JP4868310B2 - Photocurrent sensor - Google Patents

Photocurrent sensor Download PDF

Info

Publication number
JP4868310B2
JP4868310B2 JP2006321810A JP2006321810A JP4868310B2 JP 4868310 B2 JP4868310 B2 JP 4868310B2 JP 2006321810 A JP2006321810 A JP 2006321810A JP 2006321810 A JP2006321810 A JP 2006321810A JP 4868310 B2 JP4868310 B2 JP 4868310B2
Authority
JP
Japan
Prior art keywords
light
polarization
optical
polarization plane
photocurrent sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006321810A
Other languages
Japanese (ja)
Other versions
JP2008134183A (en
Inventor
良博 今野
勝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd, Adamant Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2006321810A priority Critical patent/JP4868310B2/en
Publication of JP2008134183A publication Critical patent/JP2008134183A/en
Application granted granted Critical
Publication of JP4868310B2 publication Critical patent/JP4868310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ファラデー効果を利用した光電流センサに関し、特に、光ファイバを用いる光電流センサにおいて、光電流センサの一端側から光を入射して、他端側で反射させる反射型の光電流センサの改良に関するものである。   The present invention relates to a photocurrent sensor using the Faraday effect, and in particular, in a photocurrent sensor using an optical fiber, a reflection type photocurrent sensor that makes light incident from one end side of the photocurrent sensor and reflects it at the other end side. It is about improvement.

光の偏光面が磁界の作用により回転するファラデー効果を利用した光電流センサが知られており、このような光電流センサにおいては、電磁雑音の影響を受けないといった利点があるため、例えば、ガス絶縁式の開閉装置内での電流の測定等に利用されている。   A photocurrent sensor using the Faraday effect in which the plane of polarization of light rotates by the action of a magnetic field is known, and such a photocurrent sensor has an advantage that it is not affected by electromagnetic noise. It is used for measuring current in an insulated switchgear.

種々の光電流センサが存在するが、このうち光ファイバをセンサ部として、被測定電流が流れている導体の外周に周回させる型式のものが出願されている(例えば、特許文献1参照)。   There are various types of photocurrent sensors. Among these, a type has been filed in which an optical fiber is used as a sensor section and is wound around the outer circumference of a conductor through which a current to be measured flows (see, for example, Patent Document 1).

特開平10−319051号公報(第3−6頁、第1図)Japanese Patent Laid-Open No. 10-319051 (page 3-6, FIG. 1)

図24に示すように、特許文献1の光電流センサ100は、被測定電流が流れている導体101の外周に周回設置された光ファイバ102を有していて、光ファイバ102の一端側から入射させた直線偏光を他端側で反射させた際に、被測定電流の磁界で回転する直線偏光のファラデー回転角を測定することを基本原理としている。光ファイバ102の一端側には、第1の非相反偏光面回転素子(第1強磁性ファラデー回転子)103と、第1の複屈折素子(第1方解石)104が設けられている。非相反偏光面回転素子103は、直線偏光の偏光面を22.5度回転させる光透過型のものである。
As shown in FIG. 24, the photocurrent sensor 100 of Patent Document 1 has an optical fiber 102 installed around the conductor 101 through which the current to be measured flows, and is incident from one end side of the optical fiber 102. The basic principle is to measure the Faraday rotation angle of linearly polarized light that is rotated by the magnetic field of the current to be measured when the linearly polarized light is reflected at the other end. A first nonreciprocal polarization plane rotating element (first ferromagnetic Faraday rotator) 103 and a first birefringent element (first calcite) 104 are provided on one end side of the optical fiber 102. The non-reciprocal polarization plane rotation element 103 is a light transmission type that rotates the polarization plane of linearly polarized light by 22.5 degrees.

第1の複屈折素子103の入射側には、プリズム105と、偏光面保存光ファイバ106の一端側とが配置されている。偏光面保存光ファイバ106の他端側は、第2の非相反偏光面回転素子(第2強磁性ファラデー回転子)107の光軸上に配置されている。第2の非相反偏光面回転素子107は、直線偏光の偏光面を45度回転させる。第2の非相反偏光面回転素子107の入射側には、第2の複屈折素子(第2方解石)108が配置されている。   On the incident side of the first birefringent element 103, a prism 105 and one end side of the polarization plane preserving optical fiber 106 are arranged. The other end side of the polarization plane preserving optical fiber 106 is disposed on the optical axis of the second nonreciprocal polarization plane rotation element (second ferromagnetic Faraday rotator) 107. The second nonreciprocal polarization plane rotation element 107 rotates the polarization plane of linearly polarized light by 45 degrees. On the incident side of the second nonreciprocal polarization plane rotation element 107, a second birefringence element (second calcite) 108 is disposed.

更に、偏光面保存光ファイバ109の他端側は、光源110に接続されている。光源110から出射される光は、図示省略の偏光子などを透過させることにより、直線偏光の入射光が偏光面保存光ファイバ109に入射する。なお、符号111で示した部品は、2つの受光器(光電変換素子)112,113から出力される各電気信号の、直流成分と交流成分との比を掛け合わせることにより変調度の和を求めるという演算処理を行う演算処理装置である(このような演算処理を行う演算処理装置を、割り算回路と云う)。   Furthermore, the other end side of the polarization plane preserving optical fiber 109 is connected to the light source 110. The light emitted from the light source 110 is transmitted through a polarizer (not shown), so that linearly polarized incident light enters the polarization plane preserving optical fiber 109. The component denoted by reference numeral 111 calculates the sum of the modulation factors by multiplying the ratio of the direct current component to the alternating current component of each electrical signal output from the two light receivers (photoelectric conversion elements) 112 and 113. (The arithmetic processing device that performs such arithmetic processing is referred to as a division circuit).

以上のように構成された光電流センサ100では、光源110から伝搬された直線偏光を偏光面保存光ファイバ109により偏光状態を維持した状態で、第2の複屈折素子108に入射し、複屈折を起こすことなくこれを透過して、第2の非相反偏光面回転素子107に入射する。第2の非相反偏光面回転素子107に入射した直線偏光の偏光面は45度回転されて偏光面保存光ファイバ106に入射し、この偏光状態を維持して、第1の複屈折素子104に入射され、複屈折を起こすことなくこれを透過して、第1の非相反偏光面回転素子103に入射される。   In the photocurrent sensor 100 configured as described above, the linearly polarized light propagated from the light source 110 is incident on the second birefringent element 108 in a state where the polarization state is maintained by the polarization plane preserving optical fiber 109, and birefringence is achieved. Then, the light is transmitted through the second non-reciprocal polarization plane rotation element 107 without causing any incident. The polarization plane of the linearly polarized light incident on the second nonreciprocal polarization plane rotation element 107 is rotated 45 degrees and incident on the polarization plane preserving optical fiber 106, and this polarization state is maintained, and the first birefringence element 104 is maintained. Incident light is transmitted therethrough without causing birefringence, and is incident on the first nonreciprocal polarization plane rotating element 103.

第1の非相反偏光面回転素子103に入射した直線偏光の偏光面は更に22.5度回転されて光ファイバ102に入射し、導体101の外周を廻って反射ミラー114で反射し、その反射光が、再び第1の非相反偏光面回転素子103に入射される。   The polarization plane of the linearly polarized light that has entered the first nonreciprocal polarization plane rotating element 103 is further rotated by 22.5 degrees, enters the optical fiber 102, is reflected by the reflecting mirror 114 around the outer periphery of the conductor 101, and the reflected light is reflected. Then, it enters the first nonreciprocal polarization plane rotation element 103 again.

反射光は、第1の非相反偏光面回転素子103で偏光面が22.5度回転されて第1の複屈折素子104に入射する。この結果、第1の複屈折素子104に入射する反射光Loutは、被測定電流によるファラデー回転角を除くと、第1の非相反偏光面回転素子103に入射する前の直線偏光Linの偏光面から合計45度回転したことになる。このため、反射光Loutは、第1の複屈折素子104を透過する際に複屈折を起こし、強度が1/2ずつの反射光Lout1と同反射光Lout2とに分離される。   The reflected light is incident on the first birefringence element 104 with the polarization plane rotated by 22.5 degrees by the first nonreciprocal polarization plane rotation element 103. As a result, the reflected light Lout incident on the first birefringent element 104 is the polarization plane of the linearly polarized light Lin before entering the first nonreciprocal polarization plane rotating element 103, excluding the Faraday rotation angle due to the current to be measured. It has been rotated 45 degrees in total. For this reason, the reflected light Lout undergoes birefringence when passing through the first birefringent element 104, and is separated into reflected light Lout1 and reflected light Lout2 each having an intensity of 1/2.

分離された一方の反射光Lout1は、プリズム105およびマルチモード光ファイバ115を介して、受光素子112に入射して電気信号に変換され、その出力信号が演算処理装置111に入力する。一方の反射光Lout2は、偏光面保存光ファイバ106を介して、第2の非相反偏光面回転素子107に入射して再び45度偏光面が回転して、第2の複屈折素子108に入射する。   One separated reflected light Lout1 enters the light receiving element 112 via the prism 105 and the multimode optical fiber 115, is converted into an electric signal, and the output signal is input to the arithmetic processing unit 111. One reflected light Lout2 is incident on the second non-reciprocal polarization plane rotation element 107 via the polarization plane preserving optical fiber 106, and the polarization plane is rotated again by 45 degrees, and is incident on the second birefringence element 108. To do.

この結果、第2の複屈折素子108に入射する反射光Lout2は、被測定電流によるファラデー回転角を除くと、直線偏波光Linの偏光面から合計90度回転したことになる。このため、反射光Lout2は、第2の複屈折素子108を透過する際に複屈折を起こし、その全部がプリズム116側に向かう。プリズム116を透過した反射光Lout2は、マルチモード光ファイバ117を介して、受光器113に入射して電気信号に変換され、その出力信号が演算処理装置111に入力される。   As a result, the reflected light Lout2 incident on the second birefringent element 108 is rotated by a total of 90 degrees from the polarization plane of the linearly polarized light Lin, excluding the Faraday rotation angle due to the current to be measured. For this reason, the reflected light Lout2 causes birefringence when passing through the second birefringent element 108, and all of it is directed toward the prism 116 side. The reflected light Lout2 that has passed through the prism 116 enters the light receiver 113 via the multimode optical fiber 117, is converted into an electrical signal, and the output signal is input to the arithmetic processing unit 111.

その後、受光器112,113からの出力信号を受けた演算処理装置111で所定の信号処理を行うことにより被測定電流の大きさが求められる。光電流センサ100では、2つの非相反偏光面回転素子103,107のファラデー回転能に温度依存性があっても、2つの信号の変調度の和をシステムの出力とする信号処理を行うことにより、その影響を小さくすることができると説明されている。   Thereafter, the magnitude of the current to be measured is obtained by performing predetermined signal processing in the arithmetic processing unit 111 that has received the output signals from the light receivers 112 and 113. In the photocurrent sensor 100, even if the Faraday rotation ability of the two non-reciprocal polarization plane rotating elements 103 and 107 has temperature dependency, signal processing is performed by using the sum of the modulation degrees of the two signals as the system output. It is explained that the influence can be reduced.

しかしながら、上述したように光電流センサ100では2つの非相反偏光面回転素子103,107に温度依存性が存在するため、2つの信号の変調度の和をシステムの出力とする信号処理を行っても、温度依存性の影響を完全に解消することは出来ない。従って、光電流センサ全体の温度依存性が解消されないので、何らかの温度補償装置が必要であった。
However, as described above, in the photocurrent sensor 100, the two non-reciprocal polarization plane rotating elements 103 and 107 have temperature dependency, so that signal processing is performed with the sum of the modulation degrees of the two signals as the system output. However, the effect of temperature dependence cannot be completely eliminated. Therefore, since the temperature dependence of the entire photocurrent sensor is not eliminated, some kind of temperature compensation device is required.

更に、光源からの入射光を直線偏光に変換して伝搬しているので、光電流センサ100全体の光学系に偏光依存性が存在する。従って、偏光面保存光ファイバ106,109を使用しなければならないが、偏光面保存光ファイバの構造上、長距離の光伝搬では伝搬損失が大きくなってしまう。よって、光電流センサの長距離対応への要求があっても、実現することは不可能であった。   Furthermore, since the incident light from the light source is converted into linearly polarized light and propagated, the entire optical system of the photocurrent sensor 100 has polarization dependency. Accordingly, the polarization plane preserving optical fibers 106 and 109 must be used. However, due to the structure of the polarization plane preserving optical fiber, propagation loss becomes large in long-distance light propagation. Therefore, even if there is a request for long distance correspondence of the photocurrent sensor, it was impossible to realize it.

又、光電流センサ100に使用する割り算回路は高周波で動作させることが難しく、仮に高周波化しようとすると演算処理装置がコスト高になってしまう。このため、光電流センサ100全体の動作を高速化することが困難であった。   In addition, it is difficult to operate the dividing circuit used for the photocurrent sensor 100 at a high frequency, and if an attempt is made to increase the frequency, the arithmetic processing unit becomes expensive. For this reason, it is difficult to speed up the operation of the entire photocurrent sensor 100.

本発明は、上記各課題に鑑みて成されたものであり、その目的は、何らかの温度補償装置を装備することなく温度補償を可能とし、偏光無依存性で、且つ、演算処理を行う演算処理装置の簡略化と高速化が実現可能であると共に、光源の安定動作が可能な光電流センサを提供することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to perform temperature compensation without providing any temperature compensation device, and perform computation processing that is polarization-independent and performs computation processing. It is an object of the present invention to provide a photocurrent sensor capable of realizing simplification and high speed of the apparatus and capable of stably operating a light source.

本発明の請求項1記載の発明は、電流が流れる導体の周りを周回するように配した光ファイバと、光源と受光器とを有する光電変換部とを備え、前記光源からの入射光を光ファイバ内に伝搬させ、光ファイバ内の伝搬光に生じるファラデー効果を利用して前記導体に流れる電流を計測する光電流センサにおいて、
少なくとも2つ以上の複屈折素子と、回転角が45度と22.5度の2つの非相反偏光面回転素子と、偏光面回転素子とを有する光回路部を備え、
前記光電変換部側から、前記偏光面回転素子,一方の前記複屈折素子,前記回転角が45度の前記非相反偏光面回転素子,他の前記複屈折素子,前記回転角が22.5度の前記非相反偏光面回転素子の順に配置し、
前記光ファイバを2本、前記導体の周りに互いに逆回りとなるように配すると共に、前記光源からの入射光を前記光回路部によって2つの偏光成分に分離して、各偏光成分別に各光ファイバ内に伝搬させ、伝搬後に前記光ファイバから出射された前記各偏光成分を、前記複屈折素子によって常光線と異常光線とに分離することによって、前記入射光を4つの偏光成分に分離し、
更に、前記入射光を前記4つの偏光成分に分離させた前記複屈折素子において常光線である偏光成分どうし又は異常光線である偏光成分どうしを結合させ、その結合光を検出光として前記受光器で受光することを特徴とする光電流センサである。
The invention according to claim 1 of the present invention comprises an optical fiber arranged to circulate around a conductor through which a current flows, and a photoelectric conversion unit having a light source and a light receiver, and receives incident light from the light source. In a photocurrent sensor that propagates in a fiber and measures the current flowing in the conductor using the Faraday effect generated in the propagation light in the optical fiber,
An optical circuit unit including at least two birefringent elements, two non-reciprocal polarization plane rotation elements having rotation angles of 45 degrees and 22.5 degrees, and a polarization plane rotation element;
From the photoelectric conversion unit side, the polarization plane rotation element, one of the birefringence elements, the non-reciprocal polarization plane rotation element having a rotation angle of 45 degrees, the other birefringence element, and the rotation angle of 22.5 degrees Arrange in the order of non-reciprocal polarization plane rotation element,
Two optical fibers are arranged around the conductors so as to be opposite to each other, and incident light from the light source is separated into two polarization components by the optical circuit unit, and each light component is separated by each polarization component. Separating the incident light into four polarization components by propagating into the fiber and separating each polarization component emitted from the optical fiber after propagation into ordinary and extraordinary rays by the birefringence element;
Further, in the birefringent element in which the incident light is separated into the four polarized light components, polarized light components that are ordinary rays or polarized light components that are extraordinary rays are combined, and the combined light is detected by the receiver as detection light. It is a photocurrent sensor characterized by receiving light.

更に、本発明の請求項2記載の発明は、前記受光器の個数が1つであることを特徴とする光電流センサである。   The invention according to claim 2 of the present invention is the photocurrent sensor characterized in that the number of the light receivers is one.

更に、本発明の請求項3記載の発明は、前記検出光を受光して前記受光器から出力された電気信号を、受光器の出力側に接続したフィルタによって直流成分と交流成分とに分岐し、直流成分のみを前記光源にフィードバックして前記光源を動作させることを特徴とする光電流センサである。   Further, according to a third aspect of the present invention, the electrical signal output from the light receiver upon receiving the detection light is branched into a direct current component and an alternating current component by a filter connected to the output side of the light receiver. The photocurrent sensor operates the light source by feeding back only the direct current component to the light source.

更に、本発明の請求項4記載の発明は、前記光源から前記光ファイバに至る光路上に、少なくとも2つの前記複屈折素子を配置し、2つの前記複屈折素子における各異常光線のシフト量が互いに等しくなるように、各複屈折素子を構成することを特徴とする、請求項1乃至3の何れかに記載の光電流センサである。   Furthermore, in the invention according to claim 4 of the present invention, at least two birefringent elements are arranged on an optical path from the light source to the optical fiber, and the shift amount of each extraordinary ray in the two birefringent elements is 4. The photocurrent sensor according to claim 1, wherein each of the birefringent elements is configured to be equal to each other.

本発明の請求項1記載の光電流センサに依れば、光源から出力された光を4つの偏光成分に分離し、常光線どうし又は異常光線どうしを結合させて検出光とし、その検出光を受光器で検出する。これにより、被測定電流の磁界による回転角に、非相反偏光面回転素子の温度依存性に起因した角度ずれが発生したとしても、温度補償を行うことが可能となる。従って、別途、光電流センサに温度補償装置を設ける必要が無くなるので、光電流センサの小型化・簡略化・低コスト化を図ることが可能となる。   According to the photocurrent sensor of the first aspect of the present invention, the light output from the light source is separated into four polarization components, and the ordinary light or the extraordinary light is combined into detection light, and the detection light is Detect with receiver. As a result, even if an angle shift due to the temperature dependence of the nonreciprocal polarization plane rotation element occurs in the rotation angle of the current to be measured due to the magnetic field, temperature compensation can be performed. Accordingly, it is not necessary to separately provide a temperature compensation device for the photocurrent sensor, and thus the photocurrent sensor can be reduced in size, simplified, and reduced in cost.

更に、光源から無偏光の光を入射させても光電流センサを動作させられるので、偏光面保存光ファイバを使用せずに光電流センサを構成することができ、光電流センサの長距離対応の要求を実現することが可能となる。   Furthermore, since the photocurrent sensor can be operated even when non-polarized light is incident from the light source, the photocurrent sensor can be configured without using the polarization plane preserving optical fiber, and the photocurrent sensor can be used for a long distance. The request can be realized.

又、本発明の請求項2記載の光電流センサに依れば、光電流センサの演算処理装置の受光器を1個で構成することにより、演算処理装置の簡略化と、演算動作の高速化が可能となる。   According to the photocurrent sensor of claim 2 of the present invention, it is possible to simplify the arithmetic processing device and speed up the arithmetic operation by configuring the photocurrent sensor arithmetic processing device with a single light receiver. Is possible.

更に、本発明の請求項3記載の光電流センサに依れば、演算動作の高速化を確立した上で、光源から出力した光を受光器で検出し、その検出光の直流成分の電気信号を光源にフィードバックさせることによって、光源を安定して動作させることが可能となる。よって、光電流センサの測定精度の悪化を防止することが出来る。   Furthermore, according to the photocurrent sensor according to claim 3 of the present invention, the speed of the calculation operation is established, the light output from the light source is detected by the light receiver, and the electrical signal of the DC component of the detected light is detected. Is fed back to the light source, so that the light source can be stably operated. Therefore, deterioration of the measurement accuracy of the photocurrent sensor can be prevented.

更に、本発明の請求項4記載の光電流センサに依れば、順方向における2つの偏光成分のシフト量を同一にすることで、光回路部での順方向の光路の損失変動を解消することができ、光電流センサ全体の損失変動を抑制することが可能となる。   Further, according to the photocurrent sensor of claim 4 of the present invention, the fluctuation amount of the forward optical path in the optical circuit unit is eliminated by making the shift amounts of the two polarization components in the forward direction the same. It is possible to suppress the loss fluctuation of the entire photocurrent sensor.

<第1の実施の形態>
以下、本発明に係る第1の実施形態を、図1〜図13を参照しながら詳細に説明する。図1は、第1の実施形態に係る光電流センサ1の構成を示す概略平面図であり、図2は図1に示す光電流センサ1から光ファイバ2a,2bとレンズ8のみを抜粋した概略図であり、
図3は図1に示す光電流センサ1から光回路部4のみを抜粋して順方向の光路状態を記入した概略平面図であり、図4は同じく光回路部4のみを抜粋して逆方向の光路状態を記入した概略平面図である。更に、図5は光回路部4の構成を表す斜視図であり、図6は光回路部4を構成する各光学素子の配置と、順方向での伝搬光の偏光状態を示す斜視図であり、図7は同じく光回路部4の各光学素子の配置と、逆方向での伝搬光の偏光状態を示す斜視図である。
<First Embodiment>
Hereinafter, a first embodiment according to the present invention will be described in detail with reference to FIGS. FIG. 1 is a schematic plan view showing the configuration of the photocurrent sensor 1 according to the first embodiment, and FIG. 2 is an outline of only the optical fibers 2a and 2b and the lens 8 extracted from the photocurrent sensor 1 shown in FIG. Figure
FIG. 3 is a schematic plan view in which only the optical circuit unit 4 is extracted from the photocurrent sensor 1 shown in FIG. 1 and the optical path state in the forward direction is entered. FIG. It is the schematic plan view which filled in the optical path state. FIG. 5 is a perspective view showing the configuration of the optical circuit unit 4, and FIG. 6 is a perspective view showing the arrangement of optical elements constituting the optical circuit unit 4 and the polarization state of propagating light in the forward direction. FIG. 7 is a perspective view showing the arrangement of the optical elements of the optical circuit unit 4 and the polarization state of the propagation light in the reverse direction.

