JP4865163B2 - Steel DI can - Google Patents

Steel DI can Download PDF

Info

Publication number
JP4865163B2
JP4865163B2 JP2001253501A JP2001253501A JP4865163B2 JP 4865163 B2 JP4865163 B2 JP 4865163B2 JP 2001253501 A JP2001253501 A JP 2001253501A JP 2001253501 A JP2001253501 A JP 2001253501A JP 4865163 B2 JP4865163 B2 JP 4865163B2
Authority
JP
Japan
Prior art keywords
adhesion
chemical conversion
amount
coating
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001253501A
Other languages
Japanese (ja)
Other versions
JP2003063518A (en
Inventor
知彦 林
教雄 大森
幸子 太田原
賢一 沖山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Original Assignee
Daiwa Can Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd filed Critical Daiwa Can Co Ltd
Priority to JP2001253501A priority Critical patent/JP4865163B2/en
Publication of JP2003063518A publication Critical patent/JP2003063518A/en
Application granted granted Critical
Publication of JP4865163B2 publication Critical patent/JP4865163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はスチールを素材とした絞り−しごき加工して成形されるDI缶に関するもので、塗膜密着性、耐食性に優れた缶体を提供するものである。
【0002】
【従来の技術】
金属缶には、筒状の缶胴を製造し、その両端開口部に、天蓋および地蓋を巻締めたスリーピース缶と、缶胴と地蓋が一体となった有底筒状容器に天蓋を巻締めたツーピース缶とがある。
スリーピース缶は、缶胴を電気抵抗溶接や接着剤等で接合するため、素材としてはスチールの薄板が使用される。
一方、ツーピース缶の一種は、缶胴と地蓋が一体となった有底筒状容器が絞り加工や絞り−しごき加工(Drawn and Ironed)によって得られるため一般にDI缶と呼ばれる。このDI缶は、缶胴の接合を必要とせず、素材としてはアルミニウム合金やスチール等の薄板が使用される。
スチールおよびアルミニウム合金を素材としたDI缶では、缶体成形後、脱脂・化成処理工程を経て、缶の内面側は耐食性確保の観点から塗装が、外面側は商標や装飾のため印刷・塗装が施されて使用されている。
スチール素材のDI缶の内面側の耐食性について言えば、化成処理皮膜だけでは耐食性を向上させることは殆ど難しく、結局は化成処理後に施される塗装に頼っており、しかもその塗布量はスチールを素材としたDI缶の場合はアルミニウム合金を素材としたDI缶に比べて多くしており、それは素材の耐食性がアルミニウム合金に比べてスチールの方が劣ることに起因している。
【0003】
又、缶の外面側はスチールを素材としたDI缶では印刷デザインにもよるが、印刷外観の点から多くの場合白色塗装が施された後、印刷、クリアーが行われている。しかも、スチールの場合は金属固有の分光反射率がアルミニウム合金に比べて低いことから、黒みを呈する色調(黒みがかった色調)となるため、白色塗料の塗布量はアルミニウム合金を素材とした場合に比べ多くする必要がある。
このように、スチールを素材としたDI缶の場合、内面の塗装および外面の白色塗装の塗布量は、いずれもアルミニウム合金を素材とした場合に比べ、多くする必要があることから、製造コストはむしろ高くなる場合があり、金属素材の価格差はなくなってしまうどころか、トータルコストとしても割高となる場合もある。
また、非常に希なケ−スではあるが、スチールを素材としたDI缶の場合、特に、レトルト加熱殺菌処理を行う内容物を充填した場合に、缶外面側の塗膜が蓋の巻締め部の中から巻締めの外まで達する局部的な浮きが発生することがある。こうした局部浮きは商品価値を著しく低下させることがあるので好ましくない。
こうした缶外面塗膜が局部的に浮くと言った現象は、(1)アルミニウム合金の蓋を巻しめた場合にのみ起こり、(2)胴材がアルミニウム合金を素材としたDI缶では見られないことから、アルミニウム合金蓋とスチール缶胴が接触して起こる「異種金属接触腐食」によるものと考えられている。
【0004】
また、近年のトータル缶コストの低減化から、使用金属板の板厚の低減化(薄板化)や缶蓋であるアルミニウム合金製の開口容易缶蓋(イージーオープンエンド、通称EOE)の径を小さくすることが進み、例えば、缶胴が350mlのビール缶の場合、通称211径と呼ばれ、缶胴直径は約66mmであり、当然巻締める缶蓋も211径用であったが、現在は206径(直径約58mm)化、204径(直径約55mm)化、202径(直径約52mm)化となっており、更には200径(直径約49mm)化が進められている。
このことは、必然的に缶胴の開口部をネック加工又はネックイン加工により、より小さい径に絞る、いわゆる縮径化となり、従って缶胴に用いられている金属は勿論、その表面に被覆されている有機塗料にとっても厳しい加工をうけることになる。
DI缶成形後の化成処理はこうした耐食性や縮径化に対応すべく改良検討がなされており、スチ−ルを素材としたDI缶の化成処理は、現在は主にリン酸Sn系の化成処理が多く適用されている。
しかし、現在適用されているリン酸Sn系の化成処理では、スチールを素材としたDI缶が持つ多くの問題を解決することは難しい。
【0005】
スチールを素材としたDI缶の化成処理技術について言えば、例えば特開平1−177379号公報、特開平2−608号公報、特開平11−264075号公報等に開示されているが、こうした先行技術では現在要求されている塗膜密着性や耐食性と言った性能面で不十分であり、また前述した希に発生するレトルト加熱殺菌処理時の缶外面側の塗膜浮きを防止できないと言った問題を有している。
スチ−ル素材のDI缶は、アルミニウム合金素材のDI缶に比べ、缶重量が重い、対内容物耐食性が劣る、印刷外観が黒ずむ、と言った欠点があるが、一方缶の流がスムースである、天蓋の巻締性が良く安定していると言った利点もあり、更には素材価格が安価であることから、現状の缶性能が向上できればスチール素材のDI缶を使用したいと言う声は根強くある。
こうした状況から、スチール素材のDI缶の缶体自身の耐食性や缶内外面の塗膜の加工密着性を少しでも向上できる新しい化成処理剤の出現の期待が強くあった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、スチールを素材としたDI缶の塗料密着性や耐食性を大幅に改善させ、より高品質で生産歩留まりの良い缶を提供する点にある
【0007】
【課題を解決するための手段】
本発明の第1は、絞りしごき加工によって得られるスチール製DI缶において、缶の内外面の鋼板表面にリン(P)−金属(M)−有機樹脂(R)からなる化成処理皮膜が形成されており、該化成処理皮膜におけるリン(P)の付着量片面0.05〜2.0mg/m、金属(M)の付着量が片面0.05〜2.0mg/m、有機樹脂(R)の付着量が炭素(C)量として片面で0.5〜20mg/m金属(M)がジルコニウム及び/又はチタニウムであり、かつ炭素(C)付着量と金属(M)付着量の比 C/M が1〜100であることを特徴とするスチール製DI缶に関する。
【0008】
本発明における缶体は、スチールを素材とした絞り−しごき加工によって得られる、有底のツーピース缶(ドロー・アイアニング缶、 DI缶)である。
スチール素材としては特に限定するものではないが、現在DI缶として適用されている薄鋼板にSnめっきが施されたブリキが使用される。好ましい具体例としては、板厚が0.15mm〜0.30mmの薄鋼板に片面の付着量として1.0〜6.0g/mの錫めっき鋼板があげられる。
板厚は、主に缶強度、特に缶底の耐圧強度(通称ボトム耐圧)によって決められ、内容物を充填した後の内圧によって板厚は選定され、内圧が高い例えば、炭酸飲料やビール等を充填・密封する内圧缶の場合は、板厚が0.15mm以下では、いわゆるバックリングと呼ばれる、缶底部が外方へ張り出した状態になる場合があり好ましくない。
一方、スチール素材の場合は、0.30mm以上の板厚は耐圧強度は十分に確保されるが、実質的に過剰品質であり、経済的でない。
前記のバックリングといった現象は、同一板厚でも金属素材の機械的強度によって発生するか否かが分かれるため、機械的強度が高い場合は板厚の薄手化は可能となることから、板厚は、缶全体の強度バランスを考慮し、適宜選択することが望ましい。
【0009】
次に、本発明で適用される化成処理皮膜について述べる。
本発明に適用されるスチール素材のDI缶の化成処理皮膜は、リン(P)−金属(M)−有機樹脂(R)から成る有機無機複合型化成処理皮膜である。リン(P)の付着量は、片面で0.05〜2.0mg/m、金属(M)の付着量は片面で0.05〜2.0mg/m、有機樹脂(R)の付着量は炭素(C)量として片面で0.5〜20mg/m金属(M)がジルコニウム及び/又はチタニウムであり、かつ炭素(C)付着量と金属(M)付着量の比 C/M 1〜100である。
こうした化成処理によって析出する皮膜は、通常交換皮膜と呼ばれ、鋼板やアルミニウムの局部溶解によって起こる水素イオンの還元によりその部位では局部的にpHが上昇し、有機樹脂や金属イオンが溶解出来なくなり、析出するもので、析出箇所は鉄の露出部と考えられている。
リン(P)−金属(M)−有機樹脂(R)からなる化成処理皮膜は、対内容物耐食性の向上や缶内外面の塗膜密着性の向上だけでなく、前述したレトルト加熱殺菌処理を行う内容物を充填した場合に発生する、缶外面側の局部的塗膜浮き防止に特に効果がある。
【0010】
リン(P)は鋼板やアルミニウムの局部溶解を促すための物質ではあるが、有機樹脂や金属イオンと同時に析出される。
従って、リン(P)の付着量が直接缶体の耐食性や塗膜密着性に関与するものではないが、皮膜の品質管理面からはリン(P)の付着量は重要である。
リン(P)の付着量の下限値である0.05mg/m未満では有機樹脂(R)や金属(M)の析出が不十分で、対内容物耐食性や缶内外面の塗膜密着性が共に劣り好ましくない。
一方、リン(P)の付着量の上限値である2.0mg/mを超えても、有機樹脂(R)や金属(M)の析出による対内容物耐食性や缶内外面の塗膜密着性の向上効果は飽和し経済的でない。
化成処理後に施される缶の内外面塗膜との密着性や、缶内面の耐食性向上からは、基本的には有機樹脂(R)の付着量が重要である。
有機樹脂(R)は直接測定ができないため、付着炭素(C)量として測定され、片面の付着炭素(C)として0.5〜20mg/mである。
炭素(C)量の下限値である0.5mg/m未満では有機樹脂(R)の析出が不十分で、鉄露出部を十分に覆うことができず、対内容物耐食性や缶内外面の塗膜密着性が共に劣り好ましくない。
特に、密着性については、前述したネック加工の高縮径化に対し、特にレトルト殺菌処理を行う場合に塗膜剥離を起こすことがあるので重要な要件となる。
また、缶内面の耐食性についても、実用上問題ない量とは言え、鉄溶出量が多めになることがあり、好ましくない。
一方、炭素(C)量の上限値である20mg/m2を超えても、有機樹脂(R)の析出による対内容物耐食性や缶内外面の塗膜密着性の向上効果は飽和し経済的でない。
【0011】
前述したように、レトルト加熱殺菌処理で発生する外面塗膜の局部浮きは、蓋であるアルミニウムと胴であるスチールとの接触によって起こる「異種金属接触腐食」によるもので、蓋であるアルミニウムが陽極反応として溶解し、胴であるスチール面で陰極反応である酸素の還元反応が起こっている。従って、局部浮きは陰極アルカリピールと判断される。
従って、外面塗膜の局部浮きを防止するには、(1)陰極反応である酸素の還元反応を抑制する表面にすること、(2)もし腐食が起こってもアルカリピールが起こり難い密着力を有する表面にすることが考えられる。
本発明のリン(P)−金属(M)−有機樹脂(R)からなる化成処理皮膜の金属(M)は、前述した陰極反応である酸素の還元反応を抑制しており、更に有機樹脂(R)と共存させることで、化成処理皮膜の上層に存在する塗膜がアルカリピールが起こり難い密着力を有する化成処理皮膜となっているものと推定される。
従って、本発明のように有機樹脂(R)と金属(M)を共析させることで、前述した缶外面側の塗膜浮き防止に効果が顕著にみられる。
【0012】
金属(M)の付着量は片面0.05〜2.0mg/mである。
金属(M)の付着量下限値を下回る0.05mg/m未満でも、リン(P)付着量や有機樹脂(R)の付着量が本発明の範囲内であれば、対内容物耐食性や缶内外面の塗膜密着性は確保されるが、金属(M)の付着量下限値を下回る0.05mg/m未満では、前述した酸素の還元反応を抑制する効果は劣り、レトルト加熱殺菌処理で発生する外面塗膜の局部浮きを防止することができず好ましくない。
一方、金属(M)の付着量上限値である2.0mg/mを超えても、レトルト加熱殺菌処理で発生する外面塗膜の局部浮きの防止効果は飽和し経済的でない。
リン(P)−金属(M)−有機樹脂(R)からなる化成処理皮膜の場合、缶性能や化成処理の安定性からリン(P)の付着量は、片面0.1〜1.5mg/m、金属(M)の付着量は片面0.1〜1.8mg/m、有機樹脂(R)の付着量は炭素(C)量として片面で1.0〜15mg/mが、特に好ましい範囲である。
更に、リン(P)−金属(M)−有機樹脂(R)からなる化成処理皮膜の場合、特にレトルト加熱殺菌処理で発生する缶外面塗膜の局部浮きの防止の点からは、炭素(C)付着量と金属(M)付着量の比である C/M 比が重要で、本発明では1〜100である。
【0013】
炭素(C)量と金属(M)付着量の比である C/M 比は内外面に施される塗膜の密着性とレトルト加熱殺菌処理で発生する缶外面塗膜の局部浮きの防止との兼備と言った観点から重要で、C/M 比が下限値である1未満では、塗膜との密着性が不十分で、缶外面塗膜の局部浮きが起こる危険性があり好ましくはない。
一方、上限値である100を超えても、缶外面塗膜の局部浮き防止効果は飽和する。炭素(C)量と金属(M)付着量の比である C/M 比は、5〜50の範囲が、缶外面塗膜の局部浮き防止効果と化成処理の安定性を考慮すると最適である。
また、リン(P)−金属(M)−有機樹脂(R)からなる化成処理皮膜の金属(M)としては、ジルコニウム及び/又はチタニウムを用いるが、特にジルコニウムが缶特性の安定性や化成処理の安定性等から最適である。
本発明を実施する方法は特別なものでなく、現在アルミニウム合金やスチールを素材として製造されているDI缶の脱脂・化成処理方法が適用できる。
具体的には、DI加工後の缶体をアルカリ脱脂した後、例えばリン酸または縮合リン酸とフルオロジルコニウム酸のようなフッ化ジルコニウムやフルオロチタン酸のようなフッ化チタニウム、リン酸スズの一種と水溶性有機樹脂、例えば水溶性フェノール樹脂、水溶性アクリル樹脂等を含む水溶液に必要に応じて、反応性を促進させるためにフッ化水素酸またはフッ化化合物を添加した処理液を、缶体にスプレー塗布した後、水洗、乾燥し硬化させる方法や缶体を処理液に浸漬した後、水洗、乾燥し硬化させる方法等が適宜適用できる。
乾燥硬化方法としては熱風での乾燥、電気炉での乾燥等の方法が適用でき、温度は150℃〜250℃で乾燥時間は10秒〜2分程度である。
【0014】
本発明の有機無機複合化成処理皮膜は、化成処理後の加熱乾燥により有機樹脂の重合反応が起こり、高分子的な皮膜を形成する性質を有している。
しかも、有機樹脂が処理皮膜の表層に富化して存在するため、塗料との密着力が強固なものとなり、前述した、胴部径211径の缶体開口部の204径(直径約54mm)化や202径(直径約52mm)化、更には200径(直径約49mm)化へのネック加工にも耐えるだけでなく高腐食性の内容物に対しても高耐食性を有する優れた缶体が得られる。
従って、高縮径となるネック加工ほど有機無機複合化成処理皮膜は有利である。
本発明のスチ−ルを素材としたDI缶は、従来のリン酸スズ系化成処理に比べ、缶体の品質特性は著しく向上し、対内容物耐食性、缶内外面の塗膜密着性が大幅に改善されるだけでなく、希に発生するレトルト加熱殺菌処理での缶外面塗膜の局部浮きも抑えることができる。また、塗膜密着性が大幅に改善されるので、缶外面に直接装飾印刷を施す代わりに、接着剤層を備えた印刷フィルムを貼着する方法も採用することができる。
【0015】
【実施例】
以下、実施例にて、本発明の方法の効果を具体的に説明するが、本発明はこれにより何ら限定されるものではない。尚、本実施例で行った評価方法は以下の通りである。
(1)化成処理皮膜の有機樹脂付着量を示す炭素(C)量は、島津製作所(株)製の全有機体炭素計(TOC−5000/SSM−5000A固体試料TOC測定システム)にて測定した。
(2)化成処理皮膜のリン(P)および金属(M)付着量は、理学電機工業株式会社製の蛍光X線(X−RAY SPECTRO−METER)にて測定した。
(3)塗膜のデュポン衝撃密着性評価は、内外面塗装缶のネック加工部を切り出し、300g−30cmの条件でデュポン衝撃試験をおこない、セロファンテープ剥離試験で塗膜の剥離状態を観察した。
◎:塗膜剥離なし ○:微小塗膜剥離僅かに発生
△:塗膜剥離中程度に発生 ×:塗膜剥離大きく発生
(4)塗膜の碁盤目密着性評価は、内外面塗装缶の缶胴部を切り出し、1mm間隔にNTカッター(商品名;折り取りタイプのカッター)で塗膜面に下地金属に達する傷を碁盤目状に100の升目を入れ、125℃で30分間のレトルト加熱処理を行った後セロファンテ−プ剥離試験を行い塗膜の剥離状態を観察した。
◎:塗膜剥離なし ○:塗膜剥離1〜5%発生
△:塗膜剥離6〜15%発生 ×:塗膜剥離16%以上発生
(5)外面塗膜浮き評価は、缶体に水を満注状態で充填し、アルミニウム合金製のEOE缶蓋で巻締めた後、130℃で30分間のレトルト加熱処理を行い、外面塗膜の浮きの発生状況を評価した。
◎:塗膜浮きなし ○:塗膜浮き0.01〜0.1%発生
△:塗膜浮き0.2〜2%発生 ×:塗膜剥離2%以上発生
(6)耐食性評価は、市販のペットボトルに充填されていたお茶またはコ−ラを缶体内に所定量充填し、アルミニウム合金製のEOE缶蓋で巻締めた後、38℃で6ヶ月貯蔵し腐食状況を観察した。
◎:腐食なし ○:僅かに変色程度の表面腐食発生
△:表面腐食発生 ×:塗膜浮き、または鋼板の孔食を伴う腐食発生
【0016】
実験例1
板厚0.22mmの薄鋼板にSnめっきを片面付着量として2.8g/mを両面に施したブリキを用いてDI成形を行い、缶胴外径211径(約66mm)で内容物充填量が350mlの缶になるように開口端面側をトリミングしてスチール製DI缶を作成し、直ちに現行のスチ−ルDI缶用のアルカリ脱脂剤でスプレー脱脂・水洗処理した後、リン酸−フッ化ジルコニウム−水溶性フェノール樹脂−フッ化水素酸からなるリン(P)−金属(M)−有機樹脂(R)系で濃度、処理時間等の処理条件を変化させ、スプレーで化成処理を行ったのち水洗、純水水洗処理を行い、210℃で40秒間乾燥した。得られた缶の化成処理皮膜量は、それぞれ次の通りである。
リン付着量0.03mg/m、Zr付着量0.02mg/m、C付着量0.31mg/m、C/Mが15.50の化成処理(テスト1)、リン付着量0.07mg/m、Zr付着量0.07mg/m、C付着量0.85mg/m、C/Mが12.14の化成処理(テスト2)、リン付着量0.11mg/m、Zr付着量0.18mg/m、C付着量2.32mg/m、C/Mが12.89の化成処理(テスト3)、リン付着量0.32mg/m、Zr付着量0.31mg/m、C付着量3.54mg/m、C/Mが11.42の化成処理(テスト4)、リン付着量0.56mg/m、Zr付着量0.45mg/m、C付着量7.06mg/m、C/Mが15.69の化成処理(テスト5)、リン付着量1.07mg/m、Zr付着量0.86mg/m、C付着量13.12mg/m、C/Mが15.26の化成処理(テスト6)、リン付着量1.70mg/m、Zr付着量1.78mg/m、C付着量19.75mg/m、C/Mが11.10の化成処理(テスト7)、リン付着量0.95mg/m、Zr付着量0.65mg/m、C付着量0.58mg/m、C/Mが0.89の化成処理(テスト8)。
また、比較のため、前記の缶高さと同一の高さになるようにトリミングしたスチ−ル製DI缶を、脱脂処理は本発明例と同様に行い、化成処理を現行のリン酸Sn系の処理(テスト9)を行ったリン付着量が1.03mg/mの缶も併せて作成した。
次いで、缶の外面には酸化チタンを含有する市販のアクリル・アミノ系白色塗料をロール塗装で150〜160mg/dm塗装し、乾燥・焼き付けを行い、更に印刷を施し、その上に市販のポリエステル・エポキシ・アミノ系クリヤー塗料をロール塗装で60mg/dm塗装してから乾燥・焼き付けを行った後、缶の内面には市販のエポキシ・フェノール系内面用塗料をスプレー塗装で70〜80mg/dm塗装し、乾燥・焼き付けを行った後、内外面塗装缶の開口部に、ネック加工とフランジ加工とを行い、開口部径が202径の缶を作成した。
こうして得た、内外面塗装缶の塗膜密着性を調べるため、デュポン衝撃密着性評価および碁盤目密着性評価を行った。
また、外面のレトルト加熱殺菌処理での塗膜浮きを調べるため、缶体に水を満注状態で充填し、開口部にアルミニウム合金製のEOE缶蓋を巻締めた後、130℃で30分間レトルト加熱殺菌処理を行い、外面塗膜の浮き発生率を評価した。
耐食性を調べるため、市販のペットボトルに充填されていたお茶またはコーラを、缶体内に所定量充填し、開口部にアルミニウム合金製のEOE缶蓋を巻締めた後、38℃で6ヶ月間貯蔵し腐食状況を観察した。
実験例1で行った、本発明のスチール製DI缶の化成処理皮膜および比較例の化成処理皮膜の明細、そして各種の評価結果を表1に示した。
【0017】
【表1】

Figure 0004865163
【0018】
表1から判るように、本発明の化成処理を施したテスト2〜テスト7(本発明例1〜6)のスチール製DI缶は、内外面の塗膜密着性に優れ、また、外面塗膜の浮き発生率に対しても良好な性能を示し、内容物耐食性にも優れていることが判る。
それに反し、テスト1(比較例1)のZr付着量およびC付着量が共に本発明の下限値未満の場合は、内外面の塗膜密着性は劣り、外面塗膜の浮き発生率も高く、内容物耐食性も劣る。また、テスト8(比較例2)のC/Mが1以下の場合も、やはり内外面の塗膜密着性は劣り、外面塗膜の浮き発生率も高い。
また、現行のリン酸Sn系化成処理を施したテスト9(比較例3)の場合、内外面の塗膜密着性は本発明の化成処理皮膜を有する缶と遜色ないが、外面塗膜の浮き発生率は高いことがわかる。
【0019】
実験例2
板厚0.22mmの薄鋼板に、缶の内面に当たる面にはSnめっきを片面付着量として2.8g/m、缶の外面に当たる面にはSnめっきを片面付着量として5.6g/mのブリキを用いて実験例1と同一径のDI成形を行い、実験例1の手順に従いトリミングした後、直ちに現行のスチール製DI缶用のアルカリ脱脂剤でスプレー脱脂・水洗処理した後、リン酸−フッ化チタニウム−水溶性フェノール樹脂−フッ化水素酸からなるリン(P)−金属(M)−有機樹脂(R)系で濃度、処理時間等の処理条件を変化させ、スプレーで化成処理を行ったのち水洗、純水水洗処理を行い、210℃で40秒間乾燥した。得られた缶の化成処理皮膜量は、それぞれ次の通りである。
リン付着量0.12mg/m、Ti付着量0.07mg/m、C付着量1.51mg/m、C/Mが21.57の化成処理(テスト10)、リン付着量0.35mg/m、Ti付着量0.23mg/m、C付着量3.24mg/m、C/Mが14.09の化成処理(テスト11)、リン付着量0.83mg/m、Ti付着量0.74mg/m、C付着量10.35mg/m、C/Mが13.99の化成処理(テスト12)、リン付着量1.26mg/m、Ti付着量1.36mg/m、C付着量14.72mg/m、C/Mが10.82の化成処理(テスト13)。
また、比較のため、前記の缶高さにトリミングしたスチール製DI缶に脱脂処理は本発明例と同様に行い、化成処理を現行のリン酸Sn系の処理(テスト14)を行ったリン付着量が0.87mg/mの缶も併せて作成した。その後、缶の外面及び内面に、実験例1と同一の塗装及び印刷を施し、更に、内外面塗装缶の開口部に、ネックイン加工とフランジ加工とを行って、開口部径が202径の缶を作成した。
こうして得た、内外面塗装缶を、実験例1の手順に従って、缶の内外面の塗膜密着性、外面塗膜の塗膜浮き発生率および缶内面の耐食性を調べた。
実験2で行った、本発明のスチール製DI缶の化成処理皮膜および比較例の化成処理皮膜の明細、そして各種の評価結果を表2に示した。
【0020】
【表2】
Figure 0004865163
【0021】
表2から判るように、本発明の化成処理を施したテスト10〜テスト13(本発明例7〜10)のスチール製DI缶は、内外面の塗膜密着性に優れ、また、外面塗膜の浮き発生率に対しても良好な性能を示し、内容物耐食性にも優れていることが判る。
一方、比較例である現行のリン酸Sn系化成処理を施したテスト14(比較例4)は、内外面の塗膜密着性は本発明の化成処理皮膜を有する缶と遜色ないが、外面塗膜の浮き発生率は高いことがわかる。
【0022】
【発明の効果】
以上説明したように、本発明の化成処理を施したスチール製DI缶は、缶の内外面に塗装される塗膜の密着性に優れ、また内面の対内容物耐食性にも優れていることから、品質の安定性が向上できる。更に、特に、内容物を充填後にレトルト加熱殺菌処理を行う用途に対しても、希に外面の塗膜浮きが発生することがあるトラブルがほぼ完全に解消できる。こうした優れた特性を有していることから、単に品質が向上できるだけではなく、製造面でも安心して生産できるため、生産性が大幅に向上でき、経済的効果も大きいものがある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a DI can formed by drawing-ironing using steel as a raw material, and provides a can body excellent in coating film adhesion and corrosion resistance.
[0002]
[Prior art]
For metal cans, a cylindrical can body is manufactured, and a canopy is attached to a bottomed cylindrical container in which the can body and the ground are integrated, and a three-piece can in which the canopy and the ground are tightened at both end openings. There are two-piece cans that are tightened.
The three-piece can is made of a thin steel plate because the can body is joined by electric resistance welding or an adhesive.
On the other hand, a kind of two-piece can is generally called a DI can because a bottomed cylindrical container in which a can body and a ground cover are integrated is obtained by drawing or drawing and ironing (Drawn and Ironed). The DI can does not require joining of the can body, and a thin plate such as an aluminum alloy or steel is used as a material.
For DI cans made of steel and aluminum alloys, after the can body is formed, the inner surface of the can is painted from the viewpoint of ensuring corrosion resistance, and the outer surface is printed and painted for trademark and decoration purposes. It has been used.
Speaking of the corrosion resistance of the inner surface of steel DI cans, it is almost difficult to improve the corrosion resistance with the chemical conversion coating alone, and ultimately it depends on the coating applied after chemical conversion treatment, and the coating amount is made of steel. In the case of DI cans, the number of DI cans is higher than that of DI cans made of aluminum alloy, which is due to the fact that the corrosion resistance of the material is inferior to that of aluminum alloy.
[0003]
In addition, the outer surface of the can is a DI can made of steel, depending on the print design. However, in many cases, printing and clearing are performed after a white coating is applied from the viewpoint of printing appearance. Moreover, in the case of steel, the spectral reflectance inherent to metal is lower than that of aluminum alloy, so the color tone is black (blackish color), so the amount of white paint applied is when aluminum alloy is used as the material. It is necessary to increase more.
Thus, in the case of DI cans made of steel, the amount of coating on the inner surface and the white coating on the outer surface needs to be increased compared to the case of using aluminum alloy as the material. In some cases, the price may be higher, and the price difference of the metal material may be eliminated, and the total cost may be higher.
Although it is a very rare case, in the case of DI cans made of steel, the coating on the outer surface of the can is tightened on the lid, especially when the contents to be subjected to retort heat sterilization are filled. There may be a local float that extends from inside the part to outside the winding. Such local float is not preferable because it may significantly reduce the commercial value.
The phenomenon that the outer surface paint film of this can floats locally occurs only when (1) the aluminum alloy lid is wound, and (2) the body is not seen in DI cans made of aluminum alloy. For this reason, it is thought to be due to “foreign metal contact corrosion” that occurs when the aluminum alloy lid and the steel can body contact.
[0004]
In addition, due to the recent reduction in total can cost, the thickness of the metal plate used (thin plate) has been reduced, and the diameter of the easy-open can lid (easy open end, commonly known as EOE) made of aluminum alloy, which is a can lid, has been reduced. For example, when the can body is a 350 ml beer can, it is commonly called the 211 diameter, the diameter of the can body is about 66 mm, and naturally the can lid to be tightened is also for the 211 diameter, but now it is 206 The diameter (diameter of about 58 mm), the diameter of 204 (diameter of about 55 mm), the diameter of 202 (diameter of about 52 mm), and the diameter of 200 (diameter of about 49 mm) are being promoted.
This inevitably results in a so-called diameter reduction by narrowing the opening of the can body to a smaller diameter by necking or neck-in processing, so that the metal used in the can body is of course coated on its surface. Even organic paints that have been subjected to severe processing.
The chemical conversion treatment after DI can molding has been studied to cope with such corrosion resistance and diameter reduction. Currently, the chemical conversion treatment of DI cans using steel as a raw material is mainly a phosphoric acid-based chemical conversion treatment. Many have been applied.
However, it is difficult to solve many problems of DI cans made of steel by the phosphoric acid Sn chemical conversion treatment currently applied.
[0005]
Speaking of chemical conversion treatment technology for DI cans made of steel, for example, they are disclosed in JP-A-1-177379, JP-A-2-608, JP-A-11-264075 and the like. However, it is not sufficient in terms of performance, such as coating adhesion and corrosion resistance, which are currently required, and the problem that the paint float on the outer surface of the can during the retort heat sterilization treatment mentioned above cannot be prevented. have.
Steel DI cans have the following disadvantages: the can weight is heavier than the aluminum alloy DI cans, the corrosion resistance to the contents is inferior, and the printing appearance is darkened, but the can flow is smooth. There is also an advantage that the canopy's tightness is good and stable, and furthermore, the material price is cheap, so if the current can performance can be improved, the voice that wants to use the steel DI can Persistent.
Under such circumstances, there was a strong expectation for the appearance of a new chemical conversion treatment agent that could improve the corrosion resistance of the steel DI can body itself and the processing adhesion of the coating film on the inner and outer surfaces of the can.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to significantly improve the paint adhesion and corrosion resistance of DI cans made of steel, and to provide cans with higher quality and better production yield.
[0007]
[Means for Solving the Problems]
In the first aspect of the present invention, in a steel DI can obtained by squeezing and ironing, a chemical conversion film made of phosphorus (P) -metal (M) -organic resin (R) is formed on the inner and outer surface of the steel plate. The chemical conversion coating In Adhesion amount of phosphorus (P) But One side so 0.05-2.0 mg / m 2 , Metal (M) The amount of adhesion is One side so 0.05-2.0 mg / m 2 , Organic resin (R) adhesion amount as carbon (C) piece In terms of 0.5-20mg / m 2 , The metal (M) is zirconium and / or titanium, And carbon (C) Adhesion The present invention relates to a steel DI can characterized in that the ratio C / M of the amount and the metal (M) adhesion amount is 1 to 100.
[0008]
The can body in the present invention is a bottomed two-piece can (draw / ironing can, DI can) obtained by drawing-ironing processing using steel as a raw material.
Although it does not specifically limit as a steel material, The tinplate by which Sn plating was given to the thin steel plate currently applied as DI can is used. As a preferable specific example, the adhesion amount of one side to a thin steel plate having a thickness of 0.15 mm to 0.30 mm is 1.0 to 6.0 g / m. 2 These are tin-plated steel sheets.
The plate thickness is mainly determined by the strength of the can, especially the pressure resistance of the bottom of the can (commonly called the bottom pressure resistance). The plate thickness is selected according to the internal pressure after filling the contents. In the case of an internal pressure can that is filled and sealed, when the plate thickness is 0.15 mm or less, the so-called buckling, which is a state where the bottom of the can protrudes outward, is not preferable.
On the other hand, in the case of a steel material, a plate thickness of 0.30 mm or more can provide sufficient pressure resistance, but is substantially excessive quality and is not economical.
Since the phenomenon such as buckling occurs depending on the mechanical strength of the metal material even if the plate thickness is the same, if the mechanical strength is high, the plate thickness can be reduced. It is desirable to select appropriately considering the strength balance of the entire can.
[0009]
Next, the chemical conversion film applied in the present invention will be described.
The steel material DI can chemical conversion coating applied to the present invention is an organic-inorganic composite chemical conversion coating consisting of phosphorus (P) -metal (M) -organic resin (R). Adhesion of phosphorus (P) Amount , Piece In terms of 0.05-2.0 mg / m 2 , Metal (M) adhesion amount is one piece In terms of 0.05-2.0 mg / m 2 The amount of organic resin (R) attached is the amount of carbon (C) On one side 0.5-20mg / m 2 , The metal (M) is zirconium and / or titanium, And carbon (C) Adhesion Ratio of metal and metal (M) adhesion C / M Is 1-100.
The film deposited by such a chemical conversion treatment is usually called an exchange film, and the pH rises locally at the site due to the reduction of hydrogen ions caused by local dissolution of the steel sheet and aluminum, and the organic resin and metal ions cannot be dissolved. The deposit is considered to be an exposed portion of iron.
The chemical conversion coating consisting of phosphorus (P) -metal (M) -organic resin (R) not only improves the corrosion resistance to contents and the coating adhesion on the inner and outer surfaces of the can, but also performs the aforementioned retort heat sterilization treatment. This is particularly effective for preventing local paint film floating on the outer surface of the can, which occurs when the contents to be performed are filled.
[0010]
Phosphorus (P) is a substance that promotes local dissolution of steel plates and aluminum, but is deposited simultaneously with organic resins and metal ions.
Therefore, the adhesion amount of phosphorus (P) is not directly related to the corrosion resistance and coating film adhesion of the can, but the adhesion amount of phosphorus (P) is important from the viewpoint of coating quality control.
0.05 mg / m, which is the lower limit of the amount of phosphorus (P) deposited 2 If it is less than 1, the precipitation of the organic resin (R) and the metal (M) is insufficient, and the corrosion resistance to the contents and the adhesion between the inner and outer surfaces of the can are inferior.
On the other hand, 2.0 mg / m, which is the upper limit of the amount of phosphorus (P) attached 2 Even if it exceeds the range, the effect of improving the corrosion resistance to contents and the adhesion between the inner and outer surfaces of the can due to the precipitation of the organic resin (R) and metal (M) is saturated and not economical.
The adhesion amount of the organic resin (R) is fundamentally important in terms of adhesion to the inner and outer coating films of the can applied after the chemical conversion treatment and improvement of the corrosion resistance of the inner surface of the can.
Since organic resin (R) cannot be measured directly, it is measured as the amount of attached carbon (C), and is 0.5 to 20 mg / m as attached carbon (C) on one side. 2 It is.
0.5 mg / m, which is the lower limit of the amount of carbon (C) 2 If it is less than 1, the precipitation of the organic resin (R) is insufficient, the iron exposed portion cannot be sufficiently covered, and the corrosion resistance to the contents and the coating adhesion on the inner and outer surfaces of the can are both inferior.
In particular, the adhesiveness is an important requirement because the coating film may be peeled off particularly when the retort sterilization treatment is performed in order to increase the diameter of the neck processing described above.
Further, the corrosion resistance of the inner surface of the can is not preferable because it may cause a large amount of iron elution, although it is an amount that causes no problem in practice.
On the other hand, even if it exceeds 20 mg / m2 which is the upper limit of the amount of carbon (C), the effect of improving the corrosion resistance to contents and the adhesion between the inner and outer surfaces of the can due to the precipitation of the organic resin (R) is saturated and not economical. .
[0011]
As described above, the local float of the outer coating film generated by the retort heat sterilization treatment is due to “foreign metal contact corrosion” caused by the contact between the lid aluminum and the barrel steel, and the lid aluminum is the anode. It dissolves as a reaction, and a reduction reaction of oxygen, which is a cathode reaction, takes place on the steel surface which is the cylinder. Therefore, the local float is determined as a cathodic alkali peel.
Therefore, in order to prevent local lifting of the outer coating, (1) a surface that suppresses the reduction reaction of oxygen, which is a cathodic reaction, and (2) an adhesion that hardly causes alkali peel even if corrosion occurs. It is conceivable that the surface has a surface.
The metal (M) of the chemical conversion film comprising phosphorus (P) -metal (M) -organic resin (R) of the present invention suppresses the oxygen reduction reaction, which is the cathode reaction described above, and further contains an organic resin ( By coexisting with R), it is presumed that the coating film existing in the upper layer of the chemical conversion film is a chemical conversion film having an adhesive force that hardly causes an alkali peel.
Accordingly, by co-depositing the organic resin (R) and the metal (M) as in the present invention, the effect is remarkably seen in preventing the above-described coating film from floating on the outer surface side of the can.
[0012]
The amount of metal (M) deposited on one side so 0.05-2.0 mg / m 2 It is.
Amount of metal (M) attached But Below the lower limit 0 . 05mg / m 2 If the amount of phosphorus (P) or the amount of organic resin (R) is within the range of the present invention, the corrosion resistance to the contents and the coating adhesion between the inner and outer surfaces of the can can be ensured. ) Adhesion amount But Below the lower limit 0 . 05mg / m 2 If it is less than the above, the effect of suppressing the oxygen reduction reaction described above is inferior, and it is not preferable because local float of the outer surface coating film generated by the retort heat sterilization treatment cannot be prevented.
On the other hand, the amount of metal (M) attached But The upper limit is 2.0 mg / m 2 Even if it exceeds 1, the effect of preventing local float of the outer surface coating film generated by retort heat sterilization is saturated and not economical.
In the case of a chemical conversion treatment film composed of phosphorus (P) -metal (M) -organic resin (R), adhesion of phosphorus (P) due to can performance and stability of chemical conversion treatment Amount , One side so 0.1-1.5 mg / m 2 , Metal (M) is attached on one side so 0.1-1.8 mg / m 2 The amount of organic resin (R) attached is the amount of carbon (C) On one side 1.0-15mg / m 2 Is a particularly preferred range.
Furthermore, in the case of a chemical conversion treatment film comprising phosphorus (P) -metal (M) -organic resin (R), carbon (C ) Adhesion The C / M ratio, which is the ratio between the amount and the metal (M) deposition amount, is important, and is 1 to 100 in the present invention.
[0013]
The C / M ratio, which is the ratio of carbon (C) and metal (M) adhesion, is the adhesion of the coating applied to the inner and outer surfaces and the prevention of local floatation of the can outer coating that occurs during retort heat sterilization. If the C / M ratio is less than 1, which is the lower limit, the adhesion to the coating film is insufficient, and there is a risk of local floating of the outer coating film on the can, which is not preferable. .
On the other hand, even if the upper limit of 100 is exceeded, the local float prevention effect of the can outer surface coating film is saturated. The C / M ratio, which is the ratio between the carbon (C) amount and the metal (M) adhesion amount, is in the range of 5 to 50, considering the local float prevention effect of the can outer surface coating film and the stability of the chemical conversion treatment. .
In addition, as the metal (M) of the chemical conversion film made of phosphorus (P) -metal (M) -organic resin (R), zirconium And / or Titanium Use However, zirconium is particularly optimal from the viewpoint of stability of can characteristics, stability of chemical conversion treatment, and the like.
The method for carrying out the present invention is not special, and a degreasing / chemical conversion treatment method for DI cans currently produced using aluminum alloy or steel as a raw material can be applied.
Specifically, after the DI processed can body is degreased with alkali, for example, phosphoric acid or condensed phosphoric acid and zirconium fluoride such as fluorozirconic acid, titanium fluoride such as fluorotitanic acid, or a kind of tin phosphate And a treatment liquid in which hydrofluoric acid or a fluorinated compound is added as necessary to an aqueous solution containing water-soluble organic resin, for example, water-soluble phenol resin, water-soluble acrylic resin, etc. After spray coating, a method of washing with water, drying and curing, a method of immersing the can body in the treatment liquid, washing with water, drying and curing, etc. can be applied as appropriate.
As a drying and curing method, a method such as drying with hot air or drying in an electric furnace can be applied, the temperature is 150 ° C. to 250 ° C., and the drying time is about 10 seconds to 2 minutes.
[0014]
The organic-inorganic composite chemical conversion coating of the present invention has a property that a polymerization reaction of the organic resin occurs by heat drying after the chemical conversion treatment to form a polymer coating.
Moreover, since the organic resin is enriched in the surface layer of the treatment film, the adhesion to the coating becomes strong, and the diameter of the can body opening with the diameter of the barrel portion of 211 is made 204 (diameter: about 54 mm). No. 202 diameter (diameter: about 52 mm), and can withstand high-corrosive contents as well as withstands neck processing to 200 diameter (diameter: about 49 mm). It is done.
Therefore, the organic-inorganic composite chemical conversion coating film is more advantageous as the neck processing has a higher diameter reduction.
The DI can made from the steel of the present invention has significantly improved quality characteristics of the can body compared to the conventional tin phosphate chemical conversion treatment, and greatly improved the corrosion resistance to the contents and the coating adhesion between the inner and outer surfaces of the can. In addition to being improved, it is possible to suppress the local float of the outer surface coating film of the can in the retort heat sterilization treatment that occurs rarely. Moreover, since the coating film adhesion is greatly improved, a method of sticking a printing film provided with an adhesive layer can be employed instead of directly performing decorative printing on the outer surface of the can.
[0015]
【Example】
Hereinafter, the effects of the method of the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto. The evaluation method performed in this example is as follows.
(1) The carbon (C) amount indicating the organic resin adhesion amount of the chemical conversion coating was measured with a total organic carbon meter (TOC-5000 / SSM-5000A solid sample TOC measurement system) manufactured by Shimadzu Corporation. .
(2) The phosphorus (P) and metal (M) adhesion amount of the chemical conversion film was measured with a fluorescent X-ray (X-RAY SPECTRO-METER) manufactured by Rigaku Corporation.
(3) The DuPont impact adhesion evaluation of the coating film cut out the neck processing part of the inner and outer surface coating cans, performed a DuPont impact test under the condition of 300 g-30 cm, and observed the peeling state of the coating film by the cellophane tape peeling test.
◎: No coating film peeling ○: Small coating film peeling occurred slightly
Δ: Occurred during coating film peeling ×: Large coating film peeling occurred
(4) The cross-cut adhesion evaluation of the paint film is made by cutting out the can body of the inner and outer surface coated cans, and scratching the paint film surface with a NT cutter (trade name; take-off type cutter) at 1 mm intervals. 100 grids were put in a grid pattern, and after 30 minutes of retort heat treatment at 125 ° C., a cellophane tape peel test was conducted to observe the peeled state of the coating film.
◎: No peeling of coating film ○: 1-5% of coating film peeling
Δ: Occurrence of coating film peeling 6-15% x: Occurrence of coating film peeling 16% or more
(5) External surface coating float evaluation was performed by filling the can body with water in a fully-filled state, winding it with an aluminum alloy EOE can lid, and performing a retort heat treatment at 130 ° C. for 30 minutes. The state of occurrence of floating was evaluated.
◎: No paint float ○: Paint paint lift 0.01-0.1%
Δ: Occurrence of paint film 0.2 to 2% x: Occurrence of paint film peeling 2% or more
(6) Corrosion resistance is evaluated by filling a can with a predetermined amount of tea or roll filled in a commercially available plastic bottle, tightening it with an aluminum alloy EOE can lid, and storing at 38 ° C. for 6 months. The corrosion situation was observed.
◎: No corrosion ○: Surface corrosion slightly discolored
Δ: Surface corrosion occurred ×: Corrosion occurred with paint film floating or steel plate pitting corrosion
[0016]
Experimental example 1
2.8 g / m with Sn plating on one side of thin steel plate with a thickness of 0.22 mm 2 DI is made using tinplate coated on both sides, and the steel DI can is made by trimming the open end face side so that the can fills 350 ml with a can body outer diameter of 211 (about 66 mm). Immediately after spray degreasing and water-washing with the current alkaline degreasing agent for steel DI cans, phosphorus (P) -metal (M) consisting of phosphoric acid-zirconium fluoride-water-soluble phenolic resin-hydrofluoric acid ) -Organic resin (R) system was subjected to chemical conversion treatment by changing the treatment conditions such as concentration and treatment time, followed by washing with water and pure water, followed by drying at 210 ° C. for 40 seconds. The amount of the chemical conversion film of the obtained can is as follows.
Phosphorous adhesion amount 0.03mg / m 2 , Zr adhesion amount 0.02mg / m 2 , C adhesion amount 0.31mg / m 2 , C / M is 15.50 chemical conversion treatment (test 1), phosphorus adhesion amount 0.07 mg / m 2 , Zr adhesion amount 0.07mg / m 2 , C adhesion amount 0.85mg / m 2 , C / M = 12.14 chemical conversion treatment (test 2), phosphorus adhesion 0.11 mg / m 2 , Zr adhesion amount 0.18mg / m 2 , C adhesion amount 2.32 mg / m 2 , Chemical conversion treatment with C / M of 12.89 (test 3), phosphorus adhesion amount 0.32 mg / m 2 Zr adhesion amount 0.31 mg / m 2 , C adhesion amount 3.54mg / m 2 , Chemical conversion treatment with C / M of 11.42 (Test 4), Phosphorous adhesion amount 0.56 mg / m 2 Zr adhesion amount 0.45 mg / m 2 , C adhesion amount 7.06mg / m 2 , C / M = 15.69 chemical conversion treatment (test 5), phosphorus adhesion 1.07 mg / m 2 , Zr adhesion amount 0.86mg / m 2 , C adhesion amount 13.12mg / m 2 , C / M 15.26 conversion test (test 6), phosphorus adhesion 1.70 mg / m 2 Zr adhesion amount 1.78 mg / m 2 , C adhesion amount 19.75 mg / m 2 , Chemical conversion treatment with C / M of 11.10 (test 7), phosphorus adhesion amount 0.95 mg / m 2 , Zr adhesion amount 0.65 mg / m 2 , C adhesion amount 0.58mg / m 2 , C / M is 0.89 (test 8).
For comparison, a steel DI can trimmed so as to have the same height as the above-mentioned can was degreased in the same manner as in the present invention example, and the chemical conversion treatment was performed using the current Sn phosphate system. The phosphorus adhesion amount after the treatment (test 9) was 1.03 mg / m 2 The cans were also made.
Next, a commercially available acrylic / amino-based white paint containing titanium oxide is applied to the outer surface of the can by roll coating at 150 to 160 mg / dm. 2 After coating, drying and baking, printing is performed, and a commercially available polyester / epoxy / amino-based clear paint is applied to the roll by 60 mg / dm. 2 After painting and drying / baking, the inner surface of the can is sprayed with a commercially available epoxy / phenolic inner surface paint at 70-80 mg / dm 2 After coating, drying and baking, necking and flange processing were performed on the opening of the inner and outer surface coated cans, and a can with a diameter of 202 was created.
In order to examine the coating film adhesion of the inner and outer surface coated cans thus obtained, DuPont impact adhesion evaluation and cross-cut adhesion evaluation were performed.
In addition, in order to examine the float of the coating film in the retort heat sterilization treatment on the outer surface, the can body was filled with water in a fully-filled state, and an aluminum alloy EOE can lid was wrapped around the opening, and then at 130 ° C. for 30 minutes A retort heat sterilization treatment was performed, and the floating occurrence rate of the outer surface coating film was evaluated.
In order to check the corrosion resistance, tea or cola filled in a commercially available plastic bottle is filled into a can, and an aluminum alloy EOE can lid is wrapped around the opening, and then stored at 38 ° C for 6 months. The corrosion situation was observed.
Table 1 shows the details of the chemical conversion treatment film of the steel DI can of the present invention and the chemical conversion treatment film of the comparative example and various evaluation results performed in Experimental Example 1.
[0017]
[Table 1]
Figure 0004865163
[0018]
As can be seen from Table 1, the steel DI cans of Test 2 to Test 7 (Invention Examples 1 to 6) subjected to the chemical conversion treatment of the present invention have excellent coating adhesion on the inner and outer surfaces, and the outer coating film. It shows good performance with respect to the rate of occurrence of buoyancy and is excellent in the corrosion resistance of the contents.
On the other hand, when both the Zr adhesion amount and the C adhesion amount of Test 1 (Comparative Example 1) are less than the lower limit of the present invention, the coating adhesion between the inner and outer surfaces is inferior, and the float occurrence rate of the outer coating film is high. The content corrosion resistance is also poor. Moreover, when C / M of Test 8 (Comparative Example 2) is 1 or less, the coating adhesion between the inner and outer surfaces is also inferior, and the occurrence rate of the floating coating on the outer surface is high.
In addition, in the case of Test 9 (Comparative Example 3) subjected to the current phosphoric acid Sn-based chemical conversion treatment, the adhesion of the coating film on the inner and outer surfaces is not inferior to that of the can having the chemical conversion treatment film of the present invention. It can be seen that the incidence is high.
[0019]
Experimental example 2
A thin steel plate having a thickness of 0.22 mm and a surface that contacts the inner surface of the can with Sn plating of 2.8 g / m on one side. 2 The surface that contacts the outer surface of the can is 5.6 g / m with Sn plating on one side. 2 After performing DI molding with the same diameter as that of Experimental Example 1 using the tinplate of the steel sheet and trimming according to the procedure of Experimental Example 1, it was immediately spray degreased and washed with an alkaline degreasing agent for steel DI cans, and then phosphoric acid. -Titanium fluoride-Water-soluble phenolic resin-Phosphorus (P)-Metal (M)-Organic resin (R) system consisting of hydrofluoric acid. After the washing, washing with pure water and washing with pure water were performed, followed by drying at 210 ° C. for 40 seconds. The amount of the chemical conversion film of the obtained can is as follows.
Phosphorous adhesion amount 0.12mg / m 2 Ti adhesion amount 0.07mg / m 2 , C adhesion amount 1.51mg / m 2 , Chemical conversion treatment with C / M 21.57 (test 10), phosphorus adhesion amount 0.35 mg / m 2 Ti adhesion amount 0.23mg / m 2 , C adhesion amount 3.24mg / m 2 , C / M is 14.09 chemical conversion treatment (test 11), phosphorus adhesion amount 0.83 mg / m 2 Ti adhesion amount 0.74mg / m 2 , C adhesion amount 10.35mg / m 2 , Chemical conversion treatment with C / M of 13.99 (test 12), phosphorus adhesion amount of 1.26 mg / m 2 Ti adhesion amount 1.36mg / m 2 , C adhesion amount 14.72mg / m 2 , Chemical conversion treatment with C / M of 10.82 (test 13).
For comparison, the steel DI can trimmed to the height of the can was degreased in the same manner as in the present invention example, and the phosphorous adhesion was performed by performing the current phosphoric acid Sn-based treatment (test 14). Amount 0.87mg / m 2 The cans were also made. Thereafter, the same coating and printing as in Experimental Example 1 are performed on the outer surface and inner surface of the can, and further, neck-in processing and flange processing are performed on the opening of the inner and outer surface coating can, and the opening diameter is 202 diameter. I made a can.
According to the procedure of Experimental Example 1, the inner and outer surface coated cans thus obtained were examined for coating adhesion on the inner and outer surfaces of the can, the rate of occurrence of coating film floating on the outer surface coating, and the corrosion resistance of the inner surface of the can.
Table 2 shows the details of the chemical conversion coating of the steel DI can of the present invention and the chemical conversion coating of the comparative example, and various evaluation results, performed in Experiment 2.
[0020]
[Table 2]
Figure 0004865163
[0021]
As can be seen from Table 2, the steel DI cans of Test 10 to Test 13 (Invention Examples 7 to 10) subjected to the chemical conversion treatment of the present invention have excellent coating adhesion on the inner and outer surfaces, and the outer coating film. It shows good performance with respect to the rate of occurrence of buoyancy and is excellent in the corrosion resistance of the contents.
On the other hand, the test 14 (Comparative Example 4) subjected to the current phosphoric acid Sn-based chemical conversion treatment as a comparative example is similar to the can having the chemical conversion coating of the present invention in terms of coating adhesion on the inner and outer surfaces. It can be seen that the incidence of film float is high.
[0022]
【Effect of the invention】
As described above, the steel DI can subjected to the chemical conversion treatment of the present invention is excellent in the adhesion of the coating film coated on the inner and outer surfaces of the can, and also excellent in the corrosion resistance to the contents on the inner surface. , Quality stability can be improved. In addition, particularly for applications in which retort heat sterilization is performed after filling the contents, troubles in which the coating film floats rarely can be almost completely eliminated. Because of these excellent characteristics, not only the quality can be improved, but also production can be performed with peace of mind, so that productivity can be greatly improved and there are significant economic effects.

Claims (1)

絞りしごき加工によって得られるスチール製DI缶において、缶の内外面の鋼板表面にリン(P)−金属(M)−有機樹脂(R)からなる化成処理皮膜が形成されており、該化成処理皮膜におけるリン(P)の付着量片面0.05〜2.0mg/m、金属(M)の付着量が片面0.05〜2.0mg/m、有機樹脂(R)の付着量が炭素(C)量として片面で0.5〜20mg/m金属(M)がジルコニウム及び/又はチタニウムであり、かつ炭素(C)付着量と金属(M)付着量の比 C/M が1〜100であることを特徴とするスチール製DI缶。In a steel DI can obtained by squeezing and ironing, a chemical conversion film made of phosphorus (P) -metal (M) -organic resin (R) is formed on the inner and outer steel plate surfaces of the can, and the chemical conversion film The adhesion amount of phosphorus (P) in the surface is 0.05 to 2.0 mg / m 2 on one side , the adhesion amount of metal (M) is 0.05 to 2.0 mg / m 2 on one side , and the adhesion of organic resin (R) amount 0.5-20 / m 2 in single plane as a carbon (C) content, metal (M) is zirconium and / or titanium, and carbon (C) ratio of coating weight and the metal (M) attached amount C Steel DI can characterized by / M being 1-100.
JP2001253501A 2001-08-23 2001-08-23 Steel DI can Expired - Lifetime JP4865163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253501A JP4865163B2 (en) 2001-08-23 2001-08-23 Steel DI can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253501A JP4865163B2 (en) 2001-08-23 2001-08-23 Steel DI can

Publications (2)

Publication Number Publication Date
JP2003063518A JP2003063518A (en) 2003-03-05
JP4865163B2 true JP4865163B2 (en) 2012-02-01

Family

ID=19081815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253501A Expired - Lifetime JP4865163B2 (en) 2001-08-23 2001-08-23 Steel DI can

Country Status (1)

Country Link
JP (1) JP4865163B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023468B2 (en) * 2005-10-28 2012-09-12 Jfeスチール株式会社 Surface treatment metal plate for can or can lid and method for producing the same, resin-coated metal plate for can or can lid, metal can and can lid
KR101144367B1 (en) * 2006-09-08 2012-05-10 신닛뽄세이테쯔 카부시키카이샤 Steel plate for container, and method for production thereof
MY162540A (en) * 2010-09-15 2017-06-15 Jfe Steel Corp Steel sheet for containers and manufacturing method for same
KR101942202B1 (en) * 2014-10-09 2019-01-24 신닛테츠스미킨 카부시키카이샤 Chemical conversion treated steel sheet, and method for producing chemical conversion treated steel sheet
ES2745576T3 (en) * 2014-10-09 2020-03-02 Nippon Steel Corp Chemical conversion treated steel sheet, and method of producing chemical conversion treated steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229156A (en) * 1998-02-18 1999-08-24 Nippon Parkerizing Co Ltd Aluminum alloy treated can and its treatment
JPH11264075A (en) * 1998-03-17 1999-09-28 Nippon Parkerizing Co Ltd Tin-plated steel surface treated can and surface treatment of tin-plated steel can
JP3862051B2 (en) * 1998-12-18 2006-12-27 大和製罐株式会社 Manufacturing method of film sticking can

Also Published As

Publication number Publication date
JP2003063518A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
JP4886811B2 (en) Steel plate for containers excellent in organic film performance and method for producing the same
WO2012002360A1 (en) Steel sheet for container and method of producing same
WO2005123991A1 (en) Surface-treated metal material and surface treatment method therefor, resin-coated metal material, can and lid of can
JP5692080B2 (en) Manufacturing method of steel plate for container material with less environmental impact
KR900003473B1 (en) Chromate-treated zinc-plated steel strip and method for making
JPS5845396A (en) Ni-zn alloy plated steel plate for fuel vessel
US4608320A (en) Surface-treated steel strips adapted for electric resistance welding
JP4865163B2 (en) Steel DI can
JPH01152283A (en) Aluminized steel sheet for can and production thereof
JP2600217B2 (en) Multi-layer plated steel sheet for cans
JP6565308B2 (en) Steel plate for container and method for producing steel plate for container
JPH0611918B2 (en) Surface-treated steel plate for cans
WO2001004380A1 (en) Steel plate for laminated container, and method for producing can using the same and can
JP2696729B2 (en) Manufacturing method of surface treated steel sheet for organic resin coating with excellent processing adhesion
JP6468059B2 (en) Sn-plated steel sheet and method for producing Sn-plated steel sheet
JPH01268895A (en) Surface-treated steel sheet for crowm cap
JPS63183191A (en) Lead-tin alloy plated steel sheet having excellent corrosion resistance
JPS60262975A (en) Surface treated steel sheet having superior weldability and its manufacture
JP2625498B2 (en) Hot-dip aluminized steel sheet for can lid with excellent corrosion resistance
JPH055906B2 (en)
JPS62297473A (en) Ni alloy multilayer plated steel sheet having superior corrosion resistance, weldability and paintability
JPH04365882A (en) Al or al alloy material having excellent formability and corrosion resistance after coating
JPH04365893A (en) Fluororesin composite plated steel sheet for di can
JPH0544077A (en) Surface treated steel plate for vessel excellent in rust preventing property and appearance
JPH0565691A (en) Method for electroplating aluminum sheet and aluminum alloy sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4865163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term