JP2010053807A - Reducing agent supply control device and exhaust emission control device of internal combustion engine - Google Patents

Reducing agent supply control device and exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2010053807A
JP2010053807A JP2008221141A JP2008221141A JP2010053807A JP 2010053807 A JP2010053807 A JP 2010053807A JP 2008221141 A JP2008221141 A JP 2008221141A JP 2008221141 A JP2008221141 A JP 2008221141A JP 2010053807 A JP2010053807 A JP 2010053807A
Authority
JP
Japan
Prior art keywords
reducing agent
supply
internal combustion
combustion engine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008221141A
Other languages
Japanese (ja)
Inventor
Hiroto Fujii
浩人 藤井
Manabu Saito
学 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2008221141A priority Critical patent/JP2010053807A/en
Publication of JP2010053807A publication Critical patent/JP2010053807A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reducing agent supply control device and an exhaust emission control device of an internal combustion engine capable of efficiently mixing and dispersing a reducing agent into exhaust gas and efficiently reducing NO<SB>X</SB>. <P>SOLUTION: The reducing agent supply control device supplies a reducing agent on an upstream side of NO<SB>X</SB>catalysts arranged in an exhaust passage of the internal combustion engine. Supply of the reducing agent is delayed from an exhaust timing, according to delay time which is a difference between the exhaust timing at which the exhaust gas is emitted from the internal combustion engine, and time at which a peak of a pressure wave generated by exhaust gas emission reaches a position of the reducing agent supply. This allows the reducing agent to be supplied in accordance with the peak of a pressure wave. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、還元剤供給制御装置及び内燃機関の排気浄化装置に関する。特に、排気ガス中に還元剤を供給し、排気ガス中に含まれるNOXを浄化する排気浄化装置に備えられる還元剤供給制御装置及びそのような還元剤供給制御装置を備えた内燃機関の排気浄化装置に関する。 The present invention relates to a reducing agent supply control device and an exhaust purification device for an internal combustion engine. In particular, by supplying a reducing agent into the exhaust gas, the exhaust gas of the internal combustion engine provided with an exhaust purification device provided the reducing agent supply control device and such a reducing agent supply control apparatus for purifying NO X contained in the exhaust gas The present invention relates to a purification device.

ディーゼルエンジン等の内燃機関から排出される排気ガス中のNOXを浄化するために、排気通路中に触媒が配置され、触媒の上流側で排気ガス中に還元剤を供給することにより、触媒においてNOXが還元される排気浄化装置が使用されている。 In order to purify NO x in exhaust gas discharged from an internal combustion engine such as a diesel engine, a catalyst is disposed in the exhaust passage, and by supplying a reducing agent into the exhaust gas upstream of the catalyst, Exhaust gas purification devices that reduce NO x are used.

従来、このような排気浄化装置では、還元剤として未燃燃料や尿素水溶液が用いられている。還元剤として未燃燃料が用いられる場合、排気ガス中の未燃燃料がリーンの状態でNOXを吸蔵する一方、排気ガス中の未燃燃料がリッチの状態でNOXを放出し、未燃燃料とNOXとを還元反応させるNOX吸蔵触媒が用いられる。また、還元剤として尿素水溶液が用いられる場合には、尿素水溶液から生成されたアンモニアを吸着し、流入する排気ガス中のNOXと選択的に還元反応させる選択還元触媒が用いられる。 Conventionally, in such an exhaust purification device, unburned fuel or aqueous urea solution is used as a reducing agent. When unburned fuel is used as the reducing agent, NO x is occluded while the unburned fuel in the exhaust gas is lean, while NO x is released when the unburned fuel in the exhaust gas is rich and unburned. A NO x storage catalyst that reduces the fuel and NO x is used. When a urea aqueous solution is used as the reducing agent, a selective reduction catalyst that adsorbs ammonia generated from the urea aqueous solution and selectively performs a reduction reaction with NO x in the flowing exhaust gas is used.

このような還元剤を用いた排気浄化装置では、触媒での効率的なNOXの還元反応を達成するために、触媒の前面の全体に対して還元剤を均一に分散させて流入させることが必要とされる。そのため、供給される還元剤を効率的に微粒化させて、排気ガスとの混合性を高めることが検討されている。 In such an exhaust purification device using a reducing agent, in order to achieve an efficient NO x reduction reaction with the catalyst, the reducing agent can be uniformly dispersed and introduced into the entire front surface of the catalyst. Needed. Therefore, it has been studied to efficiently atomize the supplied reducing agent to improve the mixing property with exhaust gas.

例えば、還元剤供給手段からの還元剤の供給タイミングを、内燃機関の各気筒の排気工程で排出される排気ガスが還元剤の供給位置に到達するまでのタイミングに合わせるとともに、還元剤の供給量を、各気筒から還元剤の供給位置まで到達する排気ガスの状態に応じて変化させる内燃機関の排気浄化システムが提案されている。より具体的には、還元剤の供給タイミングについて、排気通路を流れる排気ガスの密度に着目して、排気ガスの密度が最も高い部分に還元剤が曝されるタイミングで還元剤が供給されることが開示されている(特許文献1参照)。   For example, the supply timing of the reducing agent from the reducing agent supply means is adjusted to the timing until the exhaust gas discharged in the exhaust process of each cylinder of the internal combustion engine reaches the supply position of the reducing agent, and the supply amount of the reducing agent An exhaust purification system for an internal combustion engine has been proposed in which the gas is changed in accordance with the state of exhaust gas reaching each reductant supply position from each cylinder. More specifically, with regard to the supply timing of the reducing agent, paying attention to the density of the exhaust gas flowing through the exhaust passage, the reducing agent is supplied at the timing when the reducing agent is exposed to the highest exhaust gas density. Is disclosed (see Patent Document 1).

特開2007−71142号公報 (段落[0028]〜[0036])JP 2007-71142 A (paragraphs [0028] to [0036])

ところで、特許文献1に記載の内燃機関の排気浄化システムでは、内燃機関から排出される排気ガスが還元剤の供給位置に到達するタイミング、すなわち、排気ガスの密度が最も高く、なるべく多くの還元剤を供給可能なタイミングが、還元剤の供給タイミングとして決定されるものである。また、この特許文献1に記載の内燃機関の排気浄化システムでは、供給される還元剤の微粒化(気化あるいは霧化)の効率が、還元剤の供給位置に到達する燃焼排気の状態、すなわち、排気ガスの温度の観点から推定され、還元剤の供給量が決定されるようにもなっている。   By the way, in the exhaust gas purification system of the internal combustion engine described in Patent Document 1, the timing at which the exhaust gas discharged from the internal combustion engine reaches the reducing agent supply position, that is, the exhaust gas density is the highest, and as many reducing agents as possible. The timing at which can be supplied is determined as the supply timing of the reducing agent. Further, in the exhaust gas purification system for an internal combustion engine described in Patent Document 1, the state of combustion exhaust in which the efficiency of atomization (vaporization or atomization) of the supplied reducing agent reaches the reducing agent supply position, that is, Estimated from the viewpoint of the temperature of the exhaust gas, the supply amount of the reducing agent is also determined.

しかしながら、供給される還元剤の微粒化効率を考えると、還元剤の供給位置における排気ガスの流速が比較的速いタイミングで還元剤を供給することが望ましい。すなわち、流速が速く運動エネルギーの大きな排気ガスの流れに対して還元剤が供給されることによって、還元剤と排気ガスとの衝突エネルギーが大きくなり、還元剤の微粒化が促進されやすくなる。特許文献1の内燃機関の排気浄化システムでは、この点に関しては考慮されていない。   However, considering the atomization efficiency of the supplied reducing agent, it is desirable to supply the reducing agent at a timing at which the flow rate of the exhaust gas at the reducing agent supply position is relatively fast. That is, when the reducing agent is supplied to the flow of the exhaust gas having a high flow velocity and a large kinetic energy, the collision energy between the reducing agent and the exhaust gas is increased, and the atomization of the reducing agent is easily promoted. In the exhaust gas purification system for an internal combustion engine of Patent Document 1, this point is not taken into consideration.

そこで、本発明の発明者は鋭意努力し、還元剤の供給位置における排気ガスの流速が速くなるタイミング、すなわち、排気ガスの圧力波のピークが還元剤の供給位置に到達するタイミングに合わせて還元剤を供給することによりこのような問題を解決できることを見出し、本発明を完成させたものである。すなわち、本発明は、還元剤を効率よく排気ガスに混合、分散させて、NOXを効率的に還元することができる還元剤供給制御装置及び内燃機関の排気浄化装置を提供することを目的とする。 Accordingly, the inventors of the present invention have made diligent efforts to reduce the exhaust gas flow rate at the reducing agent supply position, that is, at the timing when the peak of the exhaust gas pressure wave reaches the reducing agent supply position. It has been found that such a problem can be solved by supplying an agent, and the present invention has been completed. That is, an object of the present invention is to provide a reducing agent supply control device and an exhaust gas purification device for an internal combustion engine that can efficiently reduce and reduce NO x by efficiently mixing and dispersing the reducing agent in the exhaust gas. To do.

本発明の還元剤供給制御装置によれば、内燃機関の排気通路内に配置されたNOX触媒の上流側に還元剤を供給するための還元剤供給制御装置であって、内燃機関から排気ガスが排出される排気タイミングから、排気ガスの排出によって生じる圧力波のピークが還元剤の供給位置に到達するまでの遅れ時間に応じて、還元剤を排気タイミングから遅れて供給することにより、圧力波のピークに対応させて還元剤を供給することを特徴とする還元剤供給制御装置が提供され、上述した問題を解決することができる。 According to a reducing agent supply control apparatus of the present invention, there is provided a reducing agent supply controller for supplying the reducing agent to the upstream side of the NO X catalyst arranged in an exhaust passage of an internal combustion engine, an exhaust gas from an internal combustion engine By supplying the reducing agent with a delay from the exhaust timing according to the delay time until the peak of the pressure wave caused by the exhaust gas discharge reaches the reducing agent supply position from the exhaust timing at which the exhaust gas is discharged, the pressure wave A reducing agent supply control device characterized by supplying a reducing agent corresponding to the peak of the above can be provided, and the above-described problems can be solved.

また、本発明の還元剤供給制御装置を構成するにあたり、排気タイミングを検出する排気タイミング検出部と、排気タイミングから、圧力波のピークが還元剤の供給位置に到達するまでの遅れ時間を推定する圧力波遅れ時間演算部と、供給位置に到達する圧力波のピークに対応させて還元剤を供給する還元剤供給指示部と、を備えることが好ましい。   Further, in configuring the reducing agent supply control device of the present invention, an exhaust timing detection unit for detecting the exhaust timing and a delay time until the peak of the pressure wave reaches the reducing agent supply position are estimated from the exhaust timing. It is preferable to include a pressure wave delay time calculation unit and a reducing agent supply instruction unit that supplies the reducing agent in correspondence with the peak of the pressure wave reaching the supply position.

また、本発明の還元剤供給制御装置を構成するにあたり、少なくとも内燃機関の回転数と、内燃機関のトルク又は排気流量とに基づいて、遅れ時間を推定することが好ましい。   In configuring the reducing agent supply control device of the present invention, it is preferable to estimate the delay time based on at least the rotational speed of the internal combustion engine and the torque or exhaust flow rate of the internal combustion engine.

また、本発明の還元剤供給制御装置を構成するにあたり、少なくとも内燃機関の回転数に基づいて求められる圧力波の周波数に対応して設定された供給頻度で還元剤を供給することが好ましい。   Further, in configuring the reducing agent supply control device of the present invention, it is preferable to supply the reducing agent at a supply frequency set corresponding to the frequency of the pressure wave obtained at least based on the rotational speed of the internal combustion engine.

また、本発明の還元剤供給制御装置を構成するにあたり、還元剤の供給周期が所定値以下となるように圧力波の周波数に対応して供給頻度を設定することが好ましい。   Further, in configuring the reducing agent supply control device of the present invention, it is preferable to set the supply frequency corresponding to the frequency of the pressure wave so that the supply cycle of the reducing agent is a predetermined value or less.

また、本発明の別の態様は、上述したいずれかの還元剤供給制御装置と、内燃機関の排気通路内に配置され、排気ガス中に含まれるNOXを選択的に還元するためのNOX触媒と、NOX触媒の上流側で排気通路内に還元剤を供給可能な還元剤供給手段と、を備えた内燃機関の排気浄化装置である。 Another aspect of the present invention comprises any one of the reducing agent supply control device described above, is disposed in an exhaust passage of an internal combustion engine, NO X for the selective reduction of NO X contained in the exhaust gas An exhaust emission control device for an internal combustion engine comprising a catalyst and a reducing agent supply means capable of supplying a reducing agent into the exhaust passage on the upstream side of the NO x catalyst.

本発明の還元剤供給制御装置及び内燃機関の排気浄化装置によれば、還元剤の供給位置における排気ガスの圧力波のピークに対応させて還元剤が供給されるため、流速が速く、脈動する排気ガスの運動エネルギーが最も高い部分に還元剤が供給される。したがって、排気ガスの運動エネルギーを利用して供給された還元剤が効率的に微粒化される。そのため、還元剤が排気ガス中に均一に混合、分散され、触媒においてNOXが効率的に還元させられる。 According to the reducing agent supply control device and the exhaust gas purification device for an internal combustion engine of the present invention, the reducing agent is supplied in correspondence with the peak of the pressure wave of the exhaust gas at the reducing agent supply position. A reducing agent is supplied to a portion where the kinetic energy of the exhaust gas is highest. Therefore, the reducing agent supplied using the kinetic energy of the exhaust gas is efficiently atomized. Therefore, the reducing agent is uniformly mixed and dispersed in the exhaust gas, and NO x is efficiently reduced in the catalyst.

また、本発明の還元剤供給制御装置が、所定の排気タイミング検出部、圧力波遅れ時間演算部、及び還元剤供給指示部を備えることにより、排気ガスの排出によって排気通路に生じる圧力波のピークに対応する供給頻度で、容易に還元剤が供給される。   In addition, the reducing agent supply control device of the present invention includes a predetermined exhaust timing detection unit, a pressure wave delay time calculation unit, and a reducing agent supply instruction unit, so that the peak of the pressure wave generated in the exhaust passage due to exhaust gas discharge. The reducing agent is easily supplied at a supply frequency corresponding to.

また、本発明の還元剤供給制御装置が、少なくとも内燃機関の回転数と、内燃機関のトルク又は排気流量とに基づいて遅れ時間を推定することにより、内燃機関からの排気ガスの排出による圧力波のピークが還元剤の供給位置に到達するタイミングが精度良く推定される。   In addition, the reducing agent supply control device of the present invention estimates the delay time based on at least the rotational speed of the internal combustion engine and the torque or exhaust flow rate of the internal combustion engine, thereby causing a pressure wave due to exhaust gas exhaust from the internal combustion engine. The timing at which the peak reaches the reducing agent supply position is accurately estimated.

また、本発明の還元剤供給制御装置が、内燃機関の回転数、すなわち、圧力波の周波数に対応して設定された供給頻度で還元剤を供給することにより、排気ガスの排出頻度にかかわらず、還元剤噴射弁等の還元剤供給手段の噴射能力や還元剤供給制御装置の処理能力に応じて、適切な頻度で還元剤の供給が行われる。   Further, the reducing agent supply control device of the present invention supplies the reducing agent at a supply frequency set corresponding to the rotational speed of the internal combustion engine, that is, the frequency of the pressure wave, so that regardless of the exhaust gas discharge frequency. The reducing agent is supplied at an appropriate frequency according to the injection capability of the reducing agent supply means such as the reducing agent injection valve and the processing capability of the reducing agent supply control device.

また、本発明の還元剤供給制御装置が、還元剤の供給周期が所定値以下となるように供給頻度を設定することにより、還元剤噴射弁等の還元剤供給手段や還元剤供給制御装置の負荷が軽減される。また、還元剤の供給頻度が過度に高くなることが避けられれば、還元剤供給手段を構成する機器の過熱が防止され、還元剤が安定して供給されるとともに、供給量のばらつきが防止される。   Further, the reducing agent supply control device of the present invention sets the supply frequency so that the reducing agent supply cycle is a predetermined value or less, thereby reducing the reducing agent supply means such as the reducing agent injection valve and the reducing agent supply control device. The load is reduced. Moreover, if it is avoided that the supply frequency of the reducing agent is excessively high, overheating of the equipment constituting the reducing agent supply means is prevented, the reducing agent is stably supplied, and variation in the supply amount is prevented. The

以下、本発明の還元剤供給制御装置及び内燃機関の排気浄化装置に関する実施形態について説明する。ただし、この実施形態は本発明の一態様を示すものであり、本発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。なお、それぞれの図中、同じ符号を付してあるものについては同一の部材を示しており、適宜説明が省略されている。   Hereinafter, embodiments of the reducing agent supply control device and the exhaust gas purification device for an internal combustion engine according to the present invention will be described. However, this embodiment shows one aspect of the present invention, does not limit the present invention, and can be arbitrarily changed within the scope of the present invention. In addition, in each figure, what has attached | subjected the same code | symbol has shown the same member, and description is abbreviate | omitted suitably.

1.内燃機関の排気浄化装置
図1は、本実施形態の排気浄化装置20の構成例を示している。この排気浄化装置20は、ディーゼルエンジン等の内燃機関10の排気通路11に設けられており、排気ガス中に含まれるNOXを選択的に還元するためのNOX触媒21と、NOX触媒21の上流側に還元剤を供給可能な還元剤供給手段25とを少なくとも備えている。NOX触媒21の上流側や下流側に、それぞれ上流側酸化触媒23a及び下流側酸化触媒23bなどが適宜設けられていてもよい。
1. FIG. 1 shows a configuration example of an exhaust purification device 20 of the present embodiment. The exhaust gas purifying device 20 is provided in the exhaust passage 11 of the internal combustion engine 10 such as a diesel engine, the NO X catalyst 21 for selectively reducing the NO X contained in the exhaust gas, NO X catalyst 21 And a reducing agent supply means 25 capable of supplying a reducing agent at the upstream side. Upstream and downstream of the NO X catalyst 21, etc. respectively upstream oxidation catalyst 23a and the downstream oxidation catalyst 23b may be provided as appropriate.

排気浄化装置20で使用される液体の還元剤としては、尿素水溶液や未燃燃料等があげられる。このうち、尿素水溶液は、排気ガス中に供給されることで、排気ガスの熱により分解されアンモニアが生成され、このアンモニアがNOXの還元反応に用いられる。また、未燃燃料は、含まれる炭化水素(HC)がNOXの還元反応に用いられる。 Examples of the liquid reducing agent used in the exhaust purification device 20 include an aqueous urea solution and unburned fuel. Among these, the urea aqueous solution is supplied into the exhaust gas, so that it is decomposed by the heat of the exhaust gas to generate ammonia, and this ammonia is used for the NO x reduction reaction. The unburned fuel is used for the reduction reaction of contained hydrocarbons (HC) of NO x .

NOX触媒21は、排気ガス中に含まれるNOXを還元剤供給手段25から供給される尿素水溶液等の還元剤を用いて選択的に還元し、窒素や水、二酸化炭素などに分解できるものであれば特に制限されるものではない。使用可能なNOX触媒としては、例えば、多孔質担体上に、活性成分としてのストロンチウム又はバリウム、及びマグネシウム等のアルカリ土類金属や、セリウムとランタン等の希土類金属、白金とロジウム等の貴金属等を含むものが挙げられる。 The NO X catalyst 21 can selectively reduce NO X contained in exhaust gas using a reducing agent such as an aqueous urea solution supplied from the reducing agent supply means 25 and decompose it into nitrogen, water, carbon dioxide, or the like. If it is, it will not be restrict | limited in particular. Usable NO x catalysts include, for example, strontium or barium as an active ingredient on a porous carrier, alkaline earth metals such as magnesium, rare earth metals such as cerium and lanthanum, noble metals such as platinum and rhodium, etc. The thing containing is mentioned.

還元剤供給手段25は、上流側酸化触媒23aとNOX触媒21との間に噴射口を臨ませて装着された還元剤噴射弁27と、貯蔵タンク(図示せず。)内の還元剤を還元剤噴射弁27に供給する還元剤供給部29と、還元剤噴射弁27及び還元剤供給部29を制御する還元剤供給制御装置(DCU)31とを備えている。 Reducing agent supply means 25, a reducing agent injection valve 27 mounted to face the injection port between the upstream side oxidation catalyst 23a and the NO X catalyst 21, a storage tank (not shown.) Of a reducing agent A reducing agent supply unit 29 that supplies the reducing agent injection valve 27 and a reducing agent supply control unit (DCU) 31 that controls the reducing agent injection valve 27 and the reducing agent supply unit 29 are provided.

還元剤供給部29は、詳細な図示は省略されているが、例えば、タンク内の還元剤をポンプ等によって汲み上げるとともに供給経路29aを介して還元剤噴射弁27に供給可能に構成されている。また、還元剤噴射弁27は、例えば電磁制御弁等からなり、還元剤を間欠的に供給できるように構成されている。ポンプや還元剤噴射弁27等の各機器はDCU31からの信号に基づき駆動される。   Although the detailed illustration of the reducing agent supply unit 29 is omitted, for example, the reducing agent in the tank is configured to be pumped by a pump or the like and supplied to the reducing agent injection valve 27 via the supply path 29a. The reducing agent injection valve 27 is composed of, for example, an electromagnetic control valve or the like, and is configured to be able to supply the reducing agent intermittently. Each device such as the pump and the reducing agent injection valve 27 is driven based on a signal from the DCU 31.

このような還元剤供給手段25は、供給時に還元剤の供給位置25aを流動している排気ガスに対して、還元剤を出来るだけ分散させた状態で混合させることができるように供給可能であることが望ましい。還元剤の分散状態が不十分であると、排気ガスに対する還元剤の存在割合が局部的に過剰あるいは不足しやすくなり、還元剤の利用効率やNOXの浄化効率が低下するおそれがあるからである。特に、還元剤が、供給後に分散して気化させられることなく、液状のまま存在した場合には、液滴等の状態で還元剤の供給位置25a付近の排気通路11の内壁面に付着して結晶化してしまい、還元剤がNOX触媒21まで到達できずに、還元剤の利用効率が低下するおそれがある。 Such a reducing agent supply means 25 can supply the exhaust gas flowing in the reducing agent supply position 25a at the time of supply so that the reducing agent can be mixed while being dispersed as much as possible. It is desirable. If the dispersion state of the reducing agent is insufficient, the ratio of the reducing agent to the exhaust gas tends to be locally excessive or insufficient, and the use efficiency of the reducing agent and the NO x purification efficiency may be reduced. is there. In particular, when the reducing agent remains in a liquid state without being dispersed and vaporized after the supply, it adheres to the inner wall surface of the exhaust passage 11 near the reducing agent supply position 25a in the form of droplets or the like. Crystallization may occur, and the reducing agent cannot reach the NO x catalyst 21, which may reduce the utilization efficiency of the reducing agent.

そのため、排気浄化装置20のDCU31は、還元剤の供給位置25aを流動している排気ガスに対して適切な量の還元剤が、間欠的に、より排気ガス中に分散されやすく供給されるように、還元剤供給手段25及び還元剤供給部29を制御可能に構成されている。
具体的には、このDCU31では排気通路11中の排気ガスの圧力波のピークに対応させて、還元剤噴射弁27から還元剤を供給させるように制御可能となっている。
Therefore, the DCU 31 of the exhaust purification device 20 is supplied with an appropriate amount of reducing agent intermittently more easily distributed in the exhaust gas than the exhaust gas flowing in the reducing agent supply position 25a. In addition, the reducing agent supply means 25 and the reducing agent supply unit 29 are configured to be controllable.
Specifically, the DCU 31 can be controlled to supply the reducing agent from the reducing agent injection valve 27 in correspondence with the peak of the pressure wave of the exhaust gas in the exhaust passage 11.

2.還元剤供給制御装置(DCU)
図2は、本実施形態の排気浄化装置に備えられたDCU31の構成の一例を説明するための図であって、還元剤供給制御に関する部分について、機能的なブロックで表された構成例が示されている。
このDCU31は、公知の構成からなるマイクロコンピュータを中心に構成されており、内燃機関から排気通路に向けて排気ガスが排出される排気タイミングを検出する排気タイミング検出部(図2では「排気タイミング検出」と表記。)と、圧力波のピークが還元剤の供給位置に到達するまでの時間を算出する遅れ時間演算部(図2では「遅れ時間演算」と表記。)と、還元剤噴射弁による還元剤の供給頻度を決定する供給頻度決定部(図2では「供給頻度決定」と表記。)と、還元剤噴射弁による還元剤の供給タイミングを決定する供給タイミング決定部(図2では「供給タイミング決定」と表記。)と、還元剤の供給量を演算する還元剤供給量演算部(図2では「供給量演算」と表記。)と、還元剤噴射弁に対して還元剤の供給指示を行う還元剤供給指示部(図2では「供給指示」と表記。)等を主要な要素として備えている。これらの各部は、具体的にはマイクロコンピュータ(図示せず)によるプログラムの実行によって実現されるものである。
2. Reducing agent supply control unit (DCU)
FIG. 2 is a diagram for explaining an example of the configuration of the DCU 31 provided in the exhaust gas purification apparatus of the present embodiment, and shows a configuration example represented by functional blocks regarding a portion related to the reducing agent supply control. Has been.
The DCU 31 is configured around a microcomputer having a known configuration, and an exhaust timing detection unit (in FIG. 2, “exhaust timing detection” detects exhaust timing at which exhaust gas is discharged from the internal combustion engine toward the exhaust passage. ), A delay time calculation unit (indicated as “delay time calculation” in FIG. 2) for calculating the time until the pressure wave peak reaches the reducing agent supply position, and a reducing agent injection valve. A supply frequency determination unit (denoted as “supply frequency determination” in FIG. 2) that determines the supply frequency of the reducing agent, and a supply timing determination unit (“supply” in FIG. 2) that determines the supply timing of the reducing agent by the reducing agent injection valve. "Determined timing"), a reducing agent supply amount calculation unit (indicated as "supply amount calculation" in FIG. 2) for calculating the reducing agent supply amount, and a reducing agent supply instruction to the reducing agent injection valve The Cormorant reducing agent supply instructing section (in FIG. 2 "supply instruction" denoted.) Are provided as main elements and the like. Each of these units is specifically realized by executing a program by a microcomputer (not shown).

このうち、排気タイミング検出部では、内燃機関の回転数Neや、内燃機関での燃料噴射タイミングQt等の情報に基づいて、内燃機関から排気ガスが排出される排気タイミングTgが検出され、供給タイミング決定部に対して排気タイミングTgの信号が送られる。また、遅れ時間決定部では、少なくとも内燃機関の回転数Neと、内燃機関のトルクTr又は排気流量Fg等の情報に基づいて、排気ガスの排出によって生じる圧力波のピークが還元剤の供給位置に到達するまでの時間Tdelayが演算され、供給タイミング決定部に対して遅れ時間Tdelayの信号が送られる。また、供給頻度決定部では、少なくとも内燃機関の回転数Neに基づいて、還元剤噴射弁による還元剤の供給頻度Ndosが決定され、供給タイミング決定部に対して供給頻度Ndosの信号が送られる。   Among these, the exhaust timing detection unit detects the exhaust timing Tg at which exhaust gas is discharged from the internal combustion engine based on information such as the rotational speed Ne of the internal combustion engine and the fuel injection timing Qt in the internal combustion engine, and the supply timing A signal of the exhaust timing Tg is sent to the determination unit. Further, in the delay time determination unit, the peak of the pressure wave caused by exhaust gas discharge is at the reducing agent supply position based on at least the information on the rotational speed Ne of the internal combustion engine and the torque Tr of the internal combustion engine or the exhaust flow rate Fg. The time Tdelay until reaching is calculated, and a signal of the delay time Tdelay is sent to the supply timing determination unit. The supply frequency determination unit determines the supply frequency Ndos of the reducing agent by the reducing agent injection valve based on at least the rotational speed Ne of the internal combustion engine, and sends a signal of the supply frequency Ndos to the supply timing determination unit.

また、供給タイミング決定部では、受信される排気タイミングTgと遅れ時間Tdelayと供給頻度Ndosとに基づいて、還元剤噴射弁による還元剤の供給タイミングTdosが決定され、還元剤供給指示部に対して供給タイミングTdosの信号が送られる。
さらに、還元剤供給量演算部では、NOX触媒におけるアンモニアの吸着量や、排気ガス中のNOX流量、排気ガス温度等の情報を基にして、排気通路に供給する還元剤の供給量が算出され、還元剤供給指示部に対して還元剤供給量Qdosの信号が送られる。
Further, the supply timing determining unit determines the reducing agent supply timing Tdos by the reducing agent injection valve based on the received exhaust timing Tg, delay time Tdelay, and supply frequency Ndos. A signal of supply timing Tdos is sent.
Further, the reducing agent supply amount calculation unit determines the amount of reducing agent supplied to the exhaust passage based on information such as the amount of ammonia adsorbed on the NO x catalyst, the NO x flow rate in the exhaust gas, and the exhaust gas temperature. A signal of the reducing agent supply amount Qdos is sent to the reducing agent supply instruction unit.

