JP4867370B2 - Shear reinforcement structure, shear reinforcement method, reinforced concrete member - Google Patents

Shear reinforcement structure, shear reinforcement method, reinforced concrete member Download PDF

Info

Publication number
JP4867370B2
JP4867370B2 JP2006023451A JP2006023451A JP4867370B2 JP 4867370 B2 JP4867370 B2 JP 4867370B2 JP 2006023451 A JP2006023451 A JP 2006023451A JP 2006023451 A JP2006023451 A JP 2006023451A JP 4867370 B2 JP4867370 B2 JP 4867370B2
Authority
JP
Japan
Prior art keywords
shear
concrete member
reinforced concrete
shear reinforcement
reinforcement structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006023451A
Other languages
Japanese (ja)
Other versions
JP2007204985A (en
Inventor
浩一 田中
隆 松田
光男 東野
誠一 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2006023451A priority Critical patent/JP4867370B2/en
Publication of JP2007204985A publication Critical patent/JP2007204985A/en
Application granted granted Critical
Publication of JP4867370B2 publication Critical patent/JP4867370B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Description

本発明は、せん断荷重の作用する鉄筋コンクリート部材のせん断補強構造及び方法に関する。   The present invention relates to a shear reinforcement structure and method for a reinforced concrete member subjected to a shear load.

せん断荷重の作用する鉄筋コンクリート部材がせん断破壊を生じないように、予め、コンクリート部材内にせん断補強筋を設置する方法により鉄筋コンクリート部材のせん断耐力を向上する方法が広く用いられている。このような方法によりせん断補強を確実に行うためには、せん断補強筋と鉄筋コンクリート部材を構成するコンクリート部材との間で応力の伝達が確実に行われるようにし、せん断補強筋は確実にコンクリート部材内に定着されたせん断補強構造が必要である。このようなせん断補強構造としては、せん断補強筋の両端をフック状に曲げ加工し、このフック状に加工した部分が主鉄筋に係止されるようにせん断補強筋を配置した構造が広く用いられている。   A method of improving the shear strength of a reinforced concrete member by using a method in which a shear reinforcing bar is previously installed in the concrete member is widely used so that the reinforced concrete member on which the shear load acts does not cause a shear failure. In order to reliably perform shear reinforcement by such a method, it is ensured that stress is transmitted between the shear reinforcement bar and the concrete member constituting the reinforced concrete member. It is necessary to have a shear reinforcement structure fixed in the area. As such a shear reinforcing structure, a structure in which both ends of the shear reinforcing bar are bent into a hook shape and the shear reinforcing bar is arranged so that the hook-shaped portion is locked to the main reinforcing bar is widely used. ing.

しかしながら、このようにせん断補強筋を両端にフック状に曲げると、主筋の間に挿入して所定の位置に配筋するのが困難になる。また、せん断補強筋の径が大きくなると、異形鉄筋の両端をフック状に曲げ加工するためには非常に労力が必要となる。そこで、図6に示すような、両端に円盤状に加工した定着具31を備えるせん断補強筋32を配置したせん断補強構造20が用いられることがある。かかる構成によれば、せん断補強筋32の両端に設けられた定着具31が定着強度を向上し、コンクリート部材のせん断強度を向上するとともに、施工性を向上することができる。   However, if the shear reinforcement bars are bent like hooks at both ends in this way, it becomes difficult to insert them between the main bars and place them at predetermined positions. Further, when the diameter of the shear reinforcing bar is increased, much labor is required to bend both ends of the deformed reinforcing bar into a hook shape. Therefore, as shown in FIG. 6, there may be used a shear reinforcement structure 20 in which shear reinforcement bars 32 each having a fixing tool 31 processed into a disk shape are arranged at both ends. According to such a configuration, the fixing tool 31 provided at both ends of the shear reinforcement bar 32 can improve the fixing strength, improve the shear strength of the concrete member, and improve the workability.

また、これと同様の工法として、特許文献1には、せん断補強筋をねじ節鉄筋とし、このねじに螺合する機械式継手を備えた定着具を有するせん断補強構造が記載されている。
特開2001―140405号公報
Further, as a construction method similar to this, Patent Document 1 describes a shear reinforcement structure having a fixing tool provided with a mechanical joint that is screwed into a thread reinforcing bar as a shear reinforcement bar.
Japanese Patent Laid-Open No. 2001-140405

しかしながら、これら定着具を有するせん断補強構造は、両端にせん断補強筋よりも大きい定着構造を有するため、主鉄筋の間隔が狭いような場合には、配筋作業が困難になることがある。また、定着具を有するせん断補強筋は高価であるため、せん断補強に要するコストが大きくなるという虞がある。本発明は、上記の問題点に鑑みなされたものであり、その目的は、施工が容易であり、廉価なせん断補強構造を提供することである。   However, since the shear reinforcement structure having these fixing tools has a fixing structure larger than the shear reinforcement bars at both ends, it may be difficult to arrange the bars when the interval between the main reinforcing bars is narrow. Further, since the shear reinforcing bar having the fixing tool is expensive, there is a possibility that the cost required for the shear reinforcement is increased. The present invention has been made in view of the above problems, and an object thereof is to provide an inexpensive shear reinforcement structure that is easy to construct.

本発明のせん断補強構造は、せん断荷重の作用する鉄筋コンクリート部材のせん断補強構造であって、前記鉄筋コンクリート部材に、前記せん断荷重により生じる斜めひび割れ面と交差するように、前記鉄筋コンクリート部材に埋設された主鉄筋と交差する向きに鋼管を埋設したことを特徴とする。 The shear reinforcement structure of the present invention is a shear reinforcement structure of a reinforced concrete member to which a shear load is applied, and is mainly embedded in the reinforced concrete member so as to intersect an oblique crack surface generated by the shear load. It is characterized in that a steel pipe is buried in a direction intersecting with the reinforcing bar.

ここで、前記鋼管は、前記斜めひび割れ面に作用するせん断荷重よりも大きなせん断耐力を有してもよい。また、前記鋼管は、鉄筋コンクリート部材に前記せん断荷重の作用方向と略平行に埋設されていてもよい。上記のせん断補強構造によれば、斜めひび割れ面において鋼管がほぞのように作用するため、せん断耐力を向上することができる。
さらに、前記主鉄筋は、前記鉄筋コンクリート部材互いに対向する表面からそれぞれ所定の被り厚で埋設されており、前記鋼管は、その両端部が前記主鉄筋よりも前記鉄筋コンクリートの表面側まで延びるように配置されていることとしてもよい。
Here, the steel pipe may have a shear strength greater than a shear load acting on the oblique crack surface. The steel pipe may be embedded in a reinforced concrete member substantially parallel to the direction of action of the shear load. According to the above-mentioned shear reinforcement structure, the steel pipe acts like a tenon on the oblique crack surface, so that the shear strength can be improved.
Further, the main reinforcing bars, the respective are set embedded in a predetermined overburden thickness from opposing surfaces of the reinforced concrete member, said steel pipe, so that its two ends extend to the surface side of the reinforced concrete than the main reinforcing bars It may be arranged.

また、本発明は、上記のせん断補強構造を備えた鉄筋コンクリート部材を含むものとする。さらに、本発明は、せん断荷重の作用する鉄筋コンクリート部材のせん断補強方法であって、前記鉄筋コンクリート部材に、前記せん断荷重により生じる斜めひび割れ面と交差するように、前記鉄筋コンクリート部材に埋設された主鉄筋と交差する向きに鋼管を埋設することを特徴とするせん断補強方法を含むものとする。 Moreover, this invention shall include the reinforced concrete member provided with said shear reinforcement structure. Furthermore, the present invention is a method for reinforcing a reinforced concrete member on which a shear load acts, wherein the reinforced concrete member includes a main reinforcement embedded in the reinforced concrete member so as to intersect an oblique crack surface generated by the shear load. It shall include a shear reinforcement method characterized by embedding steel pipes in the intersecting direction .

本発明によれば、機械式定着を有するせん断補強筋に比べて廉価な鋼管を用いてせん断補強をしているため、せん断補強に要するコストを削減できる。また、鋼管に、従来のせん断補強構造のせん断補強筋の端部に設けられていた定着具が無いため、配筋作業が困難にならず、施工が容易になる。   According to the present invention, the cost required for shear reinforcement can be reduced because the steel pipe is cheaper than the shear reinforcement having mechanical anchoring. Moreover, since there is no fixing tool provided at the end of the shear reinforcement bar of the conventional shear reinforcement structure in the steel pipe, the bar arrangement work is not difficult and the construction is facilitated.

以下、本発明のせん断補強構造の一実施形態について、図面を参照しながら説明する。
図1(A)は、本実施形態のせん断補強構造20の設けられた鉄筋コンクリート部材10の部材軸方向の横断面図であり、同図(B)は縦断面図である。同図に示すように、鉄筋コンクリート部材10は、コンクリート部材12と、主鉄筋11と、主鉄筋11に直交するように設けられた配力筋13とを備える。ここで、図1に示すように、鉄筋コンクリート部材10には、せん断荷重Pと、その反力P´が作用しているものとする。後述するようにこのせん断荷重P及びその反力P´により、同図に一点鎖線で示すような斜めひび割れ面(せん断荷重によるひび割れが生じやすい面)が発生する。
Hereinafter, an embodiment of the shear reinforcement structure of the present invention will be described with reference to the drawings.
FIG. 1A is a cross-sectional view in the member axial direction of a reinforced concrete member 10 provided with a shear reinforcement structure 20 of the present embodiment, and FIG. 1B is a vertical cross-sectional view. As shown in the figure, the reinforced concrete member 10 includes a concrete member 12, a main reinforcing bar 11, and a distribution bar 13 provided so as to be orthogonal to the main reinforcing bar 11. Here, as shown in FIG. 1, it is assumed that a shear load P and a reaction force P ′ act on the reinforced concrete member 10. As will be described later, the shear load P and the reaction force P ′ cause an oblique crack surface (a surface on which cracks are likely to occur due to the shear load) as indicated by a dashed line in FIG.

本実施形態のせん断補強構造20は、上記の斜めひび割れ面と交差するようにコンクリート部材12内に埋設された鋼管22により構成される。また、鋼管22は、軸方向がせん断力の作用方向と略平行に配置されている The shear reinforcement structure 20 of the present embodiment is configured by a steel pipe 22 embedded in the concrete member 12 so as to intersect with the oblique crack surface. Further, the steel pipe 22 is arranged such that the axial direction is substantially parallel to the direction in which the shearing force is applied .

このようなせん断補強構造20は、例えば、鉄筋コンクリート部材を構築する際に、予め、主鉄筋11や配力筋13を配筋する際に、鋼管22を主鉄筋11に結束線などを用いて拘束するなどの方法により配置しておき、コンクリートを打設することにより構築することができる。   Such a shear reinforcement structure 20, for example, when constructing a reinforced concrete member, restrains the steel pipe 22 with the main reinforcing bar 11 using a binding wire or the like when the main reinforcing bar 11 or the reinforcing bar 13 is arranged in advance. It can be constructed by placing the concrete by a method such as, and placing concrete.

また、このような本実施形態のせん断補強構造10によるせん断補強の対象となる鉄筋コンクリート部材10としては、例えば、面外せん断力の作用する鉄筋コンクリート構造物の柱や梁などが挙げられ、これ以外にもせん断力の作用する鉄筋コンクリート部材であれば本実施形態のせん断補強構造を適用することができる。   Examples of the reinforced concrete member 10 to be subjected to shear reinforcement by the shear reinforcement structure 10 of the present embodiment include, for example, columns and beams of reinforced concrete structures on which an out-of-plane shear force acts. The shear reinforcement structure of the present embodiment can be applied to any reinforced concrete member on which a shearing force acts.

以下、一例として鉄筋コンクリート部材の単純梁に、梁の中心に関して対称な任意の2箇所にせん断荷重が作用する場合(作用点と支点間のコンクリート部材には、一定のせん断力が生じる)を想定して、せん断補強構造により鉄筋コンクリート部材のせん断耐力が向上する原理を説明する。なお、以下の説明において、鉄筋コンクリート部材に作用する荷重は、鉄筋コンクリート部材の中央面に対して対称であるため、鉄筋コンクリート部材の片側半分の解析モデルについて考える。   As an example, suppose that a shear load is applied to a simple beam of reinforced concrete members at any two locations symmetrical about the center of the beam (a constant shear force is generated in the concrete member between the action point and the fulcrum). The principle of improving the shear strength of the reinforced concrete member by the shear reinforcement structure will be described. In the following description, since the load acting on the reinforced concrete member is symmetric with respect to the center surface of the reinforced concrete member, an analysis model of one half of the reinforced concrete member is considered.

図2は、せん断荷重が作用している状態の鉄筋コンクリート部材における応力伝達を示す図である。同図に示すように、鉄筋コンクリート部材は、対称性を考慮すると、作用荷重Pと、その反作用による支点反力P(=P)とにより釣合い状態となる。 FIG. 2 is a diagram illustrating stress transmission in a reinforced concrete member in a state where a shear load is applied. As shown in the figure, in consideration of symmetry, the reinforced concrete member is in a balanced state by the acting load P 1 and the fulcrum reaction force P 2 (= P 1 ) due to the reaction.

釣合い状態にあるコンクリート部材には、荷重Pの作用する点と支点反力の作用する点Pとを結ぶ方向に作用する圧縮応力を伝達する応力伝達機構が形成される。また、上記の応力伝達機構には、モールの応力円の理論により圧縮応力の作用する方向と略垂直に引張応力が作用しており、鉄筋コンクリート部材に作用するせん断荷重が大きくなると、それにともなってこの引張応力も大きくなる。引張応力が過大になり、この引張応力にコンクリート部材12が耐えられなくなると、応力伝達機構に沿ってコンクリート部材12に斜めひび割れが生じ、せん断破壊を起こしてしまう。すなわち、斜めひび割れ面は、荷重の作用する点と、支点反力の作用する点とを結ぶ方向に発生する。 The concrete member in a balance state, the stress transmission mechanism for transmitting a compressive stress acting in the direction connecting the point P 2 acting point and the fulcrum reaction force acting load P 1 is formed. In addition, the stress transmission mechanism has a tensile stress that is substantially perpendicular to the direction in which the compressive stress acts, according to the theory of the Mole's stress circle. When the shear load acting on the reinforced concrete member increases, Tensile stress also increases. If the tensile stress becomes excessive and the concrete member 12 cannot withstand this tensile stress, the concrete member 12 will be obliquely cracked along the stress transmission mechanism, causing shear failure. That is, the oblique crack surface is generated in the direction connecting the point where the load acts and the point where the fulcrum reaction force acts.

図6に示すような従来のせん断補強構造30では、コンクリート部材12の負担できないような過大な引張応力をせん断補強筋32に負担させるという考えに基づき、鉄筋コンクリート部材内に応力伝達機構の引張力に抵抗するように両端に定着具31を備えたせん断補強筋32を配置していた。これにより、コンクリート部材12の負担していた引張応力がせん断補強筋32に伝達され、また、せん断補強筋32は、定着具31によって確実にコンクリート部材内に定着されているため、せん断補強筋32が引張応力を充分負担でき、せん断耐力を向上することができた。   In the conventional shear reinforcement structure 30 as shown in FIG. 6, based on the idea that an excessive tensile stress that cannot be borne by the concrete member 12 is borne by the shear reinforcement bar 32, the tensile force of the stress transmission mechanism is increased in the reinforced concrete member. Shear reinforcement bars 32 having fixing devices 31 at both ends are arranged so as to resist. Thereby, the tensile stress borne by the concrete member 12 is transmitted to the shear reinforcement 32, and the shear reinforcement 32 is firmly fixed in the concrete member by the fixing tool 31. Was able to bear a sufficient tensile stress and improve the shear strength.

これに対し、本発明のせん断補強構造20は、従来のせん断補強構造のようにコンクリート部材12に作用する引張応力を他の部材に負担させるのではなく、図1(A)に示すように、斜めひび割れ面(図1における一点鎖線)と交差するように鋼管22を設け、この鋼管22がほぞとして作用する効果(いわゆる、ダウエル効果)を利用して、せん断破壊を防止するという考えに基づくものである。 On the other hand, the shear reinforcement structure 20 of the present invention does not burden other members with the tensile stress acting on the concrete member 12 as in the conventional shear reinforcement structure, as shown in FIG. so as to intersect the diagonal crack surface (dashed line in FIG. 1) is provided a steel pipe 2 2, the effect of acting as a steel pipe 22 Gahozo (so-called dowel effect) by using, the idea of preventing shear failure Is based.

従来のせん断補強構造に用いられるせん断補強筋32は、引張応力を負担させることを目的として設けられていたため、曲げ耐力の小さい鉄筋が用いられている。したがって、コンクリート部材とともにせん断補強筋も変形してしまうので、ほぞとしての機能が低く、せん断荷重の増加に伴ってせん断破壊の進行を許してしまい、最終的にダウエル効果が充分に発生する以前に鉄筋コンクリート部材が破壊し、せん断耐力を向上することはできない。   Since the shear reinforcing bar 32 used in the conventional shear reinforcing structure is provided for the purpose of bearing a tensile stress, a reinforcing bar having a small bending strength is used. Therefore, since the shear reinforcement bars are deformed together with the concrete member, the function as a tenon is low, allowing the shear fracture to proceed with an increase in the shear load, and finally before the Dowel effect is fully generated. The reinforced concrete member breaks and the shear strength cannot be improved.

これに対し、本実施形態のせん断補強構造20に用いられている鋼管22は、せん断補強筋32に比べて径が大きく、大きな曲げ剛性を有する。このため、ほぞとしての機能が高く、せん断荷重載荷当初から、充分なダウエル効果が期待でき、せん断耐力を向上することができる。また、鋼管22として、斜めひび割れ面に生じるせん断力以上のせん断耐力を有する鋼管を用いると、斜めひび割れ面に沿って引き離そうとする力に対して抵抗することができるため、確実にせん断耐力を向上できる。   On the other hand, the steel pipe 22 used in the shear reinforcement structure 20 of the present embodiment has a larger diameter than the shear reinforcement bar 32 and a large bending rigidity. For this reason, the function as a tenon is high, a sufficient dowel effect can be expected from the beginning of loading of the shear load, and the shear strength can be improved. In addition, if a steel pipe having a shear strength greater than the shear force generated on the oblique crack surface is used as the steel pipe 22, it can resist the force to be separated along the oblique crack surface, so that the shear strength is reliably improved. it can.

また、図1(A)に示すように、本実施形態のせん断補強構造20は、部材軸に対して直交方向に鋼管22を配置している、通常、斜めひび割れは、応力伝達機構に沿って、すなわち、部材軸に対して斜め方向に発生するため、鋼管22は斜めひび割れと交差する。このため、従来のせん断補強構造におけるせん断補強筋と同様に、部材軸に対して直交方向に鋼管22を配置しても、せん断補強効果が得られる。   Further, as shown in FIG. 1A, the shear reinforcement structure 20 of the present embodiment has a steel pipe 22 arranged in a direction orthogonal to the member axis. Normally, oblique cracks follow the stress transmission mechanism. That is, since the steel pipe 22 is generated in an oblique direction with respect to the member axis, the steel pipe 22 intersects with the oblique crack. For this reason, even if the steel pipe 22 is arranged in a direction orthogonal to the member axis, similarly to the shear reinforcement in the conventional shear reinforcement structure, a shear reinforcement effect can be obtained.

以上説明したように、本実施形態のせん断補強構造によれば、鋼管によるダウエル効果を利用してせん断補強を行うため、コンクリート部材との定着のために用いられていた定着具が不要となり、施工費用を削減できる。また、せん断荷重により生じるひび割れ面と交差するように鋼管を設けるために、効率的な補強が可能である。このため、従来の方法で用いられていたせん断補強筋に比べて、鋼管は少ない本数でせん断補強を行うことができるため、経済性、施工性が向上される。さらに、端部に定着具がないため、配筋作業が容易になる。   As described above, according to the shear reinforcement structure of the present embodiment, since the shear reinforcement is performed using the dowel effect of the steel pipe, the fixing tool used for fixing to the concrete member is not necessary, and the construction is performed. Cost can be reduced. Further, since the steel pipe is provided so as to intersect with the crack surface caused by the shear load, efficient reinforcement is possible. For this reason, compared with the shear reinforcement used by the conventional method, since a steel pipe can carry out shear reinforcement with few numbers, economical efficiency and workability | operativity are improved. Furthermore, since there is no fixing tool at the end, the bar arrangement work is facilitated.

ここで、FEMを用いた数値解析シミュレーションにより、本実施形態のせん断補強構造を有する鉄筋コンクリート部材が充分なせん断耐力を有するか否かを検討したので、以下に説明する。本シミュレーションでは、高さ1200mm、幅500mmの鉄筋コンクリート部材をモデル化したRCモデルの一端を固定支持とし、他端に荷重を加え、荷重と変位の関係を調べた。鋼管は、直径φ48.6mm、厚さt3.2mmのものをモデル化した。   Here, the numerical analysis simulation using FEM examined whether or not the reinforced concrete member having the shear reinforcement structure of the present embodiment has sufficient shear strength, and will be described below. In this simulation, one end of an RC model modeling a reinforced concrete member having a height of 1200 mm and a width of 500 mm was used as a fixed support, a load was applied to the other end, and the relationship between the load and the displacement was examined. A steel pipe having a diameter of 48.6 mm and a thickness of t3.2 mm was modeled.

なお、本実施形態のせん断補強構造における鋼管とコンクリート部材との付着については、図3に示すようなライン要素により表すものとした。図4は、ライン要素の荷重―変位特性を説明するための図である。同図(A)及び(B)は、ライン要素の変位状況を示し、同図(C)及び(D)は、夫々(A)及び(B)のように変位した場合の変位(横軸)と応力τ(縦軸)との関係を示す。同図(A)に示すようにライン要素と平行に変位が生じる場合には、同図(C)に示すように変位δに対応する応力τが付着応力の限界値τmaxに達するまでは、変位δに比例した応力τが作用するものとし、変位δに対応する応力τが付着応力の限界値τmaxを超えるような場合には、一定の応力τ(=τmax)が作用するものとして表している。また、同図(B)に示すようにライン要素と垂直に変位が生じる場合には、同図(D)に示すように、変位δが零以下の場合においては、変位δに比例した応力σが作用するものとし、変位δが零を超えた場合には、応力が作用しないものとして表している。 In addition, about the adhesion of the steel pipe and the concrete member in the shear reinforcement structure of this embodiment, it shall represent with the line element as shown in FIG. FIG. 4 is a diagram for explaining the load-displacement characteristics of the line elements. FIGS. 9A and 9B show the displacement state of the line elements, and FIGS. 8C and 9D show the displacements (horizontal axis) when displaced as shown in FIGS. And the stress τ (vertical axis). When displacement occurs in parallel with the line element as shown in FIG. 9A, until the stress τ corresponding to the displacement δ reaches the limit value τ max of the adhesion stress as shown in FIG. It is assumed that a stress τ proportional to the displacement δ acts, and when the stress τ corresponding to the displacement δ exceeds the limit value τ max of the adhesion stress, a constant stress τ (= τ max ) acts. Represents. In addition, when a displacement occurs perpendicular to the line element as shown in FIG. 4B, a stress σ proportional to the displacement δ is obtained when the displacement δ is zero or less as shown in FIG. When the displacement δ exceeds zero, the stress is expressed as not acting.

本シミュレーションでは、せん断補強構造を設けていない場合(条件1)、鋼管を設け、鋼管とコンクリート部材との間で最低限の付着応力はあるが摩擦力が発生しない構成とした場合(条件2)、鋼管を設け、鋼管とコンクリート部材との間である程度の付着応力があり、また摩擦力が発生するとした場合(条件3)、及び、鋼管と、コンクリート部材との間を完全付着とした場合(条件4)について、数値解析を行い、荷重―変位の関係を調べた。すなわち、条件2では、ダウエル効果のみによりせん断力に抵抗する場合に相当し、条件3及び条件4では、ダウエル効果及び鋼管の引張耐力によりせん断力に抵抗する場合に相当する。
なお、摩擦力が発生しないとした場合(条件2)では、τmaxを0.2[N/mm]、摩擦係数μ=0とした。摩擦力が発生するとした場合(条件3)では、τmaxを0.5[N/mm]、摩擦係数をμ=0.3とした。
In this simulation, when a shear reinforcement structure is not provided (Condition 1), a steel pipe is provided, and there is a minimum adhesion stress between the steel pipe and the concrete member, but no friction force is generated (Condition 2). When a steel pipe is provided, there is a certain amount of adhesion stress between the steel pipe and the concrete member, and a frictional force is generated (Condition 3), and when the steel pipe and the concrete member are completely adhered ( Regarding condition 4), numerical analysis was performed to investigate the relationship between load and displacement. That is, the condition 2 corresponds to the case where the shear force is resisted only by the Dowel effect, and the conditions 3 and 4 correspond to the case where the shear force is resisted by the Dowel effect and the tensile strength of the steel pipe.
In the case where no frictional force is generated (condition 2), τmax is set to 0.2 [N / mm 2 ] and the friction coefficient μ = 0. In the case where the frictional force is generated (condition 3), τ max is set to 0.5 [N / mm 2 ] and the friction coefficient is set to μ = 0.3.

図5は、各試験体の荷重―変位関係を示すグラフである。なお、比較対象として土木学会コンクリート標準示方書等に記載されているRC棒部材のせん断耐力算定式を用いて算出したせん断補強構造を設けていない鉄筋コンクリート部材の設計せん断耐力(図5の下側破線)、及び、従来の手法である、定着具をせん断補強筋の両端に接続したせん断補強構造を設けた鉄筋コンクリート部材の設計せん断耐力(図5の上側破線)を示す。   FIG. 5 is a graph showing the load-displacement relationship of each specimen. The design shear strength of a reinforced concrete member without a shear reinforcement structure calculated using the formula for calculating the shear strength of an RC bar member described in the Standard Specification for Concrete, etc. ), And the design shear strength (upper broken line in FIG. 5) of a reinforced concrete member provided with a shear reinforcement structure in which a fixing tool is connected to both ends of the shear reinforcement, which is a conventional technique.

図5に示すように、本実施形態の鋼管によるせん断補強構造を備えた鉄筋コンクリート部材は、摩擦なしの場合(条件2)、摩擦を考慮した場合(条件3)、完全付着の場合(条件4)、鋼管を設けていない場合(条件1)のせん断耐力を大きく超えている。このことから、本実施形態のせん断補強構造を設けることにより、鉄筋コンクリート部材のせん断耐力が向上することが確認された。   As shown in FIG. 5, the reinforced concrete member provided with the shear reinforcement structure by the steel pipe of the present embodiment has no friction (condition 2), friction is considered (condition 3), and complete adhesion (condition 4). When the steel pipe is not provided (condition 1), the shear strength is greatly exceeded. From this, it was confirmed that the shear strength of the reinforced concrete member is improved by providing the shear reinforcement structure of the present embodiment.

また、比較対象である、従来の定着具を用いたせん断補強構造の設計せん断耐力と、条件2〜4の最大せん断荷重を比較すると、条件2〜4の最大せん断荷重は、従来のせん断補強構造の設計せん断耐力を大きく超えている。これにより、本発明のせん断補強構造によれば、従来のせん断補強構造と同等又はそれ以上のせん断耐力を確保することができることができることが確認された。   In addition, when the design shear strength of the shear reinforcement structure using the conventional fixing tool, which is a comparison object, is compared with the maximum shear load of the conditions 2 to 4, the maximum shear load of the conditions 2 to 4 is the conventional shear reinforcement structure. The design shear strength is greatly exceeded. Thereby, according to the shear reinforcement structure of this invention, it was confirmed that the shear strength equivalent to or more than the conventional shear reinforcement structure can be ensured.

(A)は、本実施形態のせん断補強構造の設けられた鉄筋コンクリート部材の部材軸方向の横断面図であり、(B)は縦断面図である。(A) is a cross-sectional view in the member axial direction of a reinforced concrete member provided with the shear reinforcement structure of the present embodiment, and (B) is a vertical cross-sectional view. せん断力が作用した鉄筋コンクリート部材における応力を示す図である。It is a figure which shows the stress in the reinforced concrete member to which the shear force acted. 鋼管とコンクリート部材との付着を表すライン要素を示す図である。It is a figure which shows the line element showing adhesion with a steel pipe and a concrete member. ライン要素の荷重―変位特性を説明するための図であり、同図(A)及び(B)は、ライン要素の変位状況を示し、同図(C)及び(D)は、夫々(A)及び(B)のように変位した場合の変位(横軸)と応力τ(縦軸)との関係を示す。It is a figure for demonstrating the load-displacement characteristic of a line element, The figure (A) and (B) shows the displacement condition of a line element, The figure (C) and (D) is each (A). And the relationship between the displacement (horizontal axis) and the stress τ (vertical axis) when displaced as shown in (B) is shown. 各条件における荷重変位関係を示すグラフである。It is a graph which shows the load displacement relationship in each condition. せん断補強筋の両端に定着具を設けた従来のせん断補強構造である。It is the conventional shear reinforcement structure which provided the fixing tool in the both ends of the shear reinforcement.

符号の説明Explanation of symbols

10 鉄筋コンクリート部材
11 主鉄筋
12 コンクリート部材
13 配力筋
20 せん断補強構造
22 鋼管
30 従来のせん断補強構造
31 定着具
32 せん断補強筋
DESCRIPTION OF SYMBOLS 10 Reinforced concrete member 11 Main reinforcement 12 Concrete member 13 Power distribution rod 20 Shear reinforcement structure 22 Steel pipe 30 Conventional shear reinforcement structure 31 Fixing tool 32 Shear reinforcement

Claims (6)

せん断荷重の作用する鉄筋コンクリート部材のせん断補強構造であって、
前記鉄筋コンクリート部材に、前記せん断荷重により生じる斜めひび割れ面と交差するように、前記鉄筋コンクリート部材に埋設された主鉄筋と交差する向きに鋼管を埋設したことを特徴とするせん断補強構造。
A shear reinforcement structure for a reinforced concrete member on which a shear load acts,
A shear reinforcement structure, characterized in that a steel pipe is embedded in the reinforced concrete member in a direction intersecting with a main reinforcing bar embedded in the reinforced concrete member so as to intersect with an oblique crack surface caused by the shear load.
前記鋼管は、前記斜めひび割れ面に作用するせん断荷重よりも大きなせん断耐力を有することを特徴とする請求項1記載のせん断補強構造。   The shear reinforcement structure according to claim 1, wherein the steel pipe has a shear strength greater than a shear load acting on the oblique crack surface. 前記鋼管は、前記鉄筋コンクリート部材に前記せん断荷重の作用方向と略平行に埋設されたことを特徴とする請求項1又は2に記載のせん断補強構造。   The shear reinforcement structure according to claim 1 or 2, wherein the steel pipe is embedded in the reinforced concrete member substantially in parallel with the direction of the shear load. 前記主鉄筋は、前記鉄筋コンクリート部材互いに対向する表面からそれぞれ所定の被り厚で埋設されており、
前記鋼管は、その両端部が前記主鉄筋よりも前記鉄筋コンクリートの表面側まで延びるように配置されていることを特徴とする請求項1〜3のうち何れか1項に記載のせん断補強構造。
It said main reinforcing bars are each are set embedded in a predetermined overburden thickness from opposing surfaces of said reinforced concrete member,
The said steel pipe is arrange | positioned so that the both ends may extend to the surface side of the said reinforced concrete rather than the said main reinforcement, The shear reinforcement structure in any one of Claims 1-3 characterized by the above-mentioned.
請求項1から4何れかに記載のせん断補強構造を備えた鉄筋コンクリート部材。   A reinforced concrete member comprising the shear reinforcement structure according to any one of claims 1 to 4. せん断荷重の作用する鉄筋コンクリート部材のせん断補強方法であって、
前記鉄筋コンクリート部材に、前記せん断荷重により生じる斜めひび割れ面と交差するように、前記鉄筋コンクリート部材に埋設された主鉄筋と交差する向きに鋼管を埋設することを特徴とするせん断補強方法。
A method for reinforcing shear of a reinforced concrete member subjected to a shear load,
A shear reinforcement method comprising embedding a steel pipe in a direction intersecting with a main rebar embedded in the reinforced concrete member so as to intersect with an oblique crack surface generated by the shear load in the reinforced concrete member .
JP2006023451A 2006-01-31 2006-01-31 Shear reinforcement structure, shear reinforcement method, reinforced concrete member Expired - Fee Related JP4867370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006023451A JP4867370B2 (en) 2006-01-31 2006-01-31 Shear reinforcement structure, shear reinforcement method, reinforced concrete member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006023451A JP4867370B2 (en) 2006-01-31 2006-01-31 Shear reinforcement structure, shear reinforcement method, reinforced concrete member

Publications (2)

Publication Number Publication Date
JP2007204985A JP2007204985A (en) 2007-08-16
JP4867370B2 true JP4867370B2 (en) 2012-02-01

Family

ID=38484683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006023451A Expired - Fee Related JP4867370B2 (en) 2006-01-31 2006-01-31 Shear reinforcement structure, shear reinforcement method, reinforced concrete member

Country Status (1)

Country Link
JP (1) JP4867370B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902504B2 (en) * 2007-11-21 2012-03-21 三井ホーム株式会社 Cloth foundation reinforcement structure, construction method of cloth foundation reinforcement structure and reinforcement hardware

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041657A (en) * 2001-07-31 2003-02-13 East Japan Railway Co Method for arranging reinforcing material for concrete member

Also Published As

Publication number Publication date
JP2007204985A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
US8375676B2 (en) Half precast slab and method for structuring half precast slab
US10301826B2 (en) Ductile chord connectors for use in concrete rods in structures
JP6535704B2 (en) Column-beam frame
JP2018165467A (en) Installation structure of precast wall balustrade
JP6143094B2 (en) Joint structure of reinforced concrete member and steel member
JP4867370B2 (en) Shear reinforcement structure, shear reinforcement method, reinforced concrete member
JP5428382B2 (en) Column beam connection structure, column beam connection method
JP2005098059A (en) Shape steel and wall using shape steel
JP6646206B2 (en) Joint structure of RC members
JP6432779B2 (en) Joint structure of reinforced concrete column and steel beam
JP5135689B2 (en) Shear reinforcement method
JP5050088B2 (en) Reinforced concrete beam design method and reinforced concrete beam
JP5525475B2 (en) Reinforcement structure of existing reinforced concrete wall and reinforcement method of existing reinforced concrete wall
JP6224420B2 (en) Connection structure between CFT column and concrete bottom slab
JP4867445B2 (en) Shear reinforcement structure and method for reinforced concrete members
JP4581729B2 (en) Calculation method of shear stress of reinforced concrete beam, design method of reinforced concrete beam, reinforced concrete beam
JP2014163082A (en) Column-beam frame
JP2006188898A (en) Aseismatic reinforcing method for existing structure, structure based on the aseismatic reinforcing method, and structure equipped with the structure
JP2009091743A (en) Continuous i-beam bridge and structure near its intermediate supporting point
JP3809183B2 (en) Design method for concrete structures
JP6152973B2 (en) Joint structure of reinforced concrete member and steel member
JP4952049B2 (en) Shear reinforcement structure and method for reinforced concrete members
JP2018178363A (en) Skeleton joining structure and construction method thereof, and split prevention rebar
JP6796959B2 (en) Rigid connection structure of concrete foundation and pile
JP2017115458A (en) Stiffening structure of steel beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees