JP4869641B2 - Optical encoder - Google Patents

Optical encoder Download PDF

Info

Publication number
JP4869641B2
JP4869641B2 JP2005180398A JP2005180398A JP4869641B2 JP 4869641 B2 JP4869641 B2 JP 4869641B2 JP 2005180398 A JP2005180398 A JP 2005180398A JP 2005180398 A JP2005180398 A JP 2005180398A JP 4869641 B2 JP4869641 B2 JP 4869641B2
Authority
JP
Japan
Prior art keywords
light
transmitting resin
photodetector
light source
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005180398A
Other languages
Japanese (ja)
Other versions
JP2007003209A (en
JP2007003209A5 (en
Inventor
吉己 黒田
英二 山本
岩男 駒崎
潤 羽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005180398A priority Critical patent/JP4869641B2/en
Publication of JP2007003209A publication Critical patent/JP2007003209A/en
Publication of JP2007003209A5 publication Critical patent/JP2007003209A5/ja
Application granted granted Critical
Publication of JP4869641B2 publication Critical patent/JP4869641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Transform (AREA)

Description

本発明は、被検出体の位置等を検出する光学式エンコーダに関する。   The present invention relates to an optical encoder that detects the position and the like of an object to be detected.

従来、光源と光検出器を光透過樹脂で一体化した小型のセンサヘッドを有する光学式エンコーダが、例えば特許文献1に提案されている。図18の(a)、(b)は、特許文献1に開示されている光学式エンコーダの構成を示す。光源であるチップ状の発光素子24と、光検出器であるチップ状の受光素子26をリードフレーム30の同一面にダイボンデイングする。そして、受光素子24と受光素子26とを光透過性樹脂でモールドする。同時に、光透過性材料からなる部材を貼り付けて一体化したセンサヘッドを構成する。この構成により、部品点数が少なく製造コストの低減を図ることができる。   Conventionally, for example, Patent Document 1 proposes an optical encoder having a small sensor head in which a light source and a photodetector are integrated with a light-transmitting resin. 18A and 18B show the configuration of the optical encoder disclosed in Patent Document 1. FIG. A chip-like light emitting element 24 as a light source and a chip-like light receiving element 26 as a photodetector are die bonded to the same surface of the lead frame 30. Then, the light receiving element 24 and the light receiving element 26 are molded with a light transmitting resin. At the same time, a sensor head in which a member made of a light transmitting material is attached and integrated is configured. With this configuration, the number of parts is small, and the manufacturing cost can be reduced.

特開昭64−74415号公報JP-A-64-74415

しかしながら、上述の従来例のように発光素子と受光素子をリードフレームに搭載した状態において光透過樹脂でモールドして一体化したセンサヘッド、または光透過樹脂上に光透過材料を貼り付けた構成では、次に述べるような不具合が生じてしまう。例えば図15に示すように光源70の光出射部から出射した光Laが、光透過樹脂60と外界(一般的には空気)との界面80において、界面80の法線Nに沿った方向と角度θ2をなす場合を考える。外界の媒質の屈折率をn1、光透過樹脂60の屈折率をn2、及び外界に向かう屈折光Lb1の屈折角度θ1とそれぞれした時、スネルの法則により次式(1)の関係が成立する。
n1・sinθ1=n2・sinθ2 ・・・・(1)
However, in the case where the light emitting element and the light receiving element are mounted on the lead frame as in the above-described conventional example, the sensor head is molded and integrated with the light transmitting resin, or the light transmitting material is pasted on the light transmitting resin. The following problems will occur. For example, as shown in FIG. 15, the light La emitted from the light emitting portion of the light source 70 has a direction along the normal line N of the interface 80 at the interface 80 between the light transmitting resin 60 and the outside (generally air). Consider the case of forming an angle θ2. When the refractive index of the outside medium is n1, the refractive index of the light transmitting resin 60 is n2, and the refraction angle θ1 of the refracted light Lb1 toward the outside, the relationship of the following equation (1) is established according to Snell's law.
n1 · sin θ1 = n2 · sin θ2 (1)

また、外界の媒質は、一般的に空気である。このため、外界の媒質の屈折率は、おおよそn1≒1である。さらに、光透過樹脂またはガラスなどの光透過材料の屈折率は、n2>1である。このため、光透過樹脂60と外界との界面80で光Laが全反射する臨界角度θcrが存在する。臨界角度θcrは式(1)においてθ1=90度の時であり、式(2)で表すことができる。
θcr=sin−1(n1/n2)・・・・(2)
The outside medium is generally air. For this reason, the refractive index of the external medium is approximately n1≈1. Further, the refractive index of the light transmitting material such as light transmitting resin or glass is n2> 1. For this reason, there is a critical angle θcr at which the light La is totally reflected at the interface 80 between the light transmitting resin 60 and the outside. The critical angle θcr is when θ1 = 90 degrees in the equation (1), and can be expressed by the equation (2).
θcr = sin −1 (n1 / n2) (2)

式(3)で示すような臨界角度θcrより大きい角度θ2の範囲では、光源70の光出射部から出射した光Laは、光透過樹脂と外界との界面で全反射する。
θ2≧sin−1(n1/n2)・・・・(3)
In the range of the angle θ2 larger than the critical angle θcr as shown in the equation (3), the light La emitted from the light emitting portion of the light source 70 is totally reflected at the interface between the light transmitting resin and the outside.
θ2 ≧ sin −1 (n1 / n2) (3)

一方、図16の(a)に示す光学式エンコーダでは、ピッチP2の格子パターンを有するスケール91がセンサヘッド92と相対移動する。これにより、光源から出射した光がスケール91に形成された格子パターンの影響を受けて回折する。このため、センサヘッド92から周期P2の変位信号が得られる。   On the other hand, in the optical encoder shown in FIG. 16A, the scale 91 having the lattice pattern with the pitch P2 moves relative to the sensor head 92. As a result, the light emitted from the light source is diffracted under the influence of the grating pattern formed on the scale 91. For this reason, a displacement signal having a period P2 is obtained from the sensor head 92.

ここで、「変位信号」とは、スケール91とセンサヘッド92との間の相対移動に応じて周期的に変化する位相が一定角度ずれた複数相のアナログ信号またはこのアナログ信号を信号処理して変換したデジタル信号のことである。90度位相がずれたA相、B相の2相のアナログ信号の例を図16の(b)に、またデジタル信号の例を図16の(c)にそれぞれ示す。   Here, the “displacement signal” is a signal obtained by performing signal processing on a plurality of analog signals whose phases that periodically change according to the relative movement between the scale 91 and the sensor head 92 are shifted by a certain angle, or this analog signal. It is a converted digital signal. An example of two-phase analog signals of A phase and B phase that are 90 degrees out of phase is shown in FIG. 16B, and an example of a digital signal is shown in FIG. 16C.

例えば、図15に示す光源70の光出射部から出射した光Laが、光透過樹脂60と外界との界面80で全反射した光Lb2が、光検出器90の受光部に入射する場合がある。この場合、図17の(a)に示すようにアナログ信号のDC成分Adc、Bdcが増加する。図17の(a)に示したアナログの変位信号は、光検出器90の受光部で受光した光電流を電圧に変換した電圧である。そして、変位信号のS/N比を上げて、位置検出の高精度化を図るためには変位信号の振幅をできるだけ大きくすることが望ましい。   For example, there is a case where the light Lb2 that is totally reflected by the interface 80 between the light transmitting resin 60 and the outside of the light La emitted from the light emitting portion of the light source 70 shown in FIG. 15 enters the light receiving portion of the photodetector 90. . In this case, the DC components Adc and Bdc of the analog signal increase as shown in FIG. The analog displacement signal shown in FIG. 17A is a voltage obtained by converting the photocurrent received by the light receiving unit of the photodetector 90 into a voltage. In order to increase the S / N ratio of the displacement signal and improve the accuracy of position detection, it is desirable to increase the amplitude of the displacement signal as much as possible.

これに対して、DC成分が大きくなり、図17の(b)に示したように変位信号の処理回路の動作電圧以上の変位信号電圧になると、変位信号の飽和という問題が生じてくる。特に、低電圧駆動の処理回路が望まれる場合は、飽和なく振幅が大きい変位信号を得るためにDC成分を小さくすることが必要である。   On the other hand, when the DC component becomes large and the displacement signal voltage is equal to or higher than the operating voltage of the displacement signal processing circuit as shown in FIG. 17B, the problem of displacement signal saturation occurs. In particular, when a low-voltage driven processing circuit is desired, it is necessary to reduce the DC component in order to obtain a displacement signal having a large amplitude without saturation.

本発明は、上記に鑑みてなされたものであって、上述したDC成分を小さくすることで、変位信号の飽和を防止し、DC成分に対して変位信号振幅が大きい安価な光学式エンコーダを提供することを目的としている。   The present invention has been made in view of the above, and provides an inexpensive optical encoder that prevents saturation of the displacement signal by reducing the above-described DC component and has a large displacement signal amplitude with respect to the DC component. The purpose is to do.

上述した課題を解決し、目的を達成するために、第1の本発明によれば、少なくとも1つの光源と少なくとも1つの光検出器を、並べて光透過樹脂で一体化したパッケージからなるセンサヘッドと、センサヘッドと相対的に変位するスケールとから構成され、光源の光出射部から出射した光をスケールで反射及び回折し、反射及び回折した光を光検出器の受光部で受光してセンサヘッドから変位信号を出力する光学式エンコーダにおいて、
光源の光出射部の任意の点から放出された光のうち、光透過樹脂と外界との界面で全反射する光が光検出器の受光部の少なくとも一部に入射し、かつ、光検出器の受光部の中心よりも光源側からみて外側に入射するように、光源の光出射部と光検出器の受光部との間隔及び光透過樹脂の厚さ及び光透過樹脂の屈折率の関係が設定されていることを特徴とする光学式エンコーダを提供できる。
In order to solve the above-described problems and achieve the object, according to the first aspect of the present invention, there is provided a sensor head comprising a package in which at least one light source and at least one photodetector are arranged side by side and integrated with a light transmitting resin. The sensor head is composed of a scale that is displaced relative to the sensor head, and the light emitted from the light emitting part of the light source is reflected and diffracted by the scale, and the reflected and diffracted light is received by the light receiving part of the photodetector. In an optical encoder that outputs a displacement signal from
Of the light emitted from an arbitrary point of the light emitting part of the light source, the light totally reflected at the interface between the light transmitting resin and the outside is incident on at least a part of the light receiving part of the light detector , and the light detector The relationship between the distance between the light emitting part of the light source and the light receiving part of the light detector, the thickness of the light transmitting resin, and the refractive index of the light transmitting resin so that the light enters from the center of the light receiving part. An optical encoder characterized by being set can be provided.

また、本発明の好ましい態様によれば、光透過樹脂のスケールに対向する表面は、略平坦であることが望ましい。   Moreover, according to the preferable aspect of this invention, it is desirable for the surface which opposes the scale of light transmissive resin to be substantially flat.

また、本発明の好ましい態様によれば、光透過樹脂のスケールに対向する表面と、光源の光出射部の表面と、光検出器の受光部の表面とが略平行であり、
光源の光出射部の表面から光透過樹脂のスケールに対向する表面までの厚みをt11と、
光検出器の受光部の表面から光透過樹脂のスケールに対向する表面までの厚みをt21と、
光源の光出射部の任意の点から光検出器の受光部の中心までの光透過樹脂の表面に対して平行な方向の距離をdcと、
外界の媒質の屈折率をn1と、
光透過樹脂の屈折率をn2とそれぞれしたとき、
tan−1(dc/(t11+t21))<sin−1(n1/n2)
の条件式を満足することが望ましい。
Further, according to a preferred aspect of the present invention, the surface facing the scale of the light transmitting resin, the surface of the light emitting part of the light source, and the surface of the light receiving part of the photodetector are substantially parallel,
The thickness from the surface of the light emitting part of the light source to the surface facing the scale of the light transmitting resin is t11,
The thickness from the surface of the light receiving portion of the photodetector to the surface facing the scale of the light transmitting resin is t21,
The distance in the direction parallel to the surface of the light transmitting resin from an arbitrary point of the light emitting part of the light source to the center of the light receiving part of the photodetector is dc,
The refractive index of the outside medium is n1,
When the refractive index of the light transmitting resin is n2, respectively.
tan −1 (dc / (t11 + t21)) <sin −1 (n1 / n2)
It is desirable to satisfy the following conditional expression.

また、本発明の好ましい態様によれば、光透過樹脂のスケールに対向する表面と、光源の光出射部の表面と、光検出器の受光部の表面とが略平行であり、
光源の光出射部の表面から光透過樹脂のスケールに対向する表面までの厚みをt111と、
光検出器の受光部面から光透過樹脂のスケールに対向する表面までの厚みをt211と、
光源の光出射部の任意の点から光検出器の受光部までの光透過樹脂の表面に対して平行な方向の距離のうち最も長い距離をdeと、
外界の媒質の屈折率をn1と、
光透過樹脂の屈折率をn2とそれぞれしたとき、
tan−1(de/(t111+t211))<sin−1(n1/n2)
の条件式を満足することが望ましい。
Further, according to a preferred aspect of the present invention, the surface facing the scale of the light transmitting resin, the surface of the light emitting part of the light source, and the surface of the light receiving part of the photodetector are substantially parallel,
The thickness from the surface of the light emitting part of the light source to the surface facing the scale of the light transmitting resin is t111,
The thickness from the light receiving surface of the photodetector to the surface facing the scale of the light transmitting resin is t211;
The longest distance among the distances in the direction parallel to the surface of the light transmitting resin from an arbitrary point of the light emitting part of the light source to the light receiving part of the photodetector is de,
The refractive index of the outside medium is n1,
When the refractive index of the light transmitting resin is n2, respectively.
tan −1 (de / (t111 + t211)) <sin −1 (n1 / n2)
It is desirable to satisfy the following conditional expression.

また、本発明の好ましい態様によれば、光透過樹脂のスケールに対向する表面のうち光源の光出射部と光検出器の受光部との間の少なくとも一部の表面は、凸状部を有していることが望ましい。   According to a preferred aspect of the present invention, at least a part of the surface between the light emitting part of the light source and the light receiving part of the photodetector among the surfaces facing the scale of the light transmitting resin has a convex part. It is desirable that

また、第2の本発明によれば、少なくとも1つの光源と少なくとも1つの光検出器を、並べて光透過樹脂で一体化したパッケージからなるセンサヘッドと、センサヘッドと相対的に変位するスケールとから構成され、光源の光出射部から出射した光をスケールで反射及び回折し、反射及び回折した光を光検出器の受光部で受光してセンサヘッドから変位信号を出力する光学式エンコーダにおいて、
光源の光出射部の任意の点から放出された光のうち、光透過樹脂と外界との界面で全反射する光が、光検出器の受光部の中心よりも光源側からみて外側に入射するように、光源の光出射部と光検出器の受光部との間隔及び光透過樹脂の厚さ及び光透過樹脂の屈折率の関係が設定され、
光透過樹脂のスケールに対向する表面のうち光源の光出射部と光検出器の受光部との間の少なくとも一部の表面は、凸状部を有し、
光透過樹脂のスケールに対向する表面のうち凸状部の表面と、光源の光出射部の表面と、光検出器の受光部の表面とが略平行であり、
光源の光出射部の表面から光透過樹脂の凸状部のスケールに対向する表面までの厚みをt12と、
光検出器の受光部の表面から光透過樹脂の凸状部のスケールに対向する表面までの厚みをt22と、
光源の光出射部の任意の点から光検出器の受光部の中心までの光透過樹脂の表面に対して平行な方向の距離をdcと、
外界の媒質の屈折率をn1と、
光透過樹脂の屈折率をn2とそれぞれしたとき、
tan−1(dc/(t12+t22))<sin−1(n1/n2)
の条件式を満足することを特徴とする光学式エンコーダを提供できる
According to the second aspect of the present invention, there is provided a sensor head composed of a package in which at least one light source and at least one photodetector are arranged side by side and integrated with a light transmitting resin, and a scale that is displaced relative to the sensor head. In an optical encoder configured to reflect and diffract light emitted from a light emitting part of a light source with a scale, receive the reflected and diffracted light with a light receiving part of a photodetector, and output a displacement signal from a sensor head,
Of the light emitted from an arbitrary point of the light emitting part of the light source, the light totally reflected at the interface between the light transmitting resin and the outside enters the outside as viewed from the light source side of the center of the light receiving part of the photodetector. As described above, the relationship between the distance between the light emitting portion of the light source and the light receiving portion of the photodetector, the thickness of the light transmitting resin, and the refractive index of the light transmitting resin is set.
At least a part of the surface between the light emitting part of the light source and the light receiving part of the photodetector among the surfaces facing the scale of the light transmitting resin has a convex part,
The surface of the convex portion, the surface of the light emitting portion of the light source, and the surface of the light receiving portion of the photodetector are substantially parallel among the surfaces facing the scale of the light transmitting resin,
The thickness from the surface of the light emitting portion of the light source to the surface facing the scale of the convex portion of the light transmitting resin is t12,
The thickness from the surface of the light receiving portion of the photodetector to the surface facing the scale of the convex portion of the light transmitting resin is t22,
The distance in the direction parallel to the surface of the light transmitting resin from an arbitrary point of the light emitting part of the light source to the center of the light receiving part of the photodetector is dc,
The refractive index of the outside medium is n1,
When the refractive index of the light transmitting resin is n2, respectively.
tan −1 (dc / (t12 + t22)) <sin −1 (n1 / n2)
An optical encoder characterized by satisfying the following conditional expression can be provided .

また、第3の本発明によれば、少なくとも1つの光源と少なくとも1つの光検出器を、並べて光透過樹脂で一体化したパッケージからなるセンサヘッドと、センサヘッドと相対的に変位するスケールとから構成され、光源の光出射部から出射した光をスケールで反射及び回折し、反射及び回折した光を光検出器の受光部で受光してセンサヘッドから変位信号を出力する光学式エンコーダにおいて、
光源の光出射部の任意の点から放出された光のうち、光透過樹脂と外界との界面で全反射する光が、光検出器の受光部の中心よりも光源側からみて外側に入射するように、光源の光出射部と光検出器の受光部との間隔及び光透過樹脂の厚さ及び光透過樹脂の屈折率の関係が設定され、
光透過樹脂のスケールに対向する表面のうち光源の光出射部と光検出器の受光部との間の少なくとも一部の表面は、凸状部を有し、
光透過樹脂のスケールに対向する表面のうち凸状部の表面と、光源の光出射部の表面と、光検出器の受光部の表面とが略平行であり、
光源の光出射部の面から光透過樹脂の凸状部のスケールに対向する表面までの厚みをt122と、
光検出器の受光部の表面から光透過樹脂の凸状部のスケールに対向する表面までの厚みをt222と、
光源の光出射部の任意の点から光検出器の受光部までの光透過樹脂の表面に対して平行な方向の距離のうち最も長い距離をdeと、
外界の媒質の屈折率をn1と、
光透過樹脂の屈折率をn2とそれぞれしたとき、
tan−1(de/(t122+t222))<sin−1(n1/n2)
の条件式を満足することを特徴とする光学式エンコーダを提供できる。
According to a third aspect of the present invention, there is provided a sensor head comprising a package in which at least one light source and at least one photodetector are arranged side by side and integrated with a light transmitting resin, and a scale that is displaced relative to the sensor head. In an optical encoder configured to reflect and diffract light emitted from a light emitting part of a light source with a scale, receive the reflected and diffracted light with a light receiving part of a photodetector, and output a displacement signal from a sensor head,
Of the light emitted from an arbitrary point of the light emitting part of the light source, the light totally reflected at the interface between the light transmitting resin and the outside enters the outside as viewed from the light source side of the center of the light receiving part of the photodetector. As described above, the relationship between the distance between the light emitting portion of the light source and the light receiving portion of the photodetector, the thickness of the light transmitting resin, and the refractive index of the light transmitting resin is set.
At least a part of the surface between the light emitting part of the light source and the light receiving part of the photodetector among the surfaces facing the scale of the light transmitting resin has a convex part,
The surface of the convex portion, the surface of the light emitting portion of the light source, and the surface of the light receiving portion of the photodetector are substantially parallel among the surfaces facing the scale of the light transmitting resin,
The thickness from the surface of the light emitting portion of the light source to the surface facing the scale of the convex portion of the light transmitting resin is t122,
The thickness from the surface of the light receiving portion of the photodetector to the surface facing the scale of the convex portion of the light transmitting resin is t222,
The longest distance among the distances in the direction parallel to the surface of the light transmitting resin from an arbitrary point of the light emitting part of the light source to the light receiving part of the photodetector is de,
The refractive index of the outside medium is n1,
When the refractive index of the light transmitting resin is n2, respectively.
tan −1 (de / (t122 + t222)) <sin −1 (n1 / n2)
An optical encoder characterized by satisfying the following conditional expression can be provided.

また、第4の本発明によれば、少なくとも1つの光源と少なくとも1つの光検出器を、光透過樹脂で一体化したパッケージからなるセンサヘッドと、センサヘッドと相対的に変位するスケールとから構成され、光源の光出射部から出射した光をスケールで反射及び回折し、その反射及び回折した光を光検出器の受光部で受光してセンサヘッドから変位信号を出力する光学式エンコーダにおいて、
光透過樹脂のスケールに対向する表面のうち光源の光出射部と光検出器の受光部との間の少なくとも一部の表面は、凹状部を有し、
光透過樹脂のスケールに対向する表面のうち凹状部の表面と、光源の光出射部の表面と、光検出器の受光部の表面とが略平行であり、
光源の光出射部の表面から光透過樹脂の凹状部のスケールに対向する表面までの厚みをt13と、
光検出器の受光部の表面から光透過樹脂の凹状部のスケールに対する表面までの厚みをt23と、
光源の光出射部の任意の点から光検出器の受光部までの光透過樹脂の表面に対して平行な方向の距離のうち最も短い距離をdsと、それぞれしたとき、
1.73×(t13+t23)<ds
の条件式を満足することを特徴とする光学式エンコーダを提供できる。
According to the fourth aspect of the present invention, at least one light source and at least one photodetector are composed of a sensor head made of a package integrated with a light transmitting resin, and a scale that is displaced relative to the sensor head. In the optical encoder that reflects and diffracts the light emitted from the light emitting part of the light source with a scale, receives the reflected and diffracted light with the light receiving part of the photodetector, and outputs a displacement signal from the sensor head,
At least a part of the surface between the light emitting part of the light source and the light receiving part of the photodetector among the surfaces facing the scale of the light transmitting resin has a concave part,
Of the surfaces facing the scale of the light transmitting resin, the surface of the concave portion, the surface of the light emitting portion of the light source, and the surface of the light receiving portion of the photodetector are substantially parallel,
The thickness from the surface of the light emitting part of the light source to the surface facing the scale of the concave part of the light transmitting resin is t13,
The thickness from the surface of the light receiving portion of the photodetector to the surface of the concave portion of the light transmitting resin with respect to the scale is t23,
When the shortest distance among the distances in the direction parallel to the surface of the light transmitting resin from an arbitrary point of the light emitting portion of the light source to the light receiving portion of the photodetector is ds ,
1.73 × (t13 + t23) <ds
An optical encoder characterized by satisfying the following conditional expression can be provided.

本発明に係る光学式エンコーダは、いわゆる反射型の光学式エンコーダにおいて、光源の光出射部の任意の点から放出された光のうち、光透過樹脂と外界との界面で全反射する光が、光検出器の受光部の一部に入射するように、または受光部とは異なる領域に入射するように、光源の光出射部と光検出器の受光部とが配置されていること及び光透過樹脂の形状が形成されていること及び光透過樹脂の光学特性が設定されていることの少なくとも何れか一つを満足することを特徴とする。これにより、光透過樹脂と外界との界面で全反射する光は、受光部の一部または受光部とは異なる領域に入射する。このため、信号の全反射した光による信号のDC成分を小さくできる、この結果、変位信号の飽和を防止し、DC成分に対して変位信号振幅が大きい光学式エンコーダを提供できる。また、本発明では、センサヘッドを、例えばモールド等により構成できる。この結果、部品点数及び製造工程が少なくて良いため、安価な光学式エンコーダを提供できる。   The optical encoder according to the present invention is a so-called reflective optical encoder, and among the light emitted from an arbitrary point of the light emitting portion of the light source, the light totally reflected at the interface between the light-transmitting resin and the outside world, The light emitting part of the light source and the light receiving part of the photodetector are arranged so as to be incident on a part of the light receiving part of the photodetector or in a different area from the light receiving part, and light transmission It is characterized by satisfying at least one of the resin shape being formed and the optical property of the light transmitting resin being set. Thereby, the light totally reflected at the interface between the light transmitting resin and the outside is incident on a part of the light receiving part or a region different from the light receiving part. For this reason, it is possible to reduce the DC component of the signal due to the totally reflected light of the signal. As a result, it is possible to provide an optical encoder that prevents displacement signal saturation and has a large displacement signal amplitude with respect to the DC component. In the present invention, the sensor head can be constituted by, for example, a mold. As a result, the number of parts and the manufacturing process can be reduced, so that an inexpensive optical encoder can be provided.

以下に、本発明に係る光学式エンコーダの実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of an optical encoder according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1に本発明の実施例1に係る光学式エンコーダ100の概略構成を示す。光学式エンコーダ100は、センサヘッド101と、センサヘッド101に対向して配置されているスケール110とから構成されている。センサヘッド101には、配線基板102上に光出射部141を有する光源104と、受光部131を内部に有した光検出器103とを別体で配置している。そして、光源104と光検出器103とは、外界との界面151が平坦な形状の光透過樹脂105で一体化したパッケージとして構成されている。また、スケール110は、センサヘッド101と相対的に変位する格子パターン111を有している。格子パターン111は、スケール110とセンサヘッド101とが相対移動する方向に対して所定のピッチで形成されている光学パターンである。   FIG. 1 shows a schematic configuration of an optical encoder 100 according to Embodiment 1 of the present invention. The optical encoder 100 includes a sensor head 101 and a scale 110 disposed so as to face the sensor head 101. In the sensor head 101, a light source 104 having a light emitting portion 141 and a photodetector 103 having a light receiving portion 131 inside are separately provided on the wiring board 102. The light source 104 and the photodetector 103 are configured as a package in which an interface 151 with the outside world is integrated with a light-transmitting resin 105 having a flat shape. The scale 110 has a lattice pattern 111 that is displaced relative to the sensor head 101. The lattice pattern 111 is an optical pattern formed at a predetermined pitch with respect to the direction in which the scale 110 and the sensor head 101 move relative to each other.

スケール110は、光源104の光出射部141から出射した光Lsを格子パターン111で反射及び回折する。ここで、光源104としては、例えばLED等のような点光源を用いることができる。光検出器103の受光部131は、その反射及び回折した光Lsrを受光する。換言すると、光検出器103は、格子パターン111により反射及び回折した光により受光部131上に形成されるセルフイメージの動きを検出する。そして、センサヘッド101は、図16の(b)、(c)に示したようなアナログまたはデジタルの変位信号を出力する。   The scale 110 reflects and diffracts the light Ls emitted from the light emitting unit 141 of the light source 104 by the grating pattern 111. Here, as the light source 104, for example, a point light source such as an LED can be used. The light receiving unit 131 of the photodetector 103 receives the reflected and diffracted light Lsr. In other words, the photodetector 103 detects the movement of the self image formed on the light receiving unit 131 by the light reflected and diffracted by the grating pattern 111. The sensor head 101 outputs an analog or digital displacement signal as shown in FIGS. 16B and 16C.

図3は、光検出器103上に形成されている受光部131の受光素子アレイを拡大して示す。受光素子アレイは、例えば矩形状の4つのフォトダイオードPD1、PD2、PD3、PD4が複数組み合わされて構成されている。   FIG. 3 shows an enlarged view of the light receiving element array of the light receiving unit 131 formed on the photodetector 103. The light receiving element array is configured by combining a plurality of, for example, four rectangular photodiodes PD1, PD2, PD3, and PD4.

フォトダイオードPD1、PD2、PD3、PD4は、それぞれ1/4×p1ずつずらして櫛歯状に配置されている。そして、それぞれのフォトダイオードPD1、PD2、PD3、PD4からの電気信号を4つの電極パッドA1、B1、A2、B2より出力する。   The photodiodes PD1, PD2, PD3, and PD4 are arranged in a comb-teeth shape with a shift of ¼ × p1. Then, electric signals from the respective photodiodes PD1, PD2, PD3, and PD4 are output from the four electrode pads A1, B1, A2, and B2.

スケール110が相対移動すると、4つの電極パッドA1、B1、A2、B2から互いに1/4周期だけ位相が異なる疑似正弦波信号が得られる。これにより、変位の向き(移動方向の判別)の検出が可能になる。さらに、出力信号の内挿処理(変位量の内挿処理)を行うことで、スケール110に形成されている格子パターン111のピッチよりも大幅に細かい分解能で変位量を検出することが可能である。このように、光学式エンコーダ100は、いわゆる反射型の光学式エンコーダである。   When the scale 110 moves relative to each other, pseudo sine wave signals whose phases are different from each other by a quarter period are obtained from the four electrode pads A1, B1, A2, and B2. Thereby, it is possible to detect the direction of displacement (discrimination of the moving direction). Furthermore, by performing output signal interpolation processing (displacement amount interpolation processing), the displacement amount can be detected with a resolution much finer than the pitch of the grid pattern 111 formed on the scale 110. . As described above, the optical encoder 100 is a so-called reflective optical encoder.

また、図1に示すように光源104の光出射部141の表面と、光検出器103の受光部131の表面と、光透過樹脂105の外界との界面151とが平行になるように構成されている。   Further, as shown in FIG. 1, the surface of the light emitting portion 141 of the light source 104, the surface of the light receiving portion 131 of the photodetector 103, and the interface 151 between the outside of the light transmitting resin 105 are configured to be parallel. ing.

ここで、
センサヘッド101の光透過樹脂105の屈折率をn2、
外界の媒質の屈折率をn1(一般的に、媒質は空気なのでn1≒1)、
光透過樹脂105のスケール110に対向する表面(界面151)から光出射部141面までの厚みをt11と、
表面(界面151)から光検出器103の受光部131の表面までの厚みをt21と、
光源104の光出射部141の任意の点から光検出器103の受光部131の中心までの表面(界面151)に対して平行な方向の間隔(距離)をdcと、
間隔dcの中で光源104の光出射部141の任意の点141pから出射した光Laが光透過樹脂105の表面(界面151)で反射し、光検出器103の受光部131の中心131aに入射する光Lb2の光透過樹脂105の表面(界面151)での反射点107までの法線106に沿った方向の間隔をd11、
間隔dcの中で光検出器103の受光部131の中心131aから光透過樹脂151の表面(界面151)での反射点107までの法線106に沿った方向の間隔をd21とそれぞれする。
here,
The refractive index of the light transmitting resin 105 of the sensor head 101 is n2,
The refractive index of the external medium is n1 (in general, since the medium is air, n1≈1),
The thickness from the surface (interface 151) facing the scale 110 of the light transmitting resin 105 to the surface of the light emitting portion 141 is t11,
The thickness from the surface (interface 151) to the surface of the light receiving unit 131 of the photodetector 103 is t21,
An interval (distance) in a direction parallel to the surface (interface 151) from an arbitrary point of the light emitting unit 141 of the light source 104 to the center of the light receiving unit 131 of the photodetector 103 is dc,
The light La emitted from an arbitrary point 141p of the light emitting part 141 of the light source 104 within the interval dc is reflected by the surface (interface 151) of the light transmitting resin 105 and is incident on the center 131a of the light receiving part 131 of the photodetector 103. The distance of the light Lb2 in the direction along the normal line 106 to the reflection point 107 on the surface (interface 151) of the light transmitting resin 105 is d11,
In the interval dc, the interval in the direction along the normal line 106 from the center 131a of the light receiving portion 131 of the photodetector 103 to the reflection point 107 on the surface (interface 151) of the light transmitting resin 151 is denoted as d21.

また、光源104の光出射部141から出射した光Laが、光透過樹脂105の表面と外界の媒質である空気との界面151において、界面151の法線106との角度がθ2とする。このとき、光透過樹脂105の界面151で反射する光Lb2は、光透過樹脂105の界面151の法線106との角度がθ2となる。   Further, the light La emitted from the light emitting portion 141 of the light source 104 has an angle between the surface 151 of the light transmitting resin 105 and the normal line 106 of the interface 151 at θ2 at the interface 151 between the surface of the light transmitting resin 105 and the outside medium. At this time, the angle of the light Lb2 reflected at the interface 151 of the light transmitting resin 105 with respect to the normal line 106 of the interface 151 of the light transmitting resin 105 is θ2.

従って、幾何学的に次式(4)を満足する関係となる。
tanθ2=d11/t11
=d21/t21・・・・(4)
Accordingly, the relationship satisfies the following expression (4) geometrically.
tan θ2 = d11 / t11
= D21 / t21 (4)

また、dc=d11+d21なので(4)式より次のようになる。
dc=(t11+t21)・tanθ2
θ2=tan−1(dc/(t11+t21))・・・・(5)
Since dc = d11 + d21, the following expression is obtained from the equation (4).
dc = (t11 + t21) · tan θ2
θ2 = tan −1 (dc / (t11 + t21)) (5)

ここで、光透過樹脂105の屈折率n2は、空気(n1≒1)より大きい(n2>n1)。このため、上述したように(3)式を満たす角度θ2の範囲では、光透過樹脂105の表面(界面151)で光Laは、全反射する。そこで、次の(6)式を満たす光検出器103の受光部131と光源104の光出射部141との配置及び光透過樹脂105の厚さt11、t21とする。これにより、光源104の光出射部141から出射した光Laのうち光透過樹脂105の表面(界面151)で全反射した光は、受光部131中心から光源104とは反対側の受光部131だけに入射する。この結果、図2に示すように、光源104側の受光部131の領域150(斜線部)への全反射光の入射を防ぐことができる。図2は、光検出器103と光源104との平面図である。なお、以下全ての平面図において、便宜上、反射点107を通る直線にも法線106の符号を付して説明する。
tan−1(dc/(t11+t21))<sin−1(n1/n2)・・・・(6)
Here, the refractive index n2 of the light transmitting resin 105 is larger than air (n1≈1) (n2> n1). Therefore, as described above, the light La is totally reflected on the surface (interface 151) of the light transmitting resin 105 in the range of the angle θ2 that satisfies the expression (3). Therefore, the arrangement of the light receiving unit 131 of the photodetector 103 and the light emitting unit 141 of the light source 104 satisfying the following expression (6) and the thicknesses t11 and t21 of the light transmitting resin 105 are used. As a result, of the light La emitted from the light emitting part 141 of the light source 104, the light totally reflected by the surface (interface 151) of the light transmitting resin 105 is only received from the center of the light receiving part 131 on the side opposite to the light source 104. Is incident on. As a result, as shown in FIG. 2, it is possible to prevent the total reflected light from entering the region 150 (shaded portion) of the light receiving unit 131 on the light source 104 side. FIG. 2 is a plan view of the photodetector 103 and the light source 104. In all the plan views below, for the sake of convenience, the straight line passing through the reflection point 107 will be described with the reference numeral normal 106.
tan −1 (dc / (t11 + t21)) <sin −1 (n1 / n2) (6)

光源104から出射した光の強度は、一般的には距離の2乗に反比例して小さくなる。このため、光透過樹脂105の表面(界面151)で全反射して受光部131に入射する光の強度は、スケール110の格子パターン111で反射し、受光部131に入射して変位信号に寄与する光に比べて非常に大きい。そこで、光源104側に近い受光部131の領域150への光透過樹脂105の表面(界面151)からの全反射光入射を防止することにより、上述したDC成分を低減できる。   The intensity of light emitted from the light source 104 generally decreases in inverse proportion to the square of the distance. For this reason, the intensity of light that is totally reflected at the surface (interface 151) of the light transmitting resin 105 and incident on the light receiving portion 131 is reflected by the lattice pattern 111 of the scale 110 and is incident on the light receiving portion 131 and contributes to the displacement signal. It is very large compared to the light that plays. Therefore, the above-described DC component can be reduced by preventing the total reflection light from entering from the surface (interface 151) of the light transmitting resin 105 to the region 150 of the light receiving unit 131 close to the light source 104 side.

このように、本実施例では、光源104の光出射部141の任意の点141pから放出された光のうち、光透過樹脂105と外界との界面151で全反射する光が、光検出器103の受光部131の一部に入射するように、または受光部131とは異なる領域に入射するように、以下の(a)、(b)、(c)のうち少なくとも何れか一つを満足することが望ましい。
(a)光源104の光出射部141と光検出器103の受光部131とが配置されていること
(b)光透過樹脂151の形状が形成されていること
(c)光透過樹脂151の光学特性、例えば屈折率が設定されていること
As described above, in this embodiment, the light that is totally reflected at the interface 151 between the light transmitting resin 105 and the outside of the light emitted from the arbitrary point 141p of the light emitting unit 141 of the light source 104 is detected by the photodetector 103. At least one of the following (a), (b), and (c) is satisfied so as to be incident on a part of the light receiving unit 131 or in a region different from the light receiving unit 131 It is desirable.
(A) The light emitting part 141 of the light source 104 and the light receiving part 131 of the photodetector 103 are arranged. (B) The shape of the light transmitting resin 151 is formed. (C) The optical property of the light transmitting resin 151. Properties such as refractive index are set

本実施例では、界面151で全反射する光が、光検出器103の受光部131の一部に入射するように、全反射する光が、光検出器103の受光部131の一部に入射するように、光源104の光出射部141と光検出器103の受光部131とが配置され、かつ光透過樹脂151の形状、例えば厚さを有している。これにより、上述したように変位信号のDC成分を低減できる。   In this embodiment, the totally reflected light is incident on a part of the light receiving unit 131 of the photodetector 103 so that the light totally reflected at the interface 151 is incident on a part of the light receiving unit 131 of the photodetector 103. As described above, the light emitting unit 141 of the light source 104 and the light receiving unit 131 of the photodetector 103 are arranged, and the light transmitting resin 151 has a shape, for example, a thickness. Thereby, the DC component of the displacement signal can be reduced as described above.

次に、実施例の作用を説明する。式(6)を満たすように光検出器103の受光部131と光源104の光出射部141との配置、及び光透過樹脂151の厚さt11、t12とする。これにより、光源104の光出射部141から出射した光Laのうち、光透過樹脂105の表面(界面151)で全反射する光が、受光部131の中心131aから光源141側の略半分の受光部131の領域150への入射を防ぐ構成としている。このため、変位信号のDC成分を低減して信号の飽和を防止できる。この結果、動作電圧が低電圧の信号処理回路でもDC成分に対して振幅が大きい変位信号が得られる。また、本実施例のセンサヘッド構成は、配線基板102上の光源104と光検出器103とを同一の光透過樹脂105により、モールドなどの方法で覆う構成である。このため、部品点数及び製造工程が少なくて良いため、安価に光学式エンコーダを製造できる。   Next, the operation of the embodiment will be described. The arrangement of the light receiving unit 131 of the light detector 103 and the light emitting unit 141 of the light source 104 and the thicknesses t11 and t12 of the light transmitting resin 151 are set so as to satisfy Expression (6). Thereby, of the light La emitted from the light emitting part 141 of the light source 104, the light totally reflected by the surface (interface 151) of the light transmitting resin 105 is received by the light source 141 side from the center 131a of the light receiving part 131. It is configured to prevent the part 131 from entering the region 150. For this reason, the saturation of the signal can be prevented by reducing the DC component of the displacement signal. As a result, a displacement signal having a large amplitude with respect to the DC component can be obtained even in a signal processing circuit having a low operating voltage. Further, the sensor head configuration of the present embodiment is a configuration in which the light source 104 and the photodetector 103 on the wiring substrate 102 are covered with the same light transmitting resin 105 by a method such as molding. For this reason, since the number of parts and a manufacturing process are few, an optical encoder can be manufactured cheaply.

なお、実施例の各構成は、当然、各種の変形、変更が可能である。光源104及び光検出器103は、1個に限らず多数配置しても良い。スケール110の格子パターン111も1種に限らず多種形成しても良い。また、光検出器103には、受光部131の他にアナログ信号をデジタル信号に変換する回路、内挿分割回路、光源104のドライバ−などを搭載しても良い。さらに、光検出器103の配線基板102への電気的接続方法として導電ワイヤによる接続の他に、光検出器103に裏面配線を施して半田などで配線基板102に接続しても良い。また、光透過樹脂105の形成方法はモールドに限らずポッティングなどの方法でも良いし、多数個のセンサヘッドが得られるような集合配線基板に光透過樹脂を一括で形成した後に、配線基板と光透過樹脂を同時に切出してセンサヘッド101を得る方法でも良い。   In addition, naturally each deformation | transformation of an Example can be variously modified and changed. The number of light sources 104 and photodetectors 103 is not limited to one, and a large number of them may be arranged. The number of lattice patterns 111 of the scale 110 is not limited to one, and various types may be formed. In addition to the light receiving unit 131, the photodetector 103 may include a circuit that converts an analog signal into a digital signal, an interpolation / division circuit, a driver for the light source 104, and the like. Further, as a method of electrically connecting the photodetector 103 to the wiring substrate 102, in addition to the connection using a conductive wire, a backside wiring may be applied to the photodetector 103 and connected to the wiring substrate 102 by soldering or the like. Further, the method of forming the light transmissive resin 105 is not limited to molding, and a method such as potting may be used. After the light transmissive resin is collectively formed on the collective wiring board from which a large number of sensor heads can be obtained, A method of obtaining the sensor head 101 by cutting out the permeable resin at the same time may be used.

図4、図5を参照して本発明の実施例2に係る光学式エンコーダ200を説明する。実施例1と同一の部分には同一の符号を付し、重複する説明は省略する。光学式エンコーダ200は、センサヘッド101とスケール110とから構成されている。センサヘッド101は、配線基板102上に光出射部141を有する光源104と受光部131を内部に有した光検出器103を別体で配置して外界との界面が平坦な光透過樹脂105で一体化したパッケージから構成されている。また、スケール110は、センサヘッド101と相対的に変位する格子パターン111を有している。   An optical encoder 200 according to Embodiment 2 of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. The optical encoder 200 includes a sensor head 101 and a scale 110. The sensor head 101 is a light-transmitting resin 105 that has a light source 104 having a light emitting portion 141 on a wiring substrate 102 and a photodetector 103 having a light receiving portion 131 therein, and has a flat interface with the outside. It consists of an integrated package. The scale 110 has a lattice pattern 111 that is displaced relative to the sensor head 101.

光源104の光出射部141から出射した光Lsをスケール110で反射及び回折し、その反射及び回折した光Lsrを光検出器103の受光部131で受光する。そして、センサヘッド101から図16の(b)、(c)に示したようなアナログまたはデジタルの変位信号を出力する反射型の光学式エンコーダである。   The light Ls emitted from the light emitting unit 141 of the light source 104 is reflected and diffracted by the scale 110, and the reflected and diffracted light Lsr is received by the light receiving unit 131 of the photodetector 103. The sensor head 101 is a reflective optical encoder that outputs an analog or digital displacement signal as shown in FIGS. 16B and 16C.

本実施例が実施例1と相違する点は、光Laのうち光透過樹脂105の表面(界面151)で全反射した光が受光部131の全面に亘って入射することを防止するように、光源104と光検出器103との配置、及び光透過樹脂105の厚さt111、t211としていることである。換言すると、界面151で全反射した光は、受光部131とは異なる領域に入射するように構成されている。   The difference between the present embodiment and the first embodiment is that, of the light La, the light totally reflected on the surface (interface 151) of the light transmitting resin 105 is prevented from entering the entire surface of the light receiving unit 131. The arrangement of the light source 104 and the photodetector 103 and the thicknesses t111 and t211 of the light transmitting resin 105 are set. In other words, the light totally reflected by the interface 151 is configured to enter a region different from that of the light receiving unit 131.

光源104の光出射部141の任意の点141pから光検出器103の受光部131までの距離のうち、光出射部141から最も離れた受光部131までの表面(界面151)に対して平行な方向の間隔をdeとする。   Of the distance from the arbitrary point 141p of the light emitting part 141 of the light source 104 to the light receiving part 131 of the photodetector 103, it is parallel to the surface (interface 151) to the light receiving part 131 farthest from the light emitting part 141. Let de be the interval in the direction.

また、間隔deの中で、光源104の光出射部141の任意の点141pから出射した光Laは、光透過樹脂105の表面(界面151)で反射する。そして、光Lb2は、光検出器103の受光部131の光出射部141から最も離れた位置131bに入射する。ここで、任意の点141pから光透過樹脂105の表面(界面151)での反射点107までの法線106に沿った方向の間隔をd111とする。   Further, the light La emitted from an arbitrary point 141p of the light emitting portion 141 of the light source 104 within the interval de is reflected by the surface (interface 151) of the light transmitting resin 105. The light Lb2 is incident on a position 131b farthest from the light emitting unit 141 of the light receiving unit 131 of the photodetector 103. Here, the distance in the direction along the normal line 106 from the arbitrary point 141p to the reflection point 107 on the surface (interface 151) of the light transmitting resin 105 is defined as d111.

また、間隔deの中で、反射点107から光検出器103の受光部131の光出射部141より最も離れた位置131bまでの法線106に沿った方向の間隔をd211とする。   Further, in the interval de, the interval in the direction along the normal line 106 from the reflection point 107 to the position 131b farthest from the light emitting unit 141 of the light receiving unit 131 of the photodetector 103 is defined as d211.

光源104の光出射部141の任意の点141pから出射した光Laが、光透過樹脂105の表面と外界である空気との界面151において、その界面の法線106に沿った方向との角度がθ2とする。この時、光透過樹脂105の表面で反射する光Lb2は、光透過樹脂105の表面(界面151)の法線106に沿った方向との角度がθ2となる。従って、幾何学的に次の関係となる。
tanθ2=d111/t111
=d211/t211・・・・(7)
The light La emitted from an arbitrary point 141p of the light emitting portion 141 of the light source 104 has an angle with the direction along the normal line 106 of the interface at the interface 151 between the surface of the light transmitting resin 105 and the outside air. Let θ2. At this time, the angle of the light Lb2 reflected from the surface of the light transmitting resin 105 and the direction along the normal line 106 of the surface (interface 151) of the light transmitting resin 105 is θ2. Therefore, the following relationship is geometrically obtained.
tan θ2 = d111 / t111
= D211 / t211 (7)

また、de=d111+d211なので(7)式から次のようになる。
de=(t111+t211)・tanθ2
θ2=tan−1(de/(t111+t211))・・・・(8)
Further, since de = d111 + d211, the following expression is obtained from the expression (7).
de = (t111 + t211) · tan θ2
θ2 = tan −1 (de / (t111 + t211)) (8)

ここで、光透過樹脂105の屈折率n2は、空気(n1≒1)より大きい(n2>n1)。このため、上述したように(3)式を満たすθ2の範囲では、光透過樹脂105の表面(界面151)で光Laは、全反射する。   Here, the refractive index n2 of the light transmitting resin 105 is larger than air (n1≈1) (n2> n1). Therefore, as described above, the light La is totally reflected on the surface (interface 151) of the light transmitting resin 105 in the range of θ2 that satisfies the expression (3).

そこで、次の(9)式を満たす光検出器103の受光部131と光源104の光出射部141との配置及び光透過樹脂厚t111、t211とする。これにより、光源104の光出射部141の任意の点141pから出射した光Laが、光透過樹脂105の表面(界面151)で全反射して、受光部131へ入射することを防ぐことができる。
tan−1(de/(t111+t211))<sin−1(n1/n2)・・・(9)
Therefore, the arrangement of the light receiving unit 131 of the photodetector 103 and the light emitting unit 141 of the light source 104 satisfying the following expression (9) and the light transmitting resin thicknesses t111 and t211 are used. Thereby, it is possible to prevent the light La emitted from an arbitrary point 141p of the light emitting unit 141 of the light source 104 from being totally reflected by the surface (interface 151) of the light transmitting resin 105 and entering the light receiving unit 131. .
tan −1 (de / (t111 + t211)) <sin −1 (n1 / n2) (9)

このような構成にすることにより、実施例1で説明したように変位信号のDC成分を少なくして信号の飽和を防止し、低電圧動作の信号処理回路でもDC成分に対して振幅が大きい変位信号が得られる。   By adopting such a configuration, as described in the first embodiment, the DC component of the displacement signal is reduced to prevent signal saturation, and even a low voltage operation signal processing circuit has a displacement with a larger amplitude than the DC component. A signal is obtained.

さらに、本実施例では、光Laの中で光透過樹脂105の表面(界面151)で全反射する光が受光部131の全面に亘って入射することを防ぐ構成となっている。このため、DC成分の揺らぎなどを防止でき、変位信号のS/N比が向上する。従って、アナログ信号の逓倍回路を用いた高分割化が可能となり高分解能、高精度な光学式エンコーダを得ることができる。   Further, in the present embodiment, the light La that is totally reflected by the surface (interface 151) of the light transmitting resin 105 in the light La is prevented from being incident on the entire surface of the light receiving unit 131. For this reason, fluctuations of the DC component can be prevented, and the S / N ratio of the displacement signal is improved. Therefore, it is possible to achieve high division using an analog signal multiplication circuit, and to obtain an optical encoder with high resolution and high accuracy.

本実施例は、実施例1と同様な作用を有すると共に、変位信号のS/N比が向上するので高分解能、高精度なエンコーダを得ることができる。なお、本実施例の各構成は、実施例1と同様な各種の変形、変更が可能である。   This embodiment has the same operation as that of the first embodiment, and the S / N ratio of the displacement signal is improved, so that a high resolution and high accuracy encoder can be obtained. Each configuration of the present embodiment can be variously modified and changed similarly to the first embodiment.

図6、図7を参照して本発明の実施例3に係る光学式エンコーダ300を説明する。実施例1と同一の部分には同一の符号を付し、重複する説明は省略する。光学式エンコーダ300は、実施例1と同様に配線基板102上に光出射部141を有する光源104と受光部131を内部に有した光検出器103とを別体で配置して光透過樹脂105で一体化したパッケージからなるセンサヘッド101と、センサヘッド101と相対的に変位する格子パターンを有するスケール110とから構成されている。   An optical encoder 300 according to Embodiment 3 of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. As in the first embodiment, the optical encoder 300 includes a light source 104 having a light emitting portion 141 and a photodetector 103 having a light receiving portion 131 arranged separately on the wiring board 102, and a light transmitting resin 105. And a scale 110 having a lattice pattern that is displaced relative to the sensor head 101.

光源104の光出射部141から出射した光Lsをスケール110で反射及び回折し、その反射及び回折した光Lsrを光検出器103の受光部131で受光する。そして、センサヘッド101から図16の(b)、(c)に示したようなアナログまたはデジタルの変位信号を出力する反射型の光学式エンコーダである。   The light Ls emitted from the light emitting unit 141 of the light source 104 is reflected and diffracted by the scale 110, and the reflected and diffracted light Lsr is received by the light receiving unit 131 of the photodetector 103. The sensor head 101 is a reflective optical encoder that outputs an analog or digital displacement signal as shown in FIGS. 16B and 16C.

本実施例が実施例1と相違する点は、光源104の光出射部141と光検出器103の受光部131との間の一部の光透過樹脂105の厚みを厚く(大きく)して凸状部を形成している点である。   The difference between the present embodiment and the first embodiment is that the thickness of a part of the light transmitting resin 105 between the light emitting section 141 of the light source 104 and the light receiving section 131 of the photodetector 103 is increased (increased). It is the point which forms a shape part.

例えば、光透過樹脂105の表面を平坦にした時(即ち、凸状部が存在しない時)に、光源104の光出射部141の任意の点141pから出射した光Laが、光透過樹脂105の表面155(図8において点線で示す)で全反射(角度θcr以上)して光Lb2となる場合を考える。この場合、光Lb2が光検出器103の受光部131に入射するような光源104及び光検出器103の配置となっている。   For example, when the surface of the light transmitting resin 105 is flattened (that is, when there is no convex portion), the light La emitted from an arbitrary point 141p of the light emitting portion 141 of the light source 104 is reflected by the light transmitting resin 105. Consider a case where light is totally reflected (angle θcr or more) at the surface 155 (indicated by a dotted line in FIG. 8) to become light Lb2. In this case, the light source 104 and the photodetector 103 are arranged such that the light Lb2 enters the light receiving unit 131 of the photodetector 103.

本実施例では、このような場合において、光透過樹脂105の表面152の樹脂厚みに関して式(10)を満たすような光透過樹脂105の厚みとする。これにより、光源104の光出射部141から出射した光Laのうち、光透過樹脂105の表面152で全反射する光の受光部131の領域への入射を防ぐことができる。
θ2<sin−1(n1/n2)・・・・(10)
In this embodiment, in such a case, the thickness of the light transmitting resin 105 is set so as to satisfy the formula (10) with respect to the resin thickness of the surface 152 of the light transmitting resin 105. As a result, it is possible to prevent the light La emitted from the light emitting portion 141 of the light source 104 from being totally reflected by the surface 152 of the light transmitting resin 105 from entering the region of the light receiving portion 131.
θ2 <sin −1 (n1 / n2) (10)

そこで、実施例1と同様に次の(11)式を満たす光検出器103の受光部131と光源104の光出射部141との配置及び光透過樹脂105の厚さt12、t22とする。これにより、光源104の光出射部141から出射した光Laが、光透過樹脂105の表面152で全反射して受光部131の中心131aから光源104側の略半分の受光部131の領域150への入射を防ぐことができる。
tan−1(dc/(t12+t22))<sin−1(n1/n2)・・・・(11)
Therefore, as in the first embodiment, the arrangement of the light receiving unit 131 of the photodetector 103 and the light emitting unit 141 of the light source 104 satisfying the following expression (11) and the thicknesses t12 and t22 of the light transmitting resin 105 are used. As a result, the light La emitted from the light emitting portion 141 of the light source 104 is totally reflected by the surface 152 of the light transmitting resin 105, and then goes from the center 131 a of the light receiving portion 131 to the region 150 of the light receiving portion 131 that is substantially half on the light source 104 side. Can be prevented.
tan −1 (dc / (t12 + t22)) <sin −1 (n1 / n2) (11)

本実施例の作用は、実施例1と同様な作用を有すると共に、光検出器103と光源104の配置の設計自由度が実施例1よりも大きくできる。なお、本実施例の各構成は、実施例1と同様な各種の変形、変更が可能である。また、凸状部の断面形状は、矩形形状に限られない。例えば、凸状部の断面形状は、台形形状や、段差部分が曲率を有する形状等でも良い。   The operation of the present embodiment has the same operation as that of the first embodiment, and the degree of freedom in designing the arrangement of the photodetector 103 and the light source 104 can be made larger than that of the first embodiment. Each configuration of the present embodiment can be variously modified and changed similarly to the first embodiment. Moreover, the cross-sectional shape of the convex portion is not limited to a rectangular shape. For example, the cross-sectional shape of the convex portion may be a trapezoidal shape or a shape in which the step portion has a curvature.

図8、図9を参照して、本発明の実施例4に係る光学式エンコーダ400を説明する。実施例1と同一の部分には同一の符号を付し、重複する説明は省略する。図8に示す光学式エンコーダ400は、配線基板102上に光出射部141を有する光源104と受光部131を内部に有した光検出器103を別体で配置して光透過樹脂105で一体化したパッケージからなるセンサヘッド101と、センサヘッド101と相対的に変位する格子パターンを有するスケール110とから構成されている。   An optical encoder 400 according to Embodiment 4 of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. In the optical encoder 400 shown in FIG. 8, the light source 104 having the light emitting portion 141 and the photodetector 103 having the light receiving portion 131 inside are separately arranged on the wiring board 102 and integrated with the light transmitting resin 105. The sensor head 101 is composed of a package and a scale 110 having a lattice pattern that is displaced relative to the sensor head 101.

光源104の光出射部141から出射した光Lsをスケール110で反射及び回折し、その反射及び回折した光Lsrを光検出器103の受光部131で受光する。そして、センサヘッド101から図16の(b)、(c)に示したようなアナログまたはデジタルの変位信号を出力する反射型の光学式エンコーダである。   The light Ls emitted from the light emitting unit 141 of the light source 104 is reflected and diffracted by the scale 110, and the reflected and diffracted light Lsr is received by the light receiving unit 131 of the photodetector 103. The sensor head 101 is a reflective optical encoder that outputs an analog or digital displacement signal as shown in FIGS. 16B and 16C.

本実施例が実施例3と相違する点は、光Laの中で光透過樹脂105の表面152で全反射した光が、受光部131の全面に亘って入射することを防ぐように、光源104と光検出器103とを配置すること、及び光透過樹脂105の厚さt122、t222としている点である。換言すると、本実施例では、表面152で全反射した光は、受光部131とは異なる領域に入射するように構成されている。   The difference between the present embodiment and the third embodiment is that the light source 104 is configured to prevent the light La totally reflected by the surface 152 of the light transmitting resin 105 from entering the entire surface of the light receiving portion 131 in the light La. And the photodetector 103, and the thicknesses t122 and t222 of the light transmitting resin 105 are set. In other words, in the present embodiment, the light totally reflected by the surface 152 is configured to enter a region different from the light receiving unit 131.

このため、実施例2と実施例3で説明したように次の関係式を満たす光検出器103の受光部131と光源104の光出射部141との配置及び光透過樹脂105の厚さt122、t222としている。これにより、光源104の光出射部141の任意の点141pから出射した光Laが、光透過樹脂105の表面(界面151)で全反射した後、受光部131へ入射することを防ぐことができる。
tan−1(de/(t122+t222))<sin−1(n1/n2)・・(12)
For this reason, as described in the second and third embodiments, the arrangement of the light receiving unit 131 of the photodetector 103 and the light emitting unit 141 of the light source 104 that satisfy the following relational expression, and the thickness t122 of the light transmitting resin 105, t222. Thereby, the light La emitted from an arbitrary point 141p of the light emitting part 141 of the light source 104 can be prevented from entering the light receiving part 131 after being totally reflected by the surface (interface 151) of the light transmitting resin 105. .
tan −1 (de / (t122 + t222)) <sin −1 (n1 / n2) (12)

本実施例の作用は、実施例2、実施例3と同様な作用を有する。なお、本実施例の各構成は、実施例1と同様な各種の変形、変更が可能である。   The operation of this embodiment is the same as that of the second and third embodiments. Each configuration of the present embodiment can be variously modified and changed similarly to the first embodiment.

図10、図11を参照して、本発明の実施例5に係る光学式エンコーダ500を説明する。実施例1と同一の部分には同一の符号を付し、重複する説明は省略する。光学式エンコーダ500は、実施例1と同様に配線基板102上に光出射部141を有する光源104と受光部131を内部に有した光検出器103を別体で配置して光透過樹脂105で一体化したパッケージからなるセンサヘッド101と、センサヘッド101と相対的に変位する格子パターンを有するスケール110とから構成されている。   An optical encoder 500 according to Embodiment 5 of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. As in the first embodiment, the optical encoder 500 includes a light source 104 having a light emitting portion 141 and a photodetector 103 having a light receiving portion 131 arranged separately on the wiring board 102 and is made of a light transmitting resin 105. The sensor head 101 includes an integrated package, and a scale 110 having a lattice pattern that is displaced relative to the sensor head 101.

光源104の光出射部141から出射した光Lsをスケール110で反射及び回折し、その反射及び回折光Lsrを光検出器103の受光部131で受光する。そして、センサヘッド101から図16の(b)、(c)に示したようなアナログまたはデジタルの変位信号を出力する反射型の光学式エンコーダである。   The light Ls emitted from the light emitting unit 141 of the light source 104 is reflected and diffracted by the scale 110, and the reflected and diffracted light Lsr is received by the light receiving unit 131 of the photodetector 103. The sensor head 101 is a reflective optical encoder that outputs an analog or digital displacement signal as shown in FIGS. 16B and 16C.

本実施例が実施例1と相違する点は、光源104の光出射部141と光検出器103の受光部131の間の一部の光透過樹脂105の厚みを薄くし、凹状部を形成している点である。   This embodiment is different from the first embodiment in that a part of the light transmitting resin 105 between the light emitting portion 141 of the light source 104 and the light receiving portion 131 of the photodetector 103 is thinned to form a concave portion. It is a point.

図12は、一般的な光源、例えばLEDにおいて、レンズなどの光学的部材を使用しない場合の放射角度方向の概略光強度をベクトル長で示すものである。ここで、90度方向、即ち光出射部141の出射面に対して法線方向の光強度を1.0とする。放射強度が半値の約50%となる放射角度は、約30度となる。一般的に光強度が半値以下の光は、半値以上の光より十分に弱い光である。このため、光強度が半値以下の光が受光部131に入射しても、DC成分に大きく寄与しない。   FIG. 12 shows the approximate light intensity in the radiation angle direction as a vector length when an optical member such as a lens is not used in a general light source, for example, an LED. Here, the light intensity in the direction of 90 degrees, that is, in the normal direction with respect to the exit surface of the light exit portion 141 is set to 1.0. The radiation angle at which the radiation intensity is about 50% of the half value is about 30 degrees. In general, light having a light intensity of half or less is light that is sufficiently weaker than light having a half value or more. For this reason, even if light having a light intensity of half or less is incident on the light receiving unit 131, it does not greatly contribute to the DC component.

光源104の光出射部141の任意の点141pから光検出器103の受光部131に最も近い(小さい)間隔をdsとした時、
ds=d13+d23
となる。
When ds is the closest (small) distance from an arbitrary point 141p of the light emitting unit 141 of the light source 104 to the light receiving unit 131 of the photodetector 103,
ds = d13 + d23
It becomes.

また、
tan60°=t13/d13
=t23/d23より
1.73≒t13/d13
≒t23/d23
となる。
Also,
tan 60 ° = t13 / d13
= From t23 / d23 1.73≈t13 / d13
≒ t23 / d23
It becomes.

このため、式(13)を満たす構成にすれば良いことになる。
ds>1.73(t13+t23)・・・・(13)
For this reason, what is necessary is just to make it the structure which satisfy | fills Formula (13).
ds> 1.73 (t13 + t23) (13)

本実施例の作用は、実施例3と同様な作用を有する。本実施例では、放射角度が小さく、全反射した光が受光部131に入射している。しかしながら、上述したように、放射角度が小さく、光強度が半値以下の光が受光部131に入射しても、DC成分に大きく寄与しない。このため、DC成分を小さくすることで、変位信号の飽和を防止できる。なお、本実施例の各構成は、実施例1と同様な各種の変形、変更が可能である。   The operation of the present embodiment is the same as that of the third embodiment. In this embodiment, the radiation angle is small, and the totally reflected light is incident on the light receiving unit 131. However, as described above, even when light having a small radiation angle and a light intensity equal to or less than half value is incident on the light receiving unit 131, it does not greatly contribute to the DC component. For this reason, the saturation of the displacement signal can be prevented by reducing the DC component. Each configuration of the present embodiment can be variously modified and changed similarly to the first embodiment.

図13、図14を参照して、本発明の実施例6に係る光学式エンコーダ600を説明する。実施例1と同一の部分には同一の符号を付し、重複する説明は省略する。光学式エンコーダ600は、配線基板102上に受光部131を内部に有した光検出器103と、少なくとも光出射部141上にスリットパターン181を有する光学部材108を配置した光源104を別体で配置して光透過樹脂105で一体化したパッケージからなるセンサヘッド101と、センサヘッド101と相対的に変位する格子パターン111を有するスケール110とから構成されている。光源104の光出射部141から出射した光Lsをスケール110で反射及び回折し、その反射及び回折した光Lsrを光検出器103の受光部131で受光する。そして、センサヘッド101から図16の(b)、(c)に示したようなアナログまたはデジタルの変位信号を出力する反射型の光学式エンコーダである。   An optical encoder 600 according to Embodiment 6 of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. In the optical encoder 600, the light detector 104 having the light receiving unit 131 inside on the wiring board 102 and the light source 104 having the optical member 108 having the slit pattern 181 on at least the light emitting unit 141 are arranged separately. The sensor head 101 is made of a package integrated with the light transmitting resin 105, and the scale 110 has a lattice pattern 111 that is displaced relative to the sensor head 101. The light Ls emitted from the light emitting unit 141 of the light source 104 is reflected and diffracted by the scale 110, and the reflected and diffracted light Lsr is received by the light receiving unit 131 of the photodetector 103. The sensor head 101 is a reflective optical encoder that outputs an analog or digital displacement signal as shown in FIGS. 16B and 16C.

本実施例が実施例1と相違する点は、光出射部141上にスリットパターン181を有する光学部材108を配置した構成となっている点である。光学部材108に光透過樹脂105とほぼ同じ屈折率を有するガラス材などを使用すれば、光学部材108と光透過樹脂105との界面での屈折はほとんど発生しない。   The difference between the present embodiment and the first embodiment is that the optical member 108 having the slit pattern 181 is disposed on the light emitting portion 141. If a glass material or the like having substantially the same refractive index as the light transmitting resin 105 is used for the optical member 108, refraction at the interface between the optical member 108 and the light transmitting resin 105 hardly occurs.

従って、本実施例の構成でも実施例1と同様に(6)式の関係式を満たす光検出器103の受光部131と光源141の光出射部141との配置及び光透過樹脂105の厚さt11、t21とする。これにより、光源104の光出射部141から出射した光Laが、光透過樹脂105の界面151で全反射して、受光部131の中心131aから光源141側の略半分の受光部131の領域150へ入射することを防ぐことができる。   Therefore, in the configuration of the present embodiment as well as the first embodiment, the arrangement of the light receiving unit 131 of the photodetector 103 and the light emitting unit 141 of the light source 141 that satisfy the relational expression (6) and the thickness of the light transmitting resin 105 are satisfied. Let t11 and t21. Thereby, the light La emitted from the light emitting portion 141 of the light source 104 is totally reflected at the interface 151 of the light transmitting resin 105, and the region 150 of the light receiving portion 131 that is substantially half from the center 131 a of the light receiving portion 131 to the light source 141 side. Can be prevented.

また、光学部材108に形成するスリットパターン181は、良好なエンコーダ信号を得るために、スケール110の格子パターン111、スケール110とスリットパターン181または受光部131との間隔などに応じた形状にすることが望ましい。   In addition, the slit pattern 181 formed on the optical member 108 has a shape corresponding to the lattice pattern 111 of the scale 110, the interval between the scale 110 and the slit pattern 181 or the light receiving portion 131, etc., in order to obtain a good encoder signal. Is desirable.

本実施例の作用は、実施例1と同様な作用を有する。また、良好なエンコーダ信号を得るためには光学部材108に形成するスリットパターン形状181で決まる。このため、光源104の光出射部141の形状に依存しない。従って、光源104の選択肢が広がる。   The operation of this embodiment is the same as that of the first embodiment. Further, in order to obtain a good encoder signal, it is determined by the slit pattern shape 181 formed in the optical member 108. For this reason, it does not depend on the shape of the light emitting part 141 of the light source 104. Accordingly, the options for the light source 104 are expanded.

なお、本実施例の各構成は、実施例1と同様な各種の変形、変更が可能である。また実施例3、実施例5のような光透過樹脂105の表面152を有する凸状部、表面153を有する凹状部のような構成としても良い。   Each configuration of the present embodiment can be variously modified and changed similarly to the first embodiment. Moreover, it is good also as a structure like the convex part which has the surface 152 of Example 3 and Example 5, and the concave part which has the surface 153.

さらに好ましくは、光学部材108は光源104に直接貼りつける構成または光透過樹脂105が光源104との間に介在する構成が望ましい。また、スリットパターン181は、光学部材108の光源104側または光源104とは反対側のどちらの面に形成しても良い。加えて、光学部材108は薄板でスリット開口を有する形状でも良い。   More preferably, the optical member 108 has a configuration in which the optical member 108 is directly attached to the light source 104 or a configuration in which the light transmitting resin 105 is interposed between the light source 104 and the optical member 108. Further, the slit pattern 181 may be formed on either surface of the optical member 108 on the light source 104 side or on the opposite side of the light source 104. In addition, the optical member 108 may be a thin plate having a slit opening.

さらに厳密には、光学部材108と光透過樹脂105の屈折率の差を考慮して、実施例1で説明した幾何学的方法と同様な考え方で(6)式の左辺を修正することが望ましい。   More strictly, it is desirable to correct the left side of the expression (6) in the same way as the geometric method described in the first embodiment in consideration of the difference in refractive index between the optical member 108 and the light transmitting resin 105. .

また、上記各実施例において、光透過樹脂105と外界との界面で全反射する光が、光検出器103の受光部131の一部に入射するような、または受光部131とは異なる領域に入射するような、光学特性、例えば屈折率n2を有する光透過樹脂105を用いても良い。このときは、屈折率n2を可変なパラメータとして、さらに光透過樹脂105の厚さ、光源104と光検出器103との距離を設定することが望ましい。このように、本発明はその趣旨を逸脱しない範囲で様々な変形が可能である。   In each of the above embodiments, the light totally reflected at the interface between the light transmitting resin 105 and the outside is incident on a part of the light receiving unit 131 of the photodetector 103 or in a different region from the light receiving unit 131. A light transmitting resin 105 having an optical characteristic, for example, a refractive index n2, which is incident may be used. At this time, it is desirable to set the thickness of the light transmitting resin 105 and the distance between the light source 104 and the photodetector 103 by using the refractive index n2 as a variable parameter. As described above, the present invention can be variously modified without departing from the spirit of the present invention.

以上のように、本発明に係る光学式エンコーダは、安価な反射型の光学式エンコーダに有用である。   As described above, the optical encoder according to the present invention is useful for an inexpensive reflective optical encoder.

実施例1に係る光学式エンコーダの概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an optical encoder according to Embodiment 1. FIG. 実施例1の光源と光検出部との平面図である。FIG. 3 is a plan view of a light source and a light detection unit according to the first embodiment. 実施例1の受光部の構成を拡大して示す平面図である。3 is an enlarged plan view illustrating a configuration of a light receiving unit according to Embodiment 1. FIG. 実施例2に係る光学式エンコーダの概略構成を示す図である。6 is a diagram illustrating a schematic configuration of an optical encoder according to Embodiment 2. FIG. 実施例2の光源と光検出部との平面図である。It is a top view of the light source and light detection part of Example 2. 実施例3に係る光学式エンコーダの概略構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of an optical encoder according to a third embodiment. 実施例3の光源と光検出部との平面図である。It is a top view of the light source and light detection part of Example 3. 実施例4に係る光学式エンコーダの概略構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of an optical encoder according to a fourth embodiment. 実施例4の光源と光検出部との平面図である。It is a top view of the light source and light detection part of Example 4. 実施例5に係る光学式エンコーダの概略構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of an optical encoder according to a fifth embodiment. 実施例5の光源と光検出部との平面図である。It is a top view of the light source and light detection part of Example 5. 実施例5の光源の放射光の強度を示す図である。It is a figure which shows the intensity | strength of the emitted light of the light source of Example 5. FIG. 実施例6に係る光学式エンコーダの概略構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of an optical encoder according to a sixth embodiment. 実施例6の光源と光検出部との平面図である。It is a top view of the light source and light detection part of Example 6. スネルの法則を説明する図である。It is a figure explaining Snell's law. (a)は光学式エンコーダの概略構成、(b)はアナログ信号、(c)はデジタル信号をそれぞれ示す図である。(A) is a schematic configuration of the optical encoder, (b) is an analog signal, and (c) is a diagram showing a digital signal. (a)はDC成分を説明する図、(b)は変位信号の飽和を説明する図である。(A) is a figure explaining a DC component, (b) is a figure explaining saturation of a displacement signal. (a)、(b)は従来技術の光学式エンコーダの概略構成を示す図である。(a), (b) is a figure which shows schematic structure of the optical encoder of a prior art.

符号の説明Explanation of symbols

100、200、300、400、500、600 光学式エンコーダ
101 センサヘッド
102 配線基板
103 光検出器
104 光源
105 光透過樹脂
106 法線
107 反射点
110 スケール
111 格子パターン
131 受光部
131a 受光部の中心
131b 最も離れた受光部の位置
131c 最も近い受光部の位置
141 光出射部
141p 任意の点
150 領域
151 表面
155 界面
PD1、PD2、PD3、PD4 フォトダイオード
t21、t11、t11、t12、t23、t13、t211、t111 厚さ
d11、d12、d22、d12、d23、d13、d211、d111 距離
n1 外界の媒質の屈折率
n2 光透過樹脂の屈折率
Ls、Lsr、La、Lb1、Lb2 光
60 光透過樹脂
70 光源
75 光検出器
80 界面
90 エンコーダ
91 スケール
92 センサヘッド
24 発光素子
26 受光素子
28 反射鏡
30 リードフレーム
100, 200, 300, 400, 500, 600 Optical encoder 101 Sensor head 102 Wiring board 103 Photo detector 104 Light source 105 Light transmitting resin 106 Normal 107 Reflection point 110 Scale 111 Grid pattern 131 Light receiving part 131a Light receiving part center 131b Position of light receiving part 131c closest to light receiving part 141 Light emitting part 141p Arbitrary point 150 Region 151 Surface 155 Interface PD1, PD2, PD3, PD4 Photodiode t21, t11, t11, t12, t23, t13, t211 , T111 Thickness d11, d12, d22, d12, d23, d13, d211, d111 Distance n1 Refractive index of medium outside n2 Refractive index of light transmitting resin Ls, Lsr, La, Lb1, Lb2 Light 60 Light transmitting resin 70 Light source 75 Photodetector 80 Interface 90 Encoder 91 Scale 92 Sensor head 24 Light emitting element 26 Light receiving element 28 Reflecting mirror 30 Lead frame

Claims (8)

少なくとも1つの光源と少なくとも1つの光検出器を、並べて光透過樹脂で一体化したパッケージからなるセンサヘッドと、前記センサヘッドと相対的に変位するスケールとから構成され、前記光源の光出射部から出射した光を前記スケールで反射及び回折し、反射及び回折した光を前記光検出器の受光部で受光して前記センサヘッドから変位信号を出力する光学式エンコーダにおいて、
前記光源の光出射部の任意の点から放出された光のうち、前記光透過樹脂と外界との界面で全反射する光が前記光検出器の前記受光部の少なくとも一部に入射し、かつ、前記光検出器の前記受光部の中心よりも前記光源側からみて外側に入射するように、前記光源の前記光出射部と前記光検出器の前記受光部との間隔及び前記光透過樹脂の厚さ及び前記光透過樹脂の屈折率の関係が設定されていることを特徴とする光学式エンコーダ。
A sensor head comprising a package in which at least one light source and at least one photodetector are arranged side by side and integrated with a light-transmitting resin, and a scale that is displaced relative to the sensor head, from a light emitting portion of the light source In the optical encoder that reflects and diffracts the emitted light by the scale, receives the reflected and diffracted light by the light receiving unit of the photodetector, and outputs a displacement signal from the sensor head,
Of the light emitted from an arbitrary point of the light emitting part of the light source, the light totally reflected at the interface between the light transmitting resin and the outside enters the at least part of the light receiving part of the photodetector, and , the center of the light receiving portion of the photodetector to be incident to the outside when viewed from the light source side, spacing and the light transmitting resin and the light receiving portion of the photodetector and the light emitting portion of the light source An optical encoder, wherein a relationship between a thickness and a refractive index of the light transmitting resin is set.
前記光透過樹脂の前記スケールに対向する表面は、略平坦であることを特徴とする請求項1に記載の光学式エンコーダ。   The optical encoder according to claim 1, wherein a surface of the light transmitting resin facing the scale is substantially flat. 前記光透過樹脂の前記スケールに対向する表面と、前記光源の前記光出射部の表面と、前記光検出器の前記受光部の表面とが略平行であり、
前記光源の前記光出射部の表面から前記光透過樹脂の前記スケールに対向する表面までの厚みをt11と、
前記光検出器の前記受光部の表面から前記光透過樹脂の前記スケールに対向する表面までの厚みをt21と、
前記光源の前記光出射部の任意の点から前記光検出器の前記受光部の中心までの前記光透過樹脂の表面に対して平行な方向の距離をdcと、
外界の媒質の屈折率をn1と、
前記光透過樹脂の屈折率をn2とそれぞれしたとき、
tan−1(dc/(t11+t21))<sin−1(n1/n2)
の条件式を満足することを特徴とする請求項2に記載の光学式エンコーダ。
The surface of the light transmitting resin facing the scale, the surface of the light emitting part of the light source, and the surface of the light receiving part of the photodetector are substantially parallel,
The thickness from the surface of the light emitting part of the light source to the surface of the light transmitting resin facing the scale is t11,
The thickness from the surface of the light receiving portion of the photodetector to the surface of the light transmitting resin facing the scale is t21,
A distance in a direction parallel to the surface of the light transmitting resin from an arbitrary point of the light emitting portion of the light source to the center of the light receiving portion of the photodetector, dc,
The refractive index of the outside medium is n1,
When the refractive index of the light transmitting resin is n2, respectively.
tan −1 (dc / (t11 + t21)) <sin −1 (n1 / n2)
The optical encoder according to claim 2, wherein the following conditional expression is satisfied.
前記光透過樹脂の前記スケールに対向する表面と、前記光源の前記光出射部の表面と、前記光検出器の前記受光部の表面とが略平行であり、
前記光源の前記光出射部の表面から前記光透過樹脂の前記スケールに対向する表面までの厚みをt111と、
前記光検出器の前記受光部面から前記光透過樹脂の前記スケールに対向する表面までの厚みをt211と、
前記光源の前記光出射部の任意の点から前記光検出器の前記受光部までの前記光透過樹脂の表面に対して平行な方向の距離のうち最も長い距離をdeと、
外界の媒質の屈折率をn1と、
前記光透過樹脂の屈折率をn2とそれぞれしたとき、
tan−1(de/(t111+t211))<sin−1(n1/n2)
の条件式を満足することを特徴とする請求項2に記載の光学式エンコーダ。
The surface of the light transmitting resin facing the scale, the surface of the light emitting part of the light source, and the surface of the light receiving part of the photodetector are substantially parallel,
The thickness from the surface of the light emitting portion of the light source to the surface of the light transmitting resin facing the scale is t111,
The thickness from the light receiving portion surface of the photodetector to the surface of the light transmitting resin facing the scale is t211;
The longest distance among the distances in the direction parallel to the surface of the light transmitting resin from an arbitrary point of the light emitting portion of the light source to the light receiving portion of the photodetector is de,
The refractive index of the outside medium is n1,
When the refractive index of the light transmitting resin is n2, respectively.
tan −1 (de / (t111 + t211)) <sin −1 (n1 / n2)
The optical encoder according to claim 2, wherein the following conditional expression is satisfied.
前記光透過樹脂の前記スケールに対向する表面のうち前記光源の前記光出射部と前記光検出器の前記受光部との間の少なくとも一部の表面は、凸状部を有していることを特徴とする請求項1に記載の光学式エンコーダ。   At least a part of the surface between the light emitting part of the light source and the light receiving part of the photodetector among the surfaces of the light transmitting resin facing the scale has a convex part. The optical encoder according to claim 1, wherein 少なくとも1つの光源と少なくとも1つの光検出器を、並べて光透過樹脂で一体化したパッケージからなるセンサヘッドと、前記センサヘッドと相対的に変位するスケールとから構成され、前記光源の光出射部から出射した光を前記スケールで反射及び回折し、反射及び回折した光を前記光検出器の受光部で受光して前記センサヘッドから変位信号を出力する光学式エンコーダにおいて、
前記光源の光出射部の任意の点から放出された光のうち、前記光透過樹脂と外界との界面で全反射する光が、前記光検出器の前記受光部の中心よりも前記光源側からみて外側に入射するように、前記光源の前記光出射部と前記光検出器の前記受光部との間隔及び前記光透過樹脂の厚さ及び前記光透過樹脂の屈折率の関係が設定され、
前記光透過樹脂の前記スケールに対向する表面のうち前記光源の前記光出射部と前記光検出器の前記受光部との間の少なくとも一部の表面は、凸状部を有し、
前記光透過樹脂の前記スケールに対向する表面のうち前記凸状部の表面と、前記光源の前記光出射部の表面と、前記光検出器の前記受光部の表面とが略平行であり、
前記光源の前記光出射部の表面から前記光透過樹脂の前記凸状部の前記スケールに対向する表面までの厚みをt12と、
前記光検出器の前記受光部の表面から前記光透過樹脂の前記凸状部の前記スケールに対向する表面までの厚みをt22と、
前記光源の前記光出射部の任意の点から前記光検出器の前記受光部の中心までの前記光透過樹脂の表面に対して平行な方向の距離をdcと、
外界の媒質の屈折率をn1と、
前記光透過樹脂の屈折率をn2とそれぞれしたとき、
tan−1(dc/(t12+t22))<sin−1(n1/n2)
の条件式を満足することを特徴とする光学式エンコーダ
A sensor head comprising a package in which at least one light source and at least one photodetector are arranged side by side and integrated with a light-transmitting resin, and a scale that is displaced relative to the sensor head, from a light emitting portion of the light source In the optical encoder that reflects and diffracts the emitted light by the scale, receives the reflected and diffracted light by the light receiving unit of the photodetector, and outputs a displacement signal from the sensor head,
Of the light emitted from an arbitrary point of the light emitting part of the light source, the light totally reflected at the interface between the light transmitting resin and the outside is from the light source side than the center of the light receiving part of the photodetector. The relationship between the distance between the light emitting part of the light source and the light receiving part of the photodetector, the thickness of the light transmitting resin, and the refractive index of the light transmitting resin is set so as to be incident on the outside.
At least a part of the surface between the light emitting part of the light source and the light receiving part of the photodetector among the surfaces of the light transmitting resin facing the scale has a convex part,
The surface of the convex portion, the surface of the light emitting portion of the light source, and the surface of the light receiving portion of the photodetector are substantially parallel among the surfaces of the light transmitting resin facing the scale,
The thickness from the surface of the light emitting part of the light source to the surface of the convex part of the light transmitting resin facing the scale is t12,
The thickness from the surface of the light receiving portion of the photodetector to the surface of the convex portion of the light transmitting resin facing the scale is t22,
A distance in a direction parallel to the surface of the light transmitting resin from an arbitrary point of the light emitting portion of the light source to the center of the light receiving portion of the photodetector, dc,
The refractive index of the outside medium is n1,
When the refractive index of the light transmitting resin is n2, respectively.
tan −1 (dc / (t12 + t22)) <sin −1 (n1 / n2)
An optical encoder that satisfies the following conditional expression:
少なくとも1つの光源と少なくとも1つの光検出器を、並べて光透過樹脂で一体化したパッケージからなるセンサヘッドと、前記センサヘッドと相対的に変位するスケールとから構成され、前記光源の光出射部から出射した光を前記スケールで反射及び回折し、反射及び回折した光を前記光検出器の受光部で受光して前記センサヘッドから変位信号を出力する光学式エンコーダにおいて、
前記光源の光出射部の任意の点から放出された光のうち、前記光透過樹脂と外界との界面で全反射する光が、前記光検出器の前記受光部の中心よりも前記光源側からみて外側に入射するように、前記光源の前記光出射部と前記光検出器の前記受光部との間隔及び前記光透過樹脂の厚さ及び前記光透過樹脂の屈折率の関係が設定され、
前記光透過樹脂の前記スケールに対向する表面のうち前記光源の前記光出射部と前記光検出器の前記受光部との間の少なくとも一部の表面は、凸状部を有し、
前記光透過樹脂の前記スケールに対向する表面のうち前記凸状部の表面と、前記光源の前記光出射部の表面と、前記光検出器の前記受光部の表面とが略平行であり、
前記光源の前記光出射部の面から前記光透過樹脂の前記凸状部の前記スケールに対向する表面までの厚みをt122と、
前記光検出器の前記受光部の表面から前記光透過樹脂の前記凸状部の前記スケールに対向する表面までの厚みをt222と、
前記光源の前記光出射部の任意の点から前記光検出器の前記受光部までの前記光透過樹脂の表面に対して平行な方向の距離のうち最も長い距離をdeと、
外界の媒質の屈折率をn1と、
前記光透過樹脂の屈折率をn2とそれぞれしたとき、
tan−1(de/(t122+t222))<sin−1(n1/n2)
の条件式を満足することを特徴とする光学式エンコーダ
A sensor head comprising a package in which at least one light source and at least one photodetector are arranged side by side and integrated with a light-transmitting resin, and a scale that is displaced relative to the sensor head, from a light emitting portion of the light source In the optical encoder that reflects and diffracts the emitted light by the scale, receives the reflected and diffracted light by the light receiving unit of the photodetector, and outputs a displacement signal from the sensor head,
Of the light emitted from an arbitrary point of the light emitting part of the light source, the light totally reflected at the interface between the light transmitting resin and the outside is from the light source side than the center of the light receiving part of the photodetector. The relationship between the distance between the light emitting part of the light source and the light receiving part of the photodetector, the thickness of the light transmitting resin, and the refractive index of the light transmitting resin is set so as to be incident on the outside.
At least a part of the surface between the light emitting part of the light source and the light receiving part of the photodetector among the surfaces of the light transmitting resin facing the scale has a convex part,
The surface of the convex portion, the surface of the light emitting portion of the light source, and the surface of the light receiving portion of the photodetector are substantially parallel among the surfaces of the light transmitting resin facing the scale,
The thickness from the surface of the light emitting part of the light source to the surface of the convex part of the light transmitting resin facing the scale is t122,
The thickness from the surface of the light receiving portion of the photodetector to the surface of the convex portion of the light transmitting resin facing the scale is t222,
The longest distance among the distances in the direction parallel to the surface of the light transmitting resin from an arbitrary point of the light emitting portion of the light source to the light receiving portion of the photodetector is de,
The refractive index of the outside medium is n1,
When the refractive index of the light transmitting resin is n2, respectively.
tan −1 (de / (t122 + t222)) <sin −1 (n1 / n2)
An optical encoder that satisfies the following conditional expression:
少なくとも1つの光源と少なくとも1つの光検出器を、光透過樹脂で一体化したパッケージからなるセンサヘッドと、前記センサヘッドと相対的に変位するスケールとから構成され、前記光源の光出射部から出射した光を前記スケールで反射及び回折し、その反射及び回折した光を前記光検出器の受光部で受光して前記センサヘッドから変位信号を出力する光学式エンコーダにおいて、  A sensor head composed of a package in which at least one light source and at least one photodetector are integrated with a light-transmitting resin, and a scale that is displaced relative to the sensor head, and is emitted from a light emitting portion of the light source. In the optical encoder that reflects and diffracts the light with the scale, receives the reflected and diffracted light with the light receiving unit of the photodetector, and outputs a displacement signal from the sensor head,
前記光透過樹脂の前記スケールに対向する表面のうち前記光源の前記光出射部と前記光検出器の前記受光部との間の少なくとも一部の表面は、凹状部を有し、  At least a part of the surface between the light emitting part of the light source and the light receiving part of the photodetector among the surfaces of the light transmitting resin facing the scale has a concave part,
前記光透過樹脂の前記スケールに対向する表面のうち前記凹状部の表面と、前記光源の前記光出射部の表面と、前記光検出器の前記受光部の表面とが略平行であり、  The surface of the concave portion of the surface of the light transmitting resin facing the scale, the surface of the light emitting portion of the light source, and the surface of the light receiving portion of the photodetector are substantially parallel,
前記光源の前記光出射部の表面から前記光透過樹脂の前記凹状部の前記スケールに対向する表面までの厚みをt13と、  The thickness from the surface of the light emitting portion of the light source to the surface of the concave portion of the light transmitting resin facing the scale is t13,
前記光検出器の前記受光部の表面から前記光透過樹脂の前記凹状部の前記スケールに対する表面までの厚みをt23と、  The thickness from the surface of the light receiving portion of the photodetector to the surface of the concave portion of the light transmitting resin with respect to the scale is t23,
前記光源の前記光出射部の任意の点から前記光検出器の前記受光部までの前記光透過樹脂の表面に対して平行な方向の距離のうち最も短い距離をdsと、それぞれしたとき、  When the shortest distance among the distances in a direction parallel to the surface of the light transmitting resin from an arbitrary point of the light emitting portion of the light source to the light receiving portion of the photodetector is ds,
1.73×(t13+t23)<ds  1.73 × (t13 + t23) <ds
の条件式を満足することを特徴とする光学式エンコーダ。An optical encoder that satisfies the following conditional expression:
JP2005180398A 2005-06-21 2005-06-21 Optical encoder Active JP4869641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180398A JP4869641B2 (en) 2005-06-21 2005-06-21 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180398A JP4869641B2 (en) 2005-06-21 2005-06-21 Optical encoder

Publications (3)

Publication Number Publication Date
JP2007003209A JP2007003209A (en) 2007-01-11
JP2007003209A5 JP2007003209A5 (en) 2008-07-10
JP4869641B2 true JP4869641B2 (en) 2012-02-08

Family

ID=37689004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180398A Active JP4869641B2 (en) 2005-06-21 2005-06-21 Optical encoder

Country Status (1)

Country Link
JP (1) JP4869641B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236854A (en) * 2008-03-28 2009-10-15 Olympus Corp Optical encoder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166856A (en) * 2001-11-29 2003-06-13 Fuji Electric Co Ltd Optical encoder
JP4024644B2 (en) * 2002-05-14 2007-12-19 株式会社ミツトヨ Reflective encoder
JP2005156549A (en) * 2003-11-05 2005-06-16 Sendai Nikon:Kk Optical encoder

Also Published As

Publication number Publication date
JP2007003209A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US8188421B2 (en) Optical encoder for detecting the relative displacement between an encoder scale and an encoder head
US8035079B2 (en) Optical encoder
US7220960B2 (en) Optical encoder having a light source scale and photodetector and an optical lens module using the optical encoder
US7619208B2 (en) Photoelectric encoder, scale and method of manufacturing scale
JP4803641B2 (en) Optical encoder
JP4416544B2 (en) Optical displacement measuring device
US7420157B2 (en) Optical encoder having wiring substrate light source, and/or photodetector covered by light transmitting material and its manufacturing method
JP4912801B2 (en) Optical encoder
JP2008028025A (en) Reflecting sensor
JP2015200568A (en) Optical encoder and device with the same
JP4869641B2 (en) Optical encoder
JP2013070078A (en) Reflection type sensor
JP4999595B2 (en) Reflective photo sensor
JP5147877B2 (en) Optical encoder sensor and optical encoder
JP4999596B2 (en) Reflective photo sensor
US11268833B2 (en) Reflection type sensor and optical encoder having the same
JP2017211327A (en) Light-emitting unit, light-receiving unit and photoelectric encoder
JP2010002324A (en) Optical encoder
JP2010223630A (en) Optical encoder
CN106663702B (en) Optical sensor
JP2010223629A (en) Optical encoder
JP5253138B2 (en) Optical encoder
JP5113018B2 (en) Linear encoder device
JP2005300306A (en) Optical displacement measurement apparatus
JPS63217223A (en) Photoelectric displacement detecting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R151 Written notification of patent or utility model registration

Ref document number: 4869641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250