そして、還元剤供給指示部では、受信される供給タイミングTdos及び還元剤供給量Qdosに基づき、還元剤噴射弁の駆動部分に対して供給指示信号が出力される。   Then, the reducing agent supply instruction unit outputs a supply instruction signal to the drive portion of the reducing agent injection valve based on the received supply timing Tdos and the reducing agent supply amount Qdos.

本実施形態の排気浄化装置20では、このように構成されたDCU31によって、以下のように還元剤供給制御が行われる。
まず、排気通路中では排気ガスが押出し流れで流動しており、排気通路中の還元剤の供給位置では、内燃機関からの排気ガスの排出に応じた圧力変動が、図3に示すような圧力波として伝達されている。この圧力の変動パターンは、還元剤の供給位置での排気ガスの流速の変動パターンに一致する。この排気ガスの圧力波の周期は、内燃機関の気筒数、回転数等により変動するものである。
In the exhaust emission control device 20 of the present embodiment, the reducing agent supply control is performed as follows by the DCU 31 configured as described above.
First, in the exhaust passage, the exhaust gas flows in an extruding flow, and at the supply position of the reducing agent in the exhaust passage, the pressure fluctuation according to the exhaust gas discharge from the internal combustion engine is a pressure as shown in FIG. It is transmitted as a wave. This pressure fluctuation pattern matches the fluctuation pattern of the exhaust gas flow velocity at the reducing agent supply position. The period of the pressure wave of the exhaust gas varies depending on the number of cylinders, the number of revolutions, etc. of the internal combustion engine.

そのため、このDCU31では、圧力波のピークに対応する期間ta毎に還元剤噴射弁から還元剤を間欠的に供給させる制御が行われる。これにより、排気通路内で脈動する排気ガスの運動エネルギーが最も高い部分に還元剤が供給され、供給された還元剤は排気ガスの運動エネルギーを利用して微粒子化される。これは、例えば、液滴の境界面に働く慣性力と表面張力の比を示すウェーバー数が高い状態が実現された状態であり、液体の表面破断がより促進される状態が達成されやすくなる。したがって、還元剤は、排気ガス中に効率的に分散させられて混合されやすくなる。   Therefore, in this DCU 31, control is performed in which the reducing agent is intermittently supplied from the reducing agent injection valve every period ta corresponding to the peak of the pressure wave. Thereby, the reducing agent is supplied to the portion where the kinetic energy of the exhaust gas pulsating in the exhaust passage is the highest, and the supplied reducing agent is atomized using the kinetic energy of the exhaust gas. This is, for example, a state in which a high Weber number indicating the ratio between the inertial force acting on the boundary surface of the droplet and the surface tension is realized, and a state in which surface breakage of the liquid is further promoted is easily achieved. Therefore, the reducing agent is efficiently dispersed and easily mixed in the exhaust gas.

また、このDCU31は、圧力波のピークに対応する期間ta毎に還元剤を間欠的に供給させるために、内燃機関の運転制御を行うための制御装置(ECU:Electronic Control Unit)33からの信号に基づいて、還元剤噴射弁を制御可能になっている。一般的に、ECU33では、回転数Ne、トルクTr、排気流量Fg等の各種の状態値が常時検出されて入力されている。そのため、このECU33により検出されている状態値を利用することで、DCU31では供給タイミングTdosが容易に設定される。   The DCU 31 also receives a signal from a control unit (ECU: Electronic Control Unit) 33 for controlling the operation of the internal combustion engine in order to supply the reducing agent intermittently for each period ta corresponding to the peak of the pressure wave. Based on this, the reducing agent injection valve can be controlled. In general, in the ECU 33, various state values such as the rotational speed Ne, the torque Tr, and the exhaust flow rate Fg are always detected and inputted. For this reason, the supply timing Tdos is easily set in the DCU 31 by using the state value detected by the ECU 33.

排気通路中の還元剤の供給位置に到達する圧力波のピークは、内燃機関の排気タイミングTgに対して遅れを生じている。この遅れは、図4に示すように、内燃機関の回転数Neと、内燃機関のトルクTr又は排気流量Fgとに相関を持っている。図4中の各曲線A〜Cは、それぞれ内燃機関のトルクTr又は排気流量Fgを一定にしたときの内燃機関の回転数Neに対する遅れ時間Tdelayの変化を示しており、各曲線A〜Cそれぞれの内燃機関のトルクTr又は排気流量FgはA<B<Cとなっている。すなわち、内燃機関のトルクTr又は排気流量Fgが一定であれば、内燃機関の回転数Neが高い程、排気タイミングTgに対する圧力波のピーク遅れが小さくなる。また、内燃機関の回転数が同じであれば、内燃機関のトルクTrが大きい程又は排気流量Fgが多い程、排気タイミングTgに対する圧力波のピークの遅れ時間が小さくなる。   The peak of the pressure wave that reaches the reducing agent supply position in the exhaust passage is delayed with respect to the exhaust timing Tg of the internal combustion engine. As shown in FIG. 4, this delay has a correlation with the rotational speed Ne of the internal combustion engine and the torque Tr or the exhaust flow rate Fg of the internal combustion engine. Each curve A to C in FIG. 4 shows a change in the delay time Tdelay with respect to the rotational speed Ne of the internal combustion engine when the torque Tr or the exhaust flow rate Fg of the internal combustion engine is made constant. The torque Tr or the exhaust gas flow rate Fg of the internal combustion engine is A <B <C. That is, if the torque Tr or the exhaust flow rate Fg of the internal combustion engine is constant, the peak delay of the pressure wave with respect to the exhaust timing Tg decreases as the rotational speed Ne of the internal combustion engine increases. If the rotation speed of the internal combustion engine is the same, the longer the torque Tr of the internal combustion engine or the greater the exhaust flow rate Fg, the smaller the delay time of the peak of the pressure wave with respect to the exhaust timing Tg.

そのため、本実施形態のDCU31の遅れ時間演算部では、還元剤の供給を制御する際、ECU33から、回転数Neと、トルクTr又は排気流量Fgの少なくとも一方とを取得し、これらの値に基づいて、図4に示すような予め記憶されているマップを参照して、遅れ時間Tdelayが求められるようになっている。したがって、排気タイミング検出部によって検出される排気タイミングTgに対応させて、適切なタイミングで還元剤を供給させる制御が可能となっている。   Therefore, in the delay time calculation unit of the DCU 31 of the present embodiment, when the supply of the reducing agent is controlled, the rotational speed Ne and at least one of the torque Tr or the exhaust flow rate Fg are acquired from the ECU 33, and based on these values. Thus, the delay time Tdelay is obtained with reference to a map stored in advance as shown in FIG. Therefore, it is possible to control the supply of the reducing agent at an appropriate timing in correspondence with the exhaust timing Tg detected by the exhaust timing detection unit.

また、圧力波のピークの間隔(周期)は、内燃機関の回転数が高い程、短くなる。そのため、還元剤噴射弁から還元剤を供給する供給タイミングTdosは、内燃機関の回転数が高い程、短い間隔となる。この場合、還元剤噴射弁がより短時間に開閉されることに加え、還元剤供給部の供給経路の還元剤の流動状態も激しく脈動することになる。そして、還元剤供給部において還元剤の脈動が過剰に激しくなると、還元剤噴射弁からの各供給時の還元剤の供給量が不安定になりやすく、還元剤噴射弁の噴射能力によっては還元剤の供給タイミングを圧力波のピークに合わせづらくなる。さらに、還元剤噴射弁や還元剤供給部をより短時間で繰り返し動作させることで、還元剤噴射弁や還元剤供給部が過熱されやすくなる。また、還元剤噴射弁から供給周期が短くなればなるほど、還元剤噴射弁の性能やDCUの処理能力が追いつかなくなって、噴射制御が困難になるおそれがある。   Further, the pressure wave peak interval (cycle) becomes shorter as the rotational speed of the internal combustion engine is higher. Therefore, the supply timing Tdos for supplying the reducing agent from the reducing agent injection valve becomes shorter as the rotational speed of the internal combustion engine is higher. In this case, in addition to opening and closing of the reducing agent injection valve in a shorter time, the flow state of the reducing agent in the supply path of the reducing agent supply unit also pulsates violently. If the pulsation of the reducing agent becomes excessively strong in the reducing agent supply section, the amount of reducing agent supplied during each supply from the reducing agent injection valve tends to become unstable, and depending on the injection capacity of the reducing agent injection valve, the reducing agent This makes it difficult to adjust the supply timing to the peak of the pressure wave. Further, the reducing agent injection valve and the reducing agent supply unit are easily overheated by repeatedly operating the reducing agent injection valve and the reducing agent supply unit in a shorter time. In addition, as the supply cycle from the reducing agent injection valve becomes shorter, the performance of the reducing agent injection valve and the processing capacity of the DCU cannot catch up, and the injection control may become difficult.

そのため、本実施形態のDCU31の供給頻度決定部は、図5に示すように、還元剤の供給周期に閾値f1を設定しておき、内燃機関の回転数に対する還元剤の供給頻度Ndosが少なくなるように構成されている。ここでは、閾値f1以上となる場合には、還元剤の供給周期が所定値以下となるように、圧力波の周波数に対する供給頻度Ndosを設定する制御が可能になっている。これにより、DCU31や還元剤噴射弁の性能に応じて適切な頻度で還元剤の噴射が行われ、還元剤供給手段を構成する機器の過熱が防止されるとともに、還元剤の供給経路内での還元剤の脈動周期が過剰に短くなることが防止され、還元剤が安定して供給されやすくなり、還元剤の供給量のばらつきが防止される。   Therefore, as shown in FIG. 5, the supply frequency determination unit of the DCU 31 of the present embodiment sets a threshold f1 in the supply cycle of the reducing agent, and the reducing agent supply frequency Ndos with respect to the rotational speed of the internal combustion engine decreases. It is configured as follows. Here, when the threshold f1 or more is reached, control for setting the supply frequency Ndos with respect to the frequency of the pressure wave is possible so that the supply cycle of the reducing agent is not more than a predetermined value. Thereby, injection of the reducing agent is performed at an appropriate frequency according to the performance of the DCU 31 and the reducing agent injection valve, and overheating of the equipment constituting the reducing agent supply means is prevented, and in the reducing agent supply path. The pulsation cycle of the reducing agent is prevented from becoming excessively short, the reducing agent is easily supplied stably, and variations in the amount of reducing agent supplied are prevented.

3.還元剤供給制御方法のフロー
以上のような排気浄化装置のDCUによる制御の流れを、図6を用いて説明する。
3. Flow of Reducing Agent Supply Control Method The flow of control by the DCU of the exhaust purification apparatus as described above will be described with reference to FIG.

まず、還元剤を供給するか否かが判定される(S101)。この判定は、例えば、前回の供給時からの経過時間や、内燃機関からのNOX排出量、NOX触媒でのアンモニアの吸着量等に基づいて行われる。また、常時、還元剤を供給する場合にはこの工程を省略することができる。 First, it is determined whether to supply a reducing agent (S101). This determination is made based on, for example, the elapsed time from the previous supply, the NO x emission amount from the internal combustion engine, the ammonia adsorption amount on the NO x catalyst, and the like. In addition, this step can be omitted when the reducing agent is always supplied.

還元剤の供給を行うと判定された場合、ECU33から内燃機関の回転数Ne、回転トルクTr又は排気流量Fg、内燃機関の燃料噴射タイミングQtが取得される(S102)。この実施の形態では、回転数Ne、回転トルクTr及び燃料噴射タイミングQtが取得されている。回転数Neは内燃機関の出力軸等から検出された値であり、回転トルクTrは、この回転数Neと内燃機関の燃料噴射量Qとから算出され、燃料噴射タイミングQtはECU33の噴射指示信号から検出される。   When it is determined that the reducing agent is to be supplied, the ECU 33 obtains the rotational speed Ne of the internal combustion engine, the rotational torque Tr or the exhaust flow rate Fg, and the fuel injection timing Qt of the internal combustion engine (S102). In this embodiment, the rotational speed Ne, the rotational torque Tr, and the fuel injection timing Qt are acquired. The rotational speed Ne is a value detected from the output shaft or the like of the internal combustion engine, the rotational torque Tr is calculated from the rotational speed Ne and the fuel injection amount Q of the internal combustion engine, and the fuel injection timing Qt is an injection instruction signal of the ECU 33. Detected from.

次いで、取得された回転数Ne及び燃料噴射タイミングQtに基づき、内燃機関の排気タイミングTgが検出される(S103)。また、取得された回転数Ne及び回転トルクTrに基づき、内燃機関の排気タイミングTgから、排気ガスの排出によって生じる圧力波のピークが還元剤の供給位置に到達するまでの遅れ時間Tdelayが算出される(S104)。この遅れ時間Tdelayは、予め設定されている図4のような相関を示すマップを利用して算出することができる。例えば、回転数Neが高い程、また、回転トルクTrが大きい程、遅れ時間Tdelayが短くなるように設定される。   Next, the exhaust timing Tg of the internal combustion engine is detected based on the acquired rotational speed Ne and fuel injection timing Qt (S103). Further, based on the acquired rotational speed Ne and rotational torque Tr, a delay time Tdelay until the peak of the pressure wave caused by exhaust gas discharge reaches the reducing agent supply position is calculated from the exhaust timing Tg of the internal combustion engine. (S104). This delay time Tdelay can be calculated using a preset map as shown in FIG. For example, the delay time Tdelay is set to be shorter as the rotational speed Ne is higher and as the rotational torque Tr is larger.

また、取得された回転数Neに基づき、圧力波の周波数に対する供給頻度Ndosが設定される(S105)。この供給頻度Ndosは、予め設定されている図5のような相関を示すマップを利用して設定される。ここでは、還元剤の供給周期が閾値f1以下となるように供給頻度Ndosが設定される。例えば、内燃機関の回転数Neがr1以下であれば、内燃機関の1回転周期ごとに還元剤を1回供給し、内燃機関の回転数がr1以上r2以下であれば、内燃機関の2回転周期ごとに還元剤を1回供給し、内燃機関の回転数がr2以上であれば、内燃機関の4回転周期ごとに還元剤を1回供給するように設定される。   Further, the supply frequency Ndos for the frequency of the pressure wave is set based on the acquired rotation speed Ne (S105). This supply frequency Ndos is set by using a map showing correlation as shown in FIG. Here, the supply frequency Ndos is set so that the supply cycle of the reducing agent is equal to or less than the threshold value f1. For example, if the rotational speed Ne of the internal combustion engine is equal to or less than r1, the reducing agent is supplied once every rotation cycle of the internal combustion engine. If the rotational speed of the internal combustion engine is equal to or greater than r1 and equal to or less than r2, two rotations of the internal combustion engine are performed. If the reducing agent is supplied once every cycle and the rotational speed of the internal combustion engine is equal to or greater than r2, the reducing agent is set to be supplied once every four rotation cycles of the internal combustion engine.

この供給頻度Ndosの設定(S105)と遅れ時間Tdelayの設定(S104)とは順序が逆であってもよい。   The setting of the supply frequency Ndos (S105) and the setting of the delay time Tdelay (S104) may be reversed.

次いで、これらの排気タイミングTgと供給頻度Ndosと遅れ時間Tdelayとに基づいて、還元剤の供給タイミングTdosが決定される(S106)。このように設定された供給タイミングTdosは、排気通路の還元剤の供給位置に、排気ガスの圧力波のピークが到達するタイミングとなる。   Next, the reducing agent supply timing Tdos is determined based on the exhaust timing Tg, the supply frequency Ndos, and the delay time Tdelay (S106). The supply timing Tdos set in this way is the timing at which the peak of the pressure wave of the exhaust gas reaches the reducing agent supply position in the exhaust passage.

その後、決定された供給タイミングTdosが、前回の還元剤の供給タイミングTdos’と相違するか否かが判定され(S107)、相違する場合には新たな供給タイミングTdosに変更され(S108)、その後、還元剤の間欠供給が実行され(S109)、還元剤の供給が完了する。   Thereafter, it is determined whether or not the determined supply timing Tdos is different from the previous reducing agent supply timing Tdos ′ (S107). If the determined supply timing Tdos is different, the supply timing Tdos is changed to a new supply timing Tdos (S108). Then, intermittent supply of the reducing agent is executed (S109), and the supply of the reducing agent is completed.

以上のような本実施形態の排気浄化装置によれば、排気ガスの圧力波のピークに対応させて、還元剤供給手段から還元剤が間欠的に供給されるので、排気通路の形状や距離等に拘わらず、最適なタイミングで安定して還元剤が供給される。さらに、排気通路内で脈動する排気ガスの運動エネルギーが最も高い部分に還元剤が供給されるため、その運動エネルギーを利用して、供給された還元剤が効率的に微粒子化される。これは、例えば、液滴の境界面に働く慣性力と表面張力の比を示すウェーバー数が高い状態が実現された状態であり、液体の表面破断がより促進される状態が達成されやすくなる。そのため、還元剤が排気ガスに均一に分散させられてNOXが効率的に還元される。
しかも、還元剤が微粒子化されて排気ガスに分散させられるため、供給された還元剤が液状のまま還元剤の供給位置近傍の排気通路の内壁面に付着するようなことが低減され、NOXの還元効率を容易に向上させることができる。
According to the exhaust purification apparatus of the present embodiment as described above, since the reducing agent is intermittently supplied from the reducing agent supply means in correspondence with the peak of the pressure wave of the exhaust gas, the shape and distance of the exhaust passage, etc. Regardless of this, the reducing agent is stably supplied at an optimal timing. Furthermore, since the reducing agent is supplied to the portion where the kinetic energy of the exhaust gas pulsating in the exhaust passage is the highest, the supplied reducing agent is efficiently atomized using the kinetic energy. This is, for example, a state in which a high Weber number indicating the ratio between the inertial force acting on the boundary surface of the droplet and the surface tension is realized, and a state in which surface breakage of the liquid is further promoted is easily achieved. Therefore, the reducing agent is uniformly dispersed in the exhaust gas, and NO x is efficiently reduced.
Moreover, the reducing agent for being atomized are dispersed in the exhaust gas, the supplied reducing agent such as adhering to the inner wall surface of the exhaust passage in the vicinity supply position remains the reducing agent in liquid form is reduced, NO X The reduction efficiency of can be easily improved.

また、この排気浄化装置では、内燃機関の回転数と、内燃機関のトルク又は排気流量とに基づいて求められる、排気タイミングに対する圧力波のピークの遅れに対応させて還元剤が供給されるので、還元剤の適切な供給タイミングが容易に設定される。   Further, in this exhaust purification device, since the reducing agent is supplied corresponding to the delay of the peak of the pressure wave with respect to the exhaust timing, which is obtained based on the rotational speed of the internal combustion engine and the torque or exhaust flow rate of the internal combustion engine, An appropriate supply timing of the reducing agent is easily set.

さらに、内燃機関の回転数に基づいて求められる、圧力波の周波数に対する供給頻度に対応させて還元剤が供給されるので、供給頻度が過度に高くなることが避けられ、還元剤供給手段の供給能力に応じた適切な供給タイミングで還元剤を供給することが可能である。また、還元剤の供給頻度が過度に高くなることが避けられれば、還元剤供給手段を構成する機器の過熱による故障が防止され、還元剤が安定して供給されるとともに、供給量のばらつきが防止される。   Furthermore, since the reducing agent is supplied in correspondence with the supply frequency with respect to the frequency of the pressure wave, which is obtained based on the rotation speed of the internal combustion engine, the supply frequency is avoided from becoming excessively high, and the supply of the reducing agent supply means is performed. It is possible to supply the reducing agent at an appropriate supply timing according to the capacity. Moreover, if the supply frequency of the reducing agent is prevented from becoming excessively high, failure due to overheating of the equipment constituting the reducing agent supply means can be prevented, the reducing agent can be supplied stably, and the supply amount can vary. Is prevented.

本発明の実施の形態にかかる排気浄化装置の構成例を示す図である。It is a figure showing an example of composition of an exhaust-air-purification device concerning an embodiment of the invention. 本発明の実施の形態にかかる還元剤供給制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the reducing agent supply control apparatus concerning embodiment of this invention. 還元剤の供給位置での排気ガスの圧力変動を示すグラフである。It is a graph which shows the pressure fluctuation of the exhaust gas in the supply position of a reducing agent. 内燃機関のトルク又は排気流量をパラメータとして、予め設定された内燃機関の回転数と圧力波のピークの遅れ時間との相関を示すグラフである。It is a graph which shows the correlation with the rotation speed of the internal combustion engine set beforehand and the delay time of the peak of a pressure wave, using the torque of an internal combustion engine or an exhaust flow as a parameter. 予め設定された内燃機関の回転数と還元剤の供給周波数との相関を示すグラフである。It is a graph which shows the correlation with the rotation speed of a preset internal combustion engine, and the supply frequency of a reducing agent. 本発明の実施の形態にかかる還元剤供給制御方法を説明するためのフローチャートである。It is a flowchart for demonstrating the reducing agent supply control method concerning embodiment of this invention.

符号の説明Explanation of symbols

10:内燃機関、11:排気通路、20:排気浄化装置、21:NOX触媒、25:還元剤供給手段、25a:供給位置、27:還元剤噴射弁、29:還元剤供給部、31:DCU、33:ECU 10: an internal combustion engine, 11: exhaust passage 20: exhaust gas purification apparatus, 21: NO X catalyst 25: reducing agent supply means, 25a: supply position, 27: reducing agent injection valve, 29: reducing agent supply portion, 31: DCU, 33: ECU

Claims (6)

内燃機関の排気通路内に配置されたNOX触媒の上流側に還元剤を供給するための還元剤供給制御装置において、
前記内燃機関から排気ガスが排出される排気タイミングから、前記排気ガスの排出によって生じる圧力波のピークが前記還元剤の供給位置に到達するまでの遅れ時間に応じて、前記還元剤を前記排気タイミングから遅れて供給することにより、前記圧力波のピークに対応させて前記還元剤を供給することを特徴とする還元剤供給制御装置。
In the reducing agent supply control device for supplying the reducing agent to the upstream side of the NO x catalyst disposed in the exhaust passage of the internal combustion engine,
The reducing agent is discharged to the exhaust timing according to a delay time from the exhaust timing at which the exhaust gas is discharged from the internal combustion engine until the peak of the pressure wave generated by the exhaust gas discharge reaches the supply position of the reducing agent. The reducing agent supply control device is characterized in that the reducing agent is supplied in correspondence with a peak of the pressure wave by supplying it after a delay.
前記排気タイミングを検出する排気タイミング検出部と、
前記排気タイミングから、前記圧力波のピークが前記還元剤の供給位置に到達するまでの遅れ時間を推定する圧力波遅れ時間演算部と、
前記供給位置に到達する前記圧力波のピークに対応させて前記還元剤を供給させる還元剤供給指示部と、
を備えることを特徴とする請求項1に記載の還元剤供給制御装置。
An exhaust timing detector for detecting the exhaust timing;
A pressure wave delay time calculating unit that estimates a delay time from the exhaust timing until the peak of the pressure wave reaches the supply position of the reducing agent;
A reducing agent supply instructing unit for supplying the reducing agent in correspondence with the peak of the pressure wave reaching the supply position;
The reducing agent supply control device according to claim 1, comprising:
少なくとも前記内燃機関の回転数と、前記内燃機関のトルク又は排気流量とに基づいて、前記遅れ時間を推定することを特徴とする請求項1又は2に記載の還元剤供給制御装置。   3. The reducing agent supply control device according to claim 1, wherein the delay time is estimated based on at least a rotation speed of the internal combustion engine and a torque or an exhaust flow rate of the internal combustion engine. 少なくとも前記内燃機関の回転数に基づいて求められる前記圧力波の周波数に対応して設定された供給頻度で前記還元剤を供給することを特徴とする請求項1〜3のいずれか一項に記載の還元剤供給制御装置。   The said reducing agent is supplied with the supply frequency set corresponding to the frequency of the said pressure wave calculated | required based on the rotation speed of the said internal combustion engine at least. Reducing agent supply control device. 前記還元剤の供給周期が所定値以下となるように前記圧力波の周波数に対応して供給頻度を設定することを特徴とする請求項4に記載の還元剤供給制御装置。   5. The reducing agent supply control device according to claim 4, wherein a supply frequency is set corresponding to a frequency of the pressure wave so that a supply cycle of the reducing agent is equal to or less than a predetermined value. 請求項1〜5のいずれか一項に記載の還元剤供給制御装置と、内燃機関の排気通路内に配置され、排気ガス中に含まれるNOXを選択的に還元するためのNOX触媒と、前記NOX触媒の上流側で前記排気通路内に還元剤を供給可能な還元剤供給手段と、を備えた内燃機関の排気浄化装置。 A reducing agent supply control device according to any one of claims 1 to 5, a NO x catalyst arranged in an exhaust passage of an internal combustion engine, for selectively reducing NO x contained in exhaust gas, An exhaust gas purification apparatus for an internal combustion engine, comprising: a reducing agent supply means capable of supplying a reducing agent into the exhaust passage upstream of the NO x catalyst.
JP2008221141A 2008-08-29 2008-08-29 Reducing agent supply control device and exhaust emission control device of internal combustion engine Pending JP2010053807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008221141A JP2010053807A (en) 2008-08-29 2008-08-29 Reducing agent supply control device and exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008221141A JP2010053807A (en) 2008-08-29 2008-08-29 Reducing agent supply control device and exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010053807A true JP2010053807A (en) 2010-03-11

Family

ID=42069983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008221141A Pending JP2010053807A (en) 2008-08-29 2008-08-29 Reducing agent supply control device and exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010053807A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155639A (en) * 2012-01-27 2013-08-15 Ihi Corp NOx REMOVAL DEVICE
WO2013190698A1 (en) 2012-06-22 2013-12-27 トヨタ自動車株式会社 Deterioration detection system of exhaust purification device
JP2017122391A (en) * 2016-01-06 2017-07-13 株式会社Soken Exhaust emission control device for internal combustion engine
JP2018145905A (en) * 2017-03-07 2018-09-20 いすゞ自動車株式会社 Estimation device and estimation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155639A (en) * 2012-01-27 2013-08-15 Ihi Corp NOx REMOVAL DEVICE
WO2013190698A1 (en) 2012-06-22 2013-12-27 トヨタ自動車株式会社 Deterioration detection system of exhaust purification device
US9670812B2 (en) 2012-06-22 2017-06-06 Toyota Jidosha Kabushiki Kaisha Deterioration detection system for exhaust gas purification apparatus
JP2017122391A (en) * 2016-01-06 2017-07-13 株式会社Soken Exhaust emission control device for internal combustion engine
JP2018145905A (en) * 2017-03-07 2018-09-20 いすゞ自動車株式会社 Estimation device and estimation method

Similar Documents

Publication Publication Date Title
JP5864432B2 (en) Method of operating the reducing agent feeding device
US8454916B2 (en) Selective catalytic reduction (SCR) catalyst depletion control systems and methods
US20100101215A1 (en) Exhaust gas treatment system and methods for operating the same
JP2009281294A (en) Exhaust emission control device for internal combustion engine
WO2012090800A1 (en) Exhaust purification system and method for controlling exhaust purification system
EP3333389B1 (en) Exhaust gas control apparatus for internal combustion engine
JP2011058485A (en) Apparatus and method for controlling ammonia occlusion amount of scr catalyst
JP2007154849A (en) Control method for exhaust emission control system
JP2009293444A (en) Exhaust emission control device for internal combustion engine
CN108798840B (en) Emission control system for treating exhaust gases in a motor vehicle comprising an internal combustion engine
JP4748664B2 (en) Exhaust purification device
JP2009097476A (en) Injection control device of reducing agent
JP2003328744A (en) Exhaust emission control device of internal-combustion engine
US10247076B2 (en) Exhaust treatment system including ammonia storage control system
US20190010884A1 (en) Selective catalytic reduction steady state ammonia slip detection
EP2570626A1 (en) Exhaust gas purification system for internal combustion engine
JP6685728B2 (en) Exhaust gas purification device for internal combustion engine
KR100993364B1 (en) System for control urea injection quantity of vehicle and method thereof
US8789358B2 (en) Selective catalytic reduction catalyst ammonia storage control systems and methods
JP2012127214A (en) Reducing agent supplying system, and exhaust gas purifying system of internal combustion engine
JP2010053807A (en) Reducing agent supply control device and exhaust emission control device of internal combustion engine
US10502113B2 (en) Selective catalytic reduction ammonia storage control
JP2011149366A (en) Clogging diagnostic device and clogging diagnostic method for reducing agent injection valve, and exhaust emission control device for internal combustion engine
WO2011145227A1 (en) Exhaust gas purification device for internal combustion engine
JP2004156615A (en) Emission aftertreatment system of internal combustion engine