又、図8は図1に示す光電流センサ1から光ファイバ19a,19bとレンズ16のみを抜粋した概略図であり、図9は光ファイバ2a,2b,19a,19bを挿入,保持するフェルール7,18の構成図であり、図10は図9の変更例を示す構成図である。図11の(A)〜(E)は、図3の光回路部4における順方向の光の偏光状態を示す図であり、図12の(F)〜(K)は、図4の光回路部4における逆方向の光の偏光状態を示す図である。図11及び図12の(A)〜(K)は図3及び図4中の符号(A)〜(K)で示す各光路断面での偏光状態に対応している。更に、図12(F)の偏光成分の拡大図を図13に示す。なお、図3〜図7ではレンズ8,16の図示を省略しており、又、本発明では、光源5から光ファイバ2a,2bへと向かう光路を「順方向」と定義し、光ファイバ2a,2bから受光器20へと向かう光路を「逆方向」と、それぞれ定義する。   FIG. 8 is a schematic diagram showing only the optical fibers 19a and 19b and the lens 16 extracted from the photocurrent sensor 1 shown in FIG. 1, and FIG. 9 is a ferrule 7 for inserting and holding the optical fibers 2a, 2b, 19a and 19b. , 18 and FIG. 10 is a diagram showing a modification of FIG. 11A to 11E are diagrams showing polarization states of forward light in the optical circuit unit 4 in FIG. 3, and FIGS. 12F to 12K are optical circuits in FIG. FIG. 6 is a diagram illustrating a polarization state of light in the reverse direction in the unit 4. (A) to (K) in FIGS. 11 and 12 correspond to the polarization states in the respective optical path sections indicated by reference numerals (A) to (K) in FIGS. 3 and 4. Furthermore, FIG. 13 shows an enlarged view of the polarization component of FIG. 3 to 7, the lenses 8 and 16 are not shown. In the present invention, the optical path from the light source 5 to the optical fibers 2a and 2b is defined as “forward direction”, and the optical fiber 2a. , 2b are defined as “reverse directions” respectively.

第1の実施形態に係る光電流センサ1は、光ファイバ2a,2b、光電変換部3、及び光回路部4とを備えて成り、光源5からの入射光を光ファイバ2a,2b内に伝搬させ、外部の電流の磁界により光ファイバ2a,2b内の伝搬光に生じるファラデー効果を利用して、前記電流の大きさを計測する物である。光ファイバ2a,2bは、被測定電流が流れている導体6の周りを周回するように配されており、図1に示すように、2本の光ファイバ2a,2bが互いに逆回りとなるように、且つ、同一長で同一周回数、導体6の周りに配されている。更に、光回路部4に向けて延在される側の光ファイバ2a,2bは2芯フェルール7によって保持される。センサ部として用いる光ファイバ2a,2bには、鉛ガラスファイバや石英ガラスファイバの様に、直線偏光を伝搬可能な物が最適である。   The photocurrent sensor 1 according to the first embodiment includes optical fibers 2a and 2b, a photoelectric conversion unit 3, and an optical circuit unit 4, and propagates incident light from the light source 5 into the optical fibers 2a and 2b. The magnitude of the current is measured using the Faraday effect generated in the propagation light in the optical fibers 2a and 2b by the magnetic field of the external current. The optical fibers 2a and 2b are arranged so as to circulate around the conductor 6 through which the current to be measured flows, and as shown in FIG. 1, the two optical fibers 2a and 2b are opposite to each other. In addition, they are arranged around the conductor 6 with the same length and the same number of turns. Further, the optical fibers 2 a and 2 b on the side extending toward the optical circuit unit 4 are held by the two-core ferrule 7. The optical fibers 2a and 2b used as the sensor unit are optimally capable of propagating linearly polarized light, such as lead glass fiber and quartz glass fiber.

図2に示すように、レンズ8とフェルール7とを、レンズ8の光軸oaとフェルール7の中心点Cとがz軸方向において同一直線上に来るように、互いに配置されて位置決めされる。このようにレンズ8とフェルール7とを配置することにより、各光ファイバ2a,2bの中心点(前記中心点Cと同位置)とレンズ8の光軸oaとは同一直線上に配置され、レンズ8の光軸oaに対して、各光ファイバ2a,2bの中心軸fcが等距離となるように、フェルール7によって保持されることになる。   As shown in FIG. 2, the lens 8 and the ferrule 7 are positioned and positioned so that the optical axis oa of the lens 8 and the center point C of the ferrule 7 are on the same straight line in the z-axis direction. By arranging the lens 8 and the ferrule 7 in this way, the center point (same position as the center point C) of each optical fiber 2a, 2b and the optical axis oa of the lens 8 are arranged on the same straight line. The optical axis oa of 8 is held by the ferrule 7 so that the central axes fc of the optical fibers 2a and 2b are equidistant.

各光ファイバ2a,2bは同一材料、同一構造で、同一モードのものが用いられる。又、各光ファイバ2a,2bの端部には反射用部材として反射膜15が設けられている。なお、反射膜15の換わりに、例えば、金、銀、銅、クロム、アルミ等、光に対して低吸収率、高反射率の金属や、低吸収率、高反射率の多層膜を用いた反射ミラーを用いても良い。   The optical fibers 2a and 2b are of the same material, the same structure, and the same mode. Also, a reflection film 15 is provided as a reflection member at the end of each optical fiber 2a, 2b. Instead of the reflective film 15, for example, gold, silver, copper, chromium, aluminum, or the like, a metal with low absorptivity and high reflectivity for light, or a multilayer film with low absorptivity and high reflectivity was used. A reflection mirror may be used.

光回路部4は、常光線及び異常光線の各偏光成分の直線偏光が光ファイバ2a,2bに入射するように、又、光ファイバ2a,2bから出射された各偏光成分の偏光面の回転角を検出するために、被測定電流の磁界の影響を受けた直線偏光の各常光線どうし又は異常光線どうしを結合するための回路部である。図1〜図5に示すように光回路部は、少なくとも2つ以上の複屈折素子(本実施形態では9,10,11の3つで構成)と、回転角が45度と22.5度を有する2つの非相反偏光面回転素子12,13と、1つの偏光面回転素子14、及びレンズ8,16とを有する。   The optical circuit unit 4 is configured so that the linearly polarized light of each polarization component of ordinary light and extraordinary light is incident on the optical fibers 2a and 2b, and the rotation angle of the polarization plane of each polarization component emitted from the optical fibers 2a and 2b. Is a circuit unit for coupling linearly polarized ordinary rays or extraordinary rays affected by the magnetic field of the current to be measured. As shown in FIGS. 1 to 5, the optical circuit section has at least two or more birefringent elements (in this embodiment, composed of three elements of 9, 10, and 11), and rotation angles of 45 degrees and 22.5 degrees. Two non-reciprocal polarization plane rotation elements 12 and 13, one polarization plane rotation element 14, and lenses 8 and 16 are provided.

2つの非相反偏光面回転素子12,13は、外部に各マグネット17が設けられた光透過型のファラデー回転子であり、入射する直線偏光の偏光面をそれぞれ45度、又は22.5度所定方向に回転させる。材料としては、ガーネット,TBIG,GBIG等が最適であり、使用波長帯域で回転角がそれぞれ45度又は22.5度程度の、できるだけ薄いものを使用する。各非相反偏光面回転素子12,13の回転方向は、図5に示すようにz軸方向に見たときに反時計回りになるように設定される。なお、図3〜図7では、各非相反偏光面回転素子12,13に磁気を印加するマグネット17については図示を省略している。   The two non-reciprocal polarization plane rotating elements 12 and 13 are light transmission type Faraday rotators each having a magnet 17 provided outside, and the polarization plane of the incident linearly polarized light is 45 degrees or 22.5 degrees in a predetermined direction, respectively. Rotate. As the material, garnet, TBIG, GBIG, etc. are optimal, and materials that are as thin as possible with a rotation angle of about 45 degrees or 22.5 degrees in the wavelength band used are used. The rotation directions of the nonreciprocal polarization plane rotating elements 12 and 13 are set to be counterclockwise when viewed in the z-axis direction as shown in FIG. 3 to 7, the illustration of the magnet 17 that applies magnetism to the nonreciprocal polarization plane rotating elements 12 and 13 is omitted.

又、3つの複屈折素子9,10,11は、光透過型の一軸単結晶から成り、ルチル(TiO2),方解石(CaCO3),水晶(SiO2),イットリウム・オソバナデート(YVO4),アルファバリウム・ボーデート(αBaB2O4)等が使用される。このような材料から選択された各複屈折素子9,10,11は、対向する2面の光学面が平行となるように平板状に加工される。   The three birefringent elements 9, 10, and 11 are made of a light transmission type uniaxial single crystal, and include rutile (TiO2), calcite (CaCO3), quartz (SiO2), yttrium osobanadate (YVO4), and alpha barium vodate. (ΑBaB2O4) or the like is used. Each birefringent element 9, 10, 11 selected from such materials is processed into a flat plate shape so that two opposing optical surfaces are parallel to each other.

第1の複屈折素子9の、光学面の法線に対する結晶軸X92(図5参照)の方向は、最大の分離幅を得られるように光学面の法線に対して42〜50度前後(最も好ましくは47.8度)に設定されており、又、光学面上における結晶軸X91の方向はy軸方向と平行に設定される。更に、第2の複屈折素子10の、光学面の法線に対する結晶軸X102方向は、光学面の法線に対して約42〜50度前後(最も好ましくは47.8度)に設定されるが、光学面上における結晶軸X101の方向はx軸方向に対して45度傾くように設定されている。従って、2つの複屈折素子9,10は、互いの光学面上における結晶軸X91,X101方向が45度異なるように配置されることになる。又、第3の複屈折素子11の光学面に対する結晶軸X112(図5参照)の方向は、z軸方向と平行に設定されると共に、光学面上における結晶軸X111の方向はx軸方向と平行に設定される。   The direction of the crystal axis X92 (see FIG. 5) of the first birefringent element 9 with respect to the normal of the optical surface is about 42 to 50 degrees with respect to the normal of the optical surface so as to obtain the maximum separation width ( Most preferably, it is set to 47.8 degrees), and the direction of the crystal axis X91 on the optical surface is set parallel to the y-axis direction. Further, the crystal axis X102 direction of the second birefringent element 10 with respect to the normal of the optical surface is set to about 42 to 50 degrees (most preferably 47.8 degrees) with respect to the normal of the optical surface. The direction of the crystal axis X101 on the optical surface is set to be inclined by 45 degrees with respect to the x-axis direction. Accordingly, the two birefringent elements 9 and 10 are arranged such that the directions of the crystal axes X91 and X101 on the optical surfaces are different by 45 degrees. The direction of the crystal axis X112 (see FIG. 5) with respect to the optical surface of the third birefringent element 11 is set parallel to the z-axis direction, and the direction of the crystal axis X111 on the optical surface is the x-axis direction. Set to parallel.

偏光面回転素子14は、入射する直線偏光の偏光面を90度所定方向に回転させるものであり、半波長素子などの様に直線偏光の偏光面を回転させる作用効果を有する光学素子で構成される。半波長素子を用いる場合には、図5に示すように結晶軸X141方向がx軸に対して45度傾いた位相素子が最適である。   The polarization plane rotating element 14 rotates the polarization plane of incident linearly polarized light by 90 degrees in a predetermined direction, and is composed of an optical element having an effect of rotating the polarization plane of linearly polarized light, such as a half-wavelength element. The When a half-wave element is used, a phase element whose crystal axis X141 direction is inclined by 45 degrees with respect to the x-axis as shown in FIG. 5 is optimal.

レンズ8,16は、入射する光のコリメーション又は収束を行うもので、レンズ8は非相反偏光面回転素子13と2芯フェルール7の間に、一方、レンズ16は光電変換部3と第3の複屈折素子11の間にそれぞれ設置される。レンズ8,16における各結像点は図2又は図8に示すように、各光ファイバ2a,2b,19a,19bの端面のコア部に設定されている。レンズ8,16には、非球面レンズ,ボールレンズ,平凸レンズ或いは分布屈折レンズ等を使用することが出来る。本実施形態では、非球面レンズを使用する。
The lenses 8 and 16 collimate or converge incident light. The lens 8 is disposed between the non-reciprocal polarization plane rotating element 13 and the two-core ferrule 7, while the lens 16 is coupled with the photoelectric conversion unit 3 and the third. They are respectively installed between the birefringent elements 11. As shown in FIG. 2 or FIG. 8 , each imaging point in the lenses 8 and 16 is set at the core portion of the end face of each optical fiber 2a, 2b, 19a, 19b. As the lenses 8 and 16, an aspheric lens, a ball lens, a plano-convex lens, a distributed refraction lens, or the like can be used. In the present embodiment, an aspheric lens is used.

光電変換部3は、光源5と、1つの受光器20と、LPF(Low Pass Filter:ローパスフィルター)21と、レンズ22とを有して構成されている。受光器20はフォトダイオード等と云った、受光した光を電気信号に変換する光電変換素子で構成されている。更に、受光器20の電気信号出力側には、フィルタの一種であるLPF21が接続されており、受光器20から出力された電気信号を成分毎に分岐して、所望の電気信号成分のみを光源5にフィードバックさせる。又、光源5には半導体レーザ、発光ダイオード、スーパールミネッセントダイオード等が用いられる。更に、レンズ22は、入射する光を収束するもので、光源5と光ファイバ19aの間に設置され、その結像点は光ファイバ19aの端面のコア部に設定される。   The photoelectric conversion unit 3 includes a light source 5, a single light receiver 20, an LPF (Low Pass Filter) 21, and a lens 22. The light receiver 20 includes a photoelectric conversion element such as a photodiode that converts received light into an electric signal. Furthermore, an LPF 21 which is a kind of filter is connected to the electrical signal output side of the light receiver 20, and the electrical signal output from the light receiver 20 is branched for each component, and only a desired electrical signal component is a light source. 5 is fed back. The light source 5 is a semiconductor laser, a light emitting diode, a super luminescent diode, or the like. Further, the lens 22 converges incident light, and is installed between the light source 5 and the optical fiber 19a, and its image point is set at the core of the end face of the optical fiber 19a.

光電変換部3と光回路部4とを繋ぐ導波路として用いられる光ファイバ19a,19bには、SMFやMMFが用いられる。2つの光ファイバ19a,19bの一端側の端面どうしは同一平面上にあり、所定間隔を隔てて2芯構造のフェルール18により保持されている。レンズ16の光軸oaとフェルール18の中心点Cとは、図8に示すようにz軸方向において同一直線上に来るように、互いに位置決めされる。このようにレンズ16とフェルール18とを配置することにより、光ファイバ19a,19bの中心点(前記中心点Cと同位置)とレンズ16の光軸oaとは同一直線上に配置され、レンズ16の光軸oaに対して、全ての光ファイバ19a,19bの中心軸fcが等距離となるように、フェルール18によって保持されることになる。   SMF and MMF are used for the optical fibers 19a and 19b used as waveguides connecting the photoelectric conversion unit 3 and the optical circuit unit 4. The end faces on the one end side of the two optical fibers 19a and 19b are on the same plane and are held by a ferrule 18 having a two-core structure with a predetermined gap therebetween. The optical axis oa of the lens 16 and the center point C of the ferrule 18 are positioned with respect to each other so as to be on the same straight line in the z-axis direction as shown in FIG. By disposing the lens 16 and the ferrule 18 in this way, the center point of the optical fibers 19a and 19b (the same position as the center point C) and the optical axis oa of the lens 16 are disposed on the same straight line. Is held by the ferrule 18 so that the central axes fc of all the optical fibers 19a and 19b are equidistant from the optical axis oa.

更に、光ファイバ2a,2b(又は、19a,19b)の光入出射端面は、図9に示すように同一傾斜角度φで斜めに形成される。但し、光ファイバ2a,2bと19a,19bとでは傾斜角度を変更することもある。図9では、フェルール7(又は18)先端を円錐状に加工することにより、光ファイバ2a,2b(19a,19b)の光入出射端面を、同一の傾斜角度φで斜めに形成する例を挙げた。或いは図10に示すようにフェルール7(18)端面から、各光ファイバ2a,2b(19a,19b)を突出させて、各光ファイバ2a,2b(19a,19b)の各入出射端面のみを研磨して同一傾斜角度で斜めに形成しても良い。   Furthermore, the light incident / exit end faces of the optical fibers 2a, 2b (or 19a, 19b) are formed obliquely at the same inclination angle φ as shown in FIG. However, the inclination angle may be changed between the optical fibers 2a, 2b and 19a, 19b. In FIG. 9, the ferrule 7 (or 18) tip is processed into a conical shape so that the light incident / exit end surfaces of the optical fibers 2a and 2b (19a and 19b) are formed obliquely at the same inclination angle φ. It was. Alternatively, as shown in FIG. 10, the optical fibers 2a and 2b (19a and 19b) are projected from the end surface of the ferrule 7 (18), and only the input and output end surfaces of the optical fibers 2a and 2b (19a and 19b) are polished. Then, they may be formed obliquely at the same inclination angle.

以上のように構成された光電流センサ1の動作について図1,2,6〜8,11〜13を参照して説明する。図11及び図12では、横方向がx軸、縦方向がy軸、紙面に向かう方向がz軸であり、説明の便宜上、縦,横方向共に4分割して各光路断面での偏光成分の伝搬位置を示す。   The operation of the photocurrent sensor 1 configured as described above will be described with reference to FIGS. 1, 2, 6 to 8 and 11 to 13. 11 and 12, the horizontal direction is the x-axis, the vertical direction is the y-axis, and the direction toward the paper surface is the z-axis. For convenience of explanation, the polarization component in each optical path cross section is divided into four parts in both the vertical and horizontal directions. Indicates the propagation position.

光源5から出射された無偏光の光は、レンズ22によって光ファイバ19a端面に入射されて光ファイバ19a内を伝搬し、斜めに形成された光入出射端面から出射される。出射の際に、その出射光は傾斜角度φに応じて斜めに出射され、一定の広がり角θ≒λ/(πω0)でビーム径が広がりながら、レンズ16の光軸oaを横切るように伝搬して、レンズ16の表面に入射される。レンズ16に入射された光は、図8で示すレンズ16の左側の凸曲面で光軸oaから外側へと屈折され、光線軸IBaがz軸に対し平行になるようにレンズ16から出射される(図3,図11(A)参照)。出射された光IBは、コリメート光又は収束光に変換されて第1の複屈折素子へ出射され、図6及び図11(B)に示すように、複屈折素子9で結晶軸X91に直交した常光線と、平行な異常光線との、2つの偏光成分P1,P2に分離される。
The non-polarized light emitted from the light source 5 is incident on the end face of the optical fiber 19a by the lens 22, propagates through the optical fiber 19a, and is emitted from the light incident / exit end face formed obliquely. At the time of emission, the emitted light is emitted obliquely according to the inclination angle φ, and propagates across the optical axis oa of the lens 16 while expanding the beam diameter at a constant spread angle θ≈λ / (πω0). Is incident on the surface of the lens 16. The light incident on the lens 16 is refracted outward from the optical axis oa by the convex curved surface on the left side of the lens 16 shown in FIG. 8, and is emitted from the lens 16 so that the light axis IBa is parallel to the z axis. (See FIGS. 3 and 11A). The emitted light IB is converted into collimated light or convergent light and emitted to the first birefringent element 9 and is orthogonal to the crystal axis X91 by the birefringent element 9 as shown in FIGS. The ordinary polarized light and the parallel extraordinary light are separated into two polarization components P1 and P2.

分離された各偏光成分P1,P2は、非相反偏光面回転素子12に入射される(図6参照)。各偏光成分P1,P2が非相反偏光面回転素子12を透過すると、図11(C)に示すように、偏光方向はそれぞれ同一方向に45度回転される。非相反偏光面回転素子12で回転されることにより、一方の偏光成分P2の偏光面方向が、第2の複屈折素子10の結晶軸X101方向と平行に揃えられる。従って、次に各偏光成分P1,P2が第2の複屈折素子10に入射されると、図6及び図11(D)に示すように偏光成分P2が斜め上方へとシフトされる。   The separated polarization components P1 and P2 are incident on the nonreciprocal polarization plane rotation element 12 (see FIG. 6). When the polarization components P1 and P2 are transmitted through the nonreciprocal polarization plane rotating element 12, the polarization directions are rotated by 45 degrees in the same direction as shown in FIG. 11C. By being rotated by the nonreciprocal polarization plane rotation element 12, the polarization plane direction of one polarization component P2 is aligned in parallel with the crystal axis X101 direction of the second birefringence element 10. Therefore, when each of the polarization components P1 and P2 is incident on the second birefringent element 10, the polarization component P2 is shifted obliquely upward as shown in FIGS. 6 and 11D.

第2の複屈折素子10を透過した各偏光成分P1,P2は、次に非相反偏光面回転素子13に入射される。各偏光成分P1,P2が非相反偏光面回転素子13を透過すると、図6及び図11(E)に示すように、偏光方向がそれぞれ同一方向に22.5度回転される。偏光面が回転された各偏光成分P1,P2は、図2に示すようにレンズ8の右の凸曲面からレンズ8内部で内側へと屈折され、レンズ8左の凸曲面で更に内側へと屈折されて、光ファイバ2a,2bの光入出射端面に向かって光軸oaを横切るように斜めに収束されながら、レンズ8から出射される。   The polarization components P1 and P2 transmitted through the second birefringent element 10 are then incident on the nonreciprocal polarization plane rotation element 13. When the polarization components P1 and P2 pass through the nonreciprocal polarization plane rotation element 13, the polarization directions are rotated by 22.5 degrees in the same direction, as shown in FIGS. 6 and 11E. As shown in FIG. 2, the polarization components P1 and P2 whose polarization planes are rotated are refracted inward from the right convex curved surface of the lens 8 and further refracted inward by the convex curved surface on the left of the lens 8. Then, the light is emitted from the lens 8 while being converged obliquely so as to cross the optical axis oa toward the light incident / exit end faces of the optical fibers 2a and 2b.

光ファイバ2a,2bの光入出射端面に結合した各偏光成分P1,P2は、その光入出射端面で屈折し、光ファイバ2a,2b内を伝搬して他端面に到達する。そこで反射膜15で反射されて直線偏光状態を保ったまま伝搬され、伝搬後に再び各光ファイバ2a,2b端面からレンズ8へと出射される。前記のように光ファイバ2a,2bは被測定電流が流れている導体6の周りを周回するように配されているので、伝搬の際に各偏光成分P1,P2の偏光面は電流磁界の影響を受け、被測定電流の大きさに応じて回転される。   Each polarization component P1, P2 coupled to the light incident / exit end faces of the optical fibers 2a, 2b is refracted at the light incident / exit end faces, propagates through the optical fibers 2a, 2b, and reaches the other end face. Therefore, the light is reflected by the reflecting film 15 and propagated while maintaining the linearly polarized state. After propagation, the light is again emitted from the end faces of the optical fibers 2a and 2b to the lens 8. As described above, since the optical fibers 2a and 2b are arranged so as to circulate around the conductor 6 through which the current to be measured flows, the polarization planes of the polarization components P1 and P2 are affected by the current magnetic field during propagation. And rotated according to the magnitude of the current to be measured.

前記の通り、2つの光ファイバ2a,2bは、導体6の周りを互いに逆回りに、且つ、同一長で同一周回数だけ配されている。従って、各偏光成分P1,P2における、光ファイバ2a,2b内での伝搬光路長と、被測定電流の磁界の周回積分とが等しくなるため、2つの偏光成分P1,P2間の位相が光ファイバ2a,2bから出射された後でも同相に設定される。   As described above, the two optical fibers 2a and 2b are arranged around the conductor 6 in the opposite directions, the same length, and the same number of turns. Accordingly, the propagation optical path length in the optical fibers 2a and 2b and the circular integral of the magnetic field of the current to be measured are equal for each polarization component P1 and P2, so that the phase between the two polarization components P1 and P2 is the optical fiber. Even after exiting from 2a and 2b, they are set in phase.

レンズ8に再入射した光は、図2で示すようにレンズ8の右側の凸曲面で光軸oaから外側へと屈折され、各光線軸ba1,ba2がz軸に対し平行になるようにレンズ8から出射される。出射された各偏光成分P1,P2は、コリメート光又は収束光に変換されて、再度非相反偏光面回転素子13に入射される(図7及び図11(E)参照)。各偏光成分P1,P2が非相反偏光面回転素子13を再度透過する際に、偏光面が更に22.5度回転される(図7,図12(F),及び図13参照)。従って、順方向の光路に於いて非相反偏光面回転素子13を透過する前の各偏光成分P1,P2の偏光面と、逆方向の光路に於いて非相反偏光面回転素子13を透過した後の各偏光成分P1,P2の偏光面とは45度のずれが生じることになる。このように偏光面を45度回転させるのは、最終的な検出光が電流磁界の影響でどの程度回転したか、その回転角を求め、この回転角から被測定電流値を算出するためである。   The light re-entering the lens 8 is refracted outward from the optical axis oa on the convex curved surface on the right side of the lens 8 as shown in FIG. 2, so that the light axes ba1 and ba2 are parallel to the z-axis. 8 is emitted. The emitted polarization components P1 and P2 are converted into collimated light or convergent light, and are incident on the nonreciprocal polarization plane rotation element 13 again (see FIGS. 7 and 11E). When the polarization components P1 and P2 pass through the nonreciprocal polarization plane rotation element 13 again, the polarization plane is further rotated by 22.5 degrees (see FIGS. 7, 12 (F), and 13). Therefore, after passing through the non-reciprocal polarization plane rotating element 13 in the reverse optical path and the polarization plane of each polarization component P1, P2 before transmitting through the non-reciprocal polarization plane rotating element 13 in the forward optical path A deviation of 45 degrees from the polarization plane of each of the polarization components P1 and P2 occurs. The reason why the plane of polarization is rotated 45 degrees in this way is to determine how much the final detection light has been rotated by the influence of the current magnetic field, to determine its rotation angle, and to calculate the measured current value from this rotation angle. .

偏光面を45度ずらすことにより、光電流センサ1の測定レンジを最大にすることが可能となる。但し、測定レンジが多少狭くなっても光電流センサ1の機能は十分確保されると判断される場合には、非相反偏光面回転素子13を22.5度以外の回転角を有する素子に置き換えても良い。   By shifting the polarization plane by 45 degrees, the measurement range of the photocurrent sensor 1 can be maximized. However, if it is determined that the function of the photocurrent sensor 1 is sufficiently secured even if the measurement range is somewhat narrow, the nonreciprocal polarization plane rotating element 13 may be replaced with an element having a rotation angle other than 22.5 degrees. good.

非相反偏光面回転素子13で22.5度偏光面が回転された各偏光成分P1,P2は、第2の複屈折素子10に入射される。第2の複屈折素子10に入射された各偏光成分P1,P2の偏光面は、電流磁界の影響を考慮しない偏光面に対してα度ずれてP1’,P2’のような状態を呈する(α度は、被測定電流による影響と、非相反偏光面回転素子12,13の温度依存性の影響を受けた回転角)。このため、各偏光成分P1,P2の偏光面は、図7及び図13に示すように、第2の複屈折素子10によって相互に直交する偏光面の常光線P1Ro,P2Roと、異常光線P1Re,P2Reとに分離される。これによって、光源5から入射された入射光は4つの偏光成分P1Ro,P2Ro,P1Re,P2Reに分離されることになる。   The polarization components P1 and P2 whose polarization planes are rotated by 22.5 degrees by the nonreciprocal polarization plane rotation element 13 are incident on the second birefringence element 10. The polarization planes of the respective polarization components P1 and P2 incident on the second birefringent element 10 are shifted by α degrees with respect to the polarization plane not considering the influence of the current magnetic field and exhibit states such as P1 ′ and P2 ′ ( α degree is the rotation angle affected by the current being measured and the temperature dependence of the non-reciprocal polarization plane rotating elements 12 and 13). For this reason, as shown in FIGS. 7 and 13, the polarization planes of the polarization components P1 and P2 are the ordinary rays P1Ro and P2Ro of the polarization planes orthogonal to each other by the second birefringent element 10, and the extraordinary rays P1Re, Separated into P2Re. Thus, the incident light incident from the light source 5 is separated into four polarization components P1Ro, P2Ro, P1Re, and P2Re.

第2の複屈折素子10で分離される常光線P1Ro,P2Roと異常光線P1Re,P2Reとは、2つの非相反偏光面回転素子12,13の回転角に温度依存性が無ければ、平均強度比は1:1となる。しかしながら、ファラデー回転子には偏光面の回転角に温度依存性があるため、その温度依存性によって回転角が変動し、その結果、第2の複屈折素子10での各偏光成分P1,P2の分離の際に、常光線P1Ro,P2Roと異常光線P1Re,P2Reの強度比が1:1に対応せず、図13に示すように強度にバラツキが発生する。   The ordinary rays P1Ro and P2Ro and the extraordinary rays P1Re and P2Re separated by the second birefringent element 10 have an average intensity ratio if the rotational angles of the two nonreciprocal polarization plane rotating elements 12 and 13 are not temperature dependent. Becomes 1: 1. However, since the rotation angle of the polarization plane of the Faraday rotator has temperature dependency, the rotation angle fluctuates due to the temperature dependency. As a result, the polarization components P1 and P2 in the second birefringent element 10 are changed. At the time of separation, the intensity ratio of the ordinary rays P1Ro and P2Ro and the extraordinary rays P1Re and P2Re does not correspond to 1: 1, and the intensity varies as shown in FIG.

第2の複屈折素子10内で、常光線P1Ro,P2Roは結晶軸X101方向と直交するためシフトせず、そのままの光路を保持して出射される。一方の異常光線P1Re,P2Reは結晶軸X101方向と平行な方向である斜め方へとシフトされて出射される(図7及び図12(G)参照)。
In the second birefringent element 10, the ordinary rays P1Ro and P2Ro are not shifted because they are perpendicular to the direction of the crystal axis X101, and are emitted while maintaining the same optical path. One extraordinary ray P1Re, P2Re is emitted is shifted towards obliquely downward a crystal axis X101 a direction parallel to the direction (see FIGS. 7 and 12 (G)).

次に、非相反偏光面回転素子12に入射された各偏光成分P1Ro,P2Ro,P1Re,P2Reは、図7,図12(H)に示すようにそれぞれ同一方向に45度回転され、第2の複屈折素子10で異常光線であった偏光成分P1Re,P2Reの偏光面が、第1の複屈折素子9の結晶軸X91方向と平行に揃えられる。従って、次に各偏光成分P1Ro,P2Ro,P1Re,P2Reが第1の複屈折素子9に入射されると、偏光成分P1Re,P2Reは図7,図12(I)のように下方へとシフトされる。一方、偏光成分P1Ro,P2Roの偏光面は、第3の複屈折素子11の結晶軸X111方向と平行に揃えられる。   Next, the polarization components P1Ro, P2Ro, P1Re, and P2Re incident on the nonreciprocal polarization plane rotating element 12 are rotated by 45 degrees in the same direction as shown in FIGS. The polarization planes of the polarization components P1Re and P2Re that are extraordinary rays in the birefringent element 10 are aligned in parallel with the crystal axis X91 direction of the first birefringent element 9. Therefore, when each polarization component P1Ro, P2Ro, P1Re, P2Re is incident on the first birefringent element 9, the polarization components P1Re, P2Re are shifted downward as shown in FIG. 7 and FIG. 12 (I). The On the other hand, the polarization planes of the polarization components P1Ro and P2Ro are aligned parallel to the direction of the crystal axis X111 of the third birefringent element 11.

次に、各偏光成分P1Ro,P2Ro,P1Re,P2Reは偏光面回転素子14へと伝搬される。しかし、偏光面回転素子14の大きさは、1つの常光線P2Roのみ透過するように設定されて光路上に配置されているため、常光線P2Roの偏光面のみ90度回転されて(図7,図12(J)参照)、第3の複屈折素子11へと伝搬される。   Next, each polarization component P1Ro, P2Ro, P1Re, P2Re is propagated to the polarization plane rotation element 14. However, since the size of the polarization plane rotating element 14 is set so as to transmit only one ordinary ray P2Ro and arranged on the optical path, only the polarization plane of the ordinary ray P2Ro is rotated by 90 degrees (FIG. 7, FIG. Propagated to the third birefringent element 11 (see FIG. 12J).

第3の複屈折素子11の大きさは、常光線P1Ro,P2Roのみ透過するように設定され、光路上に配置されている。更に、偏光面回転素子14での偏光面の回転により、常光線P1Roの偏光方向は結晶軸X111方向と平行に、常光線P2Roの偏光方向は結晶軸X111方向と垂直にそれぞれ設定されている。従って、第3の複屈折素子11では常光線P1Roのみシフトされて、第2の複屈折素子10において常光線であった偏光成分P1Ro,P2Roどうしが結合される(図7,図12(K)参照)。   The size of the third birefringent element 11 is set so as to transmit only the ordinary rays P1Ro and P2Ro, and is arranged on the optical path. Further, due to the rotation of the polarization plane by the polarization plane rotating element 14, the polarization direction of the ordinary ray P1Ro is set parallel to the crystal axis X111 direction, and the polarization direction of the ordinary ray P2Ro is set perpendicular to the crystal axis X111 direction. Accordingly, only the ordinary ray P1Ro is shifted in the third birefringent element 11, and the polarization components P1Ro and P2Ro that are ordinary rays in the second birefringent element 10 are combined (FIGS. 7 and 12K). reference).

常光線P1Ro,P2Roどうしが結合された結合光DBは、図8に示すようにレンズ16によって収束され、レンズ16の光軸oaを横切るように光ファイバ19b端面に入射される。光ファイバ19bに入射された結合光DBは、その光入出射端面で屈折し、光ファイバ19b内を伝搬して受光器20に検出光として受光されて、電気信号に変換される。   The combined light DB obtained by combining the ordinary rays P1Ro and P2Ro is converged by the lens 16 as shown in FIG. 8, and is incident on the end face of the optical fiber 19b so as to cross the optical axis oa of the lens 16. The coupled light DB incident on the optical fiber 19b is refracted at its light incident / exit end face, propagates through the optical fiber 19b, is received by the light receiver 20 as detection light, and is converted into an electrical signal.

受光器20から出力された電気信号はLPF21に入力されて直流成分と交流成分とに分岐される。交流成分は、LPF21から図示しない演算処理装置へと入力され、所定の演算を行うことにより、被測定電流の大きさが求められる。交流成分の振幅は電流値、周波数はそのまま導体6に流れる被測定電流の周波数となる。一方、直流成分はLPF21から光源5へと入力される。   The electric signal output from the light receiver 20 is input to the LPF 21 and branched into a DC component and an AC component. The AC component is input from the LPF 21 to an arithmetic processing unit (not shown), and the magnitude of the current to be measured is obtained by performing a predetermined calculation. The amplitude of the AC component is the current value, and the frequency is the frequency of the current to be measured flowing through the conductor 6 as it is. On the other hand, the DC component is input from the LPF 21 to the light source 5.

なお、レンズ16の光軸oaは、z軸方向に見たときに図12(K)中の点A1で示すように、入射光IBと検出光DBの中間上に来るように、位置決めするものとする。又、レンズ8の光軸oaは、同じくz軸方向に見たときに図11(E)中の点A2で示すように、変更成分P1とP2の中間上に来るように、位置決めするものとする。   The lens 16 is positioned so that the optical axis oa of the lens 16 is positioned between the incident light IB and the detection light DB as indicated by a point A1 in FIG. 12K when viewed in the z-axis direction. And Further, the optical axis oa of the lens 8 is positioned so as to be on the middle of the change components P1 and P2, as indicated by a point A2 in FIG. 11E when viewed in the z-axis direction. To do.

本発明の光電流センサ1はその技術的思想に基づいて種々変更可能であり、例えば図14〜図16に示すように、偏光面回転素子14をどちらかの異常光線P1Re,P2Reの光路上に配置させて、その偏光面を90度回転させると共に、第3の複屈折素子11を2つの異常光線P1Re,P2Reの光路上に配置して、2つの異常光線P1Re,P2Reどうしを結合させて結合光DBとし、その結合光DBを検出光として受光器20に受光させるように変更しても良い。なお、図14は図4の変更例であり、図14の(F)〜(K)と図16の(F)〜(K)は対応するものとする。   The photocurrent sensor 1 of the present invention can be variously changed based on its technical idea. For example, as shown in FIGS. 14 to 16, the polarization plane rotating element 14 is placed on the optical path of one of the extraordinary rays P1Re and P2Re. The third birefringent element 11 is arranged on the optical path of the two extraordinary rays P1Re and P2Re, and the two extraordinary rays P1Re and P2Re are coupled to each other. The light DB may be changed so that the combined light DB is received by the light receiver 20 as detection light. 14 is a modified example of FIG. 4, and (F) to (K) in FIG. 14 and (F) to (K) in FIG. 16 correspond to each other.

又、偏光面回転素子14には逆方向の光のみが透過されるので、偏光面回転素子14を90度の回転角を有するファラデー回転子に置き換えても良い。   Since only the light in the reverse direction is transmitted through the polarization plane rotating element 14, the polarization plane rotating element 14 may be replaced with a Faraday rotator having a rotation angle of 90 degrees.

以上のように、第1の実施形態の光電流センサ1では、光源5から出力された光IBを4つの偏光成分P1Ro,P2Ro,P1Re,P2Reに分離し、常光線P1Ro,P2Roどうし又は異常光線P1Re,P2Reどうしを結合させ、受光器20で検出する。これにより、被測定電流の磁界による回転角に、非相反偏光面回転素子12,13の温度依存性に起因した角度ずれが発生したとしても、温度補償がなされる。従って、別途、温度補償装置を設ける必要が無くなるので、光電流センサ1の小型化・簡略化・低コスト化を図ることも可能となる。   As described above, in the photocurrent sensor 1 of the first embodiment, the light IB output from the light source 5 is separated into the four polarization components P1Ro, P2Ro, P1Re, and P2Re, and the ordinary rays P1Ro, P2Ro, or extraordinary rays are separated. P1Re and P2Re are combined and detected by the light receiver 20. As a result, even if an angle shift due to the temperature dependence of the nonreciprocal polarization plane rotation elements 12 and 13 occurs in the rotation angle of the current to be measured due to the magnetic field, temperature compensation is performed. Accordingly, it is not necessary to separately provide a temperature compensation device, and the photocurrent sensor 1 can be reduced in size, simplified, and reduced in cost.

更に、光源5から無偏光の光を入射させても光電流センサ1を動作させられるため、偏光面保存光ファイバを使用せずに光電流センサを構成することが可能となる。従って、光電流センサの長距離対応の要求を実現することが可能となる。   Furthermore, since the photocurrent sensor 1 can be operated even when non-polarized light is incident from the light source 5, it is possible to configure the photocurrent sensor without using a polarization plane preserving optical fiber. Therefore, it is possible to realize a long distance requirement of the photocurrent sensor.

又、光電流センサ1の演算処理装置の受光器20を1個で構成することが出来るので、演算処理装置の簡略化と、演算動作の高速化が可能となる。   Further, since the light receiver 20 of the arithmetic processing device of the photocurrent sensor 1 can be constituted by one, the arithmetic processing device can be simplified and the arithmetic operation speed can be increased.

更に、演算動作の高速化を確立した上で、光源5から出力した光IBを受光器20で検出し、その検出光の直流成分の電気信号を光源5にフィードバックさせることによって光源5を安定して動作させることが可能となり、測定精度の悪化を防止することが出来る。   Furthermore, after establishing a high-speed operation, the light source 5 is stabilized by detecting the light IB output from the light source 5 with the light receiver 20 and feeding back the electric signal of the DC component of the detected light to the light source 5. It is possible to prevent the measurement accuracy from deteriorating.

<第2の実施の形態>
次に、本発明に係る第2の実施形態を、図17〜図23を参照しながら詳細に説明する。なお、第1の実施形態と同一箇所には同一番号を付し、重複する説明や図は省略、又は簡略化して示す。図17は第2の実施形態に係る光電流センサの光回路部4の構成を表す斜視図であり、図18は第2の実施形態の光回路部4のみを抜粋して順方向の光路状態を記入した概略平面図であり、図19は同じく光回路部4のみを抜粋して逆方向の光路状態を記入した概略平面図である。図20は第2の実施形態の光回路部4を構成する各光学素子の配置と、順方向での伝搬光の偏光状態を示す斜視図であり、図21は同じく光回路部4の各光学素子の配置と、逆方向での伝搬光の偏光状態を示す斜視図である。
<Second Embodiment>
Next, a second embodiment according to the present invention will be described in detail with reference to FIGS. In addition, the same number is attached | subjected to the same location as 1st Embodiment, and the overlapping description and figure are abbreviate | omitted or simplified and shown. FIG. 17 is a perspective view showing the configuration of the optical circuit unit 4 of the photocurrent sensor according to the second embodiment, and FIG. 18 is an excerpt of only the optical circuit unit 4 of the second embodiment, and the optical path state in the forward direction. 19 is a schematic plan view in which only the optical circuit portion 4 is extracted and the optical path state in the reverse direction is entered. FIG. 20 is a perspective view showing the arrangement of optical elements constituting the optical circuit unit 4 of the second embodiment and the polarization state of propagating light in the forward direction. FIG. It is a perspective view which shows the arrangement | positioning of an element, and the polarization state of the propagation light in a reverse direction.

又、図22の(A)〜(E)は、図18の光回路部4における順方向の光の偏光状態を示す図であり、図23の(F)〜(K)は、図19の光回路4における逆方向の光の偏光状態を示す図である。図22及び図23の(A)〜(K)は図18及び図19中の符号(A)〜(K)で示す各光路断面での偏光状態に対応している。なお、図17〜図21ではレンズ8,16の図示を省略している。   FIGS. 22A to 22E are diagrams showing polarization states of light in the forward direction in the optical circuit unit 4 of FIG. 18, and FIGS. 23F to 23K are diagrams of FIGS. FIG. 3 is a diagram illustrating a polarization state of light in the reverse direction in the optical circuit 4. (A) to (K) in FIGS. 22 and 23 correspond to the polarization states at the cross sections of the optical paths indicated by reference numerals (A) to (K) in FIGS. 18 and 19. Note that the lenses 8 and 16 are not shown in FIGS.

第2の実施形態に係る光電流センサが、第1の実施形態の光電流センサ1と異なる点は、第2の複屈折素子10’と、偏光面回転素子14’と、第3の複屈折素子11’の構成である。まず、第2の複屈折素子10’において異常光線となる偏光成分P2のシフト量が、第1の複屈折素子9における異常光線P1のシフト量と等しくなるように、第2の複屈折素子10’の材料や厚み等を設定して、各複屈折素子9,10’を構成する。このような構成とすることにより、光源5から光ファイバ2a,2bに至る光路上に配置される2つの複屈折素子9及び10’における各偏光成分P1及びP2のシフト量が等しくなるので、順方向における2つの偏光成分P1,P2のシフト量を同一に設定することが出来る。これにより、光回路部4の順方向の光路における損失変動を解消することが出来るので、光電流センサ全体の損失変動を抑制することが可能となる。   The photocurrent sensor according to the second embodiment differs from the photocurrent sensor 1 of the first embodiment in that the second birefringence element 10 ′, the polarization plane rotation element 14 ′, and the third birefringence. The configuration of the element 11 ′. First, the second birefringent element 10 ′ is set so that the shift amount of the polarization component P2 that becomes an extraordinary ray in the second birefringent element 10 ′ is equal to the shift amount of the extraordinary ray P1 in the first birefringent element 9. The birefringent elements 9 and 10 'are configured by setting the material and thickness of'. By adopting such a configuration, the shift amounts of the polarization components P1 and P2 in the two birefringent elements 9 and 10 ′ arranged on the optical path from the light source 5 to the optical fibers 2a and 2b become equal. The shift amounts of the two polarization components P1 and P2 in the direction can be set to be the same. As a result, loss fluctuations in the optical path in the forward direction of the optical circuit unit 4 can be eliminated, so that loss fluctuations in the entire photocurrent sensor can be suppressed.

更に、第3の複屈折素子11’の、光学面の法線に対する結晶軸X112’(図17参照)の方向は、最大の分離幅を得られるように光学面の法線に対して42〜50度前後(最も好ましくは47.8度)に設定されており、光学面上における結晶軸X111’の方向はx軸方向に対して22.5度傾くように設定される。   Furthermore, the direction of the crystal axis X112 ′ (see FIG. 17) of the third birefringent element 11 ′ with respect to the normal of the optical surface is 42˜about the normal of the optical surface so as to obtain the maximum separation width. It is set to around 50 degrees (most preferably 47.8 degrees), and the direction of the crystal axis X111 ′ on the optical surface is set to be inclined by 22.5 degrees with respect to the x-axis direction.

3つの複屈折素子9,10’,11’は、光透過型の一軸単結晶から成り、材料には、ルチル(TiO2),方解石(CaCO3),水晶(SiO2),イットリウム・オソバナデート(YVO4),アルファバリウム・ボーデート(αBaB2O4)等が使用される。このような材料から選択された各複屈折素子9,10’,11’は、対向する2面の光学面が平行となるように平板状に加工される。   The three birefringent elements 9, 10 'and 11' are made of a light transmission type uniaxial single crystal, and the materials include rutile (TiO2), calcite (CaCO3), quartz (SiO2), yttrium osovanadate (YVO4), Alpha barium bodate (αBaB2O4) is used. Each birefringent element 9, 10 ′, 11 ′ selected from such a material is processed into a flat plate shape so that two opposing optical surfaces are parallel to each other.

次に、偏光面回転素子14’は、入射する直線偏光の偏光面を90度所定方向に回転させる光学素子であり、半波長素子からなる2つの偏光面回転素子板14’a,14’bとから構成されている。偏光面回転素子板14’aの結晶軸X14’a方向はx軸に対して33.75度傾いており、一方の偏光面回転素子板14’bの結晶軸X14’b方向はx軸に対して11.25度傾くように設定されている。2つの偏光面回転素子板14’aと14’bは、互いの接合面で重ね合わされ、紫外線硬化型等の光学接着剤で接着されて、偏光面回転素子14’を構成する。なお、接着剤が接合面から光学面にはみ出さないこととする。   Next, the polarization plane rotating element 14 ′ is an optical element that rotates the polarization plane of incident linearly polarized light by 90 degrees in a predetermined direction, and two polarization plane rotating element plates 14′a and 14′b made of half-wavelength elements. It consists of and. The crystal axis X14'a direction of the polarization plane rotation element plate 14'a is inclined 33.75 degrees with respect to the x axis, and the crystal axis X14'b direction of one polarization plane rotation element plate 14'b is relative to the x axis. It is set to tilt 11.25 degrees. The two polarization plane rotating element plates 14'a and 14'b are superposed on each other's joint surface and bonded with an optical adhesive such as an ultraviolet curing type to constitute the polarization plane rotating element 14 '. It is assumed that the adhesive does not protrude from the bonding surface to the optical surface.

このように光回路部4の構成が変更された光電流センサの動作について、図17〜図23を参照して説明する。図22及び図23では、横方向がx軸、縦方向がy軸、紙面に向かう方向がz軸であり、説明の便宜上、縦,横方向共に4分割して各光路断面での偏光成分の伝搬位置を示す。   The operation of the photocurrent sensor in which the configuration of the optical circuit unit 4 is changed will be described with reference to FIGS. 22 and 23, the horizontal direction is the x-axis, the vertical direction is the y-axis, and the direction toward the paper surface is the z-axis. For convenience of explanation, the vertical and horizontal directions are divided into four parts and the polarization components in each optical path section are divided. Indicates the propagation position.

光源5から出射された無偏光の光は、光ファイバ19aから第1の複屈折素子9に伝搬して偏光成分P1とP2とに分離され、非相反偏光面回転素子12で偏光方向が45度回転されて第2の複屈折素子10’に入射される。偏光成分P1とP2とが第2の複屈折素子10’に入射されると、図20及び図22(D)に示すように偏光成分P2が斜め上方へとシフトされる。前述の通り、第2の複屈折素子10’で異常光線となる偏光成分P2のシフト量が、第1の複屈折素子9で異常光線となる偏光成分P1のシフト量と同一となるように、第2の複屈折素子10’が構成されている。従って、図22(B)及び(D)に示すように各偏光成分P1,P2のシフト量が等しい偏光状態で、各偏光成分P1,P2は非相反偏光面回転素子13を透過して、光ファイバ2a,2bに結合される。   The non-polarized light emitted from the light source 5 propagates from the optical fiber 19a to the first birefringent element 9 and is separated into polarized components P1 and P2, and the polarization direction is 45 degrees by the nonreciprocal polarization plane rotation element 12. It is rotated and incident on the second birefringent element 10 '. When the polarization components P1 and P2 are incident on the second birefringent element 10 ', the polarization component P2 is shifted obliquely upward as shown in FIGS. 20 and 22D. As described above, the shift amount of the polarization component P2 that becomes an extraordinary ray in the second birefringence element 10 ′ is the same as the shift amount of the polarization component P1 that becomes an extraordinary ray in the first birefringence element 9. A second birefringent element 10 'is constructed. Accordingly, as shown in FIGS. 22B and 22D, each polarization component P1, P2 is transmitted through the nonreciprocal polarization plane rotation element 13 in the polarization state where the shift amounts of the polarization components P1, P2 are equal, Coupled to fibers 2a and 2b.

光ファイバ2a,2bに結合した各偏光成分P1,P2の偏光面は、被測定電流の磁界の影響を受けて回転され、再び、非相反偏光面回転素子13を透過後、第2の複屈折素子10に入射される。第2の複屈折素子10に入射された各偏光成分P1,P2の偏光面は、前記の通りα度の角度ずれを起こすので、各偏光成分P1,P2の偏光面は、図21及び図23(G)に示すように、相互に直交する常光線P1Ro,P2Roと、異常光線P1Re,P2Reとに分離される。   The polarization planes of the polarization components P1 and P2 coupled to the optical fibers 2a and 2b are rotated under the influence of the magnetic field of the current to be measured, and pass through the nonreciprocal polarization plane rotation element 13 again, and then the second birefringence. Incident on element 10. Since the polarization planes of the polarization components P1 and P2 incident on the second birefringent element 10 cause an angle shift of α degrees as described above, the polarization planes of the polarization components P1 and P2 are shown in FIGS. As shown in (G), the beams are separated into normal rays P1Ro and P2Ro and extraordinary rays P1Re and P2Re that are orthogonal to each other.

第2の複屈折素子10’内で、常光線P1Ro,P2Roは結晶軸X101方向と直交するためシフトせず、一方、異常光線P1Re,P2Reは結晶軸X101方向と平行な方向である斜め上方へとシフトされて出射される(図21及び図23(G)参照)。   In the second birefringent element 10 ′, the ordinary rays P1Ro and P2Ro are not shifted because they are orthogonal to the crystal axis X101 direction, while the extraordinary rays P1Re and P2Re are obliquely upward in a direction parallel to the crystal axis X101 direction. And is emitted (see FIGS. 21 and 23G).

次に、各偏光成分P1Ro,P2Ro,P1Re,P2Reは、非相反偏光面回転素子12で45度回転され、偏光成分P1Re,P2Reの偏光面が、第1の複屈折素子9の結晶軸X91方向と平行に揃えられる。従って、偏光成分P1Re,P2Reは第1の複屈折素子9によって下方へとシフトされる。   Next, each polarization component P1Ro, P2Ro, P1Re, P2Re is rotated 45 degrees by the nonreciprocal polarization plane rotation element 12, and the polarization plane of the polarization components P1Re, P2Re is in the direction of the crystal axis X91 of the first birefringence element 9 Aligned in parallel. Accordingly, the polarization components P1Re and P2Re are shifted downward by the first birefringent element 9.

次に、各偏光成分P1Ro,P2Ro,P1Re,P2Reは偏光面回転素子14’へと伝搬される。しかし、偏光面回転板14’a及び14’bの大きさは、常光線P1RoとP2Roのみをそれぞれ透過するように設定されて光路上に配置されている。従って、常光線P1Roの偏光面は22.5度、もう一方の常光線P2Roの偏光面は67.5度の角度で、それぞれ逆方向に回転される(図21,図23(J)参照)。回転された状態で、次に各偏光成分P1Ro,P2Ro,P1Re,P2Reは、第3の複屈折素子11’へと伝搬される。   Next, each polarization component P1Ro, P2Ro, P1Re, P2Re is propagated to the polarization plane rotation element 14 '. However, the sizes of the polarization plane rotation plates 14'a and 14'b are set on the optical path so as to transmit only the ordinary rays P1Ro and P2Ro, respectively. Accordingly, the polarization plane of the ordinary ray P1Ro is rotated by 22.5 degrees and the polarization plane of the other ordinary ray P2Ro is rotated by 67.5 degrees in opposite directions (see FIGS. 21 and 23J). In the rotated state, each polarization component P1Ro, P2Ro, P1Re, P2Re is then propagated to the third birefringent element 11 '.

第3の複屈折素子11’の大きさは、常光線P1Ro,P2Roのみ透過するように設定されて光路上に配置されている。更に、偏光面回転板14’a及び14’bでの偏光面の回転により、常光線P1Roの偏光方向は結晶軸X111’方向と平行に、常光線P2Roの偏光方向は結晶軸X111’方向と垂直にそれぞれ設定されている。従って、第3の複屈折素子11’では常光線P1Roのみがシフトされて、第2の複屈折素子10’において常光線であった偏光成分P1Ro,P2Roどうしが結合される(図21,図23(K)参照)。   The size of the third birefringent element 11 'is set so as to transmit only the ordinary rays P1Ro and P2Ro and is arranged on the optical path. Further, due to the rotation of the polarization planes at the polarization plane rotation plates 14′a and 14′b, the polarization direction of the ordinary ray P1Ro is parallel to the crystal axis X111 ′ direction, and the polarization direction of the ordinary ray P2Ro is the crystal axis X111 ′ direction. Each is set vertically. Accordingly, only the ordinary ray P1Ro is shifted in the third birefringent element 11 ′, and the polarized components P1Ro and P2Ro that are ordinary rays in the second birefringent element 10 ′ are combined (FIGS. 21 and 23). (See (K)).

常光線P1Ro,P2Roどうしが結合された結合光DBは、光ファイバ19b内を伝搬して受光器20に検出光として受光されて、電気信号に変換され、LPF21によって直流成分と交流成分とに分岐される。交流成分は、LPF21から図示しない演算処理装置へと入力されて被測定電流の大きさが求められる。一方、直流成分はLPF21から光源5へと入力される。   The combined light DB in which the ordinary rays P1Ro and P2Ro are coupled is propagated through the optical fiber 19b, received by the light receiver 20 as detection light, converted into an electric signal, and branched into a DC component and an AC component by the LPF 21. Is done. The AC component is input from the LPF 21 to an arithmetic processing unit (not shown), and the magnitude of the current to be measured is obtained. On the other hand, the DC component is input from the LPF 21 to the light source 5.

なお、第2の実施形態の光電流センサはその技術的思想に基づいて種々変更可能であり、例えば、x軸方向に対して78.75度の方向に結晶軸X14’aを変更した偏光面回転板14’aと、x軸方向に対して33.75度の方向に結晶軸X14’bを変更した偏光面回転板14’bとから偏光面回転素子14’を構成し、異常光線P1Reを22.5度,異常光線P2Reを112.5度それぞれ同一方向に回転させて、2つの異常光線P1Re,P2Reどうしを結合させて結合光DBとし、その結合光DBを検出光として受光器20に受光させるように変更しても良い。   The photocurrent sensor of the second embodiment can be variously changed based on its technical idea. For example, a polarization plane rotating plate in which the crystal axis X14′a is changed in a direction of 78.75 degrees with respect to the x-axis direction. The polarization plane rotating element 14 'is composed of 14'a and the polarization plane rotating plate 14'b whose crystal axis X14'b is changed in the direction of 33.75 degrees with respect to the x-axis direction, and the extraordinary ray P1Re is 22.5 degrees, The extraordinary ray P2Re is rotated 112.5 degrees in the same direction, the two extraordinary rays P1Re and P2Re are combined to form a combined light DB, and the combined light DB is changed to be received by the light receiver 20 as detection light. Also good.

又、偏光面回転素子14’には逆方向の光のみが透過されるので、偏光面回転素子14’をファラデー回転子に置き換えても良い。   Since only the light in the reverse direction is transmitted through the polarization plane rotating element 14 ', the polarization plane rotating element 14' may be replaced with a Faraday rotator.

以上のように、第2の実施形態の光電流センサに依れば、第1の実施形態の光電流センサ1が有する、温度補償、長距離対応、演算処理装置の簡略化と演算動作の高速化、及び光源5の安定動作と測定精度の悪化防止の効果と共に、順方向における2つの偏光成分P1,P2のシフト量を同一にすることが可能となる。これにより、光回路部での順方向の光路の損失変動を解消することが出来るので、光電流センサ全体の損失変動を抑制することが可能となる。   As described above, according to the photocurrent sensor of the second embodiment, the photocurrent sensor 1 of the first embodiment has temperature compensation, long-distance correspondence, simplification of the arithmetic processing device, and high-speed operation. It is possible to make the shift amounts of the two polarization components P1 and P2 in the forward direction the same, as well as the effect of stabilizing the light source 5 and preventing the deterioration of measurement accuracy. As a result, it is possible to eliminate the loss variation of the forward optical path in the optical circuit unit, and thus it is possible to suppress the loss variation of the entire photocurrent sensor.

本発明の光電流センサは、変電所の電力系統における、保護継電装置の電流測定部等に利用される。   The photocurrent sensor of the present invention is used for a current measuring unit of a protective relay device in a power system of a substation.

本発明の第1の実施形態に係る光電流センサ1の構成を示す概略平面図。1 is a schematic plan view showing a configuration of a photocurrent sensor 1 according to a first embodiment of the present invention. 図1に示す光電流センサ1から光ファイバ2a,2bとレンズ8のみを抜粋 した概略図。FIG. 2 is a schematic diagram illustrating only the optical fibers 2a and 2b and the lens 8 extracted from the photocurrent sensor 1 shown in FIG. 図1に示す光電流センサ1から光回路部4のみを抜粋して順方向の光路状 態を記入した概略平面図。FIG. 2 is a schematic plan view in which only an optical circuit section 4 is extracted from the photocurrent sensor 1 shown in FIG. 1 and a forward optical path state is entered. 図1に示す光電流センサ1から光回路部4のみを抜粋して逆方向の光路状 態を記入した概略平面図。FIG. 2 is a schematic plan view in which only the optical circuit section 4 is extracted from the photocurrent sensor 1 shown in FIG. 1 and the optical path state in the reverse direction is entered. 図1に示す光電流センサ1の光回路部4の構成を表す斜視図。The perspective view showing the structure of the optical circuit part 4 of the photocurrent sensor 1 shown in FIG. 図1に示す光電流センサ1の光回路部4を構成する各光学素子の配置と、 順方向での伝搬光の偏光状態を示す斜視図。The perspective view which shows arrangement | positioning of each optical element which comprises the optical circuit part 4 of the photocurrent sensor 1 shown in FIG. 1, and the polarization state of the propagation light in a forward direction. 図1に示す光電流センサ1の光回路部4の各光学素子の配置と、逆方向で の伝搬光の偏光状態を示す斜視図。The perspective view which shows the arrangement | positioning of each optical element of the optical circuit part 4 of the photocurrent sensor 1 shown in FIG. 1, and the polarization state of the propagation light in a reverse direction. 図1に示す光電流センサ1から光ファイバ19a,19bとレンズ16のみを抜 粋した概略図。FIG. 2 is a schematic diagram showing only the optical fibers 19a and 19b and the lens 16 extracted from the photocurrent sensor 1 shown in FIG. 光ファイバ2a,2b,19a,19bを挿入,保持するフェルール7,18の構成 図。The block diagram of the ferrules 7 and 18 which insert and hold | maintain the optical fibers 2a, 2b, 19a, and 19b. 図9の変更例を示す構成図。The block diagram which shows the example of a change of FIG. 図3の光回路部4における順方向の光の偏光状態を示す図。The figure which shows the polarization state of the light of the forward direction in the optical circuit part 4 of FIG. 図4の光回路部4における逆方向の光の偏光状態を示す図。The figure which shows the polarization state of the light of the reverse direction in the optical circuit part 4 of FIG. 図12(F)の偏光成分の拡大図。The enlarged view of the polarization component of FIG. 図4の変更例を示す概略平面図。The schematic plan view which shows the example of a change of FIG. 図7の変更例を示す斜視図。The perspective view which shows the example of a change of FIG. 図12の変更例を示す偏光状態提示図。The polarization state presentation figure which shows the example of a change of FIG. 本発明の第2の実施形態に係る光電流センサの光回路部4の構成を表す 斜視図。The perspective view showing the structure of the optical circuit part 4 of the photocurrent sensor which concerns on the 2nd Embodiment of this invention. 第2の実施形態の光回路部4のみを抜粋して順方向の光路状態を記入し た概略平面図。FIG. 6 is a schematic plan view in which only an optical circuit unit 4 of the second embodiment is extracted and a forward optical path state is written. 第2の実施形態の光回路部4のみを抜粋して逆方向の光路状態を記入し た概略平面図。FIG. 6 is a schematic plan view in which only the optical circuit unit 4 of the second embodiment is extracted and the optical path state in the reverse direction is entered. 第2の実施形態の光回路部4を構成する各光学素子の配置と、順方向で の伝搬光の偏光状態を示す斜視図。The perspective view which shows arrangement | positioning of each optical element which comprises the optical circuit part 4 of 2nd Embodiment, and the polarization state of the propagation light in a forward direction. 第2の実施形態の光回路部4の各光学素子の配置と、逆方向での伝搬光 の偏光状態を示す斜視図。The perspective view which shows arrangement | positioning of each optical element of the optical circuit part 4 of 2nd Embodiment, and the polarization state of the propagation light in a reverse direction. 図18の光回路部4における順方向の光の偏光状態を示す図。The figure which shows the polarization state of the light of the forward direction in the optical circuit part 4 of FIG. 図19の光回路4における逆方向の光の偏光状態を示す図。The figure which shows the polarization state of the light of the reverse direction in the optical circuit 4 of FIG. 従来の光電流センサの構成を示す概略図。Schematic which shows the structure of the conventional photocurrent sensor.

符号の説明Explanation of symbols

1 光電流センサ
2a,2b,19a,19b 光ファイバ
3 光電変換部
4 光回路部
5 光源
6 導体
7,18 フェルール
8,16 レンズ
第1の複屈折素子
10,10’ 第2の複屈折素子
11,11’ 第3の複屈折素子
12 第1の非相反偏光面回転素子
13 第2の非相反偏光面回転素子
14,14’ 偏光面回転素子
15 反射膜
17 マグネット
1 Photocurrent sensor
2a, 2b, 19a, 19b Optical fiber 3 Photoelectric conversion unit 4 Optical circuit unit 5 Light source 6 Conductor 7, 18 Ferrule 8, 16 Lens 9 First birefringence element
10, 10 'second birefringent element
11, 11 'Third birefringent element
12 First nonreciprocal polarization plane rotation element
13 Second nonreciprocal polarization plane rotation element
14, 14 'Polarization plane rotation element
15 Reflective film
17 Magnet

Claims (4)

電流が流れる導体の周りを周回するように配した光ファイバと、光源と受光器とを有する光電変換部とを備え、前記光源からの入射光を光ファイバ内に伝搬させ、光ファイバ内の伝搬光に生じるファラデー効果を利用して前記導体に流れる電流を計測する光電流センサにおいて、
少なくとも2つ以上の複屈折素子と、回転角が45度と22.5度の2つの非相反偏光面回転素子と、偏光面回転素子とを有する光回路部を備え、
前記光電変換部側から、前記偏光面回転素子,一方の前記複屈折素子,前記回転角が45度の前記非相反偏光面回転素子,他の前記複屈折素子,前記回転角が22.5度の前記非相反偏光面回転素子の順に配置し、
前記光ファイバを2本、前記導体の周りに互いに逆回りとなるように配すると共に、前記光源からの入射光を前記光回路部によって2つの偏光成分に分離して、各偏光成分別に各光ファイバ内に伝搬させ、伝搬後に前記光ファイバから出射された前記各偏光成分を、前記複屈折素子によって常光線と異常光線とに分離することによって、前記入射光を4つの偏光成分に分離し、
更に、前記入射光を前記4つの偏光成分に分離させた前記複屈折素子において常光線である偏光成分どうし又は異常光線である偏光成分どうしを結合させ、その結合光を検出光として前記受光器で受光することを特徴とする光電流センサ。
An optical fiber arranged to circulate around a conductor through which a current flows, and a photoelectric conversion unit having a light source and a light receiver, and propagates incident light from the light source into the optical fiber. In a photocurrent sensor that measures the current flowing through the conductor using the Faraday effect generated in light,
An optical circuit unit including at least two birefringent elements, two non-reciprocal polarization plane rotation elements having rotation angles of 45 degrees and 22.5 degrees, and a polarization plane rotation element;
From the photoelectric conversion unit side, the polarization plane rotation element, one of the birefringence elements, the non-reciprocal polarization plane rotation element having a rotation angle of 45 degrees, the other birefringence element, and the rotation angle of 22.5 degrees Arrange in the order of non-reciprocal polarization plane rotation element,
Two optical fibers are arranged around the conductors so as to be opposite to each other, and incident light from the light source is separated into two polarization components by the optical circuit unit, and each light component is separated by each polarization component. Separating the incident light into four polarization components by propagating into the fiber and separating each polarization component emitted from the optical fiber after propagation into ordinary and extraordinary rays by the birefringence element;
Further, in the birefringent element in which the incident light is separated into the four polarized light components, polarized light components that are ordinary rays or polarized light components that are extraordinary rays are combined, and the combined light is detected by the receiver as detection light. A photocurrent sensor characterized by receiving light.
前記受光器の個数が1つであることを特徴とする請求項1記載の光電流センサ。   2. The photocurrent sensor according to claim 1, wherein the number of the light receivers is one. 前記検出光を受光して前記受光器から出力された電気信号を、受光器の出力側に接続したフィルタによって直流成分と交流成分とに分岐し、直流成分のみを前記光源にフィードバックして前記光源を動作させることを特徴とする、請求項1又は2に記載の光電流センサ。   The electrical signal output from the light receiver upon receiving the detection light is branched into a direct current component and an alternating current component by a filter connected to the output side of the light receiver, and only the direct current component is fed back to the light source to provide the light source. The photocurrent sensor according to claim 1, wherein the photocurrent sensor is operated. 前記光源から前記光ファイバに至る光路上に、少なくとも2つの前記複屈折素子を配置し、2つの前記複屈折素子における各異常光線のシフト量が互いに等しくなるように、各複屈折素子を構成することを特徴とする、請求項1乃至3の何れかに記載の光電流センサ。   At least two of the birefringent elements are arranged on the optical path from the light source to the optical fiber, and each birefringent element is configured so that the shift amounts of the extraordinary rays in the two birefringent elements are equal to each other. The photocurrent sensor according to any one of claims 1 to 3, wherein the photocurrent sensor is characterized in that
JP2006321810A 2006-11-29 2006-11-29 Photocurrent sensor Expired - Fee Related JP4868310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321810A JP4868310B2 (en) 2006-11-29 2006-11-29 Photocurrent sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321810A JP4868310B2 (en) 2006-11-29 2006-11-29 Photocurrent sensor

Publications (2)

Publication Number Publication Date
JP2008134183A JP2008134183A (en) 2008-06-12
JP4868310B2 true JP4868310B2 (en) 2012-02-01

Family

ID=39559127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321810A Expired - Fee Related JP4868310B2 (en) 2006-11-29 2006-11-29 Photocurrent sensor

Country Status (1)

Country Link
JP (1) JP4868310B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101896113B1 (en) 2017-06-19 2018-10-04 부산대학교 산학협력단 Interferometer optic structure and bias-free optical current sensor using of the same and manufacturing method of optical integrated circuit device for the same
CN113945744B (en) * 2021-12-21 2022-03-22 国网江苏省电力有限公司营销服务中心 All-fiber direct current transformer temperature compensation system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3308897B2 (en) * 1998-05-01 2002-07-29 株式会社日立製作所 Current measuring method and photocurrent sensor
JP2001349872A (en) * 2000-06-06 2001-12-21 Shimadzu Corp Magnetic sensor
EP1482315A4 (en) * 2002-03-01 2008-04-23 Tokyo Electric Power Co Current measuring device

Also Published As

Publication number Publication date
JP2008134183A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
US7176671B2 (en) Current measuring device
JP5853288B2 (en) 2-core optical fiber magnetic field sensor
US9588150B2 (en) Electric current measuring apparatus
US8957667B2 (en) Electric current measuring apparatus
US8098438B2 (en) Power monitoring device for powerful fiber laser systems
US6839170B2 (en) Optical isolator
JP4868310B2 (en) Photocurrent sensor
JPWO2019066050A1 (en) Magnetic sensor element and magnetic sensor device
CN110554464B (en) Miniaturized single polarization fiber resonant cavity
US20030138224A1 (en) Method for fabrication of an all fiber polarization retardation device
JP2004145136A (en) Optical demultiplexer and otdr device
WO2007102579A1 (en) Reflection type optical circulator
JPH0667118A (en) Optical coupler
JPH0792325A (en) Polarized light selecting element and light source module and optical fiber gyro
KR20230086460A (en) Optical Current Sensor System based on All-in-one Optics
JP2010014579A (en) Optical sensor and measuring system using the same
JP6753581B2 (en) Optical measuring device
JP4116410B2 (en) Polarization state monitoring device
JP2009041974A (en) Magnetic field sensor
JPH07111456B2 (en) Polarization-maintaining optical fiber type magnetic field sensor
JPH1090633A (en) Light polarization plane controller
JPH02281169A (en) Optical magnetic sensor
JPH09274056A (en) Current measuring device for optical fiber
JP2019090714A (en) Optical magnetic field and current measuring device
JPH0695049A (en) Magneto-optical field sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

R150 Certificate of patent or registration of utility model

Ref document number: 4868310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees