8529123B2 (en) Device and method for calibrating a fiber-optic temperature measuring system
WO2007043432A1 (en) Temperature measuring device and temperature measuring method
JP2006267107A (en) Differential mode delay measuring device of multiple mode optical fiber
JPH10141922A (en) Multipoint strain and temperature sensor
CN103278185A (en) Cavity ring-down fiber grating sensing demodulating device based on calibrated fiber grating
JP5000443B2 (en) Method and apparatus for measuring backward Brillouin scattered light of optical fiber
JP5053120B2 (en) Method and apparatus for measuring backward Brillouin scattered light of optical fiber
JP4870771B2 (en) Optical fiber temperature distribution measuring device, optical fiber temperature distribution measuring method, and optical fiber temperature distribution measuring system
JP2007240294A (en) Apparatus for measuring optical fiber distortion
WO2022191201A1 (en) Physical quantity measurement device
JP2006023260A (en) Method and instrument for measuring temperature distribution in optical fiber
JP3063063B2 (en) Optical fiber temperature distribution measurement system
US20080055604A1 (en) Apparatus, method and computer program product for interrogating an optical sensing element
JPH11326124A (en) Method and device for measuring distortion optical fiber
JP5222513B2 (en) Optical fiber measurement method, optical fiber measurement system, and optical fiber measurement device
JPH04332835A (en) Corrective processing method of distributed temperature data
JPH04248426A (en) Apparatus for measuring strain distribution of optical fiber
JP6484125B2 (en) Temperature measuring apparatus and temperature measuring method
JPH04318432A (en) Distribution temperature measuring method by optical fiber sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Ref document number: 4870771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250