JP4867067B2 - Control device for permanent magnet type synchronous motor - Google Patents

Control device for permanent magnet type synchronous motor Download PDF

Info

Publication number
JP4867067B2
JP4867067B2 JP2000368156A JP2000368156A JP4867067B2 JP 4867067 B2 JP4867067 B2 JP 4867067B2 JP 2000368156 A JP2000368156 A JP 2000368156A JP 2000368156 A JP2000368156 A JP 2000368156A JP 4867067 B2 JP4867067 B2 JP 4867067B2
Authority
JP
Japan
Prior art keywords
direct
current
voltage
axis
voltage command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000368156A
Other languages
Japanese (ja)
Other versions
JP2002171798A (en
Inventor
高裕 山崎
博 大沢
尚史 野村
信夫 糸魚川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000368156A priority Critical patent/JP4867067B2/en
Publication of JP2002171798A publication Critical patent/JP2002171798A/en
Application granted granted Critical
Publication of JP4867067B2 publication Critical patent/JP4867067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転子に突極性を有する永久磁石形同期電動機(PMモータ)の制御装置に関し、特に回転子の磁極位置(以下、回転子位置という)を検出するための位置検出センサを使用しない永久磁石形同期電動機の制御装置に関するものである。
【0002】
【従来の技術】
永久磁石形同期電動機の高性能制御には、回転子の位置情報が必要である。
一般に位置検出センサとして、エンコーダやレゾルバなどが用いられているが、低コスト化を目的として、電動機の電圧や電流の情報から電気的に回転子位置を推定演算するセンサレス制御が提案されている。その一手法として、特開平7−245981号公報に記載された磁極位置検出装置が知られている。この公知技術に記載された回転子位置の検出手法は、突極性を有する永久磁石形同期電動機に高周波電圧を印加し、その結果として流れる突極性に起因した高周波電流から回転子位置を推定演算するものである。
【0003】
しかしながら、特開平7−245981号公報による回転子位置の推定演算方法は、原理的に180°の位置推定誤差を持つことがあり、これを補正するための演算(以下、この演算を「磁極判別」と呼ぶ。)が必要となる。この磁極判別法としては、
・電気学会論文誌D「産業応用部門誌」1990年11月 Vol.110 pp.1193〜1200
・電気学会論文誌D「産業応用部門誌」1996年7月 Vol.116 pp736〜742
・IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL.32, NO.5, SEPTEMBER/OCTOBER 1996
等が提案されている。
【0004】
上記磁極判別方法は何れも電動機鉄心の磁気飽和特性を利用したものであり、回転子位置推定値を使用し、直軸電流を正極性および負極性に制御したときの電流の変化率の違いを使って磁極判別を行う。ここで、今後の理解を容易にするために、用語を説明する。
まず、直軸とは回転子永久磁石の磁極方向にとった座標軸であり、直軸電流とは直軸方向の電流成分である。言い換えるならば、正の直軸電流は永久磁石による磁束を強めるように作用し、負の直軸電流とは永久磁石による磁束を弱めるように作用する電流成分である。電圧に関しても同じように定義し、直軸電圧とは直軸方向の電圧成分である。また、直軸と直交方向に横軸を定義し、横軸方向の電流、電圧をそれぞれ横軸電流、横軸電圧と呼ぶ。
【0005】
図4に、永久磁石形同期電動機のセンサレス制御装置の磁極判別法の従来技術を示す。
図4において、電動機(PMモータ)40の電圧指令は座標変換器1に入力される。ここで、直軸電圧指令vd *には通常、方形波状の高周波電圧(基本波電圧成分と異なる周波数の高周波電圧であり、以下では、この電圧を方形波電圧という)が重畳され、横軸電圧指令vq *としては零が与えられる。
【0006】
座標変換器1は、積分器8から出力される位置推定値θと前記電圧指令v ,v とに基づいて三相電圧指令v ,v ,v を演算する。これらの電圧指令v ,v ,v をPWM回路3により電力変換器(インバータ)30のスイッチング素子に対するゲート信号に変換して、電動機40の端子電圧を制御する。なお、20は三相交流電源である。
【0007】
座標変換器2は、電力変換器30の出力側から検出した電機子電流i,iと位置推定値θとから、直軸電流i、横軸電流iを演算する。高周波分離フィルタ4は、iから方形波電圧と同じ周波数成分の横軸高周波電流iqhを分離・抽出する。
【0008】
なお、二つのスイッチAと三つのスイッチBとが連動スイッチとして設けられており、直軸電圧指令v にはスイッチAまたはスイッチBにより選択された電圧が重畳される。また、メモリ5には直軸電流iがスイッチBにより入力され、積分器8には、横軸高周波電流iqhが入力される速度推定器7の出力がスイッチAにより、零がスイッチBにより入力されるようになっている。
【0009】
運転開始時は、始めに突極性を利用した位置推定を行う。図示するようにスイッチAが全て閉じており、スイッチBが全て開いている。スイッチAが閉じているので、直軸電圧指令v は、図示するような正負に値が繰り返す方形波電圧となる。
速度推定器7は、高周波分離フィルタ4により分離された横軸高周波電流iqhの値から速度推定値を演算し、積分器8は、速度推定値を積分して位置推定値θを演算する。
この結果、位置推定値θは、真値または180°の誤差をもった値に収束する。
【0010】
次に、磁極判別について説明する。この場合には図示の状態とは逆で、スイッチAは全て開き、スイッチBは全て閉じている。直軸電圧指令v としては、方形波電圧の代わりに、磁極判別用試験信号として間欠的に正極性及び負極性となるパルス電圧が与えられており、直軸電流iを零から正へ、または零から負へ制御する。
このとき、方形波電圧の重畳は停止されていて横軸高周波電流iqhを使った速度・位置推定演算ができないので、積分器8には零を入力することによりその動作を停止して位置推定値θを固定する。
正極性及び負極性のパルス電圧を印加したときの直軸電流iの変化率△idp,△idmは、それぞれメモリ5に記憶される。
【0011】
磁極判別器6は、△idp,△idmの値を比較して、積分器8の出力を次の数式1によりプリセットし、位置推定値の演算誤差を補正する。すなわち、速度推定器7の出力を積分した値を第1の位置推定値とすれば、この第1の位置推定値を数式1によりプリセットして補正した第2の位置推定値θを生成し、出力する。
【0012】
[数式1]
(a) △idp<△idmのとき → θ=θ(前回値)+180°
(b) △idp>△idmのとき → θ=θ(前回値)
【0013】
【発明が解決しようとする課題】
従来の制御では、磁極判別の際には位置推定演算を停止する必要がある。このため、回転子が回転している場合は回転子位置が不明であり、パルス電圧を正確に直軸の正方向および負方向に出力できずに磁極判別を誤る恐れがある。また、磁極判別を行なっている間は基本波電流を制御できないため、回転子の回転に伴う誘起電圧により電機子に過大な電流が流れる恐れがある。
そこで本発明は、位置推定演算を磁極判別と同時に実行可能とし、更に磁極判別時にも基本波電流の制御を行えるようにして過電流の発生を防止するようにした永久磁石形同期電動機の制御装置を提供しようとするものである。
【0014】
【課題を解決するための手段】
本発明においては、基本波電圧に周波数の異なる高周波電圧、例えば方形波電圧を重畳し、電機子に流れる高周波電流を使って位置推定値を演算する。そして、磁極判別用試験信号としてのパルス電圧を高周波電圧に重畳するか、直軸電流または横軸電流の極性を制御し、位置推定を行ないながら、高周波電圧に同期したタイミングで磁極判別用試験信号成分を検出電流から抽出し、このときの電流の変化率や振幅に基づいて磁極判別を行い、位置推定値を補正する。なお、前記パルス電圧のパルス幅は、磁気飽和領域に到達するぐらい十分な長さとし、高周波電圧に同期させる。
位置推定のための信号は、重畳した高周波電圧の周波数成分をフィルタによって検出電流から抽出することで直接検出可能である。また、磁極判別用の試験信号は、前記高周波電圧に対して一定の位相差をもって同期したパルス電圧等を重畳させることで、容易かつ直接に、しかも位置推定のための信号の検出と同時に検出することができる。
【0015】
すなわち、請求項1記載の発明は、回転子に突極性を有する永久磁石形同期電動機を電力変換器により駆動するための制御装置であって、位置検出センサを用いずに速度推定値から回転子位置を推定し、この位置推定値を用いて電動機に対する電圧指令を直軸電圧指令及び横軸電圧指令に分離して制御するようにした永久磁石形同期電動機の制御装置において、
直軸基本波電圧指令に高周波電圧を重畳して直軸電圧指令を生成する手段と、
電動機の電機子電流を直軸電流及び横軸電流に分解し、前記横軸電流から前記高周波電圧と同じ周波数の高周波電流を抽出する手段と、
直軸電流の平均値を零に制御して前記直軸基本波電圧指令を生成する手段と、
前記横軸電流の平均値を零に制御して横軸電圧指令を生成する手段と、
前記高周波電流から回転子の速度推定値を演算し、この速度推定値を積分して第1の位置推定値を演算する手段と、
前記速度推定値及び第1の位置推定値の演算を行いながら、前記直軸電流の平均値を零に制御する機能を停止するとともに正極性及び負極性を有するパルス電圧を前記高周波電圧に重畳し、かつ、正極性のパルス電圧を重畳したときと負極性のパルス電圧を重畳したときの前記直軸電流の変化率により、第1の位置推定値を補正して第2の位置推定値を演算する手段と、を備えたものである。
【0016】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。
まず、図1の制御ブロック図は本発明の第1実施形態を示すものである。
図4と同一の構成要素には同一の参照符号を付し、以下では異なる点を中心に説明すると、本実施形態では、方形波電圧とパルス電圧との加算結果を直軸電圧指令vd *として出力する加算器9が付加され、また、すべてのスイッチAと図4の積分器8の入力側に設けられていたスイッチBとが除去されている。
この実施形態におけるスイッチBは、加算器9の一方の入力端にパルス電圧を入力可能であり、同時に、メモリ5に直軸電流idを入力可能となっている。
【0017】
次に、この実施形態の動作を説明する。
始めにスイッチBを開き、方形波電圧を直軸電圧指令v として座標変換器1に入力して回転子位置の推定演算を行う。この時、従来技術と同様に、速度推定器7は高周波分離フィルタ4から抽出・分離される横軸高周波電流iqh(方形波電圧の周波数成分を持つ)から速度推定値を演算し、積分器8は速度推定値を積分して第1の位置推定値θを演算する。
【0018】
しかる後にスイッチBを閉じ、方形波電圧とパルス電圧とを加算器9により加算して直軸電圧指令v を生成し、この指令v を座標変換器1に入力する。ここで、パルス電圧のパルス幅は、磁気飽和領域に到達させることを考慮して、方形波電圧の整数倍の周期とし、かつ方形波電圧に同期させる。
【0019】
また、位置推定を行ないながら、方形波電圧に同期したタイミングで磁極判別用試験信号成分を直軸電流iから抽出し、直軸電流iの変化率△idp,△idmをメモリ5に記憶させて前記数式1に従い磁極判別を行なう。磁極判別器6では、例えば、数式1(a)が成立した場合には第1の位置推定値に180度を加算する信号を積分器8にプリセットすることにより、第1の位置推定値の演算誤差を補正し、第2の位置推定値θを生成して出力する。
【0020】
上記のように構成することにより、パルス電圧を方形波電圧に重畳して回転子位置を推定しながら磁極判別を同時かつ正確に行うことができる。
【0021】
図2の制御ブロック図は本発明の第2実施形態を示すものである。
この実施形態では、図1の構成に対して、更に直軸電流の平均値を零に制御して直軸基本波電圧指令v **を出力する手段としての直軸電流調節器11と、横軸電流の平均値を零に制御して横軸電圧指令v を出力する手段としての横軸電流調節器12と、加算器10とが付加されており、位置推定及び磁極判別を行ないながら基本波電流の制御も行なうようになっている。
【0022】
直軸電流調節器11には、高周波分離フィルタ4から出力される直軸基本波電流idbと直軸電流指令値i (=0)とが入力され、その出力が直軸基本波電圧指令v **として加算器10の一方の入力端に加えられている。加算器10の他方の入力端には加算器9の出力が加えられており、加算器10の出力が最終的な直軸電圧指令v として座標変換器1に入力される。また、横軸電流調節器12には、高周波分離フィルタ4から出力される横軸基本波電流iqbと横軸電流指令値i (=0)とが入力され、その出力が横軸電圧指令v として座標変換器1に入力されている。
【0023】
この実施形態の動作を説明すると、回転子の位置推定時には、スイッチBを開いて加算器9に方形波電圧のみを印加する。
高周波分離フィルタ4は、i,iから方形波電圧の周波数成分を除いた直軸基本波電流idbと横軸基本波電流iqbと、方形波電圧と同じ周波数成分の横軸高周波電流iqhとを分離・抽出する。
直軸電流調節器11は、i (=0)とidbとの偏差を増幅して直軸基本波電圧指令v **を演算し、加算器10によりv **に方形波電圧を重畳して最終的な直軸電圧指令v とする。また、横軸電流調節器12は、i (=0)とiqbとの偏差を増幅して横軸電圧指令v を演算する。これらの調節器11,12の動作により、直軸電流の平均値及び横軸電流の平均値は零に制御される。
【0024】
速度推定器7は高周波分離フィルタ4から出力される横軸高周波電流iqhから速度推定値を演算し、積分器8は速度推定値を積分して第1の位置推定値θを演算する。
【0025】
磁極判別を行なう際にはスイッチBを閉じ、加算器9,10の動作により、直軸基本波電圧指令v **に対して、方形波電圧と、更に磁極判別用試験信号としての正極性及び負極性のパルス電圧を重畳して、直軸電圧指令v を生成する。
パルス電圧を印加する時間は、直軸電流調節器11が追従できないくらいに十分短くする。パルス電圧が正極性に与えられたときと負極性に与えられたときのiの変化率△idp,△idmをそれぞれメモリ5に記憶し、前記数式1により磁極判別器6をプリセットして第1実施形態と同様の方法により第1の位置推定値を補正し、第2の位置推定値θを生成する。
【0026】
上記の構成により、電動機40が回転しているときにも磁極判別を正確に行い、誘起電圧による過電流を防止して電動機を保護することができる。
【0027】
次に、図3の制御ブロック図は本発明の第3実施形態を示すものである。
この実施形態は、図2の実施形態において直軸電流調節器11と加算器10との間にスイッチCが付加されていることを特徴とする。このスイッチCの動作としては、スイッチBが閉じていて磁極判別用試験信号としてのパルス電圧が正または負の値であれば「開」、それ以外では「閉」となるものである。
【0028】
以下、本実施形態の動作を説明する。回転子位置の推定動作は第1、第2実施形態と同様である。
磁極判別に当たっては、スイッチBを閉じた状態で、パルス電圧が正あるいは負の値のときにスイッチCが開くことにより、直軸電流の制御は行なわれず、正または負のパルス電圧によって大きな直軸電流が流れる。これによって、十分に磁気飽和するような直軸電流iを流すことができ、メモリ5及び磁極判別器6を介して高精度に磁極判別を行うことができる。なお、本実施形態では大きな直軸電流iを流すために、パルス電圧が正または負である期間をモータやインバータが許容される範囲で長くするのが望ましい。
【0029】
【発明の効果】
以上のように本発明によれば、位置推定演算を磁極判別と同時に実行することができ、更に磁極判別時にも基本波電流の制御を行えるようにして過電流の発生を防止することができる。また、回転子が回っている場合でも、回転子位置の演算を正確に行うことができるので、速やかな始動が可能となる等の効果がある。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す制御ブロック図である。
【図2】本発明の第2実施形態を示す制御ブロック図である。
【図3】本発明の第3実施形態を示す制御ブロック図である。
【図4】従来技術を示す制御ブロック図である。
【符号の説明】
1,2 座標変換器
3 PWM回路
4 高周波分離フィルタ
5 メモリ
6 磁極判別器
7 速度推定器
8 積分器
9,10 加算器
11 直軸電流調節器
12 横軸電流調節器
13 加速度検出器
20 三相交流電源
30 電力変換器
40 永久磁石形同期電動機(PMモータ)
A,B,C スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a permanent magnet type synchronous motor (PM motor) having saliency on a rotor, and in particular, does not use a position detection sensor for detecting a magnetic pole position of a rotor (hereinafter referred to as a rotor position). The present invention relates to a control device for a permanent magnet type synchronous motor.
[0002]
[Prior art]
Rotor position information is required for high performance control of a permanent magnet synchronous motor.
In general, an encoder, a resolver, or the like is used as a position detection sensor. For the purpose of reducing the cost, sensorless control that electrically estimates and calculates the rotor position from information on the voltage and current of the motor has been proposed. As one of the techniques, a magnetic pole position detection device described in Japanese Patent Laid-Open No. 7-245981 is known. This known method for detecting the rotor position applies a high-frequency voltage to a permanent magnet synchronous motor having saliency, and estimates and calculates the rotor position from the high-frequency current resulting from the saliency flowing as a result. Is.
[0003]
However, the rotor position estimation calculation method disclosed in Japanese Patent Laid-Open No. 7-245981 may in principle have a position estimation error of 180 °, and a calculation for correcting this (hereinafter, this calculation is referred to as “magnetic pole discrimination”). ") Is required. As this magnetic pole discrimination method,
・ Journal of the Institute of Electrical Engineers of Japan D “Industrial Application Category” November 1990 Vol.110 pp.1193-1200
・ The Institute of Electrical Engineers of Japan D “Industrial Application Category” July 1996 Vol.116 pp736 ~ 742
・ IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL.32, NO.5, SEPTEMBER / OCTOBER 1996
Etc. have been proposed.
[0004]
Each of the magnetic pole discrimination methods uses the magnetic saturation characteristics of the motor core, and the difference in current change rate when the direct current is controlled to be positive or negative using the rotor position estimation value. Use to determine the magnetic pole. Here, in order to facilitate understanding in the future, terms will be described.
First, the direct axis is a coordinate axis taken in the magnetic pole direction of the rotor permanent magnet, and the direct axis current is a current component in the direct axis direction. In other words, the positive direct current acts to increase the magnetic flux by the permanent magnet, and the negative direct current is a current component that acts to weaken the magnetic flux by the permanent magnet. The voltage is defined in the same way, and the direct axis voltage is a voltage component in the direction of the direct axis. Also, the horizontal axis is defined in the direction orthogonal to the straight axis, and the current and voltage in the horizontal axis direction are referred to as the horizontal axis current and the horizontal axis voltage, respectively.
[0005]
FIG. 4 shows the prior art of the magnetic pole discrimination method of the sensorless control device of the permanent magnet type synchronous motor.
In FIG. 4, the voltage command of the electric motor (PM motor) 40 is input to the coordinate converter 1. Here, the square-axis voltage command v d * is usually superimposed with a square-wave high-frequency voltage (a high-frequency voltage having a frequency different from that of the fundamental voltage component, and this voltage is hereinafter referred to as a square-wave voltage). Zero is given as the voltage command v q * .
[0006]
The coordinate converter 1 calculates a three-phase voltage command v u * , v v * , v w * based on the estimated position value θ output from the integrator 8 and the voltage command v d * , v q *. . These voltage commands v u * , v v * , v w * are converted by the PWM circuit 3 into gate signals for the switching elements of the power converter (inverter) 30 to control the terminal voltage of the electric motor 40. Reference numeral 20 denotes a three-phase AC power source.
[0007]
The coordinate converter 2 calculates a direct current i d and a horizontal current i q from the armature currents i u and i w detected from the output side of the power converter 30 and the estimated position value θ. The high frequency separation filter 4 separates and extracts the horizontal axis high frequency current i qh having the same frequency component as the square wave voltage from i q .
[0008]
Note that two switches A and three switches B are provided as interlocking switches, and the voltage selected by the switch A or the switch B is superimposed on the direct-axis voltage command v d * . Further, in the memory 5 is input by the direct-axis current i d is the switch B, the integrator 8, the output switch A velocity estimator 7 which horizontal axis high frequency current i qh is input, zero by the switch B It is designed to be entered.
[0009]
At the start of operation, first, position estimation using saliency is performed. As shown, all the switches A are closed and all the switches B are open. Since the switch A is closed, the direct-axis voltage command v d * is a square wave voltage whose value repeats positively and negatively as shown.
The speed estimator 7 calculates a speed estimated value from the value of the horizontal axis high frequency current i qh separated by the high frequency separation filter 4, and the integrator 8 integrates the speed estimated value to calculate a position estimated value θ.
As a result, the position estimated value θ converges to a true value or a value having an error of 180 °.
[0010]
Next, magnetic pole discrimination will be described. In this case, contrary to the state shown in the figure, all the switches A are open and all the switches B are closed. As the direct-axis voltage command v d * , instead of the square wave voltage, a pulse voltage having positive and negative polarity is intermittently given as a magnetic pole discrimination test signal, and the direct-axis current id is changed from zero to positive. Or from zero to negative.
At this time, since the superposition of the square wave voltage is stopped and the speed / position estimation calculation using the horizontal axis high-frequency current i qh cannot be performed, the operation is stopped by inputting zero to the integrator 8 to estimate the position. The value θ is fixed.
Direct axis current i d of the change rate when the positive and negative pulse voltage is applied △ i dp, △ i dm are stored in the memory 5, respectively.
[0011]
The magnetic pole discriminator 6 compares the values of Δi dp and Δi dm , presets the output of the integrator 8 by the following formula 1, and corrects the calculation error of the position estimation value. That is, if the value obtained by integrating the output of the speed estimator 7 is set as the first position estimated value, the second position estimated value θ corrected by presetting the first position estimated value by the equation 1 is generated. Output.
[0012]
[Formula 1]
(a) When Δi dp <Δi dm → θ = θ (previous value) + 180 °
(b) When Δi dp > Δi dm → θ = θ (previous value)
[0013]
[Problems to be solved by the invention]
In the conventional control, it is necessary to stop the position estimation calculation when determining the magnetic pole. For this reason, when the rotor is rotating, the position of the rotor is unknown, and there is a possibility that the pulse voltage cannot be accurately output in the positive and negative directions of the straight axis and the magnetic pole determination is erroneous. Further, since the fundamental wave current cannot be controlled during the magnetic pole discrimination, an excessive current may flow through the armature due to the induced voltage accompanying the rotation of the rotor.
In view of this, the present invention provides a control apparatus for a permanent magnet type synchronous motor that enables position estimation calculation to be performed simultaneously with magnetic pole discrimination, and further prevents the occurrence of overcurrent by enabling control of the fundamental current even at the time of magnetic pole discrimination. Is to provide.
[0014]
[Means for Solving the Problems]
In the present invention, a high-frequency voltage having a different frequency, for example, a square-wave voltage is superimposed on the fundamental wave voltage, and the position estimation value is calculated using the high-frequency current flowing through the armature. Then, the magnetic pole discrimination test signal is synchronized with the high frequency voltage while superimposing the pulse voltage as the magnetic pole discrimination test signal on the high frequency voltage or controlling the polarity of the direct axis current or the horizontal axis current and estimating the position. A component is extracted from the detected current, and magnetic pole discrimination is performed based on the rate of change and amplitude of the current at this time to correct the position estimation value. The pulse width of the pulse voltage is long enough to reach the magnetic saturation region and is synchronized with the high frequency voltage.
The signal for position estimation can be directly detected by extracting the frequency component of the superimposed high-frequency voltage from the detection current using a filter. The test signal for magnetic pole discrimination is detected easily and directly at the same time as detecting the signal for position estimation by superimposing a pulse voltage synchronized with the high-frequency voltage with a certain phase difference. be able to.
[0015]
That is, the invention described in claim 1 is a control device for driving a permanent magnet type synchronous motor having saliency in a rotor by a power converter, and the rotor is obtained from the estimated speed value without using a position detection sensor. In the control device for a permanent magnet type synchronous motor that estimates the position and uses the position estimated value to control the voltage command for the motor separately into the direct-axis voltage command and the horizontal-axis voltage command,
Means for generating a direct-axis voltage command by superimposing a high-frequency voltage on the direct-axis fundamental wave voltage command;
Means for decomposing the armature current of the motor into a direct axis current and a horizontal axis current, and extracting a high frequency current having the same frequency as the high frequency voltage from the horizontal axis current;
Means for controlling the average value of the direct-axis current to zero and generating the direct-axis fundamental wave voltage command;
Means for controlling the average value of the horizontal axis current to zero to generate a horizontal axis voltage command;
Means for calculating a rotor speed estimate from the high-frequency current and integrating the speed estimate to calculate a first position estimate;
While calculating the speed estimated value and the first position estimated value, the function of controlling the average value of the direct-axis current to zero is stopped and a pulse voltage having a positive polarity and a negative polarity is superimposed on the high-frequency voltage. In addition, the first position estimated value is corrected and the second position estimated value is calculated based on the rate of change of the direct current when the positive pulse voltage is superimposed and when the negative pulse voltage is superimposed. Means for performing.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the control block diagram of FIG. 1 shows a first embodiment of the present invention.
The same constituent elements as those in FIG. 4 are denoted by the same reference numerals, and different points will be mainly described below. In this embodiment, the addition result of the square wave voltage and the pulse voltage is expressed as a direct-axis voltage command v d *. Is added, and all the switches A and the switch B provided on the input side of the integrator 8 in FIG. 4 are removed.
The switch B in this embodiment can input a pulse voltage to one input terminal of the adder 9, and can input a direct current i d to the memory 5 at the same time.
[0017]
Next, the operation of this embodiment will be described.
First, the switch B is opened, and a square wave voltage is input to the coordinate converter 1 as a direct-axis voltage command v d * to perform an estimation calculation of the rotor position. At this time, as in the prior art, the speed estimator 7 calculates a speed estimated value from the horizontal-axis high-frequency current i qh (having a frequency component of a square wave voltage) extracted and separated from the high-frequency separation filter 4, and an integrator 8 integrates the speed estimation value to calculate the first position estimation value θ.
[0018]
Thereafter, the switch B is closed, the square wave voltage and the pulse voltage are added by the adder 9 to generate a direct-axis voltage command v d * , and this command v d * is input to the coordinate converter 1. Here, the pulse width of the pulse voltage is set to a period that is an integral multiple of the square wave voltage in consideration of reaching the magnetic saturation region, and is synchronized with the square wave voltage.
[0019]
Further, while performing the position estimate, the magnetic pole discrimination test signal component at a timing synchronized with the square wave voltage is extracted from the direct axis current i d, the rate of change of direct axis current i d △ i dp, the memory 5 △ i dm The magnetic pole is discriminated in accordance with Equation 1 described above. In the magnetic pole discriminator 6, for example, when Formula 1 (a) is established, a signal for adding 180 degrees to the first position estimated value is preset in the integrator 8, thereby calculating the first position estimated value. The error is corrected, and the second position estimated value θ is generated and output.
[0020]
With the above configuration, the magnetic pole discrimination can be performed simultaneously and accurately while superimposing the pulse voltage on the square wave voltage and estimating the rotor position.
[0021]
The control block diagram of FIG. 2 shows a second embodiment of the present invention.
In this embodiment, a direct-axis current regulator 11 as means for outputting a direct-axis fundamental wave voltage command v d ** by further controlling the average value of the direct-axis current to zero with respect to the configuration of FIG. A horizontal axis current regulator 12 as a means for outputting the horizontal axis voltage command v q * by controlling the average value of the horizontal axis current to zero and an adder 10 are added to perform position estimation and magnetic pole discrimination. However, the fundamental wave current is also controlled.
[0022]
The direct-axis current regulator 11 receives the direct-axis fundamental wave current i db and the direct-axis current command value i d * (= 0) output from the high-frequency separation filter 4, and the output is the direct-axis fundamental wave voltage. The command v d ** is added to one input terminal of the adder 10. The output of the adder 9 is added to the other input terminal of the adder 10, and the output of the adder 10 is input to the coordinate converter 1 as the final straight axis voltage command v d * . Further, the horizontal axis current regulator 12 receives the horizontal axis fundamental wave current i qb and the horizontal axis current command value i q * (= 0) output from the high frequency separation filter 4, and the output is the horizontal axis voltage. The command v q * is input to the coordinate converter 1.
[0023]
The operation of this embodiment will be described. At the time of estimating the rotor position, the switch B is opened and only the square wave voltage is applied to the adder 9.
The high-frequency separation filter 4 includes a straight-axis fundamental wave current i db and a horizontal-axis fundamental wave current i qb obtained by removing the frequency component of the square-wave voltage from i d and i q , and a horizontal-axis high-frequency current having the same frequency component as the square-wave voltage. i qh is separated and extracted.
The direct-axis current regulator 11 amplifies the deviation between i d * (= 0) and i db to calculate a straight-axis fundamental wave voltage command v d ** , and the adder 10 generates a square wave to v d **. The voltage is superimposed to obtain the final straight axis voltage command v d * . Further, the horizontal axis current regulator 12 calculates the horizontal axis voltage command v q * by amplifying the deviation between i q * (= 0) and i qb . By the operation of these regulators 11 and 12, the average value of the direct axis current and the average value of the horizontal axis current are controlled to zero.
[0024]
The speed estimator 7 calculates a speed estimated value from the horizontal axis high-frequency current i qh output from the high-frequency separation filter 4, and the integrator 8 integrates the speed estimated value to calculate a first position estimated value θ.
[0025]
When the magnetic pole is discriminated, the switch B is closed, and the operations of the adders 9 and 10 cause the square wave voltage and the positive polarity as the magnetic pole discrimination test signal to the straight axis fundamental wave voltage command v d ** . And the direct-axis voltage command v d * is generated by superimposing the negative pulse voltage.
The time for applying the pulse voltage is made sufficiently short so that the direct current regulator 11 cannot follow. When the pulse voltage is applied to the positive polarity and to the negative polarity, the change rates Δ i dp and Δ i dm of i d are stored in the memory 5, respectively, and the magnetic pole discriminator 6 is preset according to the equation 1. Then, the first position estimated value is corrected by the same method as in the first embodiment, and the second position estimated value θ is generated.
[0026]
With the above configuration, the magnetic pole can be accurately discriminated even when the electric motor 40 is rotating, and the electric motor can be protected by preventing an overcurrent due to the induced voltage.
[0027]
Next, the control block diagram of FIG. 3 shows a third embodiment of the present invention.
This embodiment is characterized in that a switch C is added between the direct current regulator 11 and the adder 10 in the embodiment of FIG. The operation of the switch C is “open” if the switch B is closed and the pulse voltage as the magnetic pole discrimination test signal is a positive or negative value, and “closed” otherwise.
[0028]
The operation of this embodiment will be described below. The estimation operation of the rotor position is the same as in the first and second embodiments.
When discriminating the magnetic pole, the switch C is opened when the pulse voltage is positive or negative with the switch B closed, so that the control of the direct current is not performed, and a large direct axis is generated by the positive or negative pulse voltage. Current flows. Thereby, it is possible to sufficiently can flow straight axis current i d as magnetic saturation, the magnetic pole determination with high accuracy through the memory 5 and the pole discriminator 6. In order to supply a large direct-axis current i d in the present embodiment, to increase to the extent that the pulse voltage is a period of the motor and the inverter is positive or negative is allowed desirable.
[0029]
【Effect of the invention】
As described above, according to the present invention, the position estimation calculation can be executed simultaneously with the magnetic pole discrimination, and the fundamental current can be controlled even during the magnetic pole discrimination, thereby preventing the occurrence of overcurrent. In addition, even when the rotor is rotating, the calculation of the rotor position can be performed accurately, so that there is an effect that a quick start is possible.
[Brief description of the drawings]
FIG. 1 is a control block diagram showing a first embodiment of the present invention.
FIG. 2 is a control block diagram showing a second embodiment of the present invention.
FIG. 3 is a control block diagram showing a third embodiment of the present invention.
FIG. 4 is a control block diagram showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2 Coordinate converter 3 PWM circuit 4 High frequency separation filter 5 Memory 6 Magnetic pole discriminator 7 Speed estimator 8 Integrator 9, 10 Adder 11 Straight axis current regulator 12 Horizontal axis current regulator 13 Acceleration detector 20 Three phase AC power supply 30 Power converter 40 Permanent magnet synchronous motor (PM motor)
A, B, C switch

Claims (1)

回転子に突極性を有する永久磁石形同期電動機を電力変換器により駆動するための制御装置であって、位置検出センサを用いずに速度推定値から回転子位置を推定し、この位置推定値を用いて電動機に対する電圧指令を直軸電圧指令及び横軸電圧指令に分離して制御するようにした永久磁石形同期電動機の制御装置において、
直軸基本波電圧指令に高周波電圧を重畳して直軸電圧指令を生成する手段と、
電動機の電機子電流を直軸電流及び横軸電流に分解し、前記横軸電流から前記高周波電圧と同じ周波数の高周波電流を抽出する手段と、
直軸電流の平均値を零に制御して前記直軸基本波電圧指令を生成する手段と、
前記横軸電流の平均値を零に制御して横軸電圧指令を生成する手段と、
前記高周波電流から回転子の速度推定値を演算し、この速度推定値を積分して第1の位置推定値を演算する手段と、
前記速度推定値及び第1の位置推定値の演算を行いながら、前記直軸電流の平均値を零に制御する機能を停止するとともに正極性及び負極性を有するパルス電圧を前記高周波電圧に重畳し、かつ、正極性のパルス電圧を重畳したときと負極性のパルス電圧を重畳したときの前記直軸電流の変化率により、第1の位置推定値を補正して第2の位置推定値を演算する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
A control device for driving a permanent magnet synchronous motor having saliency on a rotor by a power converter, estimating a rotor position from a speed estimated value without using a position detection sensor, and calculating the position estimated value In a control device for a permanent magnet type synchronous motor that uses a voltage command for a motor to be controlled separately to a direct-axis voltage command and a horizontal-axis voltage command,
Means for generating a direct-axis voltage command by superimposing a high-frequency voltage on the direct-axis fundamental wave voltage command;
Means for decomposing the armature current of the motor into a direct axis current and a horizontal axis current, and extracting a high frequency current having the same frequency as the high frequency voltage from the horizontal axis current;
Means for controlling the average value of the direct-axis current to zero and generating the direct-axis fundamental wave voltage command;
Means for controlling the average value of the horizontal axis current to zero to generate a horizontal axis voltage command;
Means for calculating a rotor speed estimate from the high-frequency current and integrating the speed estimate to calculate a first position estimate;
While calculating the speed estimated value and the first position estimated value, the function of controlling the average value of the direct-axis current to zero is stopped and a pulse voltage having a positive polarity and a negative polarity is superimposed on the high-frequency voltage. In addition, the first position estimated value is corrected and the second position estimated value is calculated based on the rate of change of the direct current when the positive pulse voltage is superimposed and when the negative pulse voltage is superimposed. Means to
A control device for a permanent magnet type synchronous motor.
JP2000368156A 2000-12-04 2000-12-04 Control device for permanent magnet type synchronous motor Expired - Fee Related JP4867067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368156A JP4867067B2 (en) 2000-12-04 2000-12-04 Control device for permanent magnet type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368156A JP4867067B2 (en) 2000-12-04 2000-12-04 Control device for permanent magnet type synchronous motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011149949A Division JP5472222B2 (en) 2011-07-06 2011-07-06 Control device for permanent magnet type synchronous motor

Publications (2)

Publication Number Publication Date
JP2002171798A JP2002171798A (en) 2002-06-14
JP4867067B2 true JP4867067B2 (en) 2012-02-01

Family

ID=18838458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368156A Expired - Fee Related JP4867067B2 (en) 2000-12-04 2000-12-04 Control device for permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP4867067B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687846B2 (en) * 2001-03-26 2011-05-25 株式会社安川電機 Magnetic pole position estimation method and control apparatus for synchronous motor
JP4665360B2 (en) * 2001-08-06 2011-04-06 株式会社安川電機 Electric motor control device
JP3805336B2 (en) 2003-10-22 2006-08-02 ファナック株式会社 Magnetic pole position detection apparatus and method
JP4263582B2 (en) 2003-11-17 2009-05-13 本田技研工業株式会社 Brushless motor control device
JP3971741B2 (en) 2003-11-18 2007-09-05 ファナック株式会社 Magnetic pole position detector
JP4682545B2 (en) * 2004-06-25 2011-05-11 ダイキン工業株式会社 Motor rotational position angle estimation method, motor rotational position angle estimation device, inverter control method, and inverter control device
JP4592385B2 (en) * 2004-10-27 2010-12-01 株式会社東芝 Control device for synchronous machine
JP5084113B2 (en) * 2005-04-19 2012-11-28 三菱電機株式会社 Elevator device abnormality detection device
JP5104219B2 (en) * 2007-11-02 2012-12-19 富士電機株式会社 Control device for permanent magnet type synchronous motor
JP2009254112A (en) * 2008-04-04 2009-10-29 Denso Corp Angle estimation device for rotating machine
JP5424814B2 (en) 2009-05-21 2014-02-26 三菱電機株式会社 Permanent magnet type rotating electric machine
DE102009035998A1 (en) * 2009-07-27 2011-02-03 Pilz Gmbh & Co. Kg Method and device for fail-safe monitoring of a movement quantity on an electric drive
FR2986389B1 (en) * 2012-01-31 2014-03-14 Hispano Suiza Sa CONTROL OF AN ELECTRIC MACHINE WITH PERMANENT MAGNETS
DE102012212766A1 (en) * 2012-07-20 2014-01-23 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Method for determining the rotor position of an electronically commutated multiphase DC motor
JP6079786B2 (en) * 2012-11-20 2017-02-15 株式会社安川電機 Motor drive system and motor control device
CN105409110A (en) * 2013-08-19 2016-03-16 株式会社安川电机 Motor drive system and motor control device
CN107659234A (en) * 2016-07-25 2018-02-02 半导体元件工业有限责任公司 Rotor-position sensing system of three phase electric machine and associated method
KR20180102261A (en) 2017-03-07 2018-09-17 엘에스산전 주식회사 Apparatus for estimating initial position in rotor of motor
JP7304891B2 (en) * 2018-12-06 2023-07-07 三菱電機株式会社 Rotating machine control device and electric vehicle control device
CN112977173B (en) * 2021-04-30 2022-05-03 重庆长安新能源汽车科技有限公司 Electric automobile and power battery pulse heating system and heating method thereof
CN113708691B (en) * 2021-09-01 2023-12-22 广东汇天航空航天科技有限公司 Rotor operation data estimation method, computing equipment, motor control method and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359691A (en) * 1991-03-22 1992-12-11 Fuji Electric Co Ltd Rotor position detector for brushless motor
JP3401155B2 (en) * 1997-02-14 2003-04-28 株式会社日立製作所 Synchronous motor control device and electric vehicle
JP3282541B2 (en) * 1997-05-21 2002-05-13 株式会社日立製作所 Motor control device
JP2000156993A (en) * 1998-11-18 2000-06-06 Hitachi Ltd Apparatus and method for control of permanent magnet synchronous machine

Also Published As

Publication number Publication date
JP2002171798A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
JP4867067B2 (en) Control device for permanent magnet type synchronous motor
KR100747941B1 (en) Method and apparatus for controling position sensorless motor
US6344725B2 (en) Method and apparatus for controlling a synchronous motor
Yoon et al. High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection
Liu et al. Sensorless control strategy by square-waveform high-frequency pulsating signal injection into stationary reference frame
JP3979561B2 (en) AC motor drive system
JP5761243B2 (en) Motor control device and magnetic pole position estimation method
EP1107448B1 (en) Motor control device
JP5472222B2 (en) Control device for permanent magnet type synchronous motor
JP2002335699A (en) Controller of ac motor
JP3894286B2 (en) Control device for permanent magnet synchronous motor
JP2018148778A (en) Apparatus for estimating initial position of rotor of motor
JP5109790B2 (en) Control device for permanent magnet type synchronous motor
JP2007060899A (en) Drive system of permanent magnet motor
JP5396741B2 (en) Control device for permanent magnet type synchronous motor
JP3945904B2 (en) Position and speed sensorless controller for synchronous motor
JP4596200B2 (en) Control device for permanent magnet type synchronous motor
JP2008079489A (en) Motor control device
JP4305698B2 (en) Synchronous motor position and speed estimation device
JP3484058B2 (en) Position and speed sensorless controller
JP2002272195A (en) Synchronous motor control device
KR102409792B1 (en) Control device of permanent magnet synchronization electric motor, microcomputer, electric motor system, and driving method of permanent magnet synchronization electric motor
KR101937958B1 (en) Device for detecting error of sensorless motor using bemf signal
JP2002281795A (en) Controlling method for power refeeding to synchronous motor and controller for synchronous motor
JP4023280B2 (en) Motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees