JP4867183B2 - Sand cover structure and sand cover method of bottom soil - Google Patents

Sand cover structure and sand cover method of bottom soil Download PDF

Info

Publication number
JP4867183B2
JP4867183B2 JP2005086566A JP2005086566A JP4867183B2 JP 4867183 B2 JP4867183 B2 JP 4867183B2 JP 2005086566 A JP2005086566 A JP 2005086566A JP 2005086566 A JP2005086566 A JP 2005086566A JP 4867183 B2 JP4867183 B2 JP 4867183B2
Authority
JP
Japan
Prior art keywords
sand
covering
soil
shields
sediment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005086566A
Other languages
Japanese (ja)
Other versions
JP2006262796A (en
Inventor
操 鈴木
秀樹 本田
達人 高橋
正文 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005086566A priority Critical patent/JP4867183B2/en
Publication of JP2006262796A publication Critical patent/JP2006262796A/en
Application granted granted Critical
Publication of JP4867183B2 publication Critical patent/JP4867183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Artificial Fish Reefs (AREA)
  • Underground Or Underwater Handling Of Building Materials (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、海底、湖底等の水底の底質土、特に、環境が悪化している状態の底質土からなる水底を覆砂する底質土の覆砂構造および覆砂方法に関するものである。   TECHNICAL FIELD The present invention relates to a sand-covering structure and a sand-covering method for bottom-soil covering sandy bottom soil such as sea bottom and lake bottom, in particular, water bottom composed of bottom-soil in a deteriorated environment. .

海底、湖底等の水底を構成する底質土は、波や流れの影響など種々の理由により状態が変り、環境が悪化するとヘドロ状となる。すなわち、海、湖では、河川から多くの有機物が流入し、また、豊富な栄養分を元にプランクトンや魚介類が増殖する。これらの有機物や増殖した生物の死骸、排泄物は、一部は分解されるが、生物の生産が盛んな海、湖では、その多くは分解しきれずに沈んで海底、湖底に堆積する。このようにして、海底、湖底に有機物の堆積が多くなると、底質はいわゆるヘドロの状態になっていく。海底、湖底に堆積した有機物は、微生物などにより徐々に分解されるが、このとき酸素を消費する。微生物による有機物の分解は、水温が高いほど活発になるため、高水温期(夏季)には底層では多くの酸素が消費される。このため、上層からの酸素の供給が追いつかなくなると、海底、湖底付近では水中の酸素がなくなってしまう。これを、海底、湖底に貧酸素化という。このようにヘドロ状の底質土には有機質の物質が多く含まれ、それを分解するのに酸素が消費される結果、酸素の少ない生物が住みにくい状態となり、生物環境が悪化する。従って、従来から、このような底質土の上面を砂などの土石材料からなる覆砂材で覆って蓋をする覆砂が行われている。   Sediment soil that constitutes the bottom of the sea, such as the seabed and lake bottom, changes its state due to various reasons such as the influence of waves and currents, and becomes sludge when the environment deteriorates. That is, in the sea and lake, a lot of organic matter flows from the river, and plankton and seafood grow based on abundant nutrients. Some of these organic matter, and the dead and excrement of the grown organisms are decomposed, but in the seas and lakes where the production of organisms is thriving, most of them sink without being decomposed and deposit on the seabed and lake bottom. In this way, when the accumulation of organic matter on the seabed and lake bottom increases, the sediment becomes so-called sludge. Organic matter deposited on the sea and lake bottoms is gradually decomposed by microorganisms and the like, but consumes oxygen. The decomposition of organic matter by microorganisms becomes more active as the water temperature increases, so that a large amount of oxygen is consumed in the bottom layer during the high water temperature period (summer season). For this reason, when the supply of oxygen from the upper layer cannot catch up, oxygen in the water disappears near the sea bottom and the lake bottom. This is called hypoxia on the sea floor and lake bottom. As described above, the sludge-like sediment contains a lot of organic substances, and oxygen is consumed to decompose them. As a result, living organisms with less oxygen become difficult to live and the biological environment deteriorates. Therefore, conventionally, sand covering is performed in which the upper surface of such sediment is covered with a sand covering material made of a debris material such as sand and covered.

従来から覆砂材として砂が用いられている。砂には山砂(主として砕石砂)が利用されることが多い。また、海砂(主として浚渫土、海砂を含む)や川砂も用いられている。これらの砂は、水底を構成している底質土とほぼ同じ材料で、波や海流による流されやすさも底質土とほとんど同じである。従って、覆砂後に底質土と一緒に流されてしまう問題があった。底質(底質土)とは、水底を構成している堆積物および基盤岩(海ならば、海砂や海底土)のことをいう。なお、覆砂の作業は、船で覆砂材(砂)を覆砂位置の水面まで運び、そこから砂を降下させて水底の底質土の上面を覆うことにより行われる。   Conventionally, sand is used as a sand covering material. As sand, mountain sand (mainly crushed stone) is often used. Sea sand (mainly including dredged soil and sea sand) and river sand are also used. These sands are almost the same material as the sediments that make up the bottom of the water, and are almost the same as the sediments that are easily washed away by waves and ocean currents. Therefore, there has been a problem that the sand is washed away with the sediment after covering the sand. Sediment (bottom soil) refers to sediments and basement rocks (if it is the sea, sea sand and seabed soil) that make up the bottom of the water. Note that the sand-capping work is carried out by carrying a sand-capping material (sand) to the surface of the sand-covering position by a ship, and dropping the sand from there to cover the upper surface of the bottom sediment.

しかしながら、従来技術は、上記のように、覆砂用として山砂(砕石砂)や海砂(浚渫土)などの天然資源を用いるため、自然が破壊され環境が悪化するという問題があった。また、これらの砂を用いて底質土を覆砂しても、覆砂された砂は波や流れの影響を受けやすく、覆砂後に流されてしまうため状態維持が困難で維持管理がかさむ問題がある。また、流されたら、再度覆砂を施工しなければならず、その繰り返しにより費用がかさむ問題もある。更に、覆砂した砂が流されてしまえば、再び環境の悪い底質土(ヘドロ)が現れ、生物への悪影響が出てしまう問題もある。   However, as described above, the conventional technology uses natural resources such as mountain sand (crushed stone sand) and sea sand (silent soil) for covering sand, so that there is a problem that nature is destroyed and the environment is deteriorated. In addition, even if sedimentary sand is covered with these sands, the covered sand is easily affected by waves and currents, and since it is washed away after sanding, it is difficult to maintain the state and maintenance is complicated. There's a problem. Moreover, once it is washed away, it is necessary to construct sand-covering sand again, and there is a problem that costs are increased due to repetition. Furthermore, if the sand covered with sand is washed away, there will be another problem that sediments with a poor environment will appear again and adversely affect living organisms.

砂を用いて覆砂する従来技術において、波や流れにより覆砂材が流されないようにするために、覆砂した覆砂材の周りを、更に堤を築くように砂で囲んで(このように堤を築く土石材料を「潜堤材」という)、覆砂材を流れにくくする覆砂構造も考案されている。   In the conventional technology for covering sand using sand, in order to prevent the sand-covering material from being washed away by waves or currents, the sand-covered sand-covering material is surrounded by sand so as to build a bank (such as this) A debris material that builds a bank is called “submarine bank material”, and a sand-clad structure that makes sand-clad material difficult to flow has been devised.

しかしながら、このような覆砂材と潜堤材との二重構造の覆砂構造であっても、覆砂材と潜堤材とが同じ材料であり、更に、砂は底質土とほぼ同質の材料であるため、波や流れにより流される問題が解決できない。   However, even in such a double sand-covering structure of sand-clad material and submerged dike material, the sand-carrying material and submerged dike material are the same material, and the sand is almost the same quality as the bottom soil. Because of this material, problems caused by waves and currents cannot be solved.

また、上記二重構造において、潜堤材の平均粒径を覆砂材のそれよりも大きくして覆砂材を流され難くしようとする試みもなされているが、これも上記問題を根本的に解決することはできない。   In addition, in the double structure, an attempt has been made to make the average particle size of the submerged levee material larger than that of the sand-capping material so that the sand-carrying material is not easily washed away. Cannot be resolved.

従って、本発明の目的は、上述の課題を解決し、波や流れに流されにくく、生物環境を良好にすることができ、作業効率も良好な、底質土の覆砂構造および覆砂方法を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, to be hardly flowed by waves and flows, to improve the biological environment, and to improve the working efficiency, and to provide a sand-covering structure and sand-covering method for sediment. Is to provide.

上記目的を達成するため、本発明は次のような構成を有している。   In order to achieve the above object, the present invention has the following configuration.

[1] 水底を構成している底質土の上に覆砂された、シールズ数が前記底質土のシールズ数未満の覆砂材と、前記覆砂材の周囲の全部を囲む、シールズ数が前記覆砂材のシールズ数未満の潜堤材とからなる底質土の覆砂構造であって、水底に開いた穴の中に前記覆砂材が供給され、前記覆砂材の上面の縁部上に、前記縁部の全周に亘って前記潜堤材が配され、さらに前記潜堤材の輪の中に前記覆砂材が配されていることを特徴とする、底質土の覆砂構造。 [1] The number of shields covered with sediment on the bottom soil that constitutes the bottom of the water and having the number of shields less than the number of shields of the bottom soil, and the number of shields surrounding the entire periphery of the sand cover material Is a sediment-covering structure of bottom soil composed of a submerged dike material having a number of shields less than the number of shields of the sand-covering material, wherein the sand-covering material is supplied into a hole opened in a water bottom, and the top surface of the sand-covering material is Sedimentary soil characterized in that the submerged levee material is arranged over the entire periphery of the rim, and the sand-clad material is arranged in a ring of the submerged levee material. Sand cover structure.

[2]前記覆砂材が水砕スラグからなり、前記潜堤材が製鋼スラグからなる前記[1]に記載の底質土の覆砂構造。   [2] The sediment covering structure for sediment according to [1], wherein the sand-clad material is made of granulated slag, and the submerged dam material is made of steel-making slag.

[3]前記底質土が、環境が悪化している状態の底質土である前記[1]または[2]に記載の底質土の覆砂構造。   [3] The sediment covering structure of the sediment according to [1] or [2], wherein the sediment is a sediment with a deteriorated environment.

[4] 水底を構成している底質土の上を、シールズ数が前記底質土のシールズ数未満の覆砂材により覆砂し、前記覆砂材の周囲の全部を、シールズ数が前記覆砂材のシールズ数未満の潜堤材により囲む、底質土の覆砂方法であって、水底に開いた穴の中に前記覆砂材を供給し、前記覆砂材の上面の縁部上に、前記縁部の全周に亘って前記潜堤材を供給し、さらに前記潜堤材の輪の中に前記覆砂材を配することを特徴とする、底質土の覆砂方法。 [4] The bottom soil constituting the bottom of the water is covered with a sand covering material having a number of shields less than the number of shields of the bottom soil, and the entire periphery of the sand covering material has the shields number of A sand covering method for bottom soil, surrounded by a submerged dike material having less than the number of shields of the sand covering material, wherein the sand covering material is supplied into a hole opened in a water bottom, and an edge of an upper surface of the sand covering material A method for covering sand in sediments, characterized in that the submerged dam material is supplied over the entire circumference of the edge, and the sand covering material is arranged in a ring of the submerged dam material. .

[5] 前記覆砂材として水砕スラグを用い、前記潜堤材として製鋼スラグを用いることを特徴とする、前記[4]記載の、底質土の覆砂方法。 [5] The sediment covering method for bottom soil according to the above [4], wherein granulated slag is used as the sand covering material and steel slag is used as the submerged bank material .

[6] 環境が悪化している状態の底質土の上に前記覆砂材を覆砂することを特徴とする、前記[4]または[5]記載の、底質土の覆砂方法。 [6] The method for sand-covering bottom sediment according to [4] or [5], wherein the sand-covering material is covered on the bottom sediment in a state where the environment is deteriorated .

(1)底質土上を覆砂材で覆砂し、覆砂材の周囲を潜堤材で囲むとともに、覆砂材のシールズ数を底質土のシールズ数未満とするとともに、潜堤材のシールズ数を覆砂材のシールズ数未満に規定することにより、耐波浪安定性に優れ、海流に流されにくい覆砂構造を得ることができる。   (1) The bottom soil is covered with sand-capping material, the periphery of the sand-covering material is surrounded with a submerged dike material, the number of shields of the sand-carrying material is set to be less than the number of shields of the bottom soil, and the submerged dike material By defining the number of shields to be less than the number of shields of the sand covering material, it is possible to obtain a sand covering structure that is excellent in wave resistance stability and is not easily washed away by the ocean current.

(2)水砕スラグおよび製鋼スラグは、底質土よりもシールズ数の小さい耐波浪安定性に優れた材料であり、覆砂材として水砕スラグを用い潜堤材として製鋼スラグを用いることにより、波や海流に流されにくい覆砂構造を得ることができ、ヘドロ化した底質土を長期間にわたり安定して覆うことができる。   (2) Granulated slag and steelmaking slag are materials excellent in wave resistance stability with a smaller number of shields than bottom soil, and by using granulated slag as sand-capping material and steelmaking slag as submerged levee material Therefore, it is possible to obtain a sand-covered structure that is not easily washed away by waves and ocean currents, and it is possible to stably cover sludged sediments over a long period of time.

(3)鉄鋼製造プロセスで発生する水砕スラグおよび鉄鋼スラグを用いることにより、山砂や海砂などの天然資源を用いなくてよく、砕石や浚渫などによる自然破壊が行われず、環境負荷が軽減される。   (3) By using granulated slag and steel slag generated in the steel manufacturing process, natural resources such as mountain sand and sea sand do not need to be used, and natural destruction by crushed stones and dredging is not performed, reducing the environmental burden. Is done.

(4)鉄鋼製造プロセスで発生するスラグ、すなわち、いわゆるリサイクル材の有効利用を図ることができる。   (4) The slag generated in the steel manufacturing process, that is, the so-called recycled material can be effectively used.

(5)覆砂材として用いられる水砕スラグは、底質生物への悪影響がない、生物親和性に富んだ材料であり、良好な生物環境を得ることができる。   (5) Granulated slag used as a sand-capping material is a material having a good biocompatibility that has no adverse effects on sediment organisms, and can provide a favorable biological environment.

次に、本発明の実施の形態を図面を参照しながら説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、参考例に係る覆砂構造を示す断面図である。図1において、1は、海の水面、2は、水底を構成する底質土である。本実施の形態においては、底質土2の環境が悪化して覆砂が必要な箇所(以下、「覆砂箇所」という)2aを覆砂する。底質土の環境が悪化した場所は、例えばヘドロ状になっている。覆砂箇所2aの上面には、覆砂材3が配されている。覆砂材3の周囲の底質土2の上面には、覆砂材3の周囲の全周を囲んで、潜堤材4が堤を築くように構築され覆砂材3を土留めしている。図1に示す本実施の形態においては、潜堤材4の断面形状が截頭三角形に形成されている。流れに対して安定している形状である。 FIG. 1 is a cross-sectional view showing a sand covering structure according to a reference example . In FIG. 1, 1 is the water surface of the sea, and 2 is the sediment that forms the bottom of the water. In the present embodiment, a place (hereinafter referred to as “sand covered place”) 2 a that needs to be covered with sand due to deterioration of the environment of the sediment 2 is covered. The place where the environment of the bottom soil has deteriorated is, for example, sludge. The sand covering material 3 is arranged on the upper surface of the sand covering portion 2a. The top surface of the sediment 2 around the sand-capping material 3 is constructed so that the submerged levee material 4 is built around the entire circumference of the sand-capping material 3 and the sand-carrying material 3 is earthed. Yes. In the present embodiment shown in FIG. 1, the cross-sectional shape of the submerged dike material 4 is formed in a truncated triangle. The shape is stable against the flow.

本発明においては、覆砂材3として、シールズ数が底質土2のシールズ数未満の土石材料を用い、潜堤材4として、シールズ数が覆砂材3のシールズ数未満の土石材料を用いるべきである。すなわち、底質土のシールズ数>覆砂材のシールズ数>潜堤材のシールズ数、とすべきである。シールズ数とは、後述するように、波や海流による流されやすさを示す値である。   In the present invention, a debris material having a shields number less than the shields number of the sediment 2 is used as the sand covering material 3, and a debris material having a shields number less than the shields number of the sand covering material 3 is used as the submerged dike material 4. Should. That is, the number of shields of the bottom soil> the number of shields of the sand covering material> the number of shields of the submerged levee material should be satisfied. As will be described later, the Shields number is a value indicating the ease of being swept away by waves or ocean currents.

本実施の形態においては、覆砂材3として、水砕スラグを用い、潜堤材4として、製鋼スラグを用いている。水砕スラグのシールズ数は、底質土2のシールズ数未満であり、製鋼スラグのシールズ数は、水砕スラグのシールズ数未満である。従って、覆砂材3として水砕スラグを用いることにより、覆砂材3のシールズ数を底質土2のシールズ数未満とすることができ、潜堤材4として製鋼スラグを用いることにより、潜堤材4のシールズ数を覆砂材3のシールズ数未満とすることができる。   In the present embodiment, granulated slag is used as the sand covering material 3, and steelmaking slag is used as the submerged dam material 4. The number of shields of the granulated slag is less than the number of shields of the bottom soil 2, and the number of shields of the steelmaking slag is less than the number of shields of the granulated slag. Therefore, by using the granulated slag as the sand covering material 3, the number of shields of the sand covering material 3 can be made less than the number of shields of the bottom soil 2, and by using the steelmaking slag as the submerged bank material 4, the latent The number of shields of the bank material 4 can be made less than the number of shields of the sand covering material 3.

更に、水砕スラグからなる覆砂材3の周囲を製鋼スラグからなる潜堤材4によって囲むことにより、覆砂材3は覆砂材単独のときよりも波や海流によって流され難くなり、覆砂箇所2aを長期にわたり安定して覆砂することができる。また、水砕スラグは、底質生物への悪影響がない、生物親和性に富んだ材料であり、覆砂材3で覆砂した覆砂構造部に良好な生物環境をもたらすことができる。   Furthermore, by surrounding the sand-clad material 3 made of granulated slag with a submerged dike material 4 made of steel-making slag, the sand-clad material 3 is less likely to be washed away by waves or ocean currents than when the sand-clad material alone is used. Sand portion 2a can be covered with sand stably over a long period of time. Further, the granulated slag is a material having a good biocompatibility that does not adversely affect sediment organisms, and can provide a favorable biological environment to the sand-covering structure portion covered with the sand-covering material 3.

図1に示すような覆砂構造を構築するには、船(図示せず)により覆砂材3および潜堤材4、本実施の形態では、水砕スラグおよび製鋼スラグを運び、覆砂箇所2aの水面1から水砕スラグ(覆砂材3)を降下させて覆砂箇所2aの上面を覆い、次いで、覆砂箇所2aの上面を覆った覆砂材3の周囲を囲むように船上から製鋼スラグ(潜堤材4)を降下させて覆砂材3の周囲の全面を潜堤材4によって囲み覆砂材3の周囲に堤を築く。更に、必要に応じて、船上からの作業により潜堤材4を土留めし、かくして、覆砂材3および潜堤材4からなる覆砂構造が底質土2(覆砂箇所2a)の上面に構築される。   In order to construct a sand-clad structure as shown in FIG. 1, a sand-clad material 3 and a submerged dam material 4, in this embodiment, granulated slag and steelmaking slag are carried by a ship (not shown), Granulated slag (sand covering material 3) is lowered from the water surface 1 of 2a to cover the upper surface of the sand covering portion 2a, and then from the ship so as to surround the periphery of the sand covering material 3 covering the upper surface of the sand covering portion 2a. The steelmaking slag (submerged dike material 4) is lowered to surround the entire surface of the sand covering material 3 with the submerged dike material 4, and a bank is built around the sand covering material 3. Further, if necessary, the submerged dam material 4 is earthed by work from the ship, and thus the sand covering structure composed of the sand covering material 3 and the submerged dam material 4 is the upper surface of the bottom soil 2 (sand covering portion 2a). Built in.

次に、水砕スラグおよび製鋼スラグについて説明する。   Next, the granulated slag and the steelmaking slag will be described.

鉄鋼製造プロセスで発生するスラグとして、高炉徐冷スラグ、高炉水砕スラグ(以下、「水砕スラグ」という)等の高炉系スラグ、予備処理、転炉、鋳造の工程で発生する脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、鋳造スラグ等の製鋼スラグ、そして、鉱石還元スラグ、電気炉スラグ等が挙げられる。本実施の形態では、覆砂材として水砕スラグを、そして、潜堤材として製鋼スラグを用いている。水砕スラグは、高炉から排出される溶滓から鉄分を除いて水冷した粒状物である。製鋼スラグは、予備処理、転炉、鋳造の工程で発生する粒状物である。   As slag generated in the steel manufacturing process, blast furnace slag such as blast furnace slow-cooled slag, blast furnace granulated slag (hereinafter referred to as “granulated slag”), decarburized slag generated in pretreatment, converter, casting process, Steelmaking slag such as dephosphorization slag, desulfurization slag, desiliconization slag, and cast slag, ore reduction slag, electric furnace slag, and the like can be given. In the present embodiment, granulated slag is used as the sand-capping material, and steelmaking slag is used as the submerged dam material. Granulated slag is a granular material obtained by removing iron from the hot metal discharged from the blast furnace and cooling it with water. Steelmaking slag is a granular material generated in the processes of pretreatment, converter, and casting.

下記に、水砕スラグの組成の1例を示す。   Below, an example of the composition of granulated slag is shown.

水砕スラグ
FeO:0.3%、CaO:42.0%、SiO:33.8%、MnO:0.3%、MgO:6.7%、Al:14.4%。
Granulated slag FeO: 0.3%, CaO: 42.0 %, SiO 2: 33.8%, MnO: 0.3%, MgO: 6.7%, Al 2 O 3: 14.4%.

更に、製鋼スラグ(脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ)の組成の1例を示す。   Furthermore, an example of the composition of steelmaking slag (decarburization slag, dephosphorization slag, desulfurization slag, desiliconization slag) is shown.

脱炭スラグ
T.Fe:17.5%、CaO:46.2%、SiO:11.7%、Al:1.4%、MgO:8.3%、MnO:6.2%、P:0.76%、S:0.04%。
Decarburized slag Fe: 17.5%, CaO: 46.2 %, SiO 2: 11.7%, Al 2 O 3: 1.4%, MgO: 8.3%, MnO: 6.2%, P: 0. 76%, S: 0.04%.

脱燐スラグ
T.Fe:5.8%、CaO:54.9%、SiO:18.4%、Al:2.8%、MgO:2.3%、MnO:1.9%、P:2.8%、S:0.03%。
Dephosphorization slag Fe: 5.8%, CaO: 54.9%, SiO 2 : 18.4%, Al 2 O 3 : 2.8%, MgO: 2.3%, MnO: 1.9%, P: 2. 8%, S: 0.03%.

脱硫スラグ
T.Fe:10.5%、CaO:50.3%、SiO:10.0%、Al:5.4%、MgO:1.1%、MnO:0.4%、P:0.13%、S:1.8%。
Desulfurized slag Fe: 10.5%, CaO: 50.3 %, SiO 2: 10.0%, Al 2 O 3: 5.4%, MgO: 1.1%, MnO: 0.4%, P: 0. 13%, S: 1.8%.

脱珪スラグ
T.Fe:10.5%、CaO:13.6%、SiO:43.7%、Al:3.8%、MgO:0.4%、MnO:15.8%、P:0.10%、S:0.19%。(以上、wt.%)
Desiliconized slag Fe: 10.5%, CaO: 13.6 %, SiO 2: 43.7%, Al 2 O 3: 3.8%, MgO: 0.4%, MnO: 15.8%, P: 0. 10%, S: 0.19%. (End of wt.%)

また、本発明に使用する場合、水砕スラグの中央粒径は、0.5〜2mm程度、製鋼スラグの中央粒径は、水砕スラグの中央粒径以上にすることが好ましい。中央粒径とは、各粒子径組以下または以上の積算粒子数、すなわち累積値を求め、その相対頻度すなわち積算頻度から得られる柱状図または曲線である累積曲線の中央累積値(50%)に当たる粒子の径をいい、中位径またはメジアン径(median dia-meter)dmedという。この大きさ以上と以下との粒子数が等しい。 Moreover, when using for this invention, it is preferable that the median particle size of granulated slag is about 0.5-2 mm, and the median particle size of steel-making slag is more than the median particle size of granulated slag. The median particle size corresponds to the median cumulative value (50%) of the cumulative curve, which is a columnar diagram or curve obtained from the relative frequency, that is, the cumulative frequency, by obtaining the cumulative number of particles equal to or less than each particle size group, that is, the cumulative value. The diameter of the particle, which is called the median diameter or median dia-meter d med . The number of particles equal to or larger than this size is equal.

次に、シールズ数について説明する。   Next, the number of shields will be described.

(1)底質(底質土)の安定指標には、図8に示すような波、流れなどによる底質を動かそうとする力(底面剪断力)と底質の自重による抵抗力(摩擦抵抗)との比で表されるシールズ数(無次元数)が用いられている。   (1) The stability index of sediment (bottom soil) includes the force (bottom shear force) to move the sediment due to waves and flows as shown in FIG. 8 and the resistance force (friction) due to the weight of the sediment. Shields number (dimensionless number) represented by a ratio to (resistance) is used.

シールズ数ψの算定方法は、T.Shibayama、K.Horikawaにより、下記式が提案されている。   The following formula is proposed by T. Shibayama and K. Horikawa for calculating the Shields number ψ.

シールズ数ψの算定
ψ=(1/2)・fu /{(p/p−1)gd}・・・式(1)
ここで、
f:摩擦係数、
:底面の水粒子速度振幅、
:底質粒子の密度
p:流体の密度
g:重力加速度
d:底質粒径
Calculation of Shields number ψ ψ = (1/2) · fu b 2 / {(p s / p-1) gd} ··· Equation (1)
here,
f: friction coefficient,
u b : bottom water particle velocity amplitude,
p s : Density of sediment particles p: Density of fluid g: Gravitational acceleration d: Particle size of sediment

摩擦係数f

Figure 0004867183
ここで、
σ:波の角周波数
:粗度高さ(平坦床では底質粒径)
v:動粘性係数 Friction coefficient f
Figure 0004867183
here,
σ: Angular frequency of wave k s : Roughness height (Sediment particle size on flat floor)
v: Kinematic viscosity coefficient

(2)実験による底質のシールズ数の算出を説明する。   (2) An explanation will be given of the calculation of the number of shields by sediment.

(2.1)実験で用いた底質材
実験は海砂(相模湾)を基本形とした。水砕スラグ、製鋼スラグについて、粒径の影響をなくすため、篩分けを行い、海砂の粒度分布(粒径加積曲線)と同程度(平均粒径1.0mm)となるように調整した。各々の密度を表1に示す。
(2.1) Sediment material used in the experiment The experiment was based on sea sand (Sagami Bay). For granulated slag and steelmaking slag, in order to eliminate the influence of the particle size, sieving was performed, and the particle size distribution (particle size accumulation curve) of sea sand was adjusted to be approximately the same (average particle size: 1.0 mm). . The density of each is shown in Table 1.

Figure 0004867183
Figure 0004867183

(2.2)実験設備
実験は、長さ13.5m×幅0.9m×高さ0.8mの両面ガラス張りの造波水路11を用いて行った。この造波水路11は、反射波吸収式の造波装置6を有しており、周期0.7〜2.0秒、波高20cmまでの規則波、不規則波が造波可能である。図9、10に造波水路図を示す。
(2.2) Experimental equipment The experiment was performed using a wave-making channel 11 made of double-sided glass with a length of 13.5 m, a width of 0.9 m, and a height of 0.8 m. The wave making channel 11 has a reflected wave absorption type wave making device 6, and can produce regular waves and irregular waves with a period of 0.7 to 2.0 seconds and a wave height of 20 cm. 9 and 10 show the wave making channel.

この水路底面の水平床の一部に、水砕スラグ5と砂7の実験を同時に行うために、長さ2.0m×幅0.445m×高さ0.1mの土槽8を2つ配置し、中間には厚さ10mmの分割壁9を設けて水路を二分割した。   In order to conduct experiments on granulated slag 5 and sand 7 at the same time on a part of the horizontal floor at the bottom of this waterway, two soil tanks 8 of length 2.0m x width 0.445m x height 0.1m are placed. In the middle, a dividing wall 9 having a thickness of 10 mm was provided to divide the water channel into two.

(2.3)実施条件
実験は規則波で行った。実験条件を表2に示す。波高は、底質が移動しない小さい波高から実験を始め、底質が明らかに移動を始めるまで徐々に大きくした。
(2.3) Implementation conditions Experiments were performed with regular waves. Table 2 shows the experimental conditions. The wave height started from a small wave height where the sediment did not move and gradually increased until the sediment began to move clearly.

Figure 0004867183
Figure 0004867183

(2.4)実験方法
水砕スラグ5および砂7は、自然の状態に近くなるように水面上10cmの位置から自由落下で投入し、その後、水平床10と同じレベルとなるように敷き均した。このときの水中単位体積重量は、水砕スラグ8.8(KN/m)、砂11.8(KN/m)であった。底質(水砕スラグ5、砂7)の設置状態を図11に示す。
(2.4) Experimental method The granulated slag 5 and sand 7 are thrown free from a position 10 cm above the water surface so as to be close to the natural state, and then laid so that they are at the same level as the horizontal floor 10. did. The unit volume weight in water at this time was granulated slag 8.8 (KN / m 3 ) and sand 11.8 (KN / m 3 ). The state of installation of bottom sediment (granulated slag 5, sand 7) is shown in FIG.

実験は小さな波高から開始し、底質の移動が明らかにわかるまで段階的に波高を増大させた。波は5分間作用させ、波高と流速データはサンプリング間隔0.02(sec)で計測し、底質の移動状況は目視観察、およびビデオ撮影で確認した。今回は、全面移動状態になったときを移動限界と判断し、水砕スラグおよび砂が全面移動限界となったときの波高(限界波高)やシールズ数(底面流速から算定)の比較を行った。   The experiment started with a small wave height and gradually increased the wave height until it was clear that sediment movement was evident. The wave was allowed to act for 5 minutes, the wave height and flow velocity data were measured at a sampling interval of 0.02 (sec), and the state of sediment movement was confirmed by visual observation and video shooting. This time, the movement limit was determined when the entire surface was moved, and the wave height (limit wave height) and the number of Shields (calculated from the bottom surface velocity) when the granulated slag and sand reached the entire movement limit were compared. .

(3)実験結果
(3.1)移動限界波高の比較
全面移動限界におけるd/LとH/Lとの関係を図12、13に示す。図中の実線は今回の実験条件に対して式(1)から求めた計算値、プロットは水砕スラグ(■、▲、●印)と砂(×印)の実験結果を条件毎(周期)に印別に示している。
(3) Experimental results (3.1) Comparison of movement limit wave heights The relationship between d / L 0 and H / L 0 at the entire movement limit is shown in FIGS. The solid line in the figure is the calculated value obtained from equation (1) for the current experimental conditions, and the plot shows the experimental results of granulated slag (■, ▲, ●) and sand (×) for each condition (cycle) Are shown separately.

その結果、今回の実験条件において、水砕スラグと砂の移動限界波高は同じ、または若干水砕スラグの方が大きくなった。これは、水砕スラグが角張っており摩擦角も砂より少し大きいことが影響していると考えられる。また、水砕スラグおよび砂の両者とも、移動限界波高(全面移動限界時)は計算式(2)の計算値以上となっていることから、水砕スラグの安定性の評価はこの計算式を用いても安全側となることがわかった。   As a result, under the present experimental conditions, the granulated slag and sand movement limit wave heights were the same or slightly larger for the granulated slag. This is thought to be due to the fact that the granulated slag is angular and the friction angle is slightly larger than that of sand. In addition, both the granulated slag and sand have a movement limit wave height (at the total movement limit) that is equal to or greater than the calculated value in equation (2). It turned out to be safe even if used.

(H/H−1sinh(2πh/L)=α(H/L)(L/d)・・・(2)式 (H / H 0 ) −1 sinh (2πh i / L) = α (H 0 / L 0 ) (L 0 / d) n (2)

(4)シールズ数の算定
全面移動限界(掃流移動が生じる前の初期移動)となったときの底質のシールズ数を表3に示す。シールズ数の算定には流速計の計測データを用いた。表3のシールズ数を、海砂を1.0としたときの各スラグ値を示したのが表4である。以上により、海砂と比べてシールズ数の値が小さい水砕スラグ、製鋼スラグのほうが波や海流に流され難いことがわかる。
(4) Calculation of the number of shields Table 3 shows the number of shields for the bottom sediment when the entire surface movement limit is reached (initial movement before the scavenging movement occurs). Measurement data from the anemometer was used to calculate the number of shields. Table 4 shows the slag values when the number of shields in Table 3 is 1.0 for sea sand. From the above, it can be seen that granulated slag and steelmaking slag, which have a smaller value of the Shields number than sea sand, are less likely to be washed away by waves and ocean currents.

Figure 0004867183
Figure 0004867183

Figure 0004867183
Figure 0004867183

次に、本発明の実施例を図面を参照しながら説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図2は、実施例1(参考例)に「係る覆砂構造を示す断面図、図3は、平面図である。覆砂箇所2aの底質土2が構成する水底が傾斜しているため、傾斜の下端部から上方に向けて、覆砂材3の周囲の大部分が潜堤材4により囲まれ、覆砂材3の傾斜の上端部は、潜堤材4により囲まれていない。底質土2が傾斜しているため、このように構成しても覆砂材3が波や海流により流されることはない。 Figure 2 is a sectional view showing the "according Kutsugaesuna structure to the actual Example 1 (Reference Example), FIG. 3 is a plan view. Water bottom of sediment soil 2 Kutsugaesuna portion 2a constitutes are inclined Therefore, most of the periphery of the sand-capping material 3 is surrounded by the submerged dam material 4 upward from the lower end of the slope, and the upper end of the slope of the sand-covering material 3 is not surrounded by the submerged dam material 4. Since the sediment 2 is inclined, the sand-capping material 3 is not washed away by waves or ocean currents even if configured in this way.

図4は、実施例2(参考例)に係る覆砂構造を示す断面図である。図4に示すように、水底に大きな穴が開いている場合である。このような穴は、人為的にまたは自然にできる。穴の縁の高さ以上に覆砂材3が供給され、穴の外部の底質土2の上面に配した潜堤材4によって覆砂材3の周囲が囲まれている。 Figure 4 is a sectional view showing a Kutsugaesuna structure according to actual施例2 (Reference Example). As shown in FIG. 4, this is a case where a large hole is opened in the bottom of the water. Such holes can be artificial or natural. The sand covering material 3 is supplied more than the height of the edge of the hole, and the periphery of the sand covering material 3 is surrounded by the submerged dike material 4 arranged on the upper surface of the sediment 2 outside the hole.

図5は、実施例3(参考例)に係る覆砂構造を示す断面図である。図5においては、穴の内側の周囲および穴の外部の底質土2の上面に供給された潜堤材4によって覆砂材3が囲まれている。 Figure 5 is a sectional view showing a Kutsugaesuna structure according to actual施例3 (Reference Example). In FIG. 5, the sand covering material 3 is surrounded by the submerged dam material 4 supplied to the inner periphery of the hole and the upper surface of the sediment 2 outside the hole.

図6は、本発明の実施例4(本発明例)に係る覆砂構造を示す断面図である。図6においては、覆砂材3を穴の中に供給し、次いで、潜堤材4を覆砂材3の上面の周囲、すなわち、穴の周囲を囲むように供給し、更に、潜堤材4の輪の中に覆砂材3を供給している。 FIG. 6: is sectional drawing which shows the sand covering structure which concerns on Example 4 (invention example) of this invention . In FIG. 6, the sand-capping material 3 is supplied into the hole, and then the latent dam material 4 is supplied so as to surround the upper surface of the sand-covering material 3, that is, surrounding the hole. The sand covering material 3 is supplied into the ring 4.

図7は、実施例5(参考例)に係る覆砂構造を示す断面図である。図7においては、図1に示す参考例とほぼ同構成であるが、本実施例においては、潜堤材4の断面形状が菱形となっている。図7の場合、先に覆砂材3をのせて覆砂材3の端をかぶせるように潜堤材4をのせるのでこの形になる。 Figure 7 is a sectional view showing a Kutsugaesuna structure according to actual施例5 (Reference Example). In FIG. 7, although it is the structure substantially the same as the reference example shown in FIG. 1, in this Example, the cross-sectional shape of the submerged dam material 4 is a rhombus. In the case of FIG. 7, the submerged dam material 4 is placed so that the sand-covering material 3 is placed on top and the end of the sand-covering material 3 is covered, and this shape is obtained.

参考例に係る覆砂構造を示す断面図である。It is sectional drawing which shows the sand covering structure which concerns on a reference example . 施例1(参考例)に係る覆砂構造を示す断面図である。It is a sectional view showing a Kutsugaesuna structure according to the actual Example 1 (Reference Example). 施例1(参考例)に係る覆砂構造を示す平面図である。Is a plan view showing a Kutsugaesuna structure according to the actual Example 1 (Reference Example). 施例2(参考例)に係る覆砂構造を示す断面図である。It is a sectional view showing a Kutsugaesuna structure according to actual施例2 (Reference Example). 施例3(参考例)に係る覆砂構造を示す断面図である。It is a sectional view showing a Kutsugaesuna structure according to actual施例3 (Reference Example). 本発明の実施例4(本発明例)に係る覆砂構造を示す断面図である。It is sectional drawing which shows the sand covering structure which concerns on Example 4 (invention example) of this invention . 施例5(参考例)に係る覆砂構造を示す断面図である。It is a sectional view showing a Kutsugaesuna structure according to actual施例5 (Reference Example). 底質に作用する力の模式図である。It is a schematic diagram of the force which acts on sediment. 実験水路を示す平面図である。It is a top view which shows an experimental water channel. 実験水路を示す側面断面図である。It is side surface sectional drawing which shows an experimental water channel. 底質の設置状況を示す斜視図である。It is a perspective view which shows the installation condition of bottom sediment. 全面移動限界状態におけるd/L0,H/L0の関係を示すグラフである。Is a graph showing the relationship between d / L 0, H / L 0 in the entire surface movement limit state. 全面移動限界状態におけるd/L0,H/L0の関係を示すグラフである。Is a graph showing the relationship between d / L 0, H / L 0 in the entire surface movement limit state.

符号の説明Explanation of symbols

1 水面
2 底質土
2a 覆砂が必要な水底の覆砂箇所
3 覆砂材
4 潜堤材
5 水砕スラグ
6 造波装置
7 砂
8 土槽
9 分割壁
10 水平床
11 造波水路
DESCRIPTION OF SYMBOLS 1 Water surface 2 Sediment soil 2a Sand cover part of the bottom which needs sand covering 3 Sand covering material 4 Submarine material 5 Granulated slag 6 Wave making device 7 Sand 8 Earth tank 9 Dividing wall 10 Horizontal floor 11 Wave making channel

Claims (6)

水底を構成している底質土の上に覆砂された、シールズ数が前記底質土のシールズ数未満の覆砂材と、前記覆砂材の周囲の全部を囲む、シールズ数が前記覆砂材のシールズ数未満の潜堤材とからなる底質土の覆砂構造であって、水底に開いた穴の中に前記覆砂材が供給され、前記覆砂材の上面の縁部上に、前記縁部の全周に亘って前記潜堤材が配され、さらに前記潜堤材の輪の中に前記覆砂材が配されていることを特徴とする、底質土の覆砂構造。 A sand-covering material with a shields number less than that of the bottom soil, which is covered on the bottom soil constituting the water bottom, and surrounds the entire periphery of the sand-covering material. A sand- covered structure of sedimentary soil composed of submarine material with less than the number of shields of sand material , wherein the sand-covering material is supplied into a hole opened in the water bottom, and on an upper edge of the sand-covering material In addition, the submerged soil covering sand is characterized in that the submerged dam material is disposed over the entire circumference of the edge portion, and the sand covering material is disposed in a ring of the submerged levee material. Construction. 前記覆砂材が水砕スラグからなり、前記潜堤材が製鋼スラグからなることを特徴とする、請求項1記載の、底質土の覆砂構造。 The sand capping material is water granulated slag, the latent bank material is characterized in that it consists of steel slag, as claimed in claim 1, wherein, Kutsugaesuna structure of the bottom soil. 前記底質土が、環境が悪化している状態の底質土であることを特徴とする、請求項1または2に記載の、底質土の覆砂構造。 Said bottom soil, characterized in that a sediment soil conditions the environment is deteriorated, according to claim 1 or 2, Kutsugaesuna structure of the bottom soil. 水底を構成している底質土の上を、シールズ数が前記底質土のシールズ数未満の覆砂材により覆砂し、前記覆砂材の周囲の全部を、シールズ数が前記覆砂材のシールズ数未満の潜堤材により囲む、底質土の覆砂方法であって、水底に開いた穴の中に前記覆砂材を供給し、前記覆砂材の上面の縁部上に、前記縁部の全周に亘って前記潜堤材を供給し、さらに前記潜堤材の輪の中に前記覆砂材を配することを特徴とする、底質土の覆砂方法。 The bottom soil constituting the water bottom is covered with a sand covering material having a number of shields less than that of the bottom soil, and the entire periphery of the sand covering material is covered with the sand covering material. It is a sand-covering method for bottom soil, surrounded by a submerged dike material with less than the number of Shields , wherein the sand-covering material is supplied into a hole opened in the water bottom, and on the edge of the upper surface of the sand-covering material, A method of sand-covering sediments, comprising supplying the submerged dam material over the entire circumference of the edge and further arranging the sand-covering material in a ring of the submerged dam material . 前記覆砂材として水砕スラグを用い、前記潜堤材として製鋼スラグを用いることを特徴とする、請求項4記載の、底質土の覆砂方法。 The method for sand-covering sediments according to claim 4, wherein granulated slag is used as the sand-capping material, and steel slag is used as the submerged dam material . 環境が悪化している状態の底質土の上に前記覆砂材を覆砂することを特徴とする、請求項4または5記載の、底質土の覆砂方法。 The method for sand-covering bottom sediment according to claim 4 or 5, wherein the sand-covering material is covered on the bottom sediment in a state where the environment is deteriorated .
JP2005086566A 2005-03-24 2005-03-24 Sand cover structure and sand cover method of bottom soil Active JP4867183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086566A JP4867183B2 (en) 2005-03-24 2005-03-24 Sand cover structure and sand cover method of bottom soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086566A JP4867183B2 (en) 2005-03-24 2005-03-24 Sand cover structure and sand cover method of bottom soil

Publications (2)

Publication Number Publication Date
JP2006262796A JP2006262796A (en) 2006-10-05
JP4867183B2 true JP4867183B2 (en) 2012-02-01

Family

ID=37199381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086566A Active JP4867183B2 (en) 2005-03-24 2005-03-24 Sand cover structure and sand cover method of bottom soil

Country Status (1)

Country Link
JP (1) JP4867183B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994383B2 (en) * 2011-08-15 2016-09-21 Jfeスチール株式会社 Sediment modification and odor reduction method
JP5872303B2 (en) * 2012-01-24 2016-03-01 中国電力株式会社 Calcium hydroxide-containing granular sand-covered structure and method
JP6168446B2 (en) * 2013-03-28 2017-07-26 五洋建設株式会社 Containment method for contaminated floating mud
JP6340743B2 (en) * 2017-04-28 2018-06-13 五洋建設株式会社 Contained floating mud confinement method and solidification soil material underwater placing device
JP6891844B2 (en) * 2018-03-29 2021-06-18 Jfeスチール株式会社 Phosphorus supply materials for water bodies and their manufacturing methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656466B2 (en) * 2000-05-31 2011-03-23 Jfeスチール株式会社 Artificial bottom
JP5070667B2 (en) * 2000-12-14 2012-11-14 Jfeスチール株式会社 Underwater environment improvement method
JP2004000104A (en) * 2001-09-11 2004-01-08 Kokan Kogyo Kk Method for improving underwater or environmental water shore
JP2003158946A (en) * 2001-09-11 2003-06-03 Nkk Corp Method for improving underwater or waterside environment
JP3957279B2 (en) * 2002-05-29 2007-08-15 日本植生株式会社 Underwater plant breeding collection

Also Published As

Publication number Publication date
JP2006262796A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP4867183B2 (en) Sand cover structure and sand cover method of bottom soil
JP4736449B2 (en) Construction method of shallow ground
JP5070667B2 (en) Underwater environment improvement method
CN109626581A (en) A kind of method of hydraulic reclamation silty sand and fine sand construction artificial swamp
JP5400680B2 (en) Artificial shallow or tidal flat
JP2000157094A (en) Stone material for sinking and disposing in water and its production
JP2007063923A (en) Sand cover structure and sand cover method for water bottom
Eisma Dredging in coastal waters
JP2005240543A (en) Method of developing shallows and the like
JP4736444B2 (en) Construction method of shallow ground
JP3729160B2 (en) Environmental improvement method and environmental improvement materials for underwater or beach
CN104203844B (en) Suppress the method that waters substrate produces methane-containing gas
JP3617405B2 (en) Water bottom structure and bottom / water purification method
JP2003286711A (en) Method for improving environment of bottom of water
JP2007061054A (en) Sand cover structure and sand cover method at water bottom
JP5994383B2 (en) Sediment modification and odor reduction method
JP2007154646A (en) Construction method for placing steel slag under water
JP2004000104A (en) Method for improving underwater or environmental water shore
JP2009203664A (en) Infill for caisson, and caisson, and water area structure
JP4736448B2 (en) Construction method of shallow ground
JP6361889B2 (en) Artificial shallow or tidal flat
JP2004223514A (en) Method for improving environment of water bottom
JP4285284B2 (en) Submarine
JP2003026456A (en) Steel making slag for port and harbor work
JP2003253642A (en) Installation method for underwater structure and block for underwater structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250