JP4869111B2 - High-frequency magnetic thin film and high-frequency magnetic device using the same - Google Patents

High-frequency magnetic thin film and high-frequency magnetic device using the same Download PDF

Info

Publication number
JP4869111B2
JP4869111B2 JP2007061111A JP2007061111A JP4869111B2 JP 4869111 B2 JP4869111 B2 JP 4869111B2 JP 2007061111 A JP2007061111 A JP 2007061111A JP 2007061111 A JP2007061111 A JP 2007061111A JP 4869111 B2 JP4869111 B2 JP 4869111B2
Authority
JP
Japan
Prior art keywords
layer
thickness
thin film
antiferromagnetic layer
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007061111A
Other languages
Japanese (ja)
Other versions
JP2008227024A (en
Inventor
高橋  研
匡清 角田
正洋 山口
肇 篠原
健二 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2007061111A priority Critical patent/JP4869111B2/en
Publication of JP2008227024A publication Critical patent/JP2008227024A/en
Application granted granted Critical
Publication of JP4869111B2 publication Critical patent/JP4869111B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thin Magnetic Films (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

本発明は、強磁性薄膜と反強磁性薄膜を積層した高周波用磁性薄膜及びそれを利用した高周波用磁性デバイスに関し、更に具体的には、低いうず電流損失で、高周波数領域への適用に好適な高周波用磁性薄膜の改良に関するものである。   The present invention relates to a high-frequency magnetic thin film in which a ferromagnetic thin film and an antiferromagnetic thin film are laminated and a high-frequency magnetic device using the same, and more specifically, it is suitable for application to a high frequency region with low eddy current loss. The present invention relates to improvement of a high-frequency magnetic thin film.

情報通信,例えば携帯電話や無線LANなどでは、使用周波数帯域がGHzのオーダーに達しており、今後も更なる高周波化が予想されている。このため、回路で使用される磁性材料に対しても高周波化の要求は強く、GHzオーダーでも高い透磁率を有する磁性薄膜が要望されるに至っている。   In information communication, for example, cellular phones and wireless LANs, the frequency band used has reached the order of GHz, and further higher frequencies are expected in the future. For this reason, the request | requirement of high frequency is strong also with respect to the magnetic material used by a circuit, and the magnetic thin film which has a high magnetic permeability also in the GHz order has been requested | required.

磁性薄膜の透磁率を高周波化させる一つの手法として、強磁性膜と反強磁性膜を積層し、両者間に生じる交換結合によって大きな一軸磁気異方性を誘導して、強磁性膜の強磁性共鳴周波数を高周波化する方法があり、例えば下記特許文献1に記載された「高周波デバイス」がある。これは、強磁性膜と反強磁性膜を交互に積層することによって得られるバイレイヤー(bilayer)構造の薄膜で、強磁性−反強磁性交換相互作用による交換バイアス磁界が生じることを利用している。
特開2003−257739公報
As one method of increasing the magnetic permeability of magnetic thin films, ferromagnetic films and antiferromagnetic films are stacked, and a large uniaxial magnetic anisotropy is induced by exchange coupling between the two, thereby making the ferromagnetic film ferromagnetic. There is a method of increasing the resonance frequency, for example, there is a “high frequency device” described in Patent Document 1 below. This is a thin film with a bilayer structure obtained by alternately laminating a ferromagnetic film and an antiferromagnetic film. By utilizing the fact that an exchange bias magnetic field is generated by a ferromagnetic-antiferromagnetic exchange interaction. Yes.
JP 2003-257739 A

ところで、上述した交換バイアス磁界の大きさは強磁性膜及び反強磁性膜の組成や膜厚に依存し、交換バイアス磁界を大きくするためには強磁性膜や反強磁性膜をある程度以上の厚みとする必要がある。しかし、強磁性膜や反強磁性膜として用いる材料が金属の場合には、膜厚が厚いと、高周波下ではうず電流損失が顕著となってしまう。これに対しては、強磁性膜や反強磁性膜として、非金属の酸化物材料を用いる方法が考えられるが、酸化物材料は飽和磁気モーメントMsが小さいことから、大きな透磁率は期待できない。このため、透磁率の絶対値を確保するためには、飽和磁気モーメントMsの大きな金属系の磁性材料が好ましく、うず電流損失低減のために膜厚を薄くすることができれば好都合である。   By the way, the magnitude of the exchange bias magnetic field described above depends on the composition and film thickness of the ferromagnetic film and the antiferromagnetic film, and in order to increase the exchange bias magnetic field, the ferromagnetic film or the antiferromagnetic film has a certain thickness. It is necessary to. However, when the material used for the ferromagnetic film or the antiferromagnetic film is a metal, if the film thickness is large, eddy current loss becomes significant under high frequency. For this, a method using a non-metallic oxide material as a ferromagnetic film or an antiferromagnetic film can be considered. However, since the saturation magnetic moment Ms of the oxide material is small, a large magnetic permeability cannot be expected. For this reason, in order to ensure the absolute value of the magnetic permeability, a metallic magnetic material having a large saturation magnetic moment Ms is preferable, and it is advantageous if the film thickness can be reduced in order to reduce eddy current loss.

一方、静的な交換バイアス磁界が存在しないような状態,すなわち交換バイアス磁界が零の状態でも、強磁性膜と反強磁性膜の間に磁気的な交換結合が存在していることを示唆する研究結果が報告されている(S.Queste et al., Journal of Magnetism and Magnetic Materials 288 (2005) 60-65参照)。このような相互作用が透磁率の高周波特性にどのような影響を与えるかは明らかではないが、強磁性膜と反強磁性膜の間で何らかの交換結合が存在すれば、透磁率特性にも影響を与えることが考えられる。してみると、交換バイアス磁界を零とするために反強磁性膜の厚みを薄くしても、強磁性−反強磁性交換結合を利用して透磁率の高周波特性を改善でき、反強磁性膜の厚みの低下によってうず電流損失も低減できる可能性がある。   On the other hand, it is suggested that magnetic exchange coupling exists between the ferromagnetic film and the antiferromagnetic film even in a state where there is no static exchange bias magnetic field, that is, the exchange bias magnetic field is zero. Research results have been reported (see S. Queste et al., Journal of Magnetism and Magnetic Materials 288 (2005) 60-65). It is not clear how this interaction affects the high-frequency characteristics of permeability, but if there is any exchange coupling between the ferromagnetic film and the antiferromagnetic film, it will also affect the permeability characteristics. Can be considered. As a result, even if the thickness of the antiferromagnetic film is reduced in order to make the exchange bias magnetic field zero, the high frequency characteristics of the magnetic permeability can be improved by using the ferromagnetic-antiferromagnetic exchange coupling, and the antiferromagnetic property can be improved. There is a possibility that eddy current loss can be reduced by reducing the thickness of the film.

本発明は、以上の点に着目したもので、その目的は、膜の厚みを抑えて渦電流損失を低減しつつ、良好な高周波特性を得ることができる高周波用磁性薄膜及びそれを利用した高周波用磁性デバイスを提供することを、その目的とする。   The present invention focuses on the above points, and its purpose is to reduce the eddy current loss by suppressing the thickness of the film, and to obtain a high-frequency magnetic thin film capable of obtaining good high-frequency characteristics, and a high-frequency using the same It is an object of the present invention to provide a magnetic device for use.

前記目的を達成するため、本発明は、強磁性層と反強磁性層を積層した積層膜を有する高周波用磁性薄膜において、前記反強磁性層の厚さを減じていった場合に、静的磁気特性で求めた交換バイアス磁界ないし交換結合の強さが略零となるように、前記反強磁性層の厚さを設定したことを特徴とする。 In order to achieve the above object, the present invention provides a high-frequency magnetic thin film having a laminated film in which a ferromagnetic layer and an antiferromagnetic layer are laminated, and when the thickness of the antiferromagnetic layer is reduced, The thickness of the antiferromagnetic layer is set so that the exchange bias magnetic field or exchange coupling strength obtained from the magnetic characteristics becomes substantially zero .

主要な形態の一つは、前記強磁性層としてCo70Fe30を用いるとともに、前記反強磁性層としてMnIrを用いる場合、MnIr層の一層の厚みを5nm以下としたことを特徴とする。

One of the main forms, together with the use of Co 70 Fe 30 as a pre-Symbol ferromagnetic layer, if used MnIr as the antiferromagnetic layer, characterized in that the further thickness of MnIr layer 5nm or less.

更に他の形態としては、前記強磁性層として、Fe,Co,Niのうちの少なくとも1種を含む材料,あるいは、Fe,Co,Niのうちの少なくとも2種を含む合金材料,あるいは、Fe,Co,Niのうちの少なくとも1種とその他の元素を含む多元系合金材料,を用いるとともに、前記反強磁性層として、Mn,Fe,Co,Niのうちの少なくとも1種を含む材料,あるいは、Mn,Fe,Co,Niのうちの少なくとも1種を含む酸化物材料,あるいは、Mn,Fe,Co,Niのうちの少なくとも2種を含む合金材料,あるいは、該合金材料と酸化物を含む合金酸化物材料,あるいは、前記合金酸化物材料とその他の元素を含む多元系合金酸化物材料,を用いたことを特徴とする。   In another embodiment, the ferromagnetic layer is made of a material containing at least one of Fe, Co and Ni, an alloy material containing at least two of Fe, Co and Ni, or Fe, A multi-component alloy material containing at least one of Co and Ni and other elements, and as the antiferromagnetic layer, a material containing at least one of Mn, Fe, Co and Ni, or An oxide material containing at least one of Mn, Fe, Co, and Ni, an alloy material containing at least two of Mn, Fe, Co, and Ni, or an alloy containing the alloy material and an oxide An oxide material or a multi-component alloy oxide material containing the alloy oxide material and other elements is used.

更に他の形態の一つは、前記強磁性層として、Fe,FeSiAl,FeAlO,FeN,FeCo,FeCoB,FeCoAlO,FeCoSi,NiFe,CoNiFe,
のいずれかを用いるとともに、前記反強磁性層として、FeMn,MnNi,MnIr,CrMnPt,MnRu,MnRh,MnRuRh,MnIr,MnRu,MnRh,NiMn,PtMn,PdPtMn,NiO,α−Fe,CoO,のいずれかを用いたことを特徴とする。
In another embodiment, as the ferromagnetic layer, Fe, FeSiAl, FeAlO, FeN, FeCo, FeCoB, FeCoAlO, FeCoSi, NiFe, CoNiFe,
Together using either, as the antiferromagnetic layer, FeMn, MnNi, MnIr, CrMnPt , MnRu, MnRh, MnRuRh, Mn 3 Ir, Mn 3 Ru, Mn 3 Rh, NiMn, PtMn, PdPtMn, NiO, α- One of Fe 2 O 3 and CoO is used.

本発明の高周波用磁性デバイスは、前記いずれかの高周波用磁性薄膜を使用したことを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。   The high-frequency magnetic device of the present invention is characterized by using any one of the above-described high-frequency magnetic thin films. The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.

本発明によれば、反強磁性層の厚みを低減するにもかかわらず、強磁性層−反強磁性層間の交換結合が増大し、強磁性共鳴周波数が高くなる。このため、うず電流損失を低減しつつ、良好な高周波特性を得ることができる。   According to the present invention, although the thickness of the antiferromagnetic layer is reduced, the exchange coupling between the ferromagnetic layer and the antiferromagnetic layer is increased, and the ferromagnetic resonance frequency is increased. For this reason, good high frequency characteristics can be obtained while reducing eddy current loss.

以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples.

最初に、図1〜図3を参照しながら、本発明の基本構成を示す実施例1について説明する。図1には、本実施例の積層構造が示されている。同図において、基板10の主面上には、バッファ層12が形成され、その上に、強磁性層14,反強磁性層16が交互にN/2層づつ、全体でN層形成される。別言すれば、強磁性層14と反強磁性層16のバイレイヤー薄膜17がN/2層形成されている。最上層の上には、更に酸化防止用保護膜としてキャップ層18が形成される。基板10としては、その主面上にSiO膜11が形成されたSiウエハが使用される。バッファ層12,キャップ層18としては、例えばCuが使用される。強磁性層14としては、例えばCo70Fe30が使用され、反強磁性層16としては、例えばMnIrが使用される。 First, a first embodiment showing the basic configuration of the present invention will be described with reference to FIGS. FIG. 1 shows the laminated structure of this example. In the figure, a buffer layer 12 is formed on the main surface of a substrate 10, and a ferromagnetic layer 14 and an antiferromagnetic layer 16 are alternately formed in N / 2 layers, and N layers are formed as a whole. . In other words, N / 2 layers of the bilayer thin film 17 of the ferromagnetic layer 14 and the antiferromagnetic layer 16 are formed. A cap layer 18 is further formed on the uppermost layer as an anti-oxidation protective film. As the substrate 10, a Si wafer having a SiO 2 film 11 formed on its main surface is used. For example, Cu is used as the buffer layer 12 and the cap layer 18. For example, Co 70 Fe 30 is used as the ferromagnetic layer 14, and MnIr is used as the antiferromagnetic layer 16, for example.

以上のような強磁性層14と反強磁性層16の交互積層によって得られるバイレイヤー薄膜17の直流磁化曲線は、図2に示すようなシフトが生じることが知られている。図2中、縦軸は磁化M,横軸は磁界Hであり、グラフが全体として−Hの方向にシフトしている。このシフトは、強磁性層14と反強磁性層16の間の交換結合によって生じており、このシフト量が交換バイアス磁界Heとして定義される。   It is known that the direct current magnetization curve of the bilayer thin film 17 obtained by alternately laminating the ferromagnetic layer 14 and the antiferromagnetic layer 16 as described above is shifted as shown in FIG. In FIG. 2, the vertical axis represents the magnetization M and the horizontal axis represents the magnetic field H, and the graph is shifted in the -H direction as a whole. This shift is caused by exchange coupling between the ferromagnetic layer 14 and the antiferromagnetic layer 16, and this shift amount is defined as an exchange bias magnetic field He.

ここで、強磁性層14の厚みtFを一定とした場合、前記交換バイアス磁界Heは、反強磁性層16の厚みtAFに依存し、一般的には図3に示すような振る舞いを示す。同図中、縦軸は交換バイアス磁界He,横軸は反強磁性層16の厚みtAFである。同図に示すように、交換バイアス磁界Heは、反強磁性層16の一定の厚みから急激に上昇してピークに達し、その後は、厚みの増大に伴って多少低下するものの一定以上の値となっている。   Here, when the thickness tF of the ferromagnetic layer 14 is constant, the exchange bias magnetic field He depends on the thickness tAF of the antiferromagnetic layer 16 and generally exhibits the behavior shown in FIG. In the figure, the vertical axis represents the exchange bias magnetic field He, and the horizontal axis represents the thickness tAF of the antiferromagnetic layer 16. As shown in the figure, the exchange bias magnetic field He suddenly rises from a certain thickness of the antiferromagnetic layer 16 to reach a peak, and thereafter decreases slightly as the thickness increases, but is a value above a certain value. It has become.

従来の交換結合を用いた透磁率の高周波化は、一定の交換バイアス磁界Heが生じるピーク以降の領域WBの範囲となるように反強磁性層16の厚みtAFを設定している。これに対し、本実施例では、交換バイアス磁界Heがピーク以前の領域WAの範囲となるように反強磁性層16の厚みtAFを設定している。この領域では、交換バイアス磁界Heは、ピークから急激に低下して零となる。後述する実施例で詳述するように、交換バイアス磁界Heが零の領域でも、強磁性層14と反強磁性層16の間は交換結合しており、この交換結合の効果で強磁性共鳴周波数が高周波化し、GHzオーダーの帯域まで透磁率を確保することができる。また、領域WAは、反強磁性層16の厚みが薄いため、磁性薄膜全体の厚みを抑制することができ、渦電流損失も良好に低減されるようになる。   In conventional high-frequency permeability using exchange coupling, the thickness tAF of the antiferromagnetic layer 16 is set so as to be in the region WB after the peak where a constant exchange bias magnetic field He occurs. On the other hand, in this embodiment, the thickness tAF of the antiferromagnetic layer 16 is set so that the exchange bias magnetic field He is in the area WA before the peak. In this region, the exchange bias magnetic field He suddenly decreases from the peak and becomes zero. As will be described in detail in the examples described later, even in the region where the exchange bias magnetic field He is zero, the ferromagnetic layer 14 and the antiferromagnetic layer 16 are exchange-coupled. Therefore, the magnetic permeability can be secured up to the GHz order band. Further, in the region WA, since the antiferromagnetic layer 16 is thin, the thickness of the entire magnetic thin film can be suppressed, and the eddy current loss can be reduced well.

次に、本発明の実施例2について説明する。本実施例は、反強磁性層16が、上述した図3の領域WAの厚みを有する場合と、領域WBの厚みを有する場合についてそれぞれサンプルを製作し、磁気特性を比較したものである。   Next, a second embodiment of the present invention will be described. In this embodiment, samples are manufactured for the case where the antiferromagnetic layer 16 has the thickness of the region WA in FIG. 3 and the thickness of the region WB, and the magnetic characteristics are compared.

