JP4867675B2 - Reducing agent supply device - Google Patents

Reducing agent supply device Download PDF

Info

Publication number
JP4867675B2
JP4867675B2 JP2007012440A JP2007012440A JP4867675B2 JP 4867675 B2 JP4867675 B2 JP 4867675B2 JP 2007012440 A JP2007012440 A JP 2007012440A JP 2007012440 A JP2007012440 A JP 2007012440A JP 4867675 B2 JP4867675 B2 JP 4867675B2
Authority
JP
Japan
Prior art keywords
reducing agent
exhaust gas
addition valve
flow rate
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007012440A
Other languages
Japanese (ja)
Other versions
JP2008180101A (en
Inventor
仁 関島
勇介 本江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007012440A priority Critical patent/JP4867675B2/en
Priority to DE102008000092.2A priority patent/DE102008000092B4/en
Publication of JP2008180101A publication Critical patent/JP2008180101A/en
Application granted granted Critical
Publication of JP4867675B2 publication Critical patent/JP4867675B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、エンジンからの排ガスに還元剤を供給する還元剤供給装置に関する。   The present invention relates to a reducing agent supply device that supplies a reducing agent to exhaust gas from an engine.

従来から、エンジンからの排ガスに含まれる窒素酸化物(NOx)を還元して浄化するために、排ガスに還元剤を供給する還元剤供給装置が公知である(例えば、特許文献1参照)。この還元剤は、例えば、尿素水であり、尿素の分解により発生するアンモニア(NH3)が、触媒によりNOxと反応して無害な窒素(N2)や水(H2O)を生成することで、NOxが浄化される。そして、還元剤は、排気管の内部に開口する噴射孔から噴射されて排ガス中に広がり、触媒まで導かれる。   2. Description of the Related Art Conventionally, a reducing agent supply device that supplies a reducing agent to exhaust gas in order to reduce and purify nitrogen oxide (NOx) contained in exhaust gas from an engine is known (see, for example, Patent Document 1). This reducing agent is, for example, urea water, and ammonia (NH 3) generated by decomposition of urea reacts with NO x by a catalyst to generate harmless nitrogen (N 2) and water (H 2 O). Purified. And a reducing agent is injected from the injection hole opened inside an exhaust pipe, spreads in exhaust gas, and is guide | induced to a catalyst.

ところで、排ガスの流速はエンジンの運転状態に応じて常に変動しているため、噴射された還元剤の広がり方も排ガス流速とともに変動する。すなわち、排ガス流速が大きい場合、噴射された還元剤は排ガスにより押し流され、充分に径方向に広がることができない。逆に排ガス流速が小さい場合、噴射された還元剤は排ガスを押しのけて急激に径方向に広がる。この結果、還元剤噴霧が径方向に偏り部分的に高濃度になったり、還元剤の管壁への付着量が増加したりする等の問題が発生し、排ガスの浄化効率が低下する虞がある。
特開2006−125324号公報
By the way, since the flow rate of the exhaust gas constantly varies according to the operating state of the engine, the way in which the injected reducing agent spreads also varies with the exhaust gas flow rate. That is, when the exhaust gas flow rate is large, the injected reducing agent is swept away by the exhaust gas and cannot sufficiently spread in the radial direction. Conversely, when the exhaust gas flow velocity is small, the injected reducing agent pushes the exhaust gas and spreads rapidly in the radial direction. As a result, there is a risk that the reducing agent spray is biased in the radial direction and partially becomes high in concentration, or the amount of reducing agent attached to the pipe wall increases, which may reduce the purification efficiency of exhaust gas. is there.
JP 2006-125324 A

本発明は、上記の問題点を解決するためになされたものであり、その目的は、還元剤供給装置において、排ガス流速が変動しても還元剤の排ガス中への広がり方の変動を抑制し、排ガスの浄化効率の低下を阻止することにある。   The present invention has been made to solve the above-described problems, and its object is to suppress fluctuations in how the reducing agent spreads into the exhaust gas even when the exhaust gas flow rate fluctuates in the reducing agent supply device. It is to prevent a reduction in exhaust gas purification efficiency.

〔請求項1の手段〕
請求項1に記載の還元剤供給装置は、エンジンからの排ガスに還元剤を供給するものである。そして、この還元剤供給装置は、所定のタンクから還元剤を吸引して吐出する供給ポンプと、排ガスが通る排気管に装着され、供給ポンプから吐出された還元剤を排気管の内部に噴射する添加弁と、排ガスの流速の変化に応じて添加弁から噴射される還元剤の圧力を変更するように制御する制御手段とを備える。
また、添加弁は、排気管の流れ方向に対して斜めに還元剤を噴射する。
また、制御手段は、排ガスの流速が大きくなると、添加弁から噴射される還元剤の圧力を増加して排ガスに対する添加弁からの還元剤噴霧の貫徹力を強め、排ガスの流速が小さくなると、添加弁から噴射される還元剤の圧力を低減して排ガスに対する添加弁からの還元剤噴霧の貫徹力を弱める。
さらに、制御手段は、添加弁の弁開度を、全閉の状態を示すオフ状態と全閉よりも開いた状態を示すオン状態との間でパルス状に変化させることで、添加弁による還元剤の噴射量を目標値に略一致させ、排ガスの流速の変化に応じて添加弁から噴射される還元剤の圧力を変更する際に、オン状態の時間が1パルス周期に占める割合を可変する。
[Means of Claim 1]
The reducing agent supply apparatus according to claim 1 supplies the reducing agent to the exhaust gas from the engine. The reducing agent supply device is attached to a supply pump that sucks and discharges the reducing agent from a predetermined tank and an exhaust pipe through which the exhaust gas passes, and injects the reducing agent discharged from the supply pump into the exhaust pipe. An addition valve and control means for controlling the pressure of the reducing agent injected from the addition valve in accordance with a change in the flow rate of the exhaust gas are provided.
The addition valve injects the reducing agent obliquely with respect to the flow direction of the exhaust pipe.
In addition, the control means increases the pressure of the reducing agent injected from the addition valve when the exhaust gas flow rate increases, strengthens the penetration force of the reducing agent spray from the addition valve to the exhaust gas, and adds when the exhaust gas flow rate decreases. The pressure of the reducing agent injected from the valve is reduced to weaken the penetration force of the reducing agent spray from the addition valve to the exhaust gas.
Furthermore, the control means changes the valve opening degree of the addition valve in a pulse shape between an off state indicating a fully closed state and an on state indicating a state opened more than the fully closed state, thereby reducing the addition valve by the addition valve. When the pressure of the reducing agent injected from the addition valve is changed in accordance with the change in the flow rate of the exhaust gas, the ratio of the on-state time to one pulse cycle is varied. .

これにより、排ガス流速が大きい場合には、噴射される還元剤の圧力を増加して還元剤噴霧の貫徹力を強めることで、排ガスの流れに抗して還元剤噴霧を径方向に広げることができる。逆に排ガス流速が小さい場合には、噴射される還元剤の圧力を低減して還元剤噴霧の貫徹力を弱めることで、還元剤噴霧の径方向への急激な広がりを抑制することができる。この結果、排ガス流速が変動しても還元剤の排ガス中への広がり方の変動を抑制し、排ガスの浄化効率の低下を阻止することができる。
また、排ガスの流速の変化に応じて還元剤の圧力を変更する際に、オン状態の時間が1パルス周期に占める割合を可変することで、排ガス流速の変動に応じて添加弁から噴射される還元剤の圧力を変更する必要が生じた場合でも、還元剤の噴射量を目標値に略一致させることができる。
例えば、排ガス流速の変動前後で噴射量の目標値が変わらない場合を考える。そして、排ガス流速の変動に応じて、添加弁から噴射される還元剤の圧力を増加する場合、前記の割合を縮小することで還元剤の噴射量を目標値に略一致させることができる。また、添加弁から噴射される還元剤の圧力を低減する場合、前記の割合を拡大することで還元剤の噴射量を目標値に略一致させることができる。
As a result, when the exhaust gas flow velocity is large, the reducing agent spray can be expanded in the radial direction against the exhaust gas flow by increasing the pressure of the injected reducing agent and strengthening the penetration of the reducing agent spray. it can. Conversely, when the exhaust gas flow rate is small, the rapid spread of the reducing agent spray in the radial direction can be suppressed by reducing the pressure of the injected reducing agent and weakening the penetration force of the reducing agent spray. As a result, even if the exhaust gas flow rate fluctuates, fluctuations in how the reducing agent spreads into the exhaust gas can be suppressed, and reduction in exhaust gas purification efficiency can be prevented.
Further, when the pressure of the reducing agent is changed in accordance with the change in the exhaust gas flow rate, the ratio of the on-state time to one pulse cycle is varied to inject from the addition valve in accordance with the change in the exhaust gas flow rate. Even when it is necessary to change the pressure of the reducing agent, it is possible to make the injection amount of the reducing agent substantially coincide with the target value.
For example, consider a case where the target value of the injection amount does not change before and after the fluctuation of the exhaust gas flow velocity. When the pressure of the reducing agent injected from the addition valve is increased in accordance with the fluctuation of the exhaust gas flow rate, the amount of reducing agent injected can be made substantially equal to the target value by reducing the ratio. Further, when the pressure of the reducing agent injected from the addition valve is reduced, the injection amount of the reducing agent can be substantially matched with the target value by increasing the ratio.

〔請求項2の手段〕
請求項2に記載の還元剤供給装置によれば、制御手段は、供給ポンプから添加弁への還元剤の供給量を可変して、添加弁から噴射される還元剤の圧力を変更する。
[Means of claim 2]
According to the reducing agent supply apparatus of the second aspect, the control means varies the supply amount of the reducing agent from the supply pump to the addition valve, and changes the pressure of the reducing agent injected from the addition valve.

〔請求項の手段〕
請求項に記載の還元剤供給装置は、エンジン回転数を検出するエンジン回転数検出手段と、アクセル開度を検出するアクセル開度検出手段とを備え、制御手段は、エンジン回転数検出手段およびアクセル開度検出手段から得られる検出値を用いて排ガスの流速を推測する。
これにより、エンジン回転数検出手段やアクセル開度検出手段として機能する既存のセンサを利用して、排ガス流速を推定するのに必要な因子の値を取得することができる。このため、還元剤供給装置に排ガス流速を検出するための新規のセンサを装備する必要がなくなる。
[Means of claim 3 ]
The reducing agent supply apparatus according to claim 3 includes engine speed detecting means for detecting the engine speed and accelerator opening degree detecting means for detecting the accelerator opening degree. The control means includes engine speed detecting means and The flow rate of the exhaust gas is estimated using the detection value obtained from the accelerator opening detection means.
Thereby, the value of the factor necessary for estimating the exhaust gas flow velocity can be acquired by using an existing sensor that functions as an engine speed detection means or an accelerator opening degree detection means. For this reason, it is not necessary to equip the reducing agent supply device with a new sensor for detecting the exhaust gas flow velocity.

最良の形態1の還元剤供給装置は、エンジンからの排ガスに還元剤を供給するものである。そして、この還元剤供給装置は、所定のタンクから還元剤を吸引して吐出する供給ポンプと、排ガスが通る排気管に装着され、供給ポンプから吐出された還元剤を排気管の内部に噴射する添加弁と、排ガスの流速の変化に応じて添加弁から噴射される還元剤の圧力を変更するように制御する制御手段とを備える。
また、添加弁は、排気管の流れ方向に対して斜めに還元剤を噴射する。
また、制御手段は、排ガスの流速が大きくなると、添加弁から噴射される還元剤の圧力を増加して排ガスに対する添加弁からの還元剤噴霧の貫徹力を強め、排ガスの流速が小さくなると、添加弁から噴射される還元剤の圧力を低減して排ガスに対する添加弁からの還元剤噴霧の貫徹力を弱める。
The reducing agent supply device of the best mode 1 supplies a reducing agent to exhaust gas from an engine. The reducing agent supply device is attached to a supply pump that sucks and discharges the reducing agent from a predetermined tank and an exhaust pipe through which the exhaust gas passes, and injects the reducing agent discharged from the supply pump into the exhaust pipe. An addition valve and control means for controlling the pressure of the reducing agent injected from the addition valve in accordance with a change in the flow rate of the exhaust gas are provided.
The addition valve injects the reducing agent obliquely with respect to the flow direction of the exhaust pipe.
In addition, the control means increases the pressure of the reducing agent injected from the addition valve when the exhaust gas flow rate increases, strengthens the penetration force of the reducing agent spray from the addition valve to the exhaust gas, and adds when the exhaust gas flow rate decreases. The pressure of the reducing agent injected from the valve is reduced to weaken the penetration force of the reducing agent spray from the addition valve to the exhaust gas.

制御手段は、供給ポンプから添加弁への還元剤の供給量を可変して、添加弁から噴射される還元剤の圧力を変更する。また、制御手段は、添加弁の弁開度を、全閉の状態を示すオフ状態と全閉よりも開いた状態を示すオン状態との間でパルス状に変化させることで、添加弁による還元剤の噴射量を目標値に略一致させ、排ガスの流速の変化に応じて添加弁から噴射される還元剤の圧力を変更する際に、オン状態の時間が1パルス周期に占める割合を可変する。   The control means varies the supply amount of the reducing agent from the supply pump to the addition valve, and changes the pressure of the reducing agent injected from the addition valve. In addition, the control means changes the valve opening of the addition valve in a pulse shape between an off state indicating a fully closed state and an on state indicating a state opened more than the fully closed state, thereby reducing the addition valve by the addition valve. When the pressure of the reducing agent injected from the addition valve is changed in accordance with the change in the flow rate of the exhaust gas, the ratio of the on-state time to one pulse cycle is varied. .

また、この還元剤供給装置は、エンジン回転数を検出するエンジン回転数検出手段と、アクセル開度を検出するアクセル開度検出手段とを備え、制御手段は、エンジン回転数検出手段およびアクセル開度検出手段から得られる検出値を用いて排ガスの流速を推測する The reducing agent supply device includes an engine speed detecting means for detecting the engine speed and an accelerator opening detecting means for detecting the accelerator opening, and the control means includes the engine speed detecting means and the accelerator opening. The flow rate of the exhaust gas is estimated using the detection value obtained from the detection means .

〔実施例1の構成〕
実施例1の還元剤供給装置1の構成を、図1を用いて説明する。
還元剤供給装置1は、エンジンからの排ガスに還元剤を供給するものであり、排ガスに含まれる窒素酸化物(NOx)を還元して浄化するために用いられる。還元剤は、例えば、尿素水であり、尿素の分解により発生するアンモニア(NH3)が、触媒2によりNOxと反応して無害な窒素(N2)や水(H2O)を生成することで、NOxが浄化される。
[Configuration of Example 1]
The structure of the reducing agent supply apparatus 1 of Example 1 is demonstrated using FIG.
The reducing agent supply device 1 supplies a reducing agent to exhaust gas from an engine, and is used to reduce and purify nitrogen oxides (NOx) contained in the exhaust gas. The reducing agent is, for example, urea water, and ammonia (NH 3) generated by decomposition of urea reacts with NO x by the catalyst 2 to generate harmless nitrogen (N 2) and water (H 2 O). Purified.

還元剤供給装置1は、所定のタンク4から還元剤を吸引して吐出する供給ポンプ5と、供給ポンプ5から吐出された還元剤を排気管6の内部に噴射する添加弁7と、供給ポンプ5および添加弁7の作動を制御する電子制御装置(ECU)8とを備える。   The reducing agent supply apparatus 1 includes a supply pump 5 that sucks and discharges the reducing agent from a predetermined tank 4, an addition valve 7 that injects the reducing agent discharged from the supply pump 5 into the exhaust pipe 6, and a supply pump 5 and an electronic control unit (ECU) 8 for controlling the operation of the addition valve 7.

供給ポンプ5は、例えば、永久磁石が装着されたロータとコイルが巻線されたステータとを有し、永久磁石による磁界とコイルに通電される電流との相互作用によりトルクを発生するブラシレスモータ11をアクチュエータとする。そして、ECU8は、コイルへの通電を制御することで、ブラシレスモータ11の回転数やトルクを可変して還元剤の供給量および吐出圧を操作する。   The supply pump 5 includes, for example, a rotor on which a permanent magnet is mounted and a stator on which a coil is wound, and a brushless motor 11 that generates torque by the interaction between a magnetic field generated by the permanent magnet and a current supplied to the coil. Is an actuator. Then, the ECU 8 controls the energization of the coil, thereby changing the rotation speed and torque of the brushless motor 11 and operating the supply amount and discharge pressure of the reducing agent.

添加弁7は、排ガスが通る排気管6に装着され、噴射孔を含む先端部13は、排気管6の内部に突出する。そして、還元剤は、供給ポンプ5から添加弁7まで導かれ、直接、排気管6に噴射される。また、噴射された還元剤は、排ガスと混合した後に触媒2に導かれ、上記のようにNOxを浄化する。   The addition valve 7 is attached to an exhaust pipe 6 through which exhaust gas passes, and a tip portion 13 including an injection hole projects into the exhaust pipe 6. Then, the reducing agent is guided from the supply pump 5 to the addition valve 7 and directly injected into the exhaust pipe 6. The injected reducing agent is mixed with exhaust gas and then guided to the catalyst 2 to purify NOx as described above.

なお、添加弁7は、通電により弁体(図示せず)を開弁側に磁気吸引するソレノイドコイル(図示せず)を有する。そして、ECU8は、ソレノイドコイルに通電するための駆動回路(図示せず)にパルス状の制御信号を出力することで、添加弁7の弁開度をパルス状に変化させ、添加弁7による還元剤の噴射量を目標値に略一致させる。   The addition valve 7 has a solenoid coil (not shown) that magnetically attracts a valve element (not shown) to the valve opening side when energized. Then, the ECU 8 outputs a pulsed control signal to a drive circuit (not shown) for energizing the solenoid coil, thereby changing the valve opening of the addition valve 7 in a pulsed manner, and the reduction by the addition valve 7. The injection amount of the agent is substantially matched with the target value.

すなわち、ECU8は、図2に示すように、全閉の状態を示すオフ状態と、全閉よりも開いた状態を示すオン状態との間で弁開度をパルス状に変化させることで、添加弁7による還元剤の噴射量を目標値に略一致させる。そして、ECU8は、噴射量の目標値に応じて制御信号のデューティ比を可変することで、排ガス浄化に過不足のない量の還元剤を添加弁7により噴射させる。   That is, as shown in FIG. 2, the ECU 8 adds the valve by changing the valve opening in a pulse shape between an off state indicating the fully closed state and an on state indicating the open state rather than the fully closed state. The amount of reducing agent injected by the valve 7 is made to substantially match the target value. Then, the ECU 8 varies the duty ratio of the control signal in accordance with the target value of the injection amount, thereby causing the addition valve 7 to inject an amount of reducing agent that is sufficient for exhaust gas purification.

ECU8は、制御機能および演算機能を発揮するCPU、ROMおよびRAM等の記憶装置、入力装置ならびに出力装置等により構成される周知のマイクロコンピュータであり、エンジンの運転状態に応じて、各種の機器のアクチュエータに指令して機器の駆動制御を行うものである。すなわち、ECU8は、供給ポンプ5および添加弁7等の作動を制御する制御手段として機能する。   The ECU 8 is a well-known microcomputer composed of a storage device such as a CPU, ROM, and RAM, an input device, an output device, and the like that perform a control function and an arithmetic function. Various types of equipment are used according to the operating state of the engine. The actuator is commanded to control the drive of the device. That is, the ECU 8 functions as a control unit that controls the operation of the supply pump 5, the addition valve 7, and the like.

また、還元剤供給装置1は、エンジン回転数を検出するエンジン回転数検出手段としてのエンジン回転数センサ15と、アクセル開度を検出するアクセル開度検出手段としてのアクセル開度センサ16とを備える。そして、ECU8は、エンジン回転数センサ15およびアクセル開度センサ16から得られる検出値を用いて排ガス流速を推測する。   The reducing agent supply device 1 also includes an engine speed sensor 15 as an engine speed detecting means for detecting the engine speed, and an accelerator opening sensor 16 as an accelerator opening detecting means for detecting an accelerator opening. . Then, the ECU 8 estimates the exhaust gas flow velocity using detection values obtained from the engine speed sensor 15 and the accelerator opening sensor 16.

そして、ECU8は、排ガス流速の推測値に応じて、添加弁7から噴射される還元剤の圧力(つまり、供給ポンプ5による還元剤の吐出圧)を制御する。例えば、ECU8は、図3に示すように、排ガス流速の推定値に対する供給ポンプ5の吐出圧の指令値を、所定の一次関数の形式で記憶し、推定値の増加とともに吐出圧の指令値を増加させる。   Then, the ECU 8 controls the pressure of the reducing agent injected from the addition valve 7 (that is, the discharge pressure of the reducing agent by the supply pump 5) according to the estimated value of the exhaust gas flow velocity. For example, as shown in FIG. 3, the ECU 8 stores the command value of the discharge pressure of the supply pump 5 with respect to the estimated value of the exhaust gas flow velocity in the form of a predetermined linear function, and the command value of the discharge pressure is increased as the estimated value increases. increase.

すなわち、排ガス流速が大きい場合、還元剤噴霧は、排ガスに押し流され充分に径方向に広がることができなくなり(図4(a)参照)、排気管6の中心軸よりも添加弁7の側に偏って高濃度に形成される。このため、添加弁7の反対側の触媒2が有効に利用されず未反応のまま排出されるアンモニアが増加したり、添加弁7の側の管壁に付着する還元剤が増加したりする。   That is, when the exhaust gas flow rate is high, the reducing agent spray is swept away by the exhaust gas and cannot spread sufficiently in the radial direction (see FIG. 4A), and is closer to the addition valve 7 than the central axis of the exhaust pipe 6. Unevenly formed with a high concentration. For this reason, the catalyst 2 on the opposite side of the addition valve 7 is not effectively used and ammonia discharged without being reacted increases, or the reducing agent attached to the pipe wall on the side of the addition valve 7 increases.

また、排ガス流速が小さい場合、還元剤噴霧は、排ガスを押しのけて急激に径方向に広がり(図4(b)参照)、排気管6の中心軸よりも添加弁7の反対側に偏って高濃度に形成される。このため、添加弁7の側の触媒2が有効に利用されず未反応のまま排出されるアンモニアが増加したり、添加弁7の反対側の管壁に付着する還元剤が増加したりする。
そこで、ECU8は、排ガス流速の変動に基づく還元剤噴霧の偏りに対し、供給ポンプ5の吐出圧を変更して還元剤噴霧の貫徹力を操作することで、還元剤噴霧の偏りを修正している(図4(c)、(d)参照)。
In addition, when the exhaust gas flow rate is small, the reducing agent spray rapidly spreads in the radial direction by pushing the exhaust gas (see FIG. 4B), and is higher than the central axis of the exhaust pipe 6 on the opposite side of the addition valve 7. Formed to a concentration. For this reason, the catalyst 2 on the side of the addition valve 7 is not effectively used, and ammonia discharged without being reacted increases, or the reducing agent attached to the tube wall on the opposite side of the addition valve 7 increases.
Therefore, the ECU 8 corrects the reducing agent spray bias by changing the discharge pressure of the supply pump 5 and operating the reducing agent spray penetration force against the reducing agent spray bias based on the fluctuation of the exhaust gas flow velocity. (See FIGS. 4C and 4D).

また、ECU8は、排ガスの流速の変化に応じて供給ポンプ5の吐出圧を変更する際に、添加弁7の弁開度に関して、オン状態の時間が1パルス周期に占める割合を可変する。例えば、排ガス流速の変動前後で噴射量の目標値が変わらず、かつ、排ガス流速の変動に応じて供給ポンプ5の吐出圧を増加する場合、上記の割合を縮小することで還元剤の噴射量を目標値に略一致させることができる(図2参照)。逆に、供給ポンプ5の吐出圧を低減する場合、上記の割合を拡大することで還元剤の噴射量を目標値に略一致させることができる。   Further, when the ECU 8 changes the discharge pressure of the supply pump 5 in accordance with the change in the flow rate of the exhaust gas, the ratio of the on-state time to one pulse period is varied with respect to the valve opening degree of the addition valve 7. For example, when the target value of the injection amount does not change before and after the fluctuation of the exhaust gas flow rate and the discharge pressure of the supply pump 5 is increased according to the fluctuation of the exhaust gas flow rate, the injection amount of the reducing agent is reduced by reducing the above ratio. Can be substantially matched with the target value (see FIG. 2). On the other hand, when the discharge pressure of the supply pump 5 is reduced, the injection amount of the reducing agent can be substantially matched with the target value by increasing the ratio.

〔実施例1の効果〕
実施例1の還元剤供給装置1によれば、添加弁7は、排気管6に装着され、供給ポンプ5から吐出された還元剤を排気管6の内部に直接噴射し、ECU8は、排ガス流速に応じて供給ポンプ5の吐出圧を制御する。
これにより、排ガス流速が大きい場合には、噴射される還元剤の圧力を増加して還元剤噴霧の貫徹力を強めることで、排ガスの流れに抗して還元剤噴霧を径方向に広げることができる。逆に排ガス流速が小さい場合には、噴射される還元剤の圧力を低減して還元剤噴霧の貫徹力を弱めることで、還元剤噴霧の径方向への急激な広がりを抑制することができる。この結果、排ガス流速が変動しても還元剤の排ガス中への広がり方の変動を抑制し、排ガスの浄化効率の低下を阻止することができる。
[Effect of Example 1]
According to the reducing agent supply apparatus 1 of the first embodiment, the addition valve 7 is attached to the exhaust pipe 6 and directly injects the reducing agent discharged from the supply pump 5 into the exhaust pipe 6. Accordingly, the discharge pressure of the supply pump 5 is controlled.
As a result, when the exhaust gas flow velocity is large, the reducing agent spray can be expanded in the radial direction against the exhaust gas flow by increasing the pressure of the injected reducing agent and strengthening the penetration of the reducing agent spray. it can. Conversely, when the exhaust gas flow rate is small, the rapid spread of the reducing agent spray in the radial direction can be suppressed by reducing the pressure of the injected reducing agent and weakening the penetration force of the reducing agent spray. As a result, even if the exhaust gas flow rate fluctuates, fluctuations in how the reducing agent spreads into the exhaust gas can be suppressed, and reduction in exhaust gas purification efficiency can be prevented.

また、ECU8は、添加弁7の弁開度をオフ状態とオン状態との間でパルス状に変化させることで、添加弁7による還元剤の噴射量を目標値に略一致させ、排ガスの流速の変化に応じて供給ポンプ5の吐出圧を変更する際に、オン状態の時間が1パルス周期に占める割合を可変する。
これにより、排ガス流速が変動し、添加弁7から噴射される還元剤の圧力を変更する必要が生じた場合でも、還元剤の噴射量を目標値に略一致させることができる。
Further, the ECU 8 changes the valve opening of the addition valve 7 in a pulse shape between the off state and the on state, thereby causing the injection amount of the reducing agent by the addition valve 7 to substantially coincide with the target value, and the flow rate of the exhaust gas. When the discharge pressure of the supply pump 5 is changed in accordance with the change in the ratio, the ratio of the on-state time to one pulse period is varied.
Thereby, even when the exhaust gas flow rate fluctuates and the pressure of the reducing agent injected from the addition valve 7 needs to be changed, the amount of reducing agent injected can be made to substantially match the target value.

なお、実施例1のECU8は、長周期パルスの制御信号のデューティ比を可変し、弁開度がオン状態の時間を操作することで還元剤の噴射量を目標値に略一致させる時間調量方式を採用するものであるが、短周期パルスの制御信号のデューティ比を可変し、弁開度をオン状態とオフ状態との間の所定値に略一致させることで還元剤の噴射量を目標値に略一致させる面積調量方式を採用してもよい。   The ECU 8 of the first embodiment varies the duty ratio of the long-cycle pulse control signal and operates the time during which the valve opening is on to adjust the injection amount of the reducing agent to substantially match the target value. This method is adopted, but the duty ratio of the control signal of the short cycle pulse is varied, and the amount of reducing agent injection is targeted by substantially matching the valve opening to a predetermined value between the on state and the off state. You may employ | adopt the area metering system made to substantially correspond to a value.

また、ECU8は、エンジン回転数センサ15およびアクセル開度センサ16から得られる検出値を用いて排ガス流速を推測する。
これにより、既存のセンサを利用して排ガス流速を推定するのに必要な因子の値を取得することができる。このため、還元剤供給装置1に排ガス流速を検出するための新規のセンサを装備する必要がなくなる
Further, the ECU 8 estimates the exhaust gas flow velocity using the detection values obtained from the engine speed sensor 15 and the accelerator opening sensor 16.
Thereby, the value of the factor required for estimating the exhaust gas flow velocity using the existing sensor can be acquired. For this reason, it is not necessary to equip the reducing agent supply apparatus 1 with a new sensor for detecting the exhaust gas flow velocity .

〔参考例1〕
参考例1の還元剤供給装置1は、図5に示すように、空気を加圧して吐出する空気圧送手段としてのコンプレッサ18を備え、添加弁7は、コンプレッサ18から吐出される空気の流路19に対して開閉し、供給ポンプ5から吐出される還元剤の流路19への供給を操作する。また、還元剤供給装置1は、流路19の先端にノズル20を備える。ノズル20は、排気管6の内部の中央で排ガスの流れの方向に開口し、添加弁7から供給されコンプレッサ18から吐出された空気と混合された還元剤を排気管6の内部に噴射する。
[Reference Example 1]
As shown in FIG. 5, the reducing agent supply apparatus 1 of Reference Example 1 includes a compressor 18 as a pneumatic feeding means that pressurizes and discharges air, and the addition valve 7 has a flow path for air discharged from the compressor 18. It opens and closes with respect to 19 and operates supply of the reducing agent discharged from the supply pump 5 to the flow path 19. Further, the reducing agent supply apparatus 1 includes a nozzle 20 at the tip of the flow path 19. The nozzle 20 opens in the direction of the flow of exhaust gas at the center inside the exhaust pipe 6 and injects the reducing agent mixed with the air supplied from the addition valve 7 and discharged from the compressor 18 into the exhaust pipe 6.

そして、ECU8は、排ガス流速に応じて、添加弁7から流路19へ供給される還元剤の圧力、およびコンプレッサ18から吐出される空気の圧力を制御する。つまり、ECU8は、排ガス流速の推測値に応じて、供給ポンプ5の吐出圧およびコンプレッサ18の吐出圧を制御する。すなわち、ECU8は、図3と同様に、排ガス流速の推定値に対する供給ポンプ5およびコンプレッサ18の吐出圧の指令値を、各々、所定の一次関数の形式で記憶し、推定値の増加とともに供給ポンプ5およびコンプレッサ18の吐出圧の指令値を増加させる。   The ECU 8 controls the pressure of the reducing agent supplied from the addition valve 7 to the flow path 19 and the pressure of air discharged from the compressor 18 according to the exhaust gas flow rate. That is, the ECU 8 controls the discharge pressure of the supply pump 5 and the discharge pressure of the compressor 18 according to the estimated value of the exhaust gas flow velocity. That is, as in FIG. 3, the ECU 8 stores the command values of the discharge pressure of the supply pump 5 and the compressor 18 with respect to the estimated value of the exhaust gas flow velocity in the form of a predetermined linear function, respectively, and the supply pump increases as the estimated value increases. 5 and the discharge pressure command value of the compressor 18 are increased.

この結果、排ガスに対する還元剤噴霧の貫徹力を強めたり、弱めたりすることができるので、排ガス流速が変動しても還元剤の排ガス中への広がり方の変動を抑制し、排ガスの浄化効率の低下を阻止することができる。   As a result, the penetration of the reducing agent spray on the exhaust gas can be strengthened or weakened. Decline can be prevented.

すなわち、排ガス流速が大きい場合、還元剤噴霧は、排ガスに押し流され充分に径方向に広がることができなくなり(図6(a)参照)、排気管6の中心軸の近傍に偏って高濃度に形成される。このため、管壁寄り外周側の触媒2が有効に利用されず未反応のまま排出されるアンモニアが増加する。   That is, when the exhaust gas flow rate is large, the reducing agent spray is swept away by the exhaust gas and cannot spread sufficiently in the radial direction (see FIG. 6A), and is concentrated near the central axis of the exhaust pipe 6 to a high concentration. It is formed. For this reason, the catalyst 2 on the outer peripheral side closer to the tube wall is not effectively used, and ammonia discharged without being reacted increases.

また、排ガス流速が小さい場合、還元剤噴霧は、排ガスを押しのけて急激に径方向に広がる(図6(b)参照)。このため、触媒2に到達せず管壁に付着する還元剤が増加する。
そこで、ECU8は、排ガス流速の変動に基づく還元剤噴霧の偏りに対し、供給ポンプ5の吐出圧およびコンプレッサ18の吐出圧を変更して還元剤噴霧の貫徹力を操作することで、還元剤噴霧の偏りを修正している(図6(c)、(d)参照)。
Further, when the exhaust gas flow rate is small, the reducing agent spray spreads radially in the direction of pushing the exhaust gas (see FIG. 6B). For this reason, the reducing agent which does not reach the catalyst 2 and adheres to the pipe wall increases.
Therefore, the ECU 8 operates the penetrating force of the reducing agent spray by changing the discharge pressure of the supply pump 5 and the discharge pressure of the compressor 18 against the bias of the reducing agent spray based on the fluctuation of the exhaust gas flow velocity, thereby reducing the reducing agent spray. (See FIGS. 6C and 6D).

〔変形例〕
実施例1、参考例1のECU8は、エンジン回転数センサ15およびアクセル開度センサ16から得られる検出値を用いて排ガス流速を推測するが、排ガス流速を検出する専用のセンサを排気管6に装備し、直接、排ガス流速を検出するようにしてもよい。
[Modification]
The ECU 8 according to the first embodiment and the reference example 1 estimates the exhaust gas flow velocity using the detection values obtained from the engine speed sensor 15 and the accelerator opening sensor 16, but a dedicated sensor for detecting the exhaust gas flow velocity is provided in the exhaust pipe 6. It may be equipped and the exhaust gas flow velocity may be detected directly.

また、参考例1のECU8は、供給ポンプ5の吐出圧およびコンプレッサ18の吐出圧の両方を排ガス流速に応じて可変したが、供給ポンプ5の吐出圧およびコンプレッサ18の吐出圧のいずれか一方を可変するようにしても、還元剤噴霧の貫徹力を操作することができる。 Moreover, although ECU8 of the reference example 1 varied both the discharge pressure of the supply pump 5 and the discharge pressure of the compressor 18 according to the exhaust gas flow velocity, either one of the discharge pressure of the supply pump 5 or the discharge pressure of the compressor 18 is changed. Even if it is made variable, the penetration force of the reducing agent spray can be manipulated.

還元剤供給装置の構成図である(実施例1)。It is a block diagram of a reducing agent supply apparatus (Example 1). 添加弁の弁開度の推移を示すタイムチャートである(実施例1)。It is a time chart which shows transition of the valve opening degree of an addition valve (Example 1). 排ガス流速の推定値と供給ポンプの吐出圧の指令値との相関を示す制御マップである(実施例1)。(Example 1) which is a control map which shows the correlation with the estimated value of exhaust gas flow velocity, and the command value of the discharge pressure of a supply pump. (a)は排ガス流速大、かつ修正前の還元剤噴霧を示す説明図であり、(b)は排ガス流速小、かつ修正前の還元剤噴霧を示す説明図であり、(c)は排ガス流速大、かつ修正後の還元剤噴霧を示す説明図であり、(d)は排ガス流速小、かつ修正後の還元剤噴霧を示す説明図である(実施例1)。(A) is explanatory drawing which shows the reducing agent spray before the correction | amendment with large exhaust gas flow velocity and correction, (b) is explanatory drawing which shows the reducing agent spray before small exhaust gas flow velocity and correction, (c) is exhaust gas flow velocity. It is explanatory drawing which shows the reducing agent spray after large and correction, (d) is explanatory drawing which shows the reducing agent spray after small exhaust gas flow velocity and correction (Example 1). 還元剤供給装置の構成図である(参考例1)。It is a block diagram of a reducing agent supply apparatus ( reference example 1 ). (a)は排ガス流速大、かつ修正前の還元剤噴霧を示す説明図であり、(b)は排ガス流速小、かつ修正前の還元剤噴霧を示す説明図であり、(c)は排ガス流速大、かつ修正後の還元剤噴霧を示す説明図であり、(d)は排ガス流速小、かつ修正後の還元剤噴霧を示す説明図である(参考例1)。(A) is explanatory drawing which shows the reducing agent spray before the correction | amendment with large exhaust gas flow velocity and correction, (b) is explanatory drawing which shows the reducing agent spray before small exhaust gas flow velocity and correction, (c) is exhaust gas flow velocity. It is explanatory drawing which shows the reducing agent spray which is large and corrected, (d) is explanatory drawing which shows the reducing agent spray after correction | amendment with small exhaust gas flow velocity ( reference example 1 ).

1 還元剤供給装置
4 タンク
5 供給ポンプ
6 排気管
7 添加弁
8 ECU(制御手段)
15 エンジン回転数センサ(エンジン回転数検出手段)
16 アクセル開度センサ(アクセル開度検出手段)
18 コンプレッ
9 流
0 ノズル
DESCRIPTION OF SYMBOLS 1 Reducing agent supply apparatus 4 Tank 5 Supply pump 6 Exhaust pipe 7 Addition valve 8 ECU (control means)
15 Engine speed sensor (Engine speed detector)
16 Accelerator opening sensor (Accelerator opening detecting means)
18 compressors
1 9 passage
20 nozzles

Claims (3)

エンジンからの排ガスに還元剤を供給する還元剤供給装置において、
所定のタンクから還元剤を吸引して吐出する供給ポンプと、
排ガスが通る排気管に装着され、前記供給ポンプから吐出された還元剤を前記排気管の内部に噴射する添加弁と、
排ガスの流速の変化に応じて前記添加弁から噴射される還元剤の圧力を変更するように制御する制御手段とを備え、
前記添加弁は、前記排気管の流れ方向に対して斜めに還元剤を噴射し、
前記制御手段は、
排ガスの流速が大きくなると、前記添加弁から噴射される還元剤の圧力を増加して排ガスに対する前記添加弁からの還元剤噴霧の貫徹力を強め、
排ガスの流速が小さくなると、前記添加弁から噴射される還元剤の圧力を低減して排ガスに対する前記添加弁からの還元剤噴霧の貫徹力を弱め、
さらに、前記制御手段は、
前記添加弁の弁開度を、全閉の状態を示すオフ状態と全閉よりも開いた状態を示すオン状態との間でパルス状に変化させることで、前記添加弁による還元剤の噴射量を目標値に略一致させ、
排ガスの流速の変化に応じて前記添加弁から噴射される還元剤の圧力を変更する際に、オン状態の時間が1パルス周期に占める割合を可変することを特徴とする還元剤供給装置。
In the reducing agent supply device that supplies the reducing agent to the exhaust gas from the engine,
A supply pump for sucking and discharging the reducing agent from a predetermined tank;
An addition valve that is attached to an exhaust pipe through which exhaust gas passes and injects a reducing agent discharged from the supply pump into the exhaust pipe;
Control means for controlling to change the pressure of the reducing agent injected from the addition valve according to the change in the flow rate of the exhaust gas,
The addition valve injects the reducing agent obliquely with respect to the flow direction of the exhaust pipe,
The control means includes
When the flow rate of the exhaust gas increases, the pressure of the reducing agent injected from the addition valve is increased to increase the penetration force of the reducing agent spray from the addition valve to the exhaust gas,
When the flow rate of the exhaust gas is reduced, the pressure of the reducing agent injected from the addition valve is reduced to weaken the penetration force of the reducing agent spray from the addition valve to the exhaust gas,
Further, the control means includes
By changing the valve opening degree of the addition valve in a pulse shape between an off state indicating a fully closed state and an on state indicating a state opened more than the fully closed state, an injection amount of the reducing agent by the addition valve Approximately match the target value,
A reducing agent supply apparatus , wherein when the pressure of the reducing agent injected from the addition valve is changed in accordance with a change in the flow rate of exhaust gas, the ratio of the on-state time to one pulse period is varied .
請求項1に記載の還元剤供給装置において、
前記制御手段は、前記供給ポンプから前記添加弁への還元剤の供給量を可変して、前記添加弁から噴射される還元剤の圧力を変更することを特徴とする還元剤供給装置。
The reducing agent supply apparatus according to claim 1,
The control means changes the pressure of the reducing agent injected from the addition valve by changing the amount of the reducing agent supplied from the supply pump to the addition valve.
請求項1または請求項2に記載の還元剤供給装置において、
エンジン回転数を検出するエンジン回転数検出手段と、アクセル開度を検出するアクセル開度検出手段とを備え、
前記制御手段は、前記エンジン回転数検出手段および前記アクセル開度検出手段から得られる検出値を用いて排ガスの流速を推測することを特徴とする還元剤供給装置
In the reducing agent supply apparatus according to claim 1 or 2,
An engine speed detecting means for detecting the engine speed and an accelerator opening detecting means for detecting the accelerator opening;
The control means estimates a flow rate of exhaust gas using detection values obtained from the engine speed detection means and the accelerator opening detection means .
JP2007012440A 2007-01-23 2007-01-23 Reducing agent supply device Expired - Fee Related JP4867675B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007012440A JP4867675B2 (en) 2007-01-23 2007-01-23 Reducing agent supply device
DE102008000092.2A DE102008000092B4 (en) 2007-01-23 2008-01-18 Reductant delivery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012440A JP4867675B2 (en) 2007-01-23 2007-01-23 Reducing agent supply device

Publications (2)

Publication Number Publication Date
JP2008180101A JP2008180101A (en) 2008-08-07
JP4867675B2 true JP4867675B2 (en) 2012-02-01

Family

ID=39587475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012440A Expired - Fee Related JP4867675B2 (en) 2007-01-23 2007-01-23 Reducing agent supply device

Country Status (2)

Country Link
JP (1) JP4867675B2 (en)
DE (1) DE102008000092B4 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5503277B2 (en) 2009-12-15 2014-05-28 ボッシュ株式会社 Control device for reducing agent injection valve
CN102472138A (en) * 2010-04-02 2012-05-23 丰田自动车株式会社 Exhaust device of internal-combustion engine
JP2011236867A (en) * 2010-05-13 2011-11-24 Hino Motors Ltd Fuel spray nozzle
EP2837784B1 (en) * 2012-04-09 2017-07-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JP6149892B2 (en) * 2015-04-15 2017-06-21 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP6406134B2 (en) * 2015-06-05 2018-10-17 株式会社デンソー Reducing agent injection system
US10301996B2 (en) 2015-10-08 2019-05-28 Cummins Emission Solutions Inc. System and method for varying reductant delivery pressure to aftertreatment systems
JP6477623B2 (en) * 2016-07-19 2019-03-06 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
US10018091B2 (en) 2016-11-17 2018-07-10 Ford Global Technologies, Llc Exhaust system
DE102018203757A1 (en) * 2017-04-25 2018-10-25 Robert Bosch Gmbh Method for operating an SCR system with at least two metering valves
WO2020121607A1 (en) * 2018-12-10 2020-06-18 日本碍子株式会社 Reductant spray device, exhaust gas processing device, and exhaust gas processing method
DE102020212961B4 (en) * 2020-10-14 2024-02-29 Vitesco Technologies GmbH Method for operating a conveyor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3536733B2 (en) * 1999-08-20 2004-06-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3557964B2 (en) * 1999-09-29 2004-08-25 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2002038941A (en) * 2000-07-24 2002-02-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP3757856B2 (en) * 2001-12-07 2006-03-22 トヨタ自動車株式会社 Exhaust gas purification device
JP2005105949A (en) * 2003-09-30 2005-04-21 Toyota Motor Corp Exhaust emission control device of internal combustion engine
DE102004018221A1 (en) * 2004-04-15 2005-11-10 Robert Bosch Gmbh Method for introducing a reagent into an exhaust duct of an internal combustion engine and device for carrying out the method
JP2005307769A (en) * 2004-04-19 2005-11-04 Hino Motors Ltd Exhaust emission control device
JP3715985B1 (en) * 2004-10-29 2005-11-16 日産ディーゼル工業株式会社 Liquid reducing agent injection nozzle structure
JP4708320B2 (en) * 2006-12-01 2011-06-22 ボッシュ株式会社 NOX purification device

Also Published As

Publication number Publication date
DE102008000092B4 (en) 2015-02-12
DE102008000092A1 (en) 2008-08-07
JP2008180101A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4867675B2 (en) Reducing agent supply device
JP4661814B2 (en) Exhaust gas purification device for internal combustion engine
WO2011074311A1 (en) Control device and control method for reduction agent injection valve
US20140165539A1 (en) Reducing agent supply apparatus and internal-combustion engine exhaust gas purification apparatus
JP2008169711A (en) Reducer supply device
US9140165B2 (en) Method for operating a delivery unit for a reducing agent and motor vehicle having a delivery unit
WO2011030433A1 (en) Control system for internal combustion engine
CN101876265A (en) The waste gas cleaning system of explosive motor
JP4748664B2 (en) Exhaust purification device
JP2010133354A (en) Reducing agent injection control device, control method of reducing agent injection device and exhaust emission control device of internal combustion engine
JP4628392B2 (en) Exhaust gas purification device
EP2570626A1 (en) Exhaust gas purification system for internal combustion engine
EP2535538A1 (en) Exhaust gas purification system for internal combustion engine
JP2006342736A (en) Exhaust emission control device
JP4312807B2 (en) Exhaust purification device
JP2011149366A (en) Clogging diagnostic device and clogging diagnostic method for reducing agent injection valve, and exhaust emission control device for internal combustion engine
JP4822772B2 (en) Method for introducing a reactant into an exhaust gas region of an internal combustion engine and an operating device for the internal combustion engine for implementing the method
JP2009133290A (en) Reducing agent pump control device and reducing agent discharging system
JP2016079852A (en) Abnormality determination system of exhaust emission control device of internal combustion engine
JP2009257234A (en) Exhaust emission control system of internal combustion engine
JP3979150B2 (en) NOx purification device for internal combustion engine
JP2009185627A (en) Urea water supply device
JP5346798B2 (en) Exhaust purification device
JPWO2013153606A1 (en) Exhaust gas purification device for internal combustion engine
JP2010053807A (en) Reducing agent supply control device and exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R151 Written notification of patent or utility model registration

Ref document number: 4867675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees