JP2007154646A - Construction method for placing steel slag under water - Google Patents

Construction method for placing steel slag under water Download PDF

Info

Publication number
JP2007154646A
JP2007154646A JP2006242993A JP2006242993A JP2007154646A JP 2007154646 A JP2007154646 A JP 2007154646A JP 2006242993 A JP2006242993 A JP 2006242993A JP 2006242993 A JP2006242993 A JP 2006242993A JP 2007154646 A JP2007154646 A JP 2007154646A
Authority
JP
Japan
Prior art keywords
slag
container
water
construction method
steel slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006242993A
Other languages
Japanese (ja)
Other versions
JP5125037B2 (en
Inventor
Kazuya Yabuta
和哉 薮田
Misao Suzuki
操 鈴木
Hideki Honda
秀樹 本田
Masabumi Ikeda
正文 池田
Tatsuto Takahashi
達人 高橋
Yasuto Miyata
康人 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006242993A priority Critical patent/JP5125037B2/en
Publication of JP2007154646A publication Critical patent/JP2007154646A/en
Application granted granted Critical
Publication of JP5125037B2 publication Critical patent/JP5125037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Underground Or Underwater Handling Of Building Materials (AREA)
  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method by which steel slag can be placed stably under water to enable easy construction of an underwater structure having high stability against waves. <P>SOLUTION: A material mainly composed of steel slag is put in a water permeable container, which is then placed under the water to cause the material in the container to set due to the hydraulic setting effect of the slag. Preferably, following the setting of the material in the container, at least the main portion of the container is caused to disappear due to decomposition or/and corrosion. Natural setting of the material in the container due to the hydraulic setting effect of the slag prevents the material from flowing out, which allows easy construction of an underwater structure, etc., having high stability against waves. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉄鋼製造プロセスで発生したスラグを水中設置するための施工方法であって、同スラグを用いて水中において構造体や基礎などを施工するのに好適な施工方法に関するものである。   The present invention relates to a construction method for installing slag generated in a steel manufacturing process underwater, and relates to a construction method suitable for constructing a structure or a foundation in water using the slag.

海岸保全(海岸侵食の防止)や浅場造成などを目的として、沿岸海域などの水底に潜堤が設置される。このような潜堤は、水底に捨石やコンクリートブロックを積み上げることにより構築されるのが一般的である。また、水底に捨石基礎を設置し、その上にコンクリートブロックなどを積み上げて潜堤を構築する場合もある。   For the purpose of coastal conservation (prevention of coastal erosion) and shallow ground creation, a submerged dike is installed at the bottom of the coastal sea area. Such a submerged dike is generally constructed by stacking rubble and concrete blocks on the bottom of the water. In some cases, a rubble foundation is installed at the bottom of the water, and concrete blocks are stacked on top of it to construct a submerged dike.

しかし、捨石として用いられる天然砕石は年々調達が難しくなっている。一般に、海域工事では波に対する抵抗の大きい大きな石が必要とされるが、このような天然石の調達は特に難しくなりつつある。さらに、最近では天然石の採取による自然破壊も問題視されるようになってきた。また、コンクリートブロックはコストが高い難点があり、さらに、ブロック表面が緻密で隙間がないため初期の生物親和性が劣り、このため一時的に設置海域の環境が劣化するという問題もある。
一方、従来、路盤材等の土木用資材として粒径が20〜50mm程度の塊状の製鋼スラグが製造されており、特許文献1には、このような塊状の製鋼スラグを用いて潜堤を構築することが示されている。製鋼スラグは鉄鋼製造プロセスで発生するスラグ(鉄鋼スラグ)であり、安価に且つ大量に調達できる利点がある。
特開2002−238401号公報
However, it is difficult to procure natural crushed stone used as rubble every year. Generally, large stones with high resistance to waves are required for offshore construction, but the procurement of such natural stones is becoming particularly difficult. Furthermore, recently, the destruction of natural stones has also become a problem. In addition, the concrete block has a problem of high cost, and further, there is a problem that the environment of the installation sea area is temporarily deteriorated because the block surface is dense and there is no gap, and thus the initial biocompatibility is inferior.
On the other hand, massive steel-making slag having a particle diameter of about 20 to 50 mm has been manufactured as civil engineering materials such as roadbed materials. Patent Document 1 describes the construction of a submerged dike using such massive steel-making slag. Has been shown to do. Steelmaking slag is slag generated in the steel manufacturing process (steel slag), and has an advantage that it can be procured at low cost and in large quantities.
JP 2002-238401 A

しかし、特許文献1のように潜堤材として粒径20〜50mm程度の塊状製鋼スラグを用いた場合、大きな波浪などによって潜堤材が流失し、潜堤が大きく損傷したり、酷い場合には潜堤そのものが崩壊・消失してしまう。すなわち、塊状の製鋼スラグで構築された潜堤は、波浪安定性が低いという問題がある。
また、例えば、護岸の構築や水底の基礎・基盤工事などにおいても塊状の製鋼スラグを使用することが考えられるが、この場合も上述した潜堤と同様に波浪安定性に大きな問題がある。
したがって本発明の目的は、鉄鋼スラグを水中に安定的に設置することができ、これにより鉄鋼スラグを用いて高い波浪安定性を有する水中構造体や基礎・基盤などを容易に施工することができる施工法を提供することにある。
However, when a massive steelmaking slag having a particle size of about 20 to 50 mm is used as a submerged levee material as in Patent Document 1, the submerged levee material is washed away by a large wave or the like, and the submerged levee is greatly damaged or severe. The submarine itself collapses and disappears. That is, there is a problem that the submerged dike constructed with massive steelmaking slag has low wave stability.
In addition, for example, it is conceivable to use massive steelmaking slag in construction of revetments, foundations of foundations and foundations, etc., but in this case as well as the above-mentioned submerged dike, there is a big problem in wave stability.
Therefore, the object of the present invention is to stably install steel slag in the water, and thus, it is possible to easily construct an underwater structure or foundation / base having high wave stability using the steel slag. It is to provide a construction method.

本発明者らは上記課題を解決すべく検討を行い、その結果、鉄鋼スラグを主体とする材料を透水性がある容器に入れ、この容器を水中に置いて容器内の材料を前記スラグの水硬作用により固結させることにより、鉄鋼スラグを主体とする材料を波浪などによる流出を生じることなく水中に安定的に設置でき、これにより高い波浪安定性を有する構造体や基礎・基盤などを容易に施工できることが判った。また、好ましくは、容器として水中で経時的に分解又は腐蝕する容器を用い、容器内の材料が固結した後に容器を分解又は腐蝕により消失(自然消失)させることにより、容器がゴミ化するなどして環境汚染を生じさせることなく、また、施工された構造体等を生物の生息・生育に好適な環境とすることができることが判った。   The present inventors have studied to solve the above problems, and as a result, put a material mainly composed of steel slag in a water-permeable container, put this container in water, and put the material in the container into the water of the slag. By solidifying by hard action, materials mainly composed of steel slag can be stably installed in water without causing outflow due to waves, etc., which makes it easy to construct structures, foundations and foundations with high wave stability. It was found that it can be installed. In addition, preferably, a container that decomposes or corrodes with time in water is used as the container, and the container is made garbage by disintegrating or spontaneously disappearing by decomposition or corrosion after the material in the container is consolidated. Thus, it was found that the constructed structure and the like can be made an environment suitable for living and growing of living organisms without causing environmental pollution.

本発明は、以上述べたような知見に基づきなされたもので、以下を要旨とするものである。
[1]鉄鋼製造プロセスで発生したスラグを主体とする材料(但し、鉄鋼製造プロセスで発生したスラグのみからなる材料の場合を含む)を、透水性がある容器に入れ、該容器を水中に置いて容器内の材料を前記スラグの水硬作用により固結させることを特徴とする、鉄鋼スラグを水中設置するための施工方法。
[2]上記[1]の施工方法において、容器が袋体であることを特徴とする、鉄鋼スラグの水中施工法。
[3]上記[1]又は[2]の施工方法において、容器が水中で経時的に分解又は/及び腐蝕する容器であり、容器内の材料が固結した後に、該容器の少なくとも主要部を分解又は/及び腐蝕により消失させることを特徴とする、鉄鋼スラグを水中設置するための施工方法。
The present invention has been made on the basis of the findings as described above, and has the following gist.
[1] Put slag generated mainly in the steel manufacturing process (including the case of only slag generated in the steel manufacturing process) into a permeable container and place the container in water. A construction method for installing steel slag underwater, wherein the material in the container is consolidated by the hydraulic action of the slag.
[2] An underwater construction method for steel slag according to the construction method of [1] above, wherein the container is a bag.
[3] In the construction method of [1] or [2] above, the container is a container that decomposes or corrodes over time in water, and after the material in the container is consolidated, at least a main part of the container is A construction method for installing steel slag underwater, wherein the steel slag is eliminated by decomposition or / and corrosion.

[4]上記[1]〜[3]のいずれかの施工方法において、容器内の材料を、粘着力(但し、JIS A 1216の「土の一軸圧縮試験方法」に基づき求められた試料の一軸圧縮強さquの1/2の値)が15kN/m以上となるように固結させることを特徴とする、鉄鋼スラグを水中設置するための施工方法。
[5]上記[1]〜[3]のいずれかの施工方法において、容器内の材料を、粘着力(但し、JIS A 1216の「土の一軸圧縮試験方法」に基づき求められた試料の一軸圧縮強さquの1/2の値)が20kN/m以上となるように固結させることを特徴とする、鉄鋼スラグを水中設置するための施工方法。
[6]上記[1]〜[5]のいずれかの施工方法において、容器内の材料は、高炉水砕スラグの割合が30mass%以上であることを特徴とする、鉄鋼スラグを水中設置するための施工方法。
[7]上記[1]〜[6]のいずれかの施工方法において、材料を入れた容器により、少なくとも潜堤外層部の一部を構築することを特徴とする、鉄鋼スラグを水中設置するための施工方法。
[4] In the construction method according to any one of [1] to [3] above, the material in the container is made of an adhesive (however, a uniaxial sample obtained based on “uniaxial compression test method of soil” in JIS A 1216) A construction method for installing steel slag underwater, characterized in that the slag is consolidated so that the compression strength (qu) is 15 kN / m 2 or more.
[5] In the construction method according to any one of [1] to [3] above, the material in the container is made of an adhesive (however, the uniaxial sample obtained based on the “uniaxial compression test method for soil” in JIS A 1216) A construction method for installing steel slag underwater, characterized in that the slag is consolidated so that a compressive strength (qu) is 20 kN / m 2 or more.
[6] In the construction method according to any one of the above [1] to [5], in order to install steel slag in water, the material in the container is characterized in that the ratio of granulated blast furnace slag is 30 mass% or more. Construction method.
[7] To install steel slag underwater in the construction method according to any one of [1] to [6] above, wherein at least a part of the submerged dike outer layer is constructed by a container containing material. Construction method.

本発明の施工方法によれば、鉄鋼スラグの水硬作用を利用して施工後に容器内の材料を自然に固結させるので、鉄鋼スラグを主体とする材料を波浪などによる流出を生じることなく水中に安定的に設置することができる。このため、高い波浪安定性を有する構造体や基礎・基盤などを容易に施工することができ、特に潜堤の施工・構築に有用である。   According to the construction method of the present invention, the material in the container is naturally consolidated after construction by utilizing the hydraulic action of the steel slag, so that the material mainly composed of the steel slag is submerged without causing outflow due to waves or the like. Can be installed stably. For this reason, it is possible to easily construct structures, foundations and foundations having high wave stability, and is particularly useful for construction and construction of submerged dikes.

本発明の施工法では、鉄鋼製造プロセスで発生したスラグ(鉄鋼スラグ)を主体とする材料(以下、材料Aという)を透水性のある容器に入れ、この容器を水中に置いて容器内の材料Aを前記スラグの水硬作用により固結させる。材料Aは容器に入れられているため波浪などで流出する恐れはなく、また、固結した後は容器が消失したとしても高い波浪安定性が得られる。
容器は、スラグを水中設置するための施工場所(例えば、構造体や基礎などの施工場所)以外の水中において中身の材料Aを固結させた後、施工場所に移動させてもよいが、直接施工場所に設置した状態で容器内の材料Aを固結させた方が、施工が容易であるため好ましい。
In the construction method of the present invention, a material mainly composed of slag (steel slag) generated in a steel manufacturing process (hereinafter referred to as material A) is placed in a water-permeable container, and the container is placed in water to place the material in the container. A is consolidated by the hydraulic action of the slag. Since the material A is contained in the container, there is no fear of flowing out by waves or the like, and high wave stability is obtained even if the container disappears after consolidation.
The container may be moved to the construction site after solidifying the material A in the water other than the construction site (for example, construction site such as structure or foundation) for installing the slag underwater. It is preferable that the material A in the container is consolidated in a state where it is installed at the construction site because the construction is easy.

材料Aを構成する鉄鋼スラグとしては、高炉水砕スラグ、高炉徐冷スラグ(但し、この高炉徐冷スラグは水中でSが溶出しないようにするため、十分にエージング処理したものが好ましい)、製鋼スラグ、鉱石還元スラグなどの各種スラグを用いることができる。また、製鋼スラグとしては、脱燐スラグ・脱硫スラグ・脱珪スラグ等の溶銑予備処理スラグ、脱炭スラグ、鋳造スラグ、電気炉スラグ等が挙げられる。製鋼スラグとしては、特に脱炭スラグと脱燐スラグが好適である。
上記材料Aは、粒状又は/及び塊状の形態を有するものであり、粒度としては、通常100mm程度以下のものが使用可能である。通常使用する製鋼スラグの粒度は85mm以下、高炉水砕スラグの粒度は5mm以下であるが、既に固結しているような場合には、それ以上の粒度のものを用いることもできる。
上記材料Aは、上記鉄鋼スラグのみで構成してもよいが、鉄鋼スラグ以外の粒状物や塊状物、例えば、天然砂、天然砕石、天然砕石を加工した人工砂、リサイクルコンクリート等の1種以上を固結特性を阻害しない範囲で含むことができる。但し、本発明は鉄鋼スラグの水硬作用を利用して材料Aを固結させるものであるため、材料Aは鉄鋼スラグを主体とするものであること、すなわち鉄鋼スラグの割合が50mass%以上、好ましくは70mass%以上であることが必要である。
As the steel slag constituting the material A, blast furnace granulated slag, blast furnace slow-cooled slag (however, this blast furnace slow-cooled slag is preferably sufficiently aged to prevent S from eluting in water), steel making Various slags such as slag and ore reduction slag can be used. Steelmaking slag includes hot metal pretreatment slag such as dephosphorization slag, desulfurization slag, and desiliconization slag, decarburization slag, cast slag, electric furnace slag, and the like. As the steelmaking slag, decarburization slag and dephosphorization slag are particularly suitable.
The material A has a granular or / and massive shape, and a particle size of about 100 mm or less is usually usable. Normally used steelmaking slag has a particle size of 85 mm or less, and blast furnace granulated slag has a particle size of 5 mm or less. However, when it is already consolidated, a particle having a larger particle size can be used.
The material A may be composed only of the steel slag, but it is one or more kinds of granular materials and aggregates other than the steel slag, such as natural sand, natural crushed stone, artificial sand processed natural crushed stone, and recycled concrete. Can be included as long as the caking properties are not impaired. However, since the present invention consolidates the material A using the hydraulic action of steel slag, the material A is mainly composed of steel slag, that is, the ratio of steel slag is 50 mass% or more, Preferably it is 70 mass% or more.

通常、容器内に材料Aを入れる作業は陸上又は船上で行われる。
容器は透水性があることが必要であるが、透水性を有する容器には、容器を構成する素材自体が透水性を有するものの他に、容器を構成する素材は非透水性であるが、容器内に水を浸透させることができる隙間や孔を有する容器も含まれる。
ここで、容器の透水性は容器内の材料Aに水が浸透する程度の透水性でよく、海水交換が行われるような透水性は必要ない。むしろ、容器内の材料Aの固結を早めるには海水交換をなるべく少なくすることが好ましく、この観点からは、容器は水が浸透できる程度の隙間を有するシート製の袋体や透水性の低い網袋などで構成するのが好ましい。
また、水底などの形状に合わせて容器を積み上げて構造体などを構築するためには、材料Aを入れた容器は変形できることが好ましく、この観点からは、容器は袋体(例えば、一般にフレコンバッグと呼ばれるような袋体)であることが好ましいが、ある程度の剛性を有する容器(例えば、箱、篭など)であってもよい。
Usually, the operation | work which puts the material A in a container is performed on land or a ship.
The container needs to be permeable to water. However, in the case of a container having water permeability, the material constituting the container is non-permeable, in addition to the material itself constituting the container being water permeable. A container having a gap or a hole through which water can permeate is also included.
Here, the water permeability of the container may be a water permeability that allows water to permeate the material A in the container, and does not require water permeability such that seawater exchange is performed. Rather, it is preferable to reduce seawater exchange as much as possible in order to accelerate the consolidation of the material A in the container. From this point of view, the container has a sheet bag body having a gap enough to allow water to permeate and low water permeability. It is preferable to use a net bag or the like.
In addition, in order to build up a structure or the like by stacking containers according to the shape of the water bottom or the like, it is preferable that the container containing the material A can be deformed. From this viewpoint, the container is a bag (for example, a flexible container bag in general). It is preferable that the container is a so-called bag body), but may be a container having a certain degree of rigidity (for example, a box, a bag, etc.).

本発明法では、容器内の材料Aをスラグの水硬作用により固結させ、容器が消失した後でも、高い波浪安定性を得るために必要な粘着力(固結力)を備えさせるものである。具体的には、容器内の材料Aを粘着力(但し、JIS A 1216の「土の一軸圧縮試験方法」に基づき求められた試料の一軸圧縮強さquの1/2の値)が15kN/m以上、望ましくは20kN/m以上、特に望ましくは35kN/m以上となるように固結させることが好ましい。この粘着力の限定理由については後述する。
材料Aはスラグの水硬作用によって比較的短期間に固結することが必要であり、例えば、容器を水中に設置してから6ヶ月以内、望ましくは3ヶ月以内に所定の固結状態(望ましくは粘着力15kN/m以上、より望ましく20kN/m以上、特に望ましく35kN/m以上)になることが好ましい。
In the method of the present invention, the material A in the container is consolidated by the hydraulic action of the slag, and even after the container disappears, the adhesive force (consolidating force) necessary for obtaining high wave stability is provided. is there. Specifically, the adhesive strength of the material A in the container (however, a value of ½ of the uniaxial compressive strength qu of the sample obtained based on the “uniaxial compressive test method of soil” of JIS A 1216) is 15 kN / It is preferable to solidify such that m 2 or more, desirably 20 kN / m 2 or more, and particularly desirably 35 kN / m 2 or more. The reason for limiting the adhesive strength will be described later.
The material A needs to be consolidated in a relatively short time due to the hydraulic action of the slag. For example, the material A is in a predetermined consolidated state (desirably within 6 months, preferably within 3 months after the container is placed in water). Is preferably 15 kN / m 2 or more, more preferably 20 kN / m 2 or more, and particularly preferably 35 kN / m 2 or more.

材料Aとして、以下に示すような高炉水砕スラグ単独材、高炉水砕スラグ+製鋼スラグの混合材、高炉水砕スラグ+製鋼スラグ+海砂の混合材、製鋼スラグ単独材を用い、固結試験を行った。ここで、高炉水砕スラグ、製鋼スラグ(脱炭スラグ)ともに、CaO含有量が30mass%以上、粒径2mm以下の割合が20mass%以上であった。
材料(a):高炉水砕スラグのみ
材料(b):高炉水砕スラグ(質量比:2)+製鋼スラグ(質量比:1)
材料(c):高炉水砕スラグ(質量比:1)+製鋼スラグ(質量比:1)
材料(d):高炉水砕スラグ(質量比:1)+製鋼スラグ(質量比:1)+海砂(質量比:1)
材料(e):高炉水砕スラグ(質量比:1)+製鋼スラグ(質量比:2)+海砂(質量比:2)
材料(f):製鋼スラグのみ
As material A, a blast furnace granulated slag single material as shown below, a mixed material of blast furnace granulated slag + steelmaking slag, a mixed material of blast furnace granulated slag + steelmaking slag + sea sand, and a single steelmaking slag material are consolidated. A test was conducted. Here, both the granulated blast furnace slag and the steelmaking slag (decarburized slag) had a CaO content of 30 mass% or more and a ratio of a particle size of 2 mm or less was 20 mass% or more.
Material (a): Blast furnace granulated slag only Material (b): Blast furnace granulated slag (mass ratio: 2) + Steelmaking slag (mass ratio: 1)
Material (c): Blast furnace granulated slag (mass ratio: 1) + steelmaking slag (mass ratio: 1)
Material (d): Blast furnace granulated slag (mass ratio: 1) + steelmaking slag (mass ratio: 1) + sea sand (mass ratio: 1)
Material (e): Blast furnace granulated slag (mass ratio: 1) + steelmaking slag (mass ratio: 2) + sea sand (mass ratio: 2)
Material (f): Steelmaking slag only

この試験では、φ100mm×H200mmのプラスチック容器に人工海水を満たし、その上方10cmの位置から各材料(a)〜(f)を自由落下させてプラスチック容器にいっぱいになるまで投入した後、上面をすりきり状態にし、これを供試体とした。各材料の供試体のうち、一つはそのままで(非被覆供試体)、もう一つは容器上面を医療用ガーゼでラップし(被覆供試体)、図1に示すような人工海水入りの水槽に設置(室内)し、往復流を作用させつつ、各材料の粘着力が20kN/m以上になるまでの日数(但し、91日を上限とする)と材料の流失性を調べた。その結果を以下に示す。 In this test, a plastic container of φ100 mm × H200 mm is filled with artificial seawater, each material (a) to (f) is dropped freely from the position 10 cm above it and filled into the plastic container, and then the upper surface is ground. This was used as a specimen. Among the specimens of each material, one is left as it is (uncoated specimen), and the other is wrapped with medical gauze (coated specimen) on the upper surface of the container, and a water tank containing artificial seawater as shown in FIG. (Inside the room), while reciprocating flow was applied, the number of days until the adhesive strength of each material reached 20 kN / m 2 or more (however, 91 days was the upper limit) and the material flowability were examined. The results are shown below.

○非被覆供試体
材料(a) 91日後に粘着力:20kN/m以上。上面が最大8mm流失。
材料(b) 21日後に粘着力:20kN/m以上。上面が最大3mm流失。
材料(c) 28日後に粘着力:20kN/m以上。上面が最大3mm流失。
材料(d) 56日後に粘着力:20kN/m以上。上面が最大5mm流失。
材料(e) 91日後に粘着力:18kN/m。上面が最大5mm流失。
材料(f) 91日後でも粘着力は測定不可(固化せず)。上面が最大1mm流失。
○被覆供試体
材料(a)〜(f)ともに、上記各日数経過後の粘着力は上記非被覆供試体と同じ。但し、いずれの材料も上面の流失なし。
○ Uncoated specimen Material (a) Adhesive strength after 91 days: 20 kN / m 2 or more. The top surface is washed away by a maximum of 8 mm.
Material (b) Adhesive strength after 21 days: 20 kN / m 2 or more. The top surface is washed away by up to 3 mm.
Material (c) Adhesive strength after 28 days: 20 kN / m 2 or more. The top surface is washed away by up to 3 mm.
Material (d) Adhesive strength after 56 days: 20 kN / m 2 or more. The upper surface is washed away by a maximum of 5 mm.
Material (e) Adhesive strength after 91 days: 18 kN / m 2 . The upper surface is washed away by a maximum of 5 mm.
Material (f) Adhesive strength cannot be measured even after 91 days (no solidification). The top surface is washed away by a maximum of 1 mm.
○ Coated specimens In both materials (a) to (f), the adhesive strength after the passage of each day is the same as that of the uncoated specimens. However, there is no loss of the top surface of any material.

また、固結性の観点からは、鉄鋼スラグとしては、高い潜在水硬性を有している高炉水砕スラグが特に好ましい。このため材料A(鉄鋼スラグ単独材又は鉄鋼スラグ+その他材料の混合材)は、少なくとも一部が高炉水砕スラグであることが好ましい。特に、材料Aは高炉水砕スラグの割合が30mass%以上であること、より好ましくは50mass%以上、さらに好ましくは70mass%以上であることが望ましい。
ここで、高炉水砕スラグは、粒度が細かいほど水硬後の粘着力が大きいため、材料A中には粒径2mm以下(篩目2mmの篩下)の高炉水砕スラグが20mass%以上含まれることが好ましい。高炉水砕スラグの粒度が細かいほど水硬後の粘着力が大きくなるのは、スラグ粒子どうしの接点数が多くなるからであり、上記粒度が好ましい理由は以下のとおりである。
Moreover, from the viewpoint of caking property, blast furnace granulated slag having high latent hydraulic property is particularly preferable as the steel slag. For this reason, it is preferable that at least a part of the material A (steel slag alone or a mixture of steel slag and other materials) is blast furnace granulated slag. In particular, it is desirable that the material A has a ratio of granulated blast furnace slag of 30 mass% or more, more preferably 50 mass% or more, and further preferably 70 mass% or more.
Here, since the granulated blast furnace slag has a greater adhesive strength after being hydraulic as the particle size is finer, the material A contains blast furnace granulated slag having a particle size of 2 mm or less (under 2 mm sieve) of 20 mass% or more. It is preferred that The reason why the adhesive strength after hydraulic working increases as the particle size of the granulated blast furnace slag becomes fine is that the number of contacts between the slag particles increases. The reason why the particle size is preferable is as follows.

高炉水砕スラグの見掛け上の体積をVとし、このスラグ体積V中でのスラグ粒子の占めている体積Vsと、スラグ粒子間の間隙の体積Vvとの比率Vv/Vsをスラグの間隙比eとしたとき、高炉水砕スラグの体積V(cm)当たりのスラグ粒子の接点数Nが、

Figure 2007154646
e:間隙比(−)
d:スラグ粒子径(cm)
で表されるものとすると、接点数Nが概ね500個/cm以上あれば、高炉水砕スラグは水硬作用により固結しやすくなることが本発明者らの実験で確認されている。ここで、スラグ粒子径が2mm以下のスラグの平均粒径を求めたところ約0.92mmであり、水中自由落下により堆積したスラグの間隙比は平均で1.05であったことから、粒径2mm以下の割合が20mass%である場合の接点数Nを求めると、
Figure 2007154646
となり、材料中に粒径2mm以下の高炉水砕スラグが20mass%以上含まれれば、材料が固結しやすい条件であると言える。 The apparent volume of the granulated blast furnace slag is V, and the ratio Vv / Vs between the volume Vs occupied by the slag particles in the slag volume V and the volume Vv of the gap between the slag particles is defined as the slag gap ratio e. When the number of contact points N of slag particles per volume V (cm 3 ) of blast furnace granulated slag is
Figure 2007154646
e: Gap ratio (-)
d: Slag particle diameter (cm)
If the number N of contacts is approximately 500 / cm 3 or more, it has been confirmed by experiments of the present inventors that the granulated blast furnace slag is easily consolidated by hydraulic action. Here, when the average particle diameter of the slag having a slag particle diameter of 2 mm or less was obtained, it was about 0.92 mm, and the gap ratio of the slag deposited by free fall in water was 1.05 on average. When the number of contacts N when the ratio of 2 mm or less is 20 mass%,
Figure 2007154646
If the material contains 20 mass% or more of granulated blast furnace slag having a particle size of 2 mm or less, it can be said that the material is easily consolidated.

以上の理由から、材料A中には粒径2mm以下の高炉水砕スラグが20mass%以上含まれることが好ましいが、一般に高炉水砕スラグは80mass%以上が粒径2mm以下であることから、材料A中の高炉水砕スラグの割合が30mass%以上であれば、上記好ましい条件がほぼ満足されることになる。
さらに、製鋼スラグ(特に好ましくは、脱炭スラグ又は/及び脱燐スラグ)は高炉水砕スラグのアルカリ刺激剤として有効に作用するため、高炉水砕スラグと製鋼スラグとを適当な割合で混合して用いるのが最も好ましい。以上の点は、さきに挙げた固結試験の結果や後述する実施例2などの結果からも裏付けられる。すなわち、これらの結果によれば、高炉水砕スラグ:製鋼スラグの質量比がほぼ6:1〜1:1の範囲において、特に高い波浪安定性が得られている。
For the above reasons, it is preferable that the material A contains 20 mass% or more of granulated blast furnace slag having a particle size of 2 mm or less. Generally, blast furnace granulated slag of 80 mass% or more has a particle size of 2 mm or less. If the ratio of granulated blast furnace slag in A is 30 mass% or more, the above preferable conditions are almost satisfied.
Furthermore, steelmaking slag (particularly preferably, decarburized slag or / and dephosphorized slag) acts effectively as an alkali stimulator for blast furnace granulated slag, so that blast furnace granulated slag and steelmaking slag are mixed at an appropriate ratio. And most preferably used. The above points are supported by the results of the consolidation test mentioned above and the results of Example 2 described later. That is, according to these results, particularly high wave stability is obtained when the mass ratio of granulated blast furnace slag: steel slag is approximately 6: 1 to 1: 1.

次に、固結した材料Aが備えるべき粘着力について説明する。
この粘着力は、JIS A 1216の「土の一軸圧縮試験方法」に基づき求められた試料の一軸圧縮強さquの1/2の値である。粘着力は、一般的には、三軸圧縮試験(例えば、地盤工学会基準JGS 0521−2000 土の非圧密非排水(UU)三軸圧縮試験方法)により直接求めた方が、スラグ粒子の噛み合わせ効果も考慮されるため望ましい。しかし、水中施工材料(例えば、潜堤材料)の流失のような設計的事項には、設計上の安全を見てスラグ粒子の噛み合わせ効果を考えなくてもよい。このため本発明では、より簡便且つ低コストに比較的精度の高い粘着力を求めることができる上記一軸圧縮強さquを基に粘着力を規定した。
本発明法では、容器内の材料Aを粘着力が15kN/m以上、望ましくは20kN/m以上、特に望ましくは35kN/m以上となるように固結させることが好ましい。
Next, the adhesive force that the consolidated material A should have will be described.
This adhesive strength is a value of ½ of the uniaxial compressive strength qu of the sample obtained based on the “uniaxial compression test method of soil” of JIS A1216. In general, the adhesive strength is determined more directly by a triaxial compression test (for example, JGS 0521-2000 soil unconsolidated undrained (UU) triaxial compression test method). This is desirable because the effect of combining is taken into consideration. However, it is not necessary to consider the meshing effect of the slag particles in the design matters such as the loss of the underwater construction material (for example, the submerged dike material) in view of design safety. For this reason, in this invention, adhesive force was prescribed | regulated based on the said uniaxial compression strength qu which can obtain | require the comparatively highly accurate adhesive force more simply and at low cost.
In the method of the present invention, the material A in the container is preferably consolidated so that the adhesive strength is 15 kN / m 2 or more, desirably 20 kN / m 2 or more, and particularly desirably 35 kN / m 2 or more.

水中構造体が備えるべき適正な粘着力を調べるために、実物の1/20のスケールで図2に示すような潜堤模型を作り、不規則波を48時間及び96時間作用させる水理実験を行った。模型は、海底勾配1/50、水深20cm、潜堤の高さ10cm、潜堤幅30cm、潜堤の勾配1/2とした。実験条件は、フルード相似則により決めた。
潜堤は、実物200kg/個相当の長方形コンクリートブロックで構築したもの、粘土(含水比等を調整して粘着力をパラメーターとした)で構築したものの2種類とした。
表1に実験結果を示すが、これによれば、粘着力がほぼ15kN/m以上、好ましくはほぼ20kN/m以上あれば、高い波浪安定性が得られ、潜堤として十分機能することが判る。また、粘着力がほぼ35kN/m以上では、特に高い波浪安定性が得られることが判る。
In order to investigate the appropriate adhesive strength that the underwater structure should have, a hydraulic model was created by making a submerged dike model as shown in Fig. 2 on a scale of 1/20 of the actual size and allowing irregular waves to act for 48 hours and 96 hours. went. The model had a seabed gradient of 1/50, a water depth of 20 cm, a submerged dike height of 10 cm, a submerged dike width of 30 cm, and a submerged dike gradient of 1/2. The experimental conditions were determined by the fluid similarity law.
There were two types of submerged dike, one constructed with a rectangular concrete block equivalent to an actual 200 kg / piece, and one constructed with clay (adhesive strength was adjusted by adjusting the water content ratio etc.).
Table 1 shows the experimental results. According to this, if the adhesive strength is about 15 kN / m 2 or more, preferably about 20 kN / m 2 or more, high wave stability can be obtained, and it functions sufficiently as a submerged dike. I understand. It can also be seen that particularly high wave stability can be obtained when the adhesive strength is approximately 35 kN / m 2 or more.

Figure 2007154646
Figure 2007154646

本発明法では、容器として水中で経時的に分解又は/及び腐蝕する容器を用い、容器内の材料Aが固結した後に、容器の少なくとも主要部を分解又は/及び腐蝕により消失(自然消失)させるようにすることが特に好ましい。
図3は、この方法で潜堤を施工する場合の一実施形態(潜堤縦断面)を示しており、2は材料A(以下、潜堤材という)を入れた容器(袋体)である。この方法では、透水性があり且つ水中で経時的に分解又は/及び腐蝕する容器2内に潜堤材を入れ、この容器2を積み上げることにより堤構造体1(潜堤)を構築する。
In the method of the present invention, a container that decomposes or corrodes with time in water is used as the container, and after the material A in the container is consolidated, at least the main part of the container disappears by decomposition or / and corrosion (natural disappearance). It is particularly preferable to make them.
FIG. 3 shows an embodiment (a submerged longitudinal section) in the case of constructing a submerged dike by this method, and 2 is a container (bag) containing material A (hereinafter referred to as submerged dike material). . In this method, a dike structure 1 (submerged dike) is constructed by placing a dike material in a container 2 that is water permeable and decomposes or / and corrodes over time in water.

この方法のように容器2を水中で経時的に分解又は/及び腐蝕する材料で構成し、最終的に自然消失させるのは、容器2がゴミ化するなどして環境汚染を生じさせるのを防止すること、潜堤などのような構造体を生物(水中動植物)の生息・生育に好適な環境とするには、構造体面に固結した粒状材料が露出した状態(岩肌の状態)となることが必要であること、などのためである。   Constructing the container 2 with a material that decomposes and / or corrodes over time in water as in this method, and finally eliminating it spontaneously prevents the container 2 from becoming contaminated and causing environmental pollution. In order to make structures such as submersibles suitable for the inhabiting and growth of living organisms (underwater animals and plants), the granular material solidified on the surface of the structure must be exposed (rock surface) Because it is necessary.

容器2の材料としては、例えば、生分解性プラスチック製のシートや網、植物又は植物繊維製のシートや網(例えば、筵、麻織布など)、鋼製などの金属箔、金属網などを用いることができるが、これに限定されるものではない。水中(特に海水中)において例えば数ヶ月〜1年位の間に、少なくとも主要な部分が徐々に分解又は/及び腐蝕して最終的に自然消失するものであって、且つその分解・腐蝕が水中の環境に悪影響を与えないようなものが好ましい。
また、先に述べたように、水底などの形状に合わせて容器2を積み上げて構造体などを構築するためには、容器2は上記材質などからなる袋体であることが好ましい。
また、容器2は、その内部の材料Aが固結しないうちは消失せず、必要な流失防止機能を果たすようにするため、その種類・組成や厚さなどを選択すればよい。
Examples of the material of the container 2 include a biodegradable plastic sheet or net, a plant or plant fiber sheet or net (for example, cocoon, hemp cloth, etc.), a metal foil made of steel, a metal net, or the like. Although it can be used, it is not limited to this. In water (especially in seawater), for example, for several months to one year, at least the main part gradually decomposes and / or corrodes and eventually spontaneously disappears, and the decomposition and corrosion is underwater. Those that do not adversely affect the environment are preferred.
Further, as described above, in order to build up a structure or the like by stacking the containers 2 in accordance with the shape of the water bottom or the like, the containers 2 are preferably bag bodies made of the above materials or the like.
Further, the container 2 may be selected for its type, composition, thickness, etc. so that it does not disappear as long as the material A inside the container 2 does not consolidate and fulfills the necessary anti-flow-off function.

また、図4は、潜堤を施工する場合の他の実施形態(潜堤縦断面)を示しており、堤構造体1の外層部を潜堤材(材料A)を入れた容器2(特に袋体が好ましい)で構成し、内層部を潜堤材をそのまま積み上げて構成したものである。また、内層部には本発明が規定する材料A以外の潜堤材(例えば、建設残土、浚渫土、塊状製鋼スラグなどの1種)を用いてもよい。
また、図5は、傾斜護岸を施工する場合の一実施形態(護岸縦断面)を示しており、傾斜護岸3のアンコ材として材料Aを入れた容器2(特に袋体が好ましい)を設置し、その上に他の護岸材4を設置したものである。
FIG. 4 shows another embodiment (submerged vertical longitudinal section) in the case of constructing a submerged dike, and a container 2 (particularly, a submerged dike material (material A) is placed in the outer layer portion of the dike structure 1. A bag body is preferable), and the inner layer portion is formed by stacking the submerged dike material as it is. Moreover, you may use latent-bank materials other than the material A which this invention prescribes | regulates (for example, 1 type, such as construction residual soil, dredged soil, and massive steel-making slag) for an inner layer part.
FIG. 5 shows an embodiment (a revetment longitudinal section) in the case of constructing an inclined revetment, and a container 2 (particularly a bag body) containing material A as an anchor material for the inclined revetment 3 is installed. The other revetment material 4 is installed on top of it.

容器2に用いる生分解性プラスチックとは、土中または海水中などの環境に置かれた際に微生物により分解され、最終的に水と二酸化炭素になるプラスチックを指す。この種のプラスチックは、通常の使用状態では他の一般的なプラスチックと同等の機能(強度など)を有する。
使用する生分解性プラスチックの種類に特別な制限はないが、例えば、トウモロコシなどの植物性のデンプンを主原料としたポリ乳酸、微生物が作るPHB、バクテリアセルロースなどを用いることができる。また、これらを用いる場合、例えば、分解速度が速いバクテリアセルロースと分解速度が遅いポリ乳酸を混合し、それらの混合率を調整することにより容器2の分解速度を調整することができる。
The biodegradable plastic used for the container 2 refers to a plastic that is decomposed by microorganisms and finally becomes water and carbon dioxide when placed in an environment such as soil or seawater. This type of plastic has functions (strength, etc.) equivalent to other general plastics under normal use conditions.
There are no particular restrictions on the type of biodegradable plastic used, but for example, polylactic acid mainly made from plant starch such as corn, PHB produced by microorganisms, and bacterial cellulose can be used. When these are used, for example, bacterial cellulose having a high decomposition rate and polylactic acid having a low decomposition rate are mixed, and the decomposition rate of the container 2 can be adjusted by adjusting the mixing ratio thereof.

生分解性プラスチック製の容器2は、水中に置かれた後、水中の微生物により経時的に分解され、最終的に消失するが、生分解性プラスチックの種類・組成や被覆の厚さなどを選択することにより、水中での分解・消失期間を設定することができる。
生分解性プラスチックは分解してCOと水になるため、自然環境に悪影響を与える恐れは全くない。
The biodegradable plastic container 2 is placed in water and then decomposed over time by the microorganisms in the water, eventually disappearing. Select the type and composition of the biodegradable plastic and the thickness of the coating. By doing so, the decomposition / disappearance period in water can be set.
Biodegradable plastic decomposes into CO 2 and water, so there is no risk of adverse effects on the natural environment.

また、生分解性プラスチック製の容器2には、全てが生分解性プラスチックで構成されるもの以外に、一部に生分解性プラスチック以外の物質を混合し或いは物理的に組み合わせたもの(すなわち、生分解性プラスチックを主体とした被覆体や容器)も含まれる。要は、主たる構成物質または構成部材である生分解性プラスチックが経時的に分解・消失することで、容器2の主要部が消失できるものであればよい。
本発明法は、例えば、潜堤や護岸などの構造体の施工、水底での各種基礎・基盤の施工などに好適であり、なかでも潜堤の施工・構築に特に好適であるが、これらに限らず、鉄鋼スラグを水中設置するためのあらゆる施工工事に適用できる。また、適用される水域も、港湾や内海などの沿岸海域だけでなく、河川、河口、湖沼など任意である。
In addition, the biodegradable plastic container 2 may be a mixture of materials other than the biodegradable plastic or a physical combination of the biodegradable plastic 2 in addition to the one composed entirely of the biodegradable plastic (that is, Covers and containers mainly made of biodegradable plastics are also included. The point is that the main component of the container 2 can be lost by the biodegradable plastic as the main constituent material or component being decomposed and lost over time.
The method of the present invention is suitable for, for example, construction of structures such as submersibles and revetments, construction of various foundations and foundations at the bottom of the water, and particularly suitable for construction and construction of submersibles. Not limited to, it can be applied to any construction work for installing steel slag underwater. In addition, the applicable water areas are not limited to coastal sea areas such as harbors and inland seas, but are also arbitrary such as rivers, estuaries and lakes.

[実施例1]
高炉水砕スラグ14kgと粒径40mm以下の脱燐スラグ(製鋼スラグ)6kgの混合物を麻袋に入れ、護岸の緊急補修工事において、前記スラグ入りの麻袋を、図6(A)に示すような形態で海面下5〜2mに1000体投入した。投入して1ヵ月後に調査した結果、波に流されることなく、内部のスラグが固結したことにより麻袋は変形した状態で保形していた。さらに、投入3ヶ月後、一部の麻袋から固結したスラグの試料を採取してその粘着力を測定したところ、粘着力は28kN/mであった。
[Example 1]
A mixture of 14 kg of granulated blast furnace slag and 6 kg of dephosphorized slag (steel slag) having a particle size of 40 mm or less is put in a hemp bag. Then, 1000 bodies were put in 5 to 2 m below the sea level. As a result of investigating one month after the introduction, the hemp bag was kept in a deformed state due to the solidification of the internal slag without being swept away by waves. Furthermore, three months after the injection, a sample of slag consolidated from some hemp bags was collected and its adhesive strength was measured. The adhesive strength was 28 kN / m 2 .

[実施例2]
高炉水砕スラグ850kgと粒径20mm以下の脱燐スラグ(製鋼スラグ)150kgの混合物を生分解性プラスチック製のトン袋に入れ、潜堤工事において、前記スラグ入りのトン袋を、潜堤材の一部として図6(B)に示すような形態で海面下10〜3mに24体投入した。投入して3ヶ月後に調査した結果、波に流されることなく、内部のスラグが固結したことによりトン袋は変形した状態で保形していた。また、一部のトン袋から固結したスラグの試料を採取してその粘着力を測定したところ、粘着力は37kN/mであった。さらに、投入から1年後に調べたところ、生分解性プラスチック製トン袋は半分以上の部分が分解消失し、固結したスラグ表層には、貝などの付着が認められた。
[Example 2]
A mixture of 850 kg of granulated blast furnace slag and 150 kg of dephosphorized slag (steel slag) having a particle size of 20 mm or less is put into a ton bag made of biodegradable plastic. As a part, 24 bodies were thrown 10 to 3 m below the sea surface in the form shown in FIG. As a result of investigating three months after the injection, the ton bag was kept in a deformed state due to the solidification of the internal slag without being swept away by waves. Moreover, when the sample of the slag solidified from some ton bags was extract | collected and the adhesive force was measured, the adhesive force was 37 kN / m < 2 >. Further, when examined one year after the introduction, more than half of the biodegradable plastic ton bag was decomposed and disappeared, and adhesion of shellfish and the like was observed on the solidified slag surface layer.

材料の固結試験の実施方法を示す説明図Explanatory drawing showing the method for conducting the consolidation test of materials 水中構造体の粘着力試験に用いた潜堤模型を示す説明図Explanatory drawing showing a submerged dike model used for the adhesion test of underwater structures 本発明法を潜堤の施工に適用した場合の一実施形態(潜堤縦断面)を示す説明図Explanatory drawing which shows one Embodiment (submerged dike longitudinal section) at the time of applying this invention method to construction of a submerged dike 本発明法を潜堤の施工に適用した場合の他の実施形態(潜堤縦断面)を示す説明図Explanatory drawing which shows other embodiment at the time of applying this invention method to construction of a submerged dike (submerged dike longitudinal section) 本発明法を傾斜護岸の施工に適用した場合の一実施形態(護岸縦断面)を示す説明図Explanatory drawing which shows one embodiment (the revetment longitudinal section) at the time of applying this invention method to construction of a slope revetment 実施例における施工状況を示す説明図Explanatory drawing which shows the construction situation in an Example

符号の説明Explanation of symbols

1 堤構造体
2 容器
3 傾斜護岸
4 護岸材
1 Levee structure 2 Container 3 Inclined revetment 4 Revetment material

Claims (7)

鉄鋼製造プロセスで発生したスラグを主体とする材料(但し、鉄鋼製造プロセスで発生したスラグのみからなる材料の場合を含む)を、透水性がある容器に入れ、該容器を水中に置いて容器内の材料を前記スラグの水硬作用により固結させることを特徴とする、鉄鋼スラグを水中設置するための施工方法。   Put slag generated mainly in the steel manufacturing process (including the case of material consisting only of slag generated in the steel manufacturing process) into a water-permeable container and place the container in water A construction method for installing steel slag underwater, wherein the material is consolidated by the hydraulic action of the slag. 容器が袋体であることを特徴とする、請求項1に記載の鉄鋼スラグを水中設置するための施工方法。   The construction method for installing the steel slag according to claim 1, wherein the container is a bag. 容器が水中で経時的に分解又は/及び腐蝕する容器であり、容器内の材料が固結した後に、該容器の少なくとも主要部を分解又は/及び腐蝕により消失させることを特徴とする、請求項1又は2に記載の鉄鋼スラグを水中設置するための施工方法。   The container is a container that decomposes or corrodes over time in water, and after the material in the container is consolidated, at least a main part of the container is lost by decomposition or / and corrosion. The construction method for installing the steel slag of 1 or 2 underwater. 容器内の材料を、粘着力(但し、JIS A 1216の「土の一軸圧縮試験方法」に基づき求められた試料の一軸圧縮強さquの1/2の値)が15kN/m以上となるように固結させることを特徴とする、請求項1〜3のいずれかに記載の鉄鋼スラグを水中設置するための施工方法。 Adhesive strength of the material in the container (however, a value of 1/2 of the uniaxial compressive strength qu of the sample obtained based on the “uniaxial compressive test method of soil” of JIS A 1216) is 15 kN / m 2 or more. The construction method for installing the steel slag in any one of Claims 1-3 characterized by the above-mentioned. 容器内の材料を、粘着力(但し、JIS A 1216の「土の一軸圧縮試験方法」に基づき求められた試料の一軸圧縮強さquの1/2の値)が20kN/m以上となるように固結させることを特徴とする、請求項1〜3のいずれかに記載の鉄鋼スラグを水中設置するための施工方法。 Adhesive strength of the material in the container (however, a value of 1/2 of the uniaxial compressive strength qu of the sample obtained based on the “uniaxial compressive test method of soil” of JIS A 1216) is 20 kN / m 2 or more. The construction method for installing the steel slag in any one of Claims 1-3 characterized by the above-mentioned. 容器内の材料は、高炉水砕スラグの割合が30mass%以上であることを特徴とする、請求項1〜5のいずれかに記載の鉄鋼スラグを水中設置するための施工方法。 The construction method for installing steel slag in any one of Claims 1-5 characterized by the ratio of blast furnace granulated slag being 30 mass% or more as for the material in a container. 材料を入れた容器により、少なくとも潜堤外層部の一部を構築することを特徴とする、請求項1〜6のいずれかに記載の鉄鋼スラグを水中設置するための施工方法。   The construction method for installing steel slag in any one of Claims 1-6 characterized by constructing at least one part of a submerged dike outer layer part with the container which put material.
JP2006242993A 2005-09-07 2006-09-07 Construction method for underwater installation of steel slag Active JP5125037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242993A JP5125037B2 (en) 2005-09-07 2006-09-07 Construction method for underwater installation of steel slag

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005259145 2005-09-07
JP2005259145 2005-09-07
JP2005324176 2005-11-08
JP2005324176 2005-11-08
JP2006242993A JP5125037B2 (en) 2005-09-07 2006-09-07 Construction method for underwater installation of steel slag

Publications (2)

Publication Number Publication Date
JP2007154646A true JP2007154646A (en) 2007-06-21
JP5125037B2 JP5125037B2 (en) 2013-01-23

Family

ID=38239362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242993A Active JP5125037B2 (en) 2005-09-07 2006-09-07 Construction method for underwater installation of steel slag

Country Status (1)

Country Link
JP (1) JP5125037B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019134A (en) * 2011-07-08 2013-01-31 Toyo Constr Co Ltd Breakwater
JP2013081441A (en) * 2011-10-12 2013-05-09 Nippon Steel & Sumitomo Metal Corp Artificial mineral feed material
JP2020190086A (en) * 2019-05-20 2020-11-26 東洋建設株式会社 Material utilizing coal ash, and reclaiming method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102452965B (en) * 2010-10-22 2013-08-14 中国石油化工股份有限公司 Method for removing polymerization inhibitor in AMPS (2-acrylamide-2-methyl propanesulfonic acid) raw material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238401A (en) * 2000-12-14 2002-08-27 Nkk Corp Method for improving underwater environment
JP2004000104A (en) * 2001-09-11 2004-01-08 Kokan Kogyo Kk Method for improving underwater or environmental water shore
JP2004236645A (en) * 2003-02-05 2004-08-26 Sakurai:Kk Method for roasting food material and roasting pot used for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238401A (en) * 2000-12-14 2002-08-27 Nkk Corp Method for improving underwater environment
JP2004000104A (en) * 2001-09-11 2004-01-08 Kokan Kogyo Kk Method for improving underwater or environmental water shore
JP2004236645A (en) * 2003-02-05 2004-08-26 Sakurai:Kk Method for roasting food material and roasting pot used for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019134A (en) * 2011-07-08 2013-01-31 Toyo Constr Co Ltd Breakwater
JP2013081441A (en) * 2011-10-12 2013-05-09 Nippon Steel & Sumitomo Metal Corp Artificial mineral feed material
JP2020190086A (en) * 2019-05-20 2020-11-26 東洋建設株式会社 Material utilizing coal ash, and reclaiming method
JP7213140B2 (en) 2019-05-20 2023-01-26 東洋建設株式会社 Material using coal ash and landfill method

Also Published As

Publication number Publication date
JP5125037B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
US8193115B2 (en) Method for solidifying high moisture sludge
JP5125037B2 (en) Construction method for underwater installation of steel slag
JP5400680B2 (en) Artificial shallow or tidal flat
JP5070667B2 (en) Underwater environment improvement method
JP4736443B2 (en) Construction method of shallow ground
JP5181447B2 (en) Submerged dike construction method and submerged dike
WO2012040470A2 (en) Installation of leakage barriers to enhance yield of mineral deposits in unlined solar pond systems
JP2000157094A (en) Stone material for sinking and disposing in water and its production
JP2005240544A (en) Method of developing shallows and the like
Dubey et al. Erosion mitigation with biocementation: a review on applications, challenges, & future perspectives
JP5125063B2 (en) Construction method for installing granular and massive Ca-containing materials in water
JP5245241B2 (en) Submerged dike construction method and submerged dike
Burt Guidelines for the beneficial use of dredged material
JPH0765304B2 (en) Tidal flat creation method
WO2009058011A1 (en) Method for preparing a structure in a body of water
JP5742477B2 (en) How to backfill the Ogikubo land
Chan et al. Some insights to the reuse of dredged marine soils by admixing with activated steel slag
JP2004024204A (en) Method for improving environment in water or on beach and environment improving material
Kaliannan et al. 1D Compressibility of DMS treated with cement-GGBS blend
JP5627283B2 (en) Treatment method of seabed sediment
JP2006214084A (en) Method for developing shallows and the like
JP2004000104A (en) Method for improving underwater or environmental water shore
Koslanant Influence of storage conditions on geotechnical properties of Ariake clay and on its chemical stabilization
JP7424933B2 (en) Algae growing material
Chan et al. Remoulded Strength of High Plasticity Marine Silt Retrieved from Maintenance Dredging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250