JP3557964B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3557964B2
JP3557964B2 JP27692999A JP27692999A JP3557964B2 JP 3557964 B2 JP3557964 B2 JP 3557964B2 JP 27692999 A JP27692999 A JP 27692999A JP 27692999 A JP27692999 A JP 27692999A JP 3557964 B2 JP3557964 B2 JP 3557964B2
Authority
JP
Japan
Prior art keywords
reducing agent
amount
exhaust gas
reduction catalyst
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27692999A
Other languages
Japanese (ja)
Other versions
JP2001098930A (en
Inventor
正明 小林
忍 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP27692999A priority Critical patent/JP3557964B2/en
Publication of JP2001098930A publication Critical patent/JP2001098930A/en
Application granted granted Critical
Publication of JP3557964B2 publication Critical patent/JP3557964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
燃焼室内で空燃比がリーンの混合気を燃焼せしめるようにした内燃機関の排気通路内に、流入排気の空燃比がリーンのときに流入排気中のNOを蓄え、流入排気中の酸素濃度が低下すると蓄えているNOを放出して還元するNO吸蔵還元触媒を配置し、NO吸蔵還元触媒上流の排気通路内に配置された還元剤供給装置からNO吸蔵還元触媒に還元剤を間欠的に供給してNO吸蔵還元触媒から蓄えられているNOを放出させ還元するようにした内燃機関の排気浄化装置が公知である(特開平7−102948号公報参照)。このような還元剤供給装置では還元剤噴射圧を一定に維持するのが一般的であり、従って単位時間当たりに噴射される還元剤量は一定である。
【0003】
【発明が解決しようとする課題】
このように還元剤噴射圧が一定であると、吸入空気量が多くなるにつれて、NO吸蔵還元触媒への流入排気中の還元剤濃度が低くなり、その結果NO吸蔵還元触媒への流入排気の空燃比が比較的緩やかに変化することになる。しかしながら、NO吸蔵還元触媒内のNOを確実に放出、還元し、同時にNO吸蔵還元触媒から排出される還元剤量を低減させるためには、NO吸蔵還元触媒への流入排気の空燃比が急激に変化するのが好ましい。従って、還元剤噴射圧が一定であるとNOを良好に放出、還元しかつNO吸蔵還元触媒から排出される還元剤量を低減できない恐れがあるという問題点がある。
【0004】
そこで本発明の目的は、NO吸蔵還元触媒内のNOを確実に放出、還元し、同時にNO吸蔵還元触媒から排出される還元剤量を低減させることができる内燃機関の排気浄化装置を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために1番目の発明によれば、燃焼室内の空燃比がリーンとなるようにした内燃機関の排気通路内に、流入排気の空燃比がリーンのときに流入排気中のNO X を蓄え、流入排気中の酸素濃度が低下すると蓄えているNO X を放出して還元するNO X 吸蔵還元触媒を配置し、NO X 吸蔵還元触媒上流の排気通路内に配置された還元剤供給装置からNO X 吸蔵還元触媒に還元剤を間欠的に供給してNO X 吸蔵還元触媒においてNOXを還元するようにした内燃機関の排気浄化装置において、吸入空気量が多いときには少ないときに比べて多くなるように単位時間当たりに還元剤供給装置から供給される還元剤量を定め、還元剤供給作用時にNO X 吸蔵還元触媒への流入排気の空燃比を予め定められた目標空燃比とするのに必要な要求還元剤量を定め、これら単位時間当たりに還元剤供給装置から供給される還元剤量と要求還元剤量とに基づいて還元剤噴射時間を求めるようにしている。即ち1番目の発明では、吸入空気量が多くなってもNO X 吸蔵還元触媒への流入排気中の還元剤濃度が低下するのが阻止され、従って還元剤濃度が急激に変化しうるのでNOXの良好な放出還元作用が確保され、NO X 吸蔵還元触媒から排出される還元剤量が低減される。また、機関排気通路内の或る位置よりも上流の機関排気通路内、燃焼室内、及び吸気通路内に供給された吸入空気量に対する燃料量及び還元剤量の比をその位置における排気の空燃比と称すると、1番目の発明では、NO X 吸蔵還元触媒への流入排気の空燃比が速やかに目標空燃比に一致せしめられる。
【0006】
また、2番目の発明によれば1番目の発明において、還元剤供給装置が還元剤噴射圧を変更可能であり、吸入空気量が多いときには少ないときに比べて還元剤噴射圧を高くするようにしている。即ち番目の発明では、還元剤噴射圧を高くすることにより単位時間当たりに還元剤供給装置から供給される還元剤量が増大される。
【0008】
また、番目の発明によれば1番目の発明において、還元剤噴射時間が予め定められた設定範囲内に維持されるように吸入空気量に対し単位時間当たりに還元剤供給装置から供給される還元剤量を定めている。
また、番目の発明によれば1番目の発明において、先の還元剤供給作用の後NO X 吸蔵還元触媒内に残存している残存還元剤量を求めて残存還元剤量が予め定められた設定量よりも少なくなったときに次の還元剤供給作用を行うようにしている。即ち番目の発明では、還元剤がNO X 吸蔵還元触媒に過不足なく供給される。
【0009】
また、番目の発明によれば1番目の発明において、先の還元剤供給作用が開始されてからのNO X 吸蔵還元触媒への流入排気の平均空燃比を求めて平均空燃比が予め定められた設定空燃比よりも大きくなったときにNO X 吸蔵還元触媒内の残存還元剤量が前記設定量よりも少なくなったと判断するようにしている。即ち番目の発明では、NO X 吸蔵還元触媒への流入排気の平均空燃比が設定空燃比よりも大きくなったときに次の還元剤供給作用が開始される。
【0010】
また、番目の発明によれば番目の発明において、先の還元剤供給作用と次の還元剤供給作用との間の時間間隔が予め定められた最小時間間隔よりも短くならないように次の還元剤供給作用の開始時期を定めている。即ち番目の発明では、先の還元剤供給作用と次の還元剤供給作用との間に十分な時間間隔が設けられる。
【0012】
【発明の実施の形態】
図1は本発明をディーゼル機関に適用した場合を示している。しかしながら本発明を火花点火式機関に適用することもできる。
図1を参照すると、機関本体1は例えば四つの気筒#1,#2,#3,#4を具備する。各気筒は対応する吸気枝管2を介してサージタンク3に接続され、サージタンク3は吸気ダクト4及びインタークーラ5を介して過給機、例えば排気ターボチャージャ6のコンプレッサ6cの出口部に接続される。コンプレッサ6cの入口部は空気吸い込み管7を介してエアクリーナ8に接続される。サージタンク3とインタークーラ5間の吸気ダクト4内にはアクチュエータ9により駆動されるスロットル弁10が配置される。また、各気筒は燃焼室内に燃料を直接噴射する燃料噴射弁11を具備する。各燃料噴射弁11は共通の燃料蓄圧室(図示しない)を介し燃料ポンプ(図示しない)に接続される。
【0013】
一方、各気筒は排気マニホルド12を介して排気ターボチャージャ6の排気タービン6tの入口部に接続され、排気タービン6tの出口部は排気管13を介してNO還元触媒14を収容したケーシング15に接続され、ケーシング15は排気管16に接続される。
排気管13内にはNO還元触媒14に還元剤を供給するための還元剤供給装置17が設けられる。還元剤供給装置17はNO還元触媒14の排気流入面に対面配置された還元剤噴射ノズル18を具備し、還元剤噴射ノズル18は還元剤供給管19及び電磁弁20を介し、燃料タンク21内に配置された吐出量を制御可能な燃料ポンプ22の吐出側に接続される。
【0014】
即ち、本実施態様では還元剤として内燃機関の燃料(HC)が用いられる。しかしながら、還元剤として例えばガソリン、イソオクタン、ヘキサン、ヘプタン、軽油、灯油、ブタン、プロパンのような炭化水素、水素、アンモニア、尿素などを用いることもできる。
図2は還元剤噴射ノズル18の構造を詳細に示している。図2を参照すると、還元剤噴射ノズル18はケーシング18aと、ケーシング18aの長手方向一端に形成されたノズル口18bと、ケーシング18aの長手方向他端に形成された還元剤流入口18cと、ケーシング内部空間内に固定されかつ還元剤噴射ノズル18の長手軸線に対し傾斜した案内溝18dを有する案内部材18eと、還元剤流入口18cからノズル口18bまで案内部材18e周りのケーシング内部空間内を延びる還元剤通路18fと、還元剤流入口18cと還元剤供給管19間に配置されて還元剤流入口18cに向けてのみ流通可能な逆止弁18gとを具備する。
【0015】
電磁弁20が開弁されて逆止弁18gが開弁されると、還元剤が還元剤通路18f内を流通し、次いでノズル口18bから噴射される。このとき、案内部材18eに案内溝dが設けられているので還元剤は旋回しながら噴射され、従って還元剤が広範囲にわたって噴射される。
再び図1を参照すると、排気マニホルド12と、スロットル弁10下流の吸気ダクト4とが排気再循環(以下EGRと称す)通路23を介して互いに接続され、EGR通路23内にはEGRクーラ24と、アクチュエータ25により駆動されるEGR制御弁26とが配置される。このように還元剤供給装置17よりも上流にEGR通路23を開口させることにより還元剤がEGRガスと共に機関吸気通路に戻されるのが阻止される。
【0016】
電子制御ユニット(ECU)30はデジタルコンピュータからなり、双方向性バス31を介して相互に接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、常時電源に接続されているB−RAM(バックアップRAM)35、入力ポート36、及び出力ポート37を具備する。空気吸い込み管7内には吸入空気の質量流量を検出するための吸入空気量センサ38が配置される。排気管13にはNO還元触媒14に流入する排気の温度に比例した出力電圧を発生する温度センサ39が配置される。また、踏み込み量センサ40はアクセルペダルの踏み込み量DEPに比例した出力電圧を発生する。これらセンサ38,39,40の出力電圧はそれぞれ対応するAD変換器41を介して入力ポート36に入力される。また、入力ポート36には機関回転数を表す出力パルスを発生する回転数センサ42が接続される。一方、出力ポート37はそれぞれ対応する駆動回路43を介してアクチュエータ9、各燃料噴射弁11、電磁弁20、燃料ポンプ22、及びアクチュエータ25にそれぞれ接続される。
【0017】
本実施態様において、NO還元触媒14はNO吸蔵還元触媒から形成される。このNO吸蔵還元触媒14は例えばアルミナを担体とし、この担体上に例えばカリウムK,ナトリウムNa,リチウムLi,セシウムCsのようなアルカリ金属、バリウムBa,カルシウムCaのようなアルカリ土類、ランタンLa,イットリウムYのような希土類から選ばれた少なくとも一つと、白金Pt、パラジウムPd、ロジウムRh、イリジウムIrのような貴金属とが担持されている。このNO吸蔵還元触媒14は流入排気の空燃比がリーンのときにはNOを蓄え、流入排気中の酸素濃度が低下すると蓄えているNOを放出して還元するNO吸放出・還元作用を行う。ここで、NO吸蔵還元触媒14は吸収によりNOを蓄えると考えられている。
【0018】
上述のNO吸蔵還元触媒14を機関排気通路内に配置すればこのNO吸蔵還元触媒14は実際にNO吸放出・還元作用を行うがこのNO吸放出・還元作用の詳細なメカニズムについては明らかでない部分もある。しかしながらこのNO吸放出・還元作用は図3(A),3(B)に示すようなメカニズムで行われているものと考えられる。次にこのメカニズムについて担体上に白金Pt及びバリウムBaを担持させた場合を例にとって説明するが他の貴金属、アルカリ金属、アルカリ土類、希土類を用いても同様なメカニズムとなる。
【0019】
即ち、流入排気がかなりリーンになると流入排気中の酸素濃度が大巾に増大し、図3(A)に示されるようにこれら酸素OがO2−又はO の形で白金Ptの表面に付着する。一方、流入排気中のNOは白金Ptの表面上でO2−又はO と反応し、NOとなる(2NO+O→2NO)。次いで生成されたNOの一部は白金Pt上でさらにに酸化されつつ吸収剤内に吸収されて酸化バリウムBaOと結合しながら、図3(A)に示されるように硝酸イオンNO の形で吸収剤内に拡散する。このようにしてNOがNO吸蔵還元触媒14内に吸収される。
【0020】
流入する排気中の酸素濃度が高い限り白金Ptの表面でNOが生成され、吸収剤のNO吸収能力が飽和しない限りNOが吸収剤内に吸収されて硝酸イオンNO が生成される。これに対して流入する排気中の酸素濃度が低下してNOの生成量が低下すると反応が逆方向(NO →NO)に進み、斯くして吸収剤内の硝酸イオンNO がNOの形で吸収剤から放出される。即ち、流入排気中の酸素濃度が低下するとNO吸蔵還元触媒14からNOが放出されることになる。流入排気のリーンの度合が低くなれば流入排気中の酸素濃度が低下し、従って流入排気のリーンの度合を低くすればNO吸蔵還元触媒14からNOが放出されることになる。
【0021】
一方、このときNO吸蔵還元触媒14に還元剤例えばHCを供給すると還元剤HC、及び機関から排出されるHC,COは白金Pt上の酸素O 又はO2−と反応して酸化せしめられる。また、NO吸蔵還元触媒14に還元剤を供給すると流入排気中の酸素濃度が低下するために吸収剤からNOが放出され、このNOは図3(B)に示されるようにHC,COと反応して還元せしめられる。このようにして白金Ptの表面上にNOが存在しなくなると吸収剤から次から次へとNOが放出され、還元される。従って、NO吸蔵還元触媒14に還元剤が供給されるとNO吸蔵還元触媒14からNOが放出され、還元されることになる。
【0022】
本実施態様のようなディーゼル機関では、通常運転時に各気筒内の平均空燃比はリーンに維持されており、従って通常運転時に各気筒から排出される排気中のNOはNO吸蔵還元触媒14に蓄えられる。ところが、NO吸蔵還元触媒14のNO貯蔵能力には限界があるのでNO吸蔵還元触媒14のNO貯蔵能力が飽和する前にNO吸蔵還元触媒14からNOを放出させる必要がある。そこで本実施態様では、還元剤供給装置17から間欠的に還元剤を供給し、それによりNO吸蔵還元触媒14内に蓄えられているNO量が減少するようにしている。
【0023】
この場合、冒頭で述べたように、NO吸蔵還元触媒14への流入排気中の還元剤濃度又は流入排気の空燃比が急激に変化するのが好ましい。そこで本実施態様では、吸入空気量Gaが多いときには少ないときに比べて還元剤供給装置17の還元剤噴射圧PRが高くなるようにし、それにより単位時間当たりの還元剤供給量が多くなるようにしている。この場合の還元剤噴射圧PRは図4に示すマップの形で予めROM32内に記憶されている。
【0024】
本実施態様では、NO吸蔵還元触媒14への流入排気の空燃比が予め定められた目標空燃比となるように還元剤供給量が定められる。このようにすると、NO吸蔵還元触媒14内のNOを確実に放出、還元しかつNO吸蔵還元触媒14から排出される還元剤量を良好に低減することができる。目標空燃比としては上述の効果が得られる限りどのように定めてもよいが、本実施態様では目標空燃比を理論空燃比としている。
【0025】
還元剤供給装置17からの還元剤供給量をQR、燃料噴射弁11から機関1への燃料噴射量をQEとすると、還元剤供給作用が行われたときのNO吸蔵還元触媒14への流入排気の空燃比AFREは次式で表される。
AFRE=Ga/(QR+QE)
従って、NO吸蔵還元触媒14への流入排気の空燃比AFREを理論空燃比AFRSに一致させるのに必要な還元剤量QRは次式で表されることになる。
【0026】
QR=Ga/AFRS−QE
還元剤供給装置17からはQRだけ還元剤が供給される。
このように還元剤噴射圧PRと還元剤供給量QRとが定められると、還元剤噴射時間TAURが定まる。この還元剤噴射時間TAURは還元剤噴射圧PR及び還元剤供給量QRの関数として図5に示すマップの形で予めROM32内に記憶されている。従って、TAURだけ電磁弁20が開弁される。
【0027】
上述したように吸入空気量Gaに応じて還元剤噴射圧PRを定めたとしても、その定め方によって還元剤噴射時間TAURは変動しうる。この場合、還元剤噴射時間TAURが長くなるにつれてNO吸蔵還元触媒14から排出される還元剤量が増大する。そこで、NO吸蔵還元触媒14からの排出還元剤量が許容量を越えないように還元剤噴射時間TAURの上限が定められる。一方、還元剤供給装置17にはその構造に応じて最小噴射時間が設けられている。そこで、還元剤噴射時間TAURがこの最小噴射時間よりも短くならないように還元剤噴射時間TAURの下限が定められる。即ち、還元剤噴射時間TAURが予め定められた設定範囲内に維持されるように吸入空気量Gaに対し還元剤噴射圧PRが定められている。更に、好ましくは還元剤噴射時間TAURがほぼ一定値に維持されるように還元剤噴射圧PRが定められる。
【0028】
還元剤供給作用が行われると、NO吸蔵還元触媒14内のNOの放出還元作用が行われる。本実施態様では、噴霧というよりも液滴の形で還元剤が噴射され、この液滴の形の還元剤はNO吸蔵還元触媒14の表面に付着する。その結果、局所的に排気の空燃比がリッチの領域が形成され、斯くしてNOの放出還元作用が速やかにかつ確実に行われる。
【0029】
還元剤供給作用が停止されてもNO吸蔵還元触媒14の表面には還元剤が残存し続け、この残存還元剤はNO吸蔵還元触媒14内のNOを放出還元しながら徐々に減少する。従って、NO吸蔵還元触媒14内の残存還元剤量が多い間は還元剤を供給する必要がなく、残存還元剤量が少なくなったときに還元剤を供給すればよいことになる。
【0030】
そこで本実施態様では、先の還元剤供給作用の後NO吸蔵還元触媒14内の残存還元剤量を求めてこの残存還元剤量が予め定められた設定量よりも少なくなったときに次の還元剤供給作用を行うようにしている。
先の還元剤供給作用が開始されてからの経過時間が長くなるにつれてNO吸蔵還元触媒14内の残存還元剤量が減少する。一方、先の還元剤供給作用が開始されてから或る時刻までの吸入空気量の積算値に対する、先の還元剤供給作用における還元剤供給量と、先の還元剤供給作用が開始されてから前記時刻までの機関1への燃料噴射量の積算値との和の比をこの時刻におけるNO吸蔵還元触媒14への流入排気の平均空燃比と称すると、先の還元剤供給作用が開始されてからの経過時間が長くなるにつれNO吸蔵還元触媒14への流入排気の平均空燃比が大きくなる。従って、NO吸蔵還元触媒14への流入排気の平均空燃比はNO吸蔵還元触媒14内の残存還元剤量を表していることになる。
【0031】
そこで、先の還元剤供給作用が行われた後NO吸蔵還元触媒14への流入排気の平均空燃比が予め定められた設定空燃比よりも大きくなったときにNO吸蔵還元触媒14内の残存還元剤量が設定量よりも少なくなったと判断するようにし、このとき次の還元剤供給作用を行うようにしている。
但し、先の還元剤供給作用と次の還元剤供給作用との間の時間間隔が予め定められた最小時間間隔よりも短くならないように次の還元剤供給作用の開始時期が定められる。その結果、例えば先の還元剤供給作用が完了する前に次の還元剤供給作用を開始すべき制御信号が発せられるのが阻止される。
【0032】
次に図8を参照しつつ図6及び図7を参照して本実施態様を詳細に説明する。図6は還元剤噴射時間TAURの算出ルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。
図6を参照すると、まずステップ50では排気温度TEが予め定められた設定温度T1よりも高いか否かが判別される。TE≦T1のときにはNO吸蔵還元触媒14が活性状態にないと判断して処理サイクルを終了する。即ち、還元剤供給作用が停止される。これに対し、TE>T1のときには次いでステップ51に進み、フラグがセットされているか否かが判別される。このフラグは還元剤供給装置17の還元剤供給作用を行うべきときにセットされ、還元剤供給作用が行われるとリセットに戻されるものであり、図7のルーチンにより制御される。フラグがリセットされているときには処理サイクルを終了する。フラグがセットされているときには次いでステップ52に進み、還元剤噴射圧PRが図4のマップから算出される。それにより、実際の還元剤噴射圧がPRとなるように還元剤ポンプ22の吐出量が制御される。続くステップ53では燃料噴射弁11からの機関1への燃料噴射量QEが読み込まれる。続くステップ54では要求還元剤量QRが算出される(QR=Ga/AFRS−QE)。続くステップ55では図5のマップから還元剤噴射時間TAURが算出される。従って、電磁弁20がTAURだけ開弁される。続くステップ56ではフラグがリセットされる。
【0033】
即ち、図8に示されるようにフラグがセットされると電磁弁20が開弁されて還元剤供給作用が開始される。その結果、NO吸蔵還元触媒14への流入排気の空燃比が目標空燃比である理論空燃比AFRSに一致せしめられる。
図7はフラグ制御ルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。
【0034】
図7を参照すると、まずステップ60ではフラグがセットされているか否かが判別される。フラグがセットからリセットに切り替わったとき、即ち還元剤供給作用が行われたときには次いでステップ61に進み、還元剤供給作用の時間間隔を表すカウント値INTが1だけインクリメントされる。続くステップ62では、還元剤供給作用が開始されてからの積算吸入空気量SGa及び積算燃料噴射量SQEが算出される(SGa=SGa+Ga,SQE=SQE+QE)。続くステップ63ではこの時刻におけるNO吸蔵還元触媒14への流入排気の平均空燃比AFRAVEが算出される(AFRAVE=SGa/(SQE+QR))。ここでQRは直前の還元剤供給作用における還元剤供給量である。
【0035】
続くステップ64では平均空燃比AFRAVEが設定値R1よりも大きいか否かが判別される。AFRAVE≦R1のときにはNO吸蔵還元触媒14内の残存還元剤量が未だ多いと判断して処理サイクルを終了する。これに対しAFRAVE>R1のときにはNO吸蔵還元触媒14内の残存還元剤量が設定量よりも少なくなったと判断し、次いでステップ65に進む。ステップ65ではカウント値INTが最小時間間隔を表す設定値I1よりも大きいか否かが判別される。INT≦I1のときには処理サイクルを終了する。INT>I1のときには次いでステップ66に進んでフラグをセットする。
【0036】
即ち、図8に示されるようにフラグがリセットされると平均空燃比AFRAVEが理論空燃比AFRSから増大し始める。次いで、平均空燃比AFRAVEが設定値R1よりも大きくなり、このときINT>I1であるとフラグがセットされる。
フラグがセットされたときにはステップ60からステップ67に進み、積算吸入空気量SGa、積算燃料噴射量SQE、及びカウント値INTがクリアされる。次いで処理サイクルを終了する。
【0037】
ところで、図4を参照して上述したように、吸入空気量Gaが多くなるにつれて還元剤噴射圧PRが高くされ、吸入空気量Gaが少なくなるにつれて還元剤噴射圧PRが低くされる。ところが、還元剤供給装置17によっては還元剤噴射圧PRの制御可能範囲が制限され、即ち還元剤噴射圧PRを非常に高く又は低くできない場合もある。このような場合には還元剤噴射圧PRは還元剤供給装置17の可能な最高圧又は最低圧に維持され、しかしながら還元剤噴射時間TAURが増減せしめられる。
【0039】
【発明の効果】
NO吸蔵還元触媒内のNOを確実に放出、還元し、同時にNO吸蔵還元触媒から排出される還元剤量を低減させることができる。
【図面の簡単な説明】
【図1】内燃機関の全体図である。
【図2】還元剤噴射ノズルの拡大図である。
【図3】NO吸蔵還元触媒のNO吸放出・還元作用を説明する図である。
【図4】還元剤噴射圧PRを示す線図である。
【図5】還元剤噴射時間TAURを示す線図である。
【図6】還元剤噴射時間TAURの算出ルーチンを示すフローチャートである。
【図7】フラグ制御ルーチンを示すフローチャートである。
【図8】還元剤供給作用を説明するためのタイムチャートである。
【符号の説明】
1…機関本体
13…排気管
14…NO吸蔵還元触媒
17…還元剤供給装置
38…吸入空気量センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purification device for an internal combustion engine.
[0002]
[Prior art]
In an exhaust passage of an internal combustion engine air-fuel ratio in the combustion chamber is so allowed to combust a mixture of lean air-fuel ratio of the inflowing exhaust gas is stored in the NO X in the inflowing exhaust gas when the lean, the oxygen concentration in the inflowing exhaust gas the the NO X storage reduction catalyst that reduces by releasing NO X are stored and lowered is arranged, the reducing agent from the NO X storage reduction catalyst upstream of the exhaust passage arranged reducing agent supply device into the NO X occluding and reducing catalyst 2. Description of the Related Art There is known an exhaust gas purification device for an internal combustion engine in which NO X stored in a NO X storage reduction catalyst is intermittently supplied to release and reduce the NO X (see JP-A-7-102948). In such a reducing agent supply apparatus, the reducing agent injection pressure is generally maintained constant, and therefore, the amount of the reducing agent injected per unit time is constant.
[0003]
[Problems to be solved by the invention]
When the reducing agent injection pressure is constant, the reducing agent concentration in the exhaust gas flowing into the NO X storage reduction catalyst decreases as the intake air amount increases, and as a result, the exhaust gas flowing into the NO X storage reduction catalyst increases. Will change relatively slowly. However, the NO X storage reduction catalyst reliably release the NO X in, and reduced, in order to reduce the amount of reducing agent discharged from the NO X storage reduction catalyst at the same time, empty the inflowing exhaust into the NO X storage reduction catalyst Preferably, the fuel ratio changes rapidly. Therefore, if the reducing agent injection pressure is constant, there is a problem that NO X may be satisfactorily released and reduced, and the amount of reducing agent discharged from the NO X storage reduction catalyst may not be reduced.
[0004]
It is an object of the present invention, the NO X storage reduction catalyst reliably release the NO X in, reduced, the exhaust gas purifying apparatus for an internal combustion engine which can reduce the amount of reducing agent discharged from the NO X storage reduction catalyst at the same time To provide.
[0005]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an exhaust passage for an internal combustion engine in which an air-fuel ratio in a combustion chamber is lean. store up X, the oxygen concentration in the inflowing exhaust gas is arranged the NO X storage reduction catalyst that reduces by releasing NO X are stored and lowered, the NO X storage reduction catalyst upstream of the exhaust passage located reducing agent fed into the in the exhaust purification system of an internal combustion engine which is adapted to intermittently supplying the reducing agent to the NO X occluding and reducing catalyst for reducing NO X in the NO X storage reduction catalyst from the unit, than when less when many intake air amount determine the amount of reducing agent supplied from the reducing agent supply apparatus per unit time to be larger, to a predetermined target air-fuel ratio of the inflowing exhaust gas into the NO X storage reduction catalyst when the reducing agent supply operation Required for Determine the amount of reducing agent, and to obtain the reducing agent injection time based on the the required reducing agent amount amount of reducing agent supplied from the reducing agent supply device per these unit time. That is, in the first aspect, is prevented from the reducing agent concentration in the inflowing exhaust gas to the intake air amount is large becomes the NO X storage reduction catalyst be reduced, hence reducing agent concentration can vary sharply NO X , The amount of the reducing agent discharged from the NO X storage reduction catalyst is reduced. Further, the ratio of the amount of fuel and the amount of reducing agent to the amount of intake air supplied into the engine exhaust passage, the combustion chamber, and the intake passage upstream of a certain position in the engine exhaust passage is determined by the air-fuel ratio of the exhaust gas at that position. In the first aspect, the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst is quickly made to match the target air-fuel ratio.
[0006]
According to a second aspect, in the first aspect, the reducing agent supply device can change the reducing agent injection pressure, and when the intake air amount is large, the reducing agent injection pressure is set higher than when the intake air amount is small. ing. That is, in the second invention, the reducing agent amount supplied from the reducing agent supply apparatus per unit time by increasing the reducing agent injection pressure is increased.
[0008]
Further, in the first aspect according to the third invention, it is supplied from the reducing agent supply apparatus per unit time with respect to the intake air amount to be maintained within the set range of the reducing agent injection time is predetermined Determines the amount of reducing agent.
Further, in the first aspect according to the fourth invention, the residual reducing agent amount to determine the residual amount of reducing agent remaining in the the NO X storage reduction catalyst after the previous reducing agent supply operation is predetermined When the amount becomes smaller than the set amount, the next reducing agent supply operation is performed. That is, in the fourth invention, the reducing agent is supplied to the NO X storage reduction catalyst without excess or shortage.
[0009]
Further, in the first aspect according to the fifth invention, the average air-fuel ratio is predetermined in obtaining an average air-fuel ratio of the inflowing exhaust into the NO X storage reduction catalyst since the previous reducing agent supply operation is initiated When the air-fuel ratio becomes larger than the set air-fuel ratio, it is determined that the amount of the remaining reducing agent in the NO X storage reduction catalyst has become smaller than the set amount. That is, in the fifth invention, when the average air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst becomes larger than the set air-fuel ratio, the next reducing agent supply operation is started.
[0010]
Further, in the first aspect according to the sixth invention, the previous reducing agent supply operation and the time interval between subsequent reductant supply action for the next so as not shorter than the minimum predetermined time interval The start time of the reducing agent supply action is determined. That is, in the sixth aspect , a sufficient time interval is provided between the previous reducing agent supply operation and the next reducing agent supply operation.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a case where the present invention is applied to a diesel engine. However, the present invention can be applied to a spark ignition type engine.
Referring to FIG. 1, the engine main body 1 includes, for example, four cylinders # 1, # 2, # 3, and # 4. Each cylinder is connected to a surge tank 3 via a corresponding intake branch pipe 2, and the surge tank 3 is connected to a supercharger, for example, an outlet of a compressor 6 c of an exhaust turbocharger 6 via an intake duct 4 and an intercooler 5. Is done. The inlet of the compressor 6c is connected to an air cleaner 8 via an air suction pipe 7. A throttle valve 10 driven by an actuator 9 is arranged in the intake duct 4 between the surge tank 3 and the intercooler 5. Each cylinder has a fuel injection valve 11 for directly injecting fuel into the combustion chamber. Each fuel injection valve 11 is connected to a fuel pump (not shown) via a common fuel accumulator (not shown).
[0013]
Each cylinder is connected to an inlet of the exhaust turbine 6t of the exhaust turbocharger 6 through an exhaust manifold 12, an outlet portion of the exhaust turbine 6t The casing 15 housing the NO X reduction catalyst 14 via the exhaust pipe 13 The casing 15 is connected to the exhaust pipe 16.
A reducing agent supply device 17 for supplying a reducing agent to the NO X reduction catalyst 14 is provided in the exhaust pipe 13. The reducing agent supply device 17 includes a reducing agent injection nozzle 18 disposed on the exhaust inflow surface of the NO X reduction catalyst 14, and the reducing agent injection nozzle 18 is connected to a fuel tank 21 via a reducing agent supply pipe 19 and an electromagnetic valve 20. Is connected to the discharge side of a fuel pump 22 capable of controlling the discharge amount disposed therein.
[0014]
That is, in this embodiment, fuel (HC) of the internal combustion engine is used as the reducing agent. However, hydrocarbons such as gasoline, isooctane, hexane, heptane, light oil, kerosene, butane, propane, hydrogen, ammonia, urea and the like can also be used as the reducing agent.
FIG. 2 shows the structure of the reducing agent injection nozzle 18 in detail. Referring to FIG. 2, the reducing agent injection nozzle 18 includes a casing 18a, a nozzle port 18b formed at one longitudinal end of the casing 18a, a reducing agent inlet 18c formed at the other longitudinal end of the casing 18a, and a casing. A guide member 18e fixed in the internal space and having a guide groove 18d inclined with respect to the longitudinal axis of the reducing agent injection nozzle 18, and extending in the casing internal space around the guide member 18e from the reducing agent inflow port 18c to the nozzle port 18b. It has a reducing agent passage 18f and a check valve 18g arranged between the reducing agent inlet 18c and the reducing agent supply pipe 19 and capable of flowing only toward the reducing agent inlet 18c.
[0015]
When the solenoid valve 20 is opened and the check valve 18g is opened, the reducing agent flows through the reducing agent passage 18f, and is then injected from the nozzle port 18b. At this time, since the guide groove d is provided in the guide member 18e, the reducing agent is injected while turning, and therefore the reducing agent is injected over a wide range.
Referring to FIG. 1 again, the exhaust manifold 12 and the intake duct 4 downstream of the throttle valve 10 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 23, and an EGR cooler 24 is provided in the EGR passage 23. And an EGR control valve 26 driven by an actuator 25. By opening the EGR passage 23 upstream of the reducing agent supply device 17 in this manner, the returning of the reducing agent together with the EGR gas to the engine intake passage is prevented.
[0016]
An electronic control unit (ECU) 30 is composed of a digital computer, and is connected to a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, and always connected via a bidirectional bus 31. It has a B-RAM (backup RAM) 35, an input port 36, and an output port 37 connected to a power supply. An intake air amount sensor 38 for detecting a mass flow rate of the intake air is disposed in the air intake pipe 7. A temperature sensor 39 that generates an output voltage proportional to the temperature of the exhaust gas flowing into the NO X reduction catalyst 14 is disposed in the exhaust pipe 13. The depression sensor 40 generates an output voltage proportional to the depression DEP of the accelerator pedal. The output voltages of these sensors 38, 39, 40 are input to the input port 36 via the corresponding AD converters 41, respectively. The input port 36 is connected to a rotation speed sensor 42 that generates an output pulse indicating the engine rotation speed. On the other hand, the output port 37 is connected to the actuator 9, each fuel injection valve 11, the solenoid valve 20, the fuel pump 22, and the actuator 25 via the corresponding drive circuit 43, respectively.
[0017]
In the present embodiment, the NO X reduction catalyst 14 is formed from a NO X storage reduction catalyst. The NO X storage reduction catalyst 14 uses, for example, alumina as a carrier, and on the carrier, for example, an alkali metal such as potassium K, sodium Na, lithium Li, and cesium Cs, an alkaline earth such as barium Ba and calcium Ca, and lanthanum La And at least one selected from rare earths such as yttrium Y and a noble metal such as platinum Pt, palladium Pd, rhodium Rh, and iridium Ir. This the NO X storage reduction catalyst 14 is stored the NO X when the air-fuel ratio of the inflowing exhaust is lean, the NO X absorption emission-reducing effect of the oxygen concentration in the inflowing exhaust gas is reduced by releasing NO X are stored to be reduced Do. Here, it is considered that the NO X storage reduction catalyst 14 stores NO X by absorption.
[0018]
By arranging the the NO X storage reduction catalyst 14 described above in the engine exhaust passage this the NO X storage reduction catalyst 14 performs actual NO X absorption emission-reduction action but detailed mechanism of this NO X absorption emission-reducing action Is not clear. However, it is considered that this NO X absorption / release / reduction action is performed by a mechanism as shown in FIGS. 3 (A) and 3 (B). Next, this mechanism will be described by taking as an example a case where platinum Pt and barium Ba are supported on a carrier, but the same mechanism can be obtained by using other noble metals, alkali metals, alkaline earths, and rare earths.
[0019]
That is, when the inflow exhaust gas becomes considerably lean, the oxygen concentration in the inflow exhaust gas greatly increases, and as shown in FIG. 3 (A), these oxygen O 2 is converted into O 2− or O 2 − in the form of platinum Pt. Attaches to surface. On the other hand, NO in the inflowing exhaust gas reacts with O 2− or O 2 on the surface of the platinum Pt to become NO 2 (2NO + O 2 → 2NO 2 ). Then part of the produced NO 2 while bonding with the barium oxide BaO is absorbed into the absorbent while being further oxidized on the platinum Pt, 3 nitric acid as shown in (A) ions NO 3 - in It diffuses into the absorbent in form. In this way, NO X is absorbed in the NO X storage reduction catalyst 14.
[0020]
As long as the oxygen concentration in the inflowing exhaust gas is high, NO 2 is generated on the surface of the platinum Pt, and as long as the NO X absorption capacity of the absorbent is not saturated, NO 2 is absorbed in the absorbent and nitrate ions NO 3 are generated. You. On the other hand, when the oxygen concentration in the inflowing exhaust gas decreases and the amount of generated NO 2 decreases, the reaction proceeds in the opposite direction (NO 3 → NO 2 ), and thus the nitrate ion NO 3 in the absorbent. There are released from the absorbent in the form of NO 2. Namely, when the oxygen concentration in the inflowing exhaust gas is released NO X from the NO X storage reduction catalyst 14 when lowered. The oxygen concentration in the inflowing exhaust gas if the lean degree of the inflowing exhaust is low is reduced, thus resulting in the NO X is released from the NO X storage reduction catalyst 14 if lowering the lean degree of the inflowing exhaust.
[0021]
On the other hand, when a reducing agent such as HC is supplied to the NO X storage reduction catalyst 14 at this time, the reducing agent HC and HC and CO discharged from the engine react with oxygen O 2 or O 2− on the platinum Pt to be oxidized. Can be Further, NO X concentration of oxygen storage-reduction catalyst 14 in the inflowing exhaust gas and supplying the reducing agent is released NO 2 from the absorbent in order to decrease, as the NO 2 is shown in FIG. 3 (B) HC, It is reduced by reacting with CO. In this way, when NO 2 is no longer present on the surface of the platinum Pt, NO 2 is released from the absorbent one after another and reduced. Therefore, NO X from NO X when the reducing agent storage reduction catalyst 14 is supplied the NO X storage reduction catalyst 14 is released, it will be reduced.
[0022]
The diesel engine as in the present embodiment, the NO X in the exhaust gas average air-fuel ratio of the normal in each cylinder during operation is maintained lean, thus discharged from the cylinders during normal operation the NO X storage reduction catalyst 14 Is stored in However, the the NO X storage ability of the NO X occluding and reducing catalyst 14 is necessary to release the NO X from the NO X storage reduction catalyst 14 before NO X storage capability of the NO X occluding and reducing catalyst 14 is saturated because there is a limit . Therefore, in the present embodiment, the reducing agent is intermittently supplied from the reducing agent supply device 17, so that the NO X amount stored in the NO X storage reduction catalyst 14 is reduced.
[0023]
In this case, as described at the beginning, it is preferable that the concentration of the reducing agent in the exhaust gas flowing into the NO X storage reduction catalyst 14 or the air-fuel ratio of the inflow exhaust gas rapidly change. Therefore, in the present embodiment, when the intake air amount Ga is large, the reducing agent injection pressure PR of the reducing agent supply device 17 is set to be higher than when it is small, so that the reducing agent supply amount per unit time is increased. ing. The reducing agent injection pressure PR in this case is stored in the ROM 32 in the form of a map shown in FIG.
[0024]
In the present embodiment, the supply amount of the reducing agent is determined so that the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst 14 becomes a predetermined target air-fuel ratio. In this way, it is possible to the NO X storage reduction catalyst 14 reliably release the NO X in, favorably reduces the amount of reducing agent is discharged from the reducing life-and-death the NO X storage reduction catalyst 14. The target air-fuel ratio may be determined in any manner as long as the above-described effects are obtained, but in the present embodiment, the target air-fuel ratio is set to the stoichiometric air-fuel ratio.
[0025]
Assuming that the reducing agent supply amount from the reducing agent supply device 17 is QR and the fuel injection amount from the fuel injection valve 11 to the engine 1 is QE, the inflow into the NO X storage reduction catalyst 14 when the reducing agent supply operation is performed The air-fuel ratio AFRE of the exhaust gas is expressed by the following equation.
AFRE = Ga / (QR + QE)
Therefore, the reducing agent amount QR required to make the air-fuel ratio AFRE of the exhaust gas flowing into the NO X storage reduction catalyst 14 coincide with the stoichiometric air-fuel ratio AFRS is expressed by the following equation.
[0026]
QR = Ga / AFRS-QE
The reducing agent is supplied from the reducing agent supply device 17 by QR.
When the reducing agent injection pressure PR and the reducing agent supply amount QR are determined in this way, the reducing agent injection time TAUR is determined. The reducing agent injection time TAUR is stored in the ROM 32 in advance in the form of a map shown in FIG. 5 as a function of the reducing agent injection pressure PR and the reducing agent supply amount QR. Therefore, the solenoid valve 20 is opened by TAUR.
[0027]
Even if the reducing agent injection pressure PR is determined according to the intake air amount Ga as described above, the reducing agent injection time TAUR may fluctuate depending on the manner of determination. In this case, as the reducing agent injection time TAUR becomes longer, the amount of the reducing agent discharged from the NO X storage reduction catalyst 14 increases. Therefore, the upper limit of the reducing agent injection time TAUR is determined so that the amount of reducing agent discharged from the NO X storage reduction catalyst 14 does not exceed the allowable amount. On the other hand, the reducing agent supply device 17 is provided with a minimum injection time according to its structure. Therefore, the lower limit of the reducing agent injection time TAUR is determined so that the reducing agent injection time TAUR does not become shorter than the minimum injection time. That is, the reducing agent injection pressure PR is determined with respect to the intake air amount Ga such that the reducing agent injection time TAUR is maintained within a predetermined set range. Further, preferably, the reducing agent injection pressure PR is determined such that the reducing agent injection time TAUR is maintained at a substantially constant value.
[0028]
When the reducing agent supply operation is performed, releasing reducing action of the NO X in the NO X storage reduction catalyst 14 is performed. In the present embodiment, the reducing agent is injected in the form of droplets rather than spraying, and the reducing agent in the form of droplets adheres to the surface of the NO X storage reduction catalyst 14. As a result, the air-fuel ratio locally exhausted is formed a rich region, emission reduction action of the NO X is quickly and reliably carried out thus.
[0029]
The reducing agent supply operation surface of the NO X occluding and reducing catalyst 14 be stopped continues to remain in the reducing agent, the residual reducing agent is reduced gradually while releasing reducing the NO X in the NO X storage reduction catalyst 14 . Therefore, it is not necessary to supply the reducing agent while the amount of the remaining reducing agent in the NO X storage reduction catalyst 14 is large, and it is sufficient to supply the reducing agent when the amount of the remaining reducing agent becomes small.
[0030]
Therefore, in the present embodiment, after the previous reducing agent supply operation, the amount of the remaining reducing agent in the NO X storage reduction catalyst 14 is obtained, and when the amount of the remaining reducing agent becomes smaller than a predetermined set amount, the next A reducing agent supply operation is performed.
As the elapsed time from the start of the previous reducing agent supply operation becomes longer, the amount of the remaining reducing agent in the NO X storage reduction catalyst 14 decreases. On the other hand, with respect to the integrated value of the amount of intake air from the start of the previous reducing agent supply operation to a certain time, the amount of the reducing agent supply in the previous reducing agent supply operation and the time after the start of the previous reducing agent supply operation If the ratio of the sum of the fuel injection amount to the engine 1 and the integrated value up to the time is referred to as the average air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst 14 at this time, the previous reducing agent supply operation is started. As the elapsed time increases, the average air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst 14 increases. Therefore, the average air-fuel ratio of the inflowing exhaust into the NO X storage reduction catalyst 14 will be representing the residual amount of reducing agent in the NO X storage reduction catalyst 14.
[0031]
Therefore, when the average air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst 14 after the previous reducing agent supply operation is performed becomes larger than a predetermined set air-fuel ratio, the NO X storage reduction catalyst 14 It is determined that the remaining reducing agent amount has become smaller than the set amount, and at this time, the next reducing agent supply operation is performed.
However, the start time of the next reducing agent supply operation is determined so that the time interval between the previous reducing agent supply operation and the next reducing agent supply operation is not shorter than a predetermined minimum time interval. As a result, for example, a control signal to start the next reducing agent supply operation before the previous reducing agent supply operation is completed is prevented from being issued.
[0032]
Next, the present embodiment will be described in detail with reference to FIGS. 6 and 7 while referring to FIG. FIG. 6 shows a routine for calculating the reducing agent injection time TAUR. This routine is executed by interruption every predetermined set time.
Referring to FIG. 6, first, at step 50, it is determined whether or not the exhaust gas temperature TE is higher than a predetermined set temperature T1. When TE ≦ T1, it is determined that the NO X storage reduction catalyst 14 is not in the active state, and the processing cycle ends. That is, the reducing agent supply operation is stopped. On the other hand, when TE> T1, the routine proceeds to step 51, where it is determined whether or not the flag is set. This flag is set when the reducing agent supply operation of the reducing agent supply device 17 is to be performed, and is reset when the reducing agent supply operation is performed, and is controlled by the routine of FIG. When the flag has been reset, the processing cycle ends. When the flag is set, the routine then proceeds to step 52, where the reducing agent injection pressure PR is calculated from the map of FIG. Thereby, the discharge amount of the reducing agent pump 22 is controlled so that the actual reducing agent injection pressure becomes PR. In the following step 53, the fuel injection amount QE from the fuel injection valve 11 to the engine 1 is read. In the following step 54, the required reducing agent amount QR is calculated (QR = Ga / AFRS-QE). In the following step 55, the reducing agent injection time TAUR is calculated from the map of FIG. Therefore, the solenoid valve 20 is opened by TAUR. In the following step 56, the flag is reset.
[0033]
That is, when the flag is set as shown in FIG. 8, the solenoid valve 20 is opened, and the reducing agent supply operation is started. As a result, the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst 14 is made to match the stoichiometric air-fuel ratio AFRS that is the target air-fuel ratio.
FIG. 7 shows a flag control routine. This routine is executed by interruption every predetermined set time.
[0034]
Referring to FIG. 7, first, at step 60, it is determined whether or not the flag is set. When the flag is switched from set to reset, that is, when the reducing agent supply operation is performed, the process proceeds to step 61, where the count value INT representing the time interval of the reducing agent supply operation is incremented by one. In the following step 62, the integrated intake air amount SGa and the integrated fuel injection amount SQE since the start of the reducing agent supply operation are calculated (SGa = SGa + Ga, SQE = SQE + QE). In the following step 63, the average air-fuel ratio AFRAVE of the exhaust gas flowing into the NO X storage reduction catalyst 14 at this time is calculated (AFRAVE = SGa / (SQE + QR)). Here, QR is the reducing agent supply amount in the immediately preceding reducing agent supply operation.
[0035]
In the following step 64, it is determined whether or not the average air-fuel ratio AFRAVE is larger than the set value R1. When AFRAVE ≦ R1, it is determined that the amount of the remaining reducing agent in the NO X storage reduction catalyst 14 is still large, and the processing cycle ends. On the other hand, when AFRAVE> R1, it is determined that the amount of the remaining reducing agent in the NO X storage reduction catalyst 14 has become smaller than the set amount, and then the routine proceeds to step 65. In step 65, it is determined whether or not the count value INT is larger than a set value I1 representing the minimum time interval. When INT ≦ I1, the processing cycle ends. If INT> I1, then the routine proceeds to step 66, where a flag is set.
[0036]
That is, as shown in FIG. 8, when the flag is reset, the average air-fuel ratio AFRAVE starts to increase from the stoichiometric air-fuel ratio AFRS. Next, the average air-fuel ratio AFRAVE becomes larger than the set value R1, and at this time, a flag is set if INT> I1.
When the flag is set, the process proceeds from step 60 to step 67, where the integrated intake air amount SGa, the integrated fuel injection amount SQE, and the count value INT are cleared. Then, the processing cycle ends.
[0037]
By the way, as described above with reference to FIG. 4, the reducing agent injection pressure PR increases as the intake air amount Ga increases, and the reducing agent injection pressure PR decreases as the intake air amount Ga decreases. However, the controllable range of the reducing agent injection pressure PR may be limited depending on the reducing agent supply device 17, that is, the reducing agent injection pressure PR may not be very high or low. In such a case, the reducing agent injection pressure PR is maintained at the maximum or minimum possible pressure of the reducing agent supply device 17, but the reducing agent injection time TAUR is increased or decreased.
[0039]
【The invention's effect】
The NO X storage reduction catalyst reliably release the NO X in, reduced, it is possible to reduce the amount of reducing agent discharged from the NO X storage reduction catalyst at the same time.
[Brief description of the drawings]
FIG. 1 is an overall view of an internal combustion engine.
FIG. 2 is an enlarged view of a reducing agent injection nozzle.
3 is a diagram illustrating a NO X absorption emission-reducing action of the NO X occluding and reducing catalyst.
FIG. 4 is a diagram showing a reducing agent injection pressure PR.
FIG. 5 is a diagram showing a reducing agent injection time TAUR.
FIG. 6 is a flowchart illustrating a routine for calculating a reducing agent injection time TAUR.
FIG. 7 is a flowchart illustrating a flag control routine.
FIG. 8 is a time chart for explaining a reducing agent supply operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Engine body 13 ... Exhaust pipe 14 ... NO X storage reduction catalyst 17 ... Reducing agent supply device 38 ... Intake air amount sensor

Claims (6)

燃焼室内の空燃比がリーンとなるようにした内燃機関の排気通路内に、流入排気の空燃比がリーンのときに流入排気中のNO X を蓄え、流入排気中の酸素濃度が低下すると蓄えているNO X を放出して還元するNO X 吸蔵還元触媒を配置し、NO X 吸蔵還元触媒上流の排気通路内に配置された還元剤供給装置からNO X 吸蔵還元触媒に還元剤を間欠的に供給してNO X 吸蔵還元触媒においてNOXを還元するようにした内燃機関の排気浄化装置において、吸入空気量が多いときには少ないときに比べて多くなるように単位時間当たりに還元剤供給装置から供給される還元剤量を定め、還元剤供給作用時にNO X 吸蔵還元触媒への流入排気の空燃比を予め定められた目標空燃比とするのに必要な要求還元剤量を定め、これら単位時間当たりに還元剤供給装置から供給される還元剤量と要求還元剤量とに基づいて還元剤噴射時間を求めるようにした内燃機関の排気浄化装置。In an exhaust passage of an internal combustion engine air-fuel ratio in the combustion chamber is set to be lean, the air-fuel ratio of the inflowing exhaust gas is stored in the NO X in the inflowing exhaust gas when the lean and stored with the oxygen concentration in the inflowing exhaust gas is lowered to release the NO X place the NO X storage reduction catalyst for which are intermittently supplying reducing agent from the arrangement reducing agent supply device to the NO X occluding and reducing catalyst upstream in the exhaust passage to the NO X occluding and reducing catalyst in to the NO X storage reduction catalyst exhaust purifying apparatus of an internal combustion engine so as to reduce NO X in is supplied from the reducing agent supply apparatus per unit time to be larger than when less when many intake air amount The required amount of reducing agent required to bring the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst into a predetermined target air-fuel ratio during the reducing agent supply operation is determined. Reducing agent Exhaust purification system of an internal combustion engine so as to obtain a reducing agent injection time based on the amount of reducing agent supplied from the charging device and the required amount of reducing agent. 還元剤供給装置が還元剤噴射圧を変更可能であり、吸入空気量が多いときには少ないときに比べて還元剤噴射圧を高くするようにした請求項1に記載の内燃機関の排気浄化装置。2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the reducing agent supply device is capable of changing the reducing agent injection pressure, and when the intake air amount is large, the reducing agent injection pressure is higher than when the intake air amount is small . 還元剤噴射時間が予め定められた設定範囲内に維持されるように吸入空気量に対し単位時間当たりに還元剤供給装置から供給される還元剤量を定めた請求項1に記載の内燃機関の排気浄化装置。2. The internal combustion engine according to claim 1, wherein the amount of reducing agent supplied from the reducing agent supply device per unit time with respect to the amount of intake air is determined so that the reducing agent injection time is maintained within a predetermined setting range. Exhaust gas purification device. 先の還元剤供給作用の後NO X 吸蔵還元触媒内に残存している残存還元剤量を求めて該残存還元剤量が予め定められた設定量よりも少なくなったときに次の還元剤供給作用を行うようにした請求項1に記載の内燃機関の排気浄化装置。The amount of the remaining reducing agent remaining in the NO X storage reduction catalyst after the previous reducing agent supply operation is obtained, and when the amount of the remaining reducing agent becomes smaller than a predetermined set amount, the next supply of the reducing agent is performed. 2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas purifying apparatus performs an operation. 先の還元剤供給作用が開始されてからのNO X 吸蔵還元触媒への流入排気の平均空燃比を求めて該平均空燃比が予め定められた設定空燃比よりも大きくなったときにNO X 吸蔵還元触媒内の残存還元剤量が前記設定量よりも少なくなったと判断するようにした請求項に記載の内燃機関の排気浄化装置。 The NO X storage when the previous reducing agent supply operation is greater than the set air-fuel ratio by calculating an average air-fuel ratio of the inflowing exhaust into the NO X storage reduction catalyst is the average air-fuel ratio predetermined from the start of 5. The exhaust gas purifying apparatus for an internal combustion engine according to claim 4 , wherein it is determined that the amount of the remaining reducing agent in the reduction catalyst has become smaller than the set amount. 先の還元剤供給作用と次の還元剤供給作用との間の時間間隔が予め定められた最小時間間隔よりも短くならないように次の還元剤供給作用の開始時期を定めた請求項に記載の内燃機関の排気浄化装置。According to claim 4, the time interval between the previous reducing agent supply operation and the next of the reducing agent supply operation defining the start timing of the next of the reducing agent supply operation so as not shorter than the minimum predetermined time interval Exhaust purification device for internal combustion engine.
JP27692999A 1999-09-29 1999-09-29 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3557964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27692999A JP3557964B2 (en) 1999-09-29 1999-09-29 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27692999A JP3557964B2 (en) 1999-09-29 1999-09-29 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001098930A JP2001098930A (en) 2001-04-10
JP3557964B2 true JP3557964B2 (en) 2004-08-25

Family

ID=17576379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27692999A Expired - Lifetime JP3557964B2 (en) 1999-09-29 1999-09-29 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3557964B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006044080B4 (en) * 2006-09-20 2023-10-12 Robert Bosch Gmbh Method for operating a reagent metering valve and device for carrying out the method
JP4867675B2 (en) * 2007-01-23 2012-02-01 株式会社デンソー Reducing agent supply device
JP7243576B2 (en) * 2019-11-06 2023-03-22 株式会社豊田自動織機 ADDITIVE LIQUID SUPPLY DEVICE AND ADDITIVE LIQUID SUPPLY METHOD FOR INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
JP2001098930A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
US5433074A (en) Exhaust gas purification device for an engine
US5471836A (en) Exhaust purification device of internal combustion engine
JP2600492B2 (en) Exhaust gas purification device for internal combustion engine
EP1304457B1 (en) Exhaust emission control device of internal combustion engine
US5388403A (en) Exhaust gas purification device for an engine
JP3334396B2 (en) Exhaust gas purification device for internal combustion engine
EP1176289B1 (en) Emission control system of internal combustion engine
JP4003564B2 (en) Exhaust gas purification device for internal combustion engine
JP3551805B2 (en) Exhaust gas purification device for internal combustion engine
JP3353650B2 (en) Catalyst poisoning regeneration equipment for internal combustion engines
JP3557964B2 (en) Exhaust gas purification device for internal combustion engine
JPH1193641A (en) Exhaust emission control device for internal combustion engine
JP4556364B2 (en) Exhaust gas purification device for internal combustion engine
JP2998481B2 (en) Exhaust gas purification device for internal combustion engine
JP3514152B2 (en) Exhaust gas purification device for internal combustion engine
JP4155065B2 (en) Exhaust gas purification device for internal combustion engine
JP2000145433A (en) Exhaust gas purifier for internal combustion engines
JP3414323B2 (en) Exhaust gas purification device for internal combustion engine
JP2004076682A (en) Exhaust emission control device for internal combustion engine
JP3385974B2 (en) Exhaust gas purification device for internal combustion engine
JP3186394B2 (en) Exhaust gas purification device for internal combustion engine
JP3324475B2 (en) Exhaust gas purification device for internal combustion engine
JP3123513B2 (en) Exhaust gas purification device for internal combustion engine
JP3070376B2 (en) Exhaust gas purification device for internal combustion engine
JP3509584B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Ref document number: 3557964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

EXPY Cancellation because of completion of term