表1には、本実施例のサンプルと、背景技術にかかる比較例のサンプルの諸条件が示されている。材料は両者とも同一であるが、強磁性層14と反強磁性層16の膜厚の条件は、以下の表のように設定した。具体的には、反強磁性層16の厚みを、本実施例は2.5nm,比較例は10nmとし、透磁率の特性がほぼ同じになるように強磁性層14の厚みtF及び積層数Nを調整した。

Figure 0004869111
Table 1 shows various conditions of the sample of this example and the sample of the comparative example according to the background art. The materials are the same for both, but the film thickness conditions of the ferromagnetic layer 14 and the antiferromagnetic layer 16 are set as shown in the following table. Specifically, the thickness of the antiferromagnetic layer 16 is 2.5 nm in this embodiment and 10 nm in the comparative example, and the thickness tF of the ferromagnetic layer 14 and the number N of layers are stacked so that the magnetic permeability characteristics are substantially the same. Adjusted.
Figure 0004869111

以上のような各サンプルにつき、透磁率の周波数依存性を測定したところ、次の図4に示すような結果が得られた。同図中、(A)は本実施例のサンプル,(B)は比較例のサンプルの測定結果をそれぞれ示す。また、図の縦軸は透磁率,横軸は周波数である。これらを比較すれば明らかなように、ほぼ同等の周波数依存性を示している。このように、本実施例によれば、比較例に対して反強磁性層16のトータル膜厚が4分の1以下であるにもかかわらず、ほぼ同等の透磁率が周波数の高帯域側まで得られており、比較例として遜色のない結果となっている。   When the frequency dependence of the magnetic permeability was measured for each sample as described above, the result as shown in FIG. 4 was obtained. In the figure, (A) shows the measurement result of the sample of this example, and (B) shows the measurement result of the sample of the comparative example. In the figure, the vertical axis represents magnetic permeability, and the horizontal axis represents frequency. As is clear by comparing these, almost the same frequency dependence is shown. As described above, according to this example, although the total film thickness of the antiferromagnetic layer 16 is less than or equal to one quarter of that of the comparative example, substantially the same permeability can be obtained up to the high frequency side. As a comparative example, the results are comparable.

次に、本発明の実施例3について説明する。この実施例は、強磁性層14の厚みtFを一定とし、反強磁性層16の厚みtAFを変化させたときの交換結合の強さの変化を調べたものである。前記図1に示した磁性薄膜を、マグネトロンスパッタリングの手法を用いて作製した。強磁性層14としてCo70Fe30を選択し、その厚みtFを50nm一定とした。一方、反強磁性層16としてMnIrを用い、その厚みtAFを0〜20nmと変化させて成膜し、それぞれサンプルを得た。なお、基板10としてはシリコン基板を用い、バッファ層12,キャップ層18としてはCuを用いた。成膜した後に、1kOeの磁場中で1時間熱処理を加えた。なおこのときの熱処理温度は、200℃〜340℃である。 Next, Embodiment 3 of the present invention will be described. In this embodiment, the change in the strength of exchange coupling when the thickness tF of the ferromagnetic layer 14 is constant and the thickness tAF of the antiferromagnetic layer 16 is changed is examined. The magnetic thin film shown in FIG. 1 was produced using a magnetron sputtering technique. Co 70 Fe 30 was selected as the ferromagnetic layer 14 and its thickness tF was kept constant at 50 nm. On the other hand, MnIr was used as the antiferromagnetic layer 16, and the film thickness was changed from 0 to 20 nm to obtain a sample. Note that a silicon substrate was used as the substrate 10, and Cu was used as the buffer layer 12 and the cap layer 18. After film formation, heat treatment was applied for 1 hour in a magnetic field of 1 kOe. In addition, the heat processing temperature at this time is 200 to 340 degreeC.

図5は、強磁性層14と反強磁性層16との間の交換結合の強さJc(縦軸)と、反強磁性層16の膜厚tAF(横軸)の関係のグラフである。同図中、「○」は交換バイアス磁界Heから決定した交換結合の強さJcの値であり、「●」は強磁性共鳴から決定した交換結合の強さJcの値である。これらのグラフを見ると、交換バイアス磁界He(静的磁気特性)から決定した交換結合の強さJcの場合、Jcは反強磁性層膜厚tAFの増加とともに増加し、約5〜7nmで最大となるものの、その後徐々に減少する。なお、便宜上、交換バイアス磁界Heから決定した交換結合の強さJcが最大になる反強磁性層16の厚みtAFを臨界厚みと定義する。   FIG. 5 is a graph showing the relationship between the exchange coupling strength Jc (vertical axis) between the ferromagnetic layer 14 and the antiferromagnetic layer 16 and the film thickness tAF (horizontal axis) of the antiferromagnetic layer 16. In the figure, “◯” is the value of exchange coupling strength Jc determined from the exchange bias magnetic field He, and “●” is the value of exchange coupling strength Jc determined from ferromagnetic resonance. As can be seen from these graphs, in the case of the exchange coupling strength Jc determined from the exchange bias magnetic field He (static magnetic characteristics), Jc increases with an increase in the antiferromagnetic layer thickness tAF, and reaches a maximum at about 5 to 7 nm. However, it gradually decreases after that. For convenience, the thickness tAF of the antiferromagnetic layer 16 at which the exchange coupling strength Jc determined from the exchange bias magnetic field He is maximized is defined as the critical thickness.

これに対し、強磁性共鳴(動的磁気特性)から求めた交換結合の強さJcの場合、前記臨界厚み以下でも反強磁性層16の厚みtAFの低下に伴ってJcの値が増大している(領域WA参照)。このことは、臨界厚み以下でも強磁性層14と反強磁性層16の間には交換結合が存在しており、その強さJcは臨界厚み以下の方が大きいことを示している。   On the other hand, in the case of the exchange coupling strength Jc obtained from ferromagnetic resonance (dynamic magnetic characteristics), the value of Jc increases as the thickness tAF of the antiferromagnetic layer 16 decreases even below the critical thickness. (Refer to area WA). This indicates that exchange coupling exists between the ferromagnetic layer 14 and the antiferromagnetic layer 16 even below the critical thickness, and the strength Jc is larger below the critical thickness.

背景技術の場合、交換バイアス磁界He,すなわち静的磁気特性から決定した交換結合の強さJcが最大となるように反強磁性層16の厚みtAFを調整することが一般的である(領域WB参照)。これに対し、本実施例では、強磁性共鳴,すなわち動的磁気特性から決定した交換結合の強さJcが最大となるように反強磁性層16の厚みtAFを調整している。このように、領域WAにおける大きな強磁性層−反強磁性層間交換結合を利用することで、優れた高周波透磁率特性が得られる。   In the case of the background art, the thickness tAF of the antiferromagnetic layer 16 is generally adjusted so that the exchange bias magnetic field He, that is, the exchange coupling strength Jc determined from the static magnetic characteristics is maximized (region WB). reference). In contrast, in the present embodiment, the thickness tAF of the antiferromagnetic layer 16 is adjusted so that the strength of exchange coupling Jc determined from ferromagnetic resonance, that is, dynamic magnetic characteristics, is maximized. As described above, by using the large ferromagnetic layer-antiferromagnetic interlayer exchange coupling in the region WA, excellent high-frequency permeability characteristics can be obtained.

なお、図5に示すように、背景技術の適用領域WBに対して、本発明の適用領域WAは、反強磁性層16の厚さtAFを減じていった場合に、その厚さが交換バイアス磁界Heから求めた交換結合の強さが減少に転じる領域であり、この範囲で良好な高周波透磁率特性が得られるが、より好ましくは、強磁性共鳴から求めた交換結合の強さが最大となる付近,すなわち交換バイアス磁界が略零の付近となるように、反強磁性層16の厚さtAFを設定すると好都合である。   As shown in FIG. 5, when the thickness tAF of the antiferromagnetic layer 16 is reduced in the application area WA of the present invention with respect to the application area WB of the background art, the thickness is exchange bias. This is a region in which the strength of exchange coupling determined from the magnetic field He starts to decrease, and good high-frequency permeability characteristics can be obtained in this range. More preferably, the strength of exchange coupling determined from ferromagnetic resonance is the maximum. It is convenient to set the thickness tAF of the antiferromagnetic layer 16 so that the exchange bias magnetic field is near zero.

次に、図6を参照しながら、本発明の実施例4について説明する。この実施例は、反強磁性層16の厚みtAFを一定とし、強磁性層14の厚みtFを変化させたときの透磁率の変化を調べたものである。前記実施例と同様に、マグネトロンスパッタリングの手法を用いてサンプルを作製した。反強磁性層16としてMnIrを用い、その厚みtAFを2nm一定とした。一方、強磁性層14としてCo70Fe30を選択し、その厚みtFを100,20,10nmと変化させてそれぞれサンプルを得た。なお、基板10はシリコン,バッファ層12,キャップ層18はCuである。成膜した後、1kOeの磁場中で1時間熱処理を加える点,熱処理温度が200℃〜340℃である点も、前記実施例3と同様である。 Next, Embodiment 4 of the present invention will be described with reference to FIG. In this example, the change in permeability when the thickness tAF of the antiferromagnetic layer 16 is constant and the thickness tF of the ferromagnetic layer 14 is changed is examined. As in the previous example, a sample was prepared using a magnetron sputtering technique. MnIr was used as the antiferromagnetic layer 16 and its thickness tAF was kept constant at 2 nm. On the other hand, Co 70 Fe 30 was selected as the ferromagnetic layer 14, and the thickness tF was changed to 100, 20, and 10 nm to obtain samples. The substrate 10 is silicon, and the buffer layer 12 and the cap layer 18 are Cu. The point that the heat treatment is performed in the magnetic field of 1 kOe for 1 hour after the film formation and the heat treatment temperature is 200 ° C. to 340 ° C. is the same as in Example 3.

図6は、以上のようにして得た各サンプルの透磁率の周波数特性を示したグラフである。同図中、縦軸は透磁率,横軸は周波数,黒印は透磁率の実数部,白印は透磁率の虚数部をそれぞれ示す。また、強磁性層14の厚みtFは、(A)が100nm,(B)が20nm,(C)が10nmである。これらのグラフに示すように、強磁性層厚みtAFが100nmのときは(同図(A)参照)、透磁率が約250,強磁性共鳴周波数が約3.5GHzとなっている。同様に、強磁性層厚みtAFが20nmのときは(同図(B)参照)、透磁率が約100,強磁性共鳴周波数が約6GHzであり、強磁性層厚みtAFが10nmのときは(同図(C)参照)、透磁率が約40,強磁性共鳴周波数が約8GHzという高周波特性が得られた。   FIG. 6 is a graph showing the frequency characteristics of the magnetic permeability of each sample obtained as described above. In the figure, the vertical axis represents the magnetic permeability, the horizontal axis represents the frequency, the black mark represents the real part of the magnetic permeability, and the white mark represents the imaginary part of the magnetic permeability. The thickness tF of the ferromagnetic layer 14 is 100 nm for (A), 20 nm for (B), and 10 nm for (C). As shown in these graphs, when the ferromagnetic layer thickness tAF is 100 nm (see FIG. 1A), the magnetic permeability is about 250 and the ferromagnetic resonance frequency is about 3.5 GHz. Similarly, when the ferromagnetic layer thickness tAF is 20 nm (see FIG. 5B), the magnetic permeability is about 100, the ferromagnetic resonance frequency is about 6 GHz, and when the ferromagnetic layer thickness tAF is 10 nm (same as above). As shown in FIG. 2C, a high frequency characteristic having a magnetic permeability of about 40 and a ferromagnetic resonance frequency of about 8 GHz was obtained.

このように、本実施例によれば、反強磁性層16の厚みtAFがわずか2nmであるにもかかわらず、高周波領域において良好な透磁率が得られている。すなわち、反強磁性層16の厚みtAFが臨界厚み以下であって、かつ、交換バイアス磁界Heから求めた交換結合の強さJcが略零の領域,すなわち交換バイアス磁界が略零の領域を利用することで、反強磁性層16の厚みを抑えて渦電流損失を低減しつつ、良好な高周波特性を得ることができる。   As described above, according to the present example, although the thickness tAF of the antiferromagnetic layer 16 is only 2 nm, good magnetic permeability is obtained in the high frequency region. That is, a region where the thickness tAF of the antiferromagnetic layer 16 is less than the critical thickness and the exchange coupling strength Jc obtained from the exchange bias magnetic field He is substantially zero, that is, a region where the exchange bias magnetic field is substantially zero is used. As a result, it is possible to obtain good high frequency characteristics while suppressing the thickness of the antiferromagnetic layer 16 and reducing eddy current loss.

従来、強磁性−反強磁性バイレイヤー薄膜の強磁性共鳴周波数を高周波化させるためには、静的な交換バイアス磁界の大きい方が有利とされていた。しかし、上述した実施例に示したように、強磁性共鳴周波数の高周波化には強磁性層−反強磁性層間の交換結合がむしろ重要であって、強磁性共鳴周波数の高周波化には、強磁性層−反強磁性層間の交換結合が最大となるように反強磁性層16の厚みを設定することが最も適しており、その領域では静的な交換バイアス磁界が略零であることが見出された。更に、強磁性層−反強磁性層間の交換結合が強くなるため、反強磁性層16のみならず、強磁性層14の厚みも低減することができる。強磁性層14は金属である場合が多く、この金属層を薄くすることで、渦電流による損失を更に低減することができる。   Conventionally, in order to increase the ferromagnetic resonance frequency of a ferromagnetic-antiferromagnetic bilayer thin film, a larger static exchange bias magnetic field has been advantageous. However, as shown in the above-described embodiments, the exchange coupling between the ferromagnetic layer and the antiferromagnetic layer is rather important for increasing the frequency of the ferromagnetic resonance frequency, and strong for increasing the frequency of the ferromagnetic resonance frequency. It is most suitable to set the thickness of the antiferromagnetic layer 16 so that the exchange coupling between the magnetic layer and the antiferromagnetic layer is maximized, and the static exchange bias magnetic field is substantially zero in that region. It was issued. Furthermore, since the exchange coupling between the ferromagnetic layer and the antiferromagnetic layer becomes strong, not only the antiferromagnetic layer 16 but also the thickness of the ferromagnetic layer 14 can be reduced. The ferromagnetic layer 14 is often a metal, and the loss due to eddy current can be further reduced by making the metal layer thin.

なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のものも含まれる。
(1)前記実施例に示した材料,形状,寸法は一例であり、同様の効果を奏するように適宜変更可能である。例えば、前記実施例では、強磁性層14としてCo70Fe30を使用し、反強磁性層16としてMnIrを用いたが、適宜材料を選択してよい。
例えば、以下のような材料が考えられる。
a,強磁性層14:Fe,Co,Niのうちの少なくとも1種を含む材料,あるいは、Fe,Co,Niのうちの少なくとも2種を含む合金材料,あるいは、Fe,Co,Niのうちの少なくとも1種とその他の元素を含む多元系合金材料,例えば、Fe,FeSiAl,FeAlO,FeN,FeCo,FeCoB,FeCoAlO,FeCoSi,NiFe,CoNiFeなど,
b,反強磁性層16:Mn,Fe,Co,Niのうちの少なくとも1種を含む材料,あるいは、Mn,Fe,Co,Niのうちの少なくとも1種を含む酸化物材料,あるいは、Mn,Fe,Co,Niのうちの少なくとも2種を含む合金材料,あるいは、該合金材料と酸化物を含む合金酸化物材料,あるいは、前記合金酸化物材料とその他の元素を含む多元系合金酸化物材料,例えば、FeMn,MnNi,MnIr,CrMnPt,MnRu,MnRh,MnRuRh,MnIr,MnRu,MnRh,NiMn,PtMn,PdPtMn,NiO,α−Fe,CoOなど,
(2)強磁性層14の材料と反強磁性層16の材料の組み合わせにも、格別の制限はない。なお、図5で示した臨界厚みは、選択する強磁性層14の材料及び厚みtF,及び反強磁性層16の材料で異なる。
(3)本発明の高周波用磁性薄膜は、各種の高周波用磁性デバイスに適用してよい。例えば、高周波インダクタ、トランス、アンテナなどに適用可能である。具体的には、本発明の積層膜と導体コイルを有する高周波用プレーナインダクタ,本発明の積層膜と導体ラインを有する伝送線路,本発明の積層膜の強磁性共鳴を用いた高周波フィルタ,本発明の積層膜と金属筐体を有する高周波用アンテナ,などへの適用が可能である。図7には、一例が示されており、図1に示した高周波用磁性薄膜50の主面上にSiO膜20を介して渦巻き状の導体パターン30が形成されており、これによって高周波用のインダクタが構成されている。
(4)前記実施例では、動的磁気特性から決定した交換結合の強さJcが最大となるように反強磁性層16の厚みtAFを調整したが、最大付近であれば、実用的には差し支えない。
In addition, this invention is not limited to the Example mentioned above, A various change can be added in the range which does not deviate from the summary of this invention. For example, the following are also included.
(1) The materials, shapes, and dimensions shown in the above embodiments are merely examples, and can be appropriately changed so as to achieve the same effect. For example, in the above embodiment, Co 70 Fe 30 is used as the ferromagnetic layer 14 and MnIr is used as the antiferromagnetic layer 16, but the material may be appropriately selected.
For example, the following materials can be considered.
a, ferromagnetic layer 14: a material containing at least one of Fe, Co and Ni, an alloy material containing at least two of Fe, Co and Ni, or of Fe, Co and Ni Multi-component alloy materials containing at least one kind and other elements, such as Fe, FeSiAl, FeAlO, FeN, FeCo, FeCoB, FeCoAlO, FeCoSi, NiFe, CoNiFe, etc.
b, antiferromagnetic layer 16: a material containing at least one of Mn, Fe, Co and Ni, an oxide material containing at least one of Mn, Fe, Co and Ni, or Mn, Alloy material containing at least two of Fe, Co, Ni, alloy oxide material containing the alloy material and oxide, or multi-component alloy oxide material containing the alloy oxide material and other elements , for example, FeMn, MnNi, MnIr, CrMnPt , MnRu, MnRh, MnRuRh, Mn 3 Ir, Mn 3 Ru, Mn 3 Rh, NiMn, PtMn, PdPtMn, NiO, α-Fe 2 O 3, CoO , etc.,
(2) The combination of the material of the ferromagnetic layer 14 and the material of the antiferromagnetic layer 16 is not particularly limited. The critical thickness shown in FIG. 5 differs depending on the material and thickness tF of the selected ferromagnetic layer 14 and the antiferromagnetic layer 16.
(3) The high-frequency magnetic thin film of the present invention may be applied to various high-frequency magnetic devices. For example, it can be applied to a high frequency inductor, a transformer, an antenna, and the like. Specifically, the planar inductor for high frequency having the multilayer film and the conductor coil of the present invention, the transmission line having the multilayer film and the conductor line of the present invention, the high frequency filter using the ferromagnetic resonance of the multilayer film of the present invention, and the present invention. It can be applied to a high-frequency antenna having a laminated film and a metal casing. Figure 7 is an example is shown, and spiral conductor pattern 30 through the SiO 2 film 20 is formed on the main surface of the magnetic thin film for high frequencies 50 shown in FIG. 1, whereby the high-frequency The inductor is configured.
(4) In the above embodiment, the thickness tAF of the antiferromagnetic layer 16 is adjusted so that the exchange coupling strength Jc determined from the dynamic magnetic characteristics is maximized. There is no problem.

本発明によれば、渦電流損失を低減しつつ良好な高周波特性が得られるので、特にGHzオーダーの周波数帯域における高周波デバイスに好適である。   According to the present invention, good high frequency characteristics can be obtained while reducing eddy current loss, and therefore, it is particularly suitable for a high frequency device in a frequency band of the GHz order.

本発明の実施例1の高周波用磁性薄膜の積層構成を示す主要断面図である。It is principal sectional drawing which shows the laminated structure of the high frequency magnetic thin film of Example 1 of this invention. 前記実施例の1の磁性薄膜の直流磁化曲線を示すグラフである。It is a graph which shows the direct current | flow magnetization curve of the magnetic thin film of 1 of the said Example. 前記実施例1における交換バイアス磁界Heと反強磁性層16の厚みtAFとの関係を示すグラフである。6 is a graph showing the relationship between the exchange bias magnetic field He and the thickness tAF of the antiferromagnetic layer 16 in Example 1. 本発明の実施例2におけるサンプルと背景技術のサンプルの透磁率を比較して示すグラフである。It is a graph which compares and shows the magnetic permeability of the sample in Example 2 of this invention, and the sample of background art. 本発明の実施例3における交換結合の強さJcと反強磁性層16の厚みtAFの関係を示すグラフである。It is a graph which shows the relationship between the strength Jc of the exchange coupling in Example 3 of this invention, and the thickness tAF of the antiferromagnetic layer 16. FIG. 本発明の実施例4における強磁性層14の厚みtFを変化させたときの透磁率の周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the magnetic permeability when the thickness tF of the ferromagnetic layer 14 in Example 4 of this invention is changed. 本発明の高周波用磁性薄膜を適用したデバイスの一例を示す斜視図である。It is a perspective view which shows an example of the device to which the magnetic thin film for high frequencies of this invention is applied.

符号の説明Explanation of symbols

10:基板
11:SiO
12:バッファ層
14:強磁性層
16:反強磁性層
17:バイレイヤー薄膜
18:キャップ層
20:SiO
30:導体パターン
50:高周波用磁性薄膜
H:磁界
He:交換バイアス磁界
M:磁化
N:積層数
tF:強磁性層の厚み
tAF:反強磁性層の厚み
WA,WB:膜厚の領域
10: substrate 11: SiO 2 film 12: buffer layer 14: ferromagnetic layer 16: antiferromagnetic layer 17: bilayer thin film 18: cap layer 20: SiO 2 film 30: conductor pattern 50: magnetic thin film for high frequency H: magnetic field He: exchange bias magnetic field M: magnetization N: number of stacked layers tF: ferromagnetic layer thickness tAF: antiferromagnetic layer thickness WA, WB: film thickness region

Claims (5)

強磁性層と反強磁性層を積層した積層膜を有する高周波用磁性薄膜において、
前記反強磁性層の厚さを減じていった場合に、静的磁気特性で求めた交換バイアス磁界ないし交換結合の強さが略零となるように、前記反強磁性層の厚さを設定したことを特徴とする高周波用磁性薄膜。
In a high-frequency magnetic thin film having a laminated film in which a ferromagnetic layer and an antiferromagnetic layer are laminated,
When the thickness of the antiferromagnetic layer is reduced, the thickness of the antiferromagnetic layer is set so that the exchange bias magnetic field or exchange coupling strength obtained from the static magnetic characteristics is substantially zero. A high-frequency magnetic thin film characterized by
前記強磁性層としてCo70Fe30を用いるとともに、前記反強磁性層としてMnIrを用いる場合、MnIr層の一層の厚みを5nm以下としたことを特徴とする請求項1記載の高周波用磁性薄膜。 With use of Co 70 Fe 30 as the ferromagnetic layer, said anti when the ferromagnetic layer using MnIr as, high frequency magnetic thin film according to claim 1 Symbol mounting, characterized in that the further thickness of MnIr layer 5nm or less . 前記強磁性層として、
Fe,Co,Niのうちの少なくとも1種を含む材料,あるいは、
Fe,Co,Niのうちの少なくとも2種を含む合金材料,あるいは、
Fe,Co,Niのうちの少なくとも1種とその他の元素を含む多元系合金材料,
を用いるとともに、
前記反強磁性層として、
Mn,Fe,Co,Niのうちの少なくとも1種を含む材料,あるいは、
Mn,Fe,Co,Niのうちの少なくとも1種を含む酸化物材料,あるいは、
Mn,Fe,Co,Niのうちの少なくとも2種を含む合金材料,あるいは、
該合金材料と酸化物を含む合金酸化物材料,あるいは、
前記合金酸化物材料とその他の元素を含む多元系合金酸化物材料,
を用いたことを特徴とする請求項1又は2に記載の高周波用磁性薄膜。
As the ferromagnetic layer,
A material containing at least one of Fe, Co and Ni, or
An alloy material containing at least two of Fe, Co and Ni, or
A multi-component alloy material containing at least one of Fe, Co, and Ni and other elements;
And using
As the antiferromagnetic layer,
A material containing at least one of Mn, Fe, Co, Ni, or
An oxide material containing at least one of Mn, Fe, Co, Ni, or
An alloy material containing at least two of Mn, Fe, Co and Ni, or
An alloy oxide material containing the alloy material and an oxide, or
A multi-component alloy oxide material containing the alloy oxide material and other elements;
The magnetic thin film for high frequency according to claim 1 or 2 , wherein
前記強磁性層として、
Fe,FeSiAl,FeAlO,FeN,FeCo,FeCoB,FeCoAlO,FeCoSi,NiFe,CoNiFe,
のいずれかを用いるとともに、
前記反強磁性層として、
FeMn,MnNi,MnIr,CrMnPt,MnRu,MnRh,MnRuRh,MnIr,MnRu,MnRh,NiMn,PtMn,PdPtMn,NiO,α−Fe,CoO,
のいずれかを用いたことを特徴とする請求項記載の高周波用磁性薄膜。
As the ferromagnetic layer,
Fe, FeSiAl, FeAlO, FeN, FeCo, FeCoB, FeCoAlO, FeCoSi, NiFe, CoNiFe,
And using either
As the antiferromagnetic layer,
FeMn, MnNi, MnIr, CrMnPt, MnRu, MnRh, MnRuRh, Mn 3 Ir, Mn 3 Ru, Mn 3 Rh, NiMn, PtMn, PdPtMn, NiO, α-Fe 2 O 3, CoO,
4. The magnetic thin film for high frequency according to claim 3 , wherein any one of the above is used.
請求項1〜のいずれかに記載した高周波用磁性薄膜を使用したことを特徴とする高周波用磁性デバイス。 High-frequency magnetic device, characterized in that using the high frequency magnetic thin film as claimed in any one of claims 1-4.
JP2007061111A 2007-03-09 2007-03-09 High-frequency magnetic thin film and high-frequency magnetic device using the same Expired - Fee Related JP4869111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061111A JP4869111B2 (en) 2007-03-09 2007-03-09 High-frequency magnetic thin film and high-frequency magnetic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007061111A JP4869111B2 (en) 2007-03-09 2007-03-09 High-frequency magnetic thin film and high-frequency magnetic device using the same

Publications (2)

Publication Number Publication Date
JP2008227024A JP2008227024A (en) 2008-09-25
JP4869111B2 true JP4869111B2 (en) 2012-02-08

Family

ID=39845314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061111A Expired - Fee Related JP4869111B2 (en) 2007-03-09 2007-03-09 High-frequency magnetic thin film and high-frequency magnetic device using the same

Country Status (1)

Country Link
JP (1) JP4869111B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817501B2 (en) * 1991-09-18 1998-10-30 株式会社日立製作所 Magnetic disk drive and magnetic head used therefor
JP3441328B2 (en) * 1997-02-04 2003-09-02 株式会社東芝 Planar inductance element
JP4028050B2 (en) * 1997-11-06 2007-12-26 アルプス電気株式会社 Magnetoresistive film and method of manufacturing
JP4263802B2 (en) * 1998-03-17 2009-05-13 株式会社東芝 Magnetic core, magnetic sensor, and magnetic recording head
JP4039656B2 (en) * 2001-03-28 2008-01-30 高橋 研 Exchange coupling element and method of manufacturing exchange coupling element
JP2003257739A (en) * 2002-02-28 2003-09-12 Koa Corp High-frequency device
JP4453479B2 (en) * 2004-08-06 2010-04-21 Tdk株式会社 Exchange coupling type soft magnetic material

Also Published As

Publication number Publication date
JP2008227024A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP3971697B2 (en) High-frequency magnetic thin film and magnetic element
Xiao et al. Giant magnetoimpedance and domain structure in FeCuNbSiB films and sandwiched films
JP5546895B2 (en) Semiconductor device and manufacturing method thereof
Ikeda et al. Multilayer nanogranular magnetic thin films for GHz applications
US6346336B1 (en) Soft magnetic film soft magnetic multilayer film method of manufacturing the same and magnetic device
JP4773254B2 (en) High frequency magnetic thin film and high frequency electronic device
JPH09199325A (en) Multilayered structure, sensor and its manufacture
JP2002158112A (en) Fine element of type such as minute inductor and minute transformer
EP1361586A1 (en) Granular thin magnetic film and method of manufacturing the film, laminated magnetic film, magnetic part, and electronic device
US20060068228A1 (en) Laminated magnetic thin film and method of manufacturing the same
CN112216469B (en) Magnetic laminate, magnetic structure comprising same, electronic component comprising laminate or structure, and method for producing magnetic laminate
KR100203525B1 (en) Soft magnetic alloy for high frrequency and flat magnetic element, antenna and radio wave absorber using the same
JPH06338410A (en) Soft magnetic multilayer film and magnetic head
Ohnuma et al. Metal–insulator type nano-granular soft magnetic thin films investigations on mechanism and applications
JP4869111B2 (en) High-frequency magnetic thin film and high-frequency magnetic device using the same
WO2009145130A1 (en) Magnetic sheet and method for manufacturing the same
KR100742555B1 (en) Magnetic thin film for high frequency and its production method, and magnetic element
WO2005027154A1 (en) Magnetic thin film for high frequency, method for manufacturing the same, and magnetic element
CN101486262A (en) Thin film material for inhibiting electromagnetic noise
Zuo et al. Soft magnetic properties and high-frequency characteristics in FeCoSi/native-oxide multilayer films
Shin et al. Effect of magnetic anisotropy on the current capability of thin film inductor
Frommberger et al. High-frequency magnetic properties of FeCoBSi/SiO/sub 2/and (FeCo/CoB)/SiO/sub 2/multilayer thin films
Shintaku et al. Effect of Additives and Underlayers on the Soft Magnetic Properties of High-Bs Fe-Co Films
JPH10289821A (en) Magnetic device for high-frequency band use
JPH0547555A (en) Amorphous soft magnetic thin film and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

LAPS Cancellation because of no payment of annual fees
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370