JP4863667B2 - Liquid crystal display device and manufacturing method thereof - Google Patents

Liquid crystal display device and manufacturing method thereof Download PDF

Info

Publication number
JP4863667B2
JP4863667B2 JP2005232701A JP2005232701A JP4863667B2 JP 4863667 B2 JP4863667 B2 JP 4863667B2 JP 2005232701 A JP2005232701 A JP 2005232701A JP 2005232701 A JP2005232701 A JP 2005232701A JP 4863667 B2 JP4863667 B2 JP 4863667B2
Authority
JP
Japan
Prior art keywords
electrode
layer
signal line
scanning line
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005232701A
Other languages
Japanese (ja)
Other versions
JP2007047516A (en
Inventor
清弘 川崎
佳 宗 李
建 宏 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AU Optronics Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Priority to JP2005232701A priority Critical patent/JP4863667B2/en
Publication of JP2007047516A publication Critical patent/JP2007047516A/en
Application granted granted Critical
Publication of JP4863667B2 publication Critical patent/JP4863667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はカラー画像表示機能を有する液晶表示装置、とりわけ絵素毎にスイッチング素子を有するアクティブ型の液晶表示装置に関するものである。 The present invention relates to a liquid crystal display device having a color image display function, and more particularly to an active liquid crystal display device having a switching element for each picture element.

近年の微細加工技術、液晶材料技術及び高密度実装技術等の進歩により、5〜75cm対角の液晶表示装置でテレビジョン画像や各種の画像表示機器が既に商用ベースで大量に提供されている。また、液晶パネルを構成する2枚のガラス基板の一方にRGBの着色層を形成しておくことによりカラー表示も容易に実現している。特にスイッチング素子を絵素毎に内蔵させた、いわゆるアクティブ型の液晶パネルではクロストークも少なく、応答速度も早く高いコントラスト比を有する画像が製品化の当初から保証されていた。 With recent advances in microfabrication technology, liquid crystal material technology, high-density packaging technology, etc., television images and various image display devices have already been provided in large quantities on a commercial basis in a 5-75 cm diagonal liquid crystal display device. In addition, color display can be easily realized by forming an RGB colored layer on one of the two glass substrates constituting the liquid crystal panel. In particular, a so-called active liquid crystal panel in which a switching element is built in for each picture element has been guaranteed from the beginning of commercialization of an image having little crosstalk, high response speed, and high contrast ratio.

これらの液晶表示装置(液晶パネル)は走査線としては200〜1200本、信号線としては300〜1600本程度のマトリクス編成が一般的であるが、最近は表示容量の増大に対応すべく大画面化と高精細化とが同時に進行している。 These liquid crystal display devices (liquid crystal panels) generally have a matrix organization of 200 to 1200 scanning lines and 300 to 1600 signal lines, but recently, a large screen is required to cope with an increase in display capacity. And high definition are progressing simultaneously.

図8は液晶パネルへの実装状態を示し、液晶パネル1を構成する一方の透明性絶縁基板、例えばガラス基板2上に形成された走査線の電極端子5に駆動信号を供給する半導体集積回路チップ3を導電性の接着剤を用いて接続するCOG(Chip−On−Glass)方式や、例えばポリイミド系樹脂薄膜をベースとし、金または半田メッキされた銅箔の端子を有するTCPフィルム4を信号線の電極端子6に導電性媒体を含む適当な接着剤で圧接して固定するTCP(Tape−Carrier−Package)方式などの実装手段によって電気信号が画像表示部に供給される。ここでは便宜上二つの実装方式を同時に図示しているが実際には何れかの方式が適宜選択される。 FIG. 8 shows a state of mounting on a liquid crystal panel, and a semiconductor integrated circuit chip for supplying a drive signal to one of the transparent insulating substrates constituting the liquid crystal panel 1, for example, the electrode terminals 5 of the scanning lines formed on the glass substrate 2. A COG (Chip-On-Glass) system in which 3 is connected using a conductive adhesive, or a TCP film 4 having a terminal of gold foil or solder-plated copper foil based on a polyimide resin thin film, for example, as a signal line An electrical signal is supplied to the image display unit by a mounting means such as a TCP (Tape-Carrier-Package) method in which the electrode terminal 6 is fixed by being pressed with an appropriate adhesive containing a conductive medium. Here, for convenience, two mounting methods are shown at the same time, but in actuality, either method is appropriately selected.

液晶パネル1のほぼ中央部に位置する画像表示部内の画素と、走査線及び信号線の電極端子5,6との間を接続する配線路が7、8で、必ずしも電極端子5,6と同一の導電材で構成される必要はない。9は全ての液晶セルに共通する透明導電性の対向電極を対向面上に有するもう1枚の透明性絶縁基板である対向ガラス基板またはカラーフィルタである。 Wiring paths for connecting the pixels in the image display unit located almost at the center of the liquid crystal panel 1 and the electrode terminals 5 and 6 of the scanning lines and the signal lines are 7 and 8, which are not necessarily the same as the electrode terminals 5 and 6. It is not necessary to be made of a conductive material. Reference numeral 9 denotes a counter glass substrate or color filter which is another transparent insulating substrate having a transparent conductive counter electrode common to all liquid crystal cells on the counter surface.

図9はスイッチング素子として絶縁ゲート型トランジスタ10を絵素毎に配置したアクティブ型液晶表示装置の等価回路図を示し、11(図8では7)は走査線、12(図8では8)は信号線、13は液晶セルであって、液晶セル13は電気的には容量素子として扱われる。実線で描かれた素子類は液晶パネルを構成する一方のガラス基板2上に形成され、点線で描かれた全ての液晶セル13に共通な対向電極14はもう一方のガラス基板9の対向する主面上に形成されている。絶縁ゲート型トランジスタ10のOFF抵抗あるいは液晶セル13の抵抗が低い場合や表示画像の階調性を重視する場合には負荷としての液晶セル13の時定数を大きくするための補助の蓄積容量15を液晶セル13に並列に加える等の回路的工夫が加味される。なお16は蓄積容量15の共通母線となる蓄積容量線または共通電極である。 FIG. 9 shows an equivalent circuit diagram of an active liquid crystal display device in which an insulated gate transistor 10 is arranged for each picture element as a switching element, 11 (7 in FIG. 8) is a scanning line, and 12 (8 in FIG. 8) is a signal. A line 13 is a liquid crystal cell, and the liquid crystal cell 13 is electrically treated as a capacitive element. Elements drawn with solid lines are formed on one glass substrate 2 constituting a liquid crystal panel, and the counter electrode 14 common to all liquid crystal cells 13 drawn with dotted lines is the main electrode facing the other glass substrate 9. It is formed on the surface. When the OFF resistance of the insulated gate transistor 10 or the resistance of the liquid crystal cell 13 is low, or when importance is attached to the gradation of the display image, an auxiliary storage capacitor 15 for increasing the time constant of the liquid crystal cell 13 as a load is provided. A circuit device such as addition to the liquid crystal cell 13 in parallel is added. Reference numeral 16 denotes a storage capacitor line or a common electrode serving as a common bus for the storage capacitor 15.

図10は液晶表示装置の画像表示部の要部断面図を示し、液晶パネル1を構成する2枚のガラス基板2,9は樹脂性のファイバ、ビーズあるいはカラーフィルタ9上に形成された柱状スペーサ等のスペーサ材(図示せず)によって数μm程度の所定の距離を隔てて形成され、その間隙(ギャップ)はガラス基板9の周縁部において有機性樹脂よりなるシール材と封口材(何れも図示せず)とで封止された閉空間になっており、この閉空間に液晶17が充填されている。 FIG. 10 is a cross-sectional view of the main part of the image display unit of the liquid crystal display device. The two glass substrates 2 and 9 constituting the liquid crystal panel 1 are columnar spacers formed on resinous fibers, beads or color filters 9. Are formed at a predetermined distance of about several μm by a spacer material (not shown) such as a sealing material made of an organic resin and a sealing material (both shown in the figure) at the peripheral edge of the glass substrate 9. The liquid crystal 17 is filled in this closed space.

カラー表示を実現する場合には、ガラス基板9の閉空間側に着色層18と称する染料または顔料のいずれか一方もしくは両方を含む厚さ1〜2μm程度の有機薄膜が被着されて色表示機能が与えられるので、その場合にはガラス基板9は別名カラーフィルタ(Color Filter 略語はCF)と呼称される。そして液晶材料17の性質によってはガラス基板9の上面またはガラス基板2の下面の何れかもしくは両面上に偏光板19が貼付され、液晶パネル1は電気光学素子として機能する。現在、市販されている大部分の液晶パネルでは液晶材料にTN(ツイスト・ネマチック)系の物を用いており、偏光板19は通常2枚必要である。図示はしないが、透過型液晶パネルでは光源として裏面光源が配置され、下方より白色光が照射される。 In the case of realizing color display, an organic thin film having a thickness of about 1 to 2 μm containing either or both of a dye and a pigment called a colored layer 18 is deposited on the closed space side of the glass substrate 9 to provide a color display function. In this case, the glass substrate 9 is also called a color filter (color filter abbreviation is CF). Depending on the properties of the liquid crystal material 17, a polarizing plate 19 is attached to either or both of the upper surface of the glass substrate 9 and the lower surface of the glass substrate 2, and the liquid crystal panel 1 functions as an electro-optical element. Currently, most liquid crystal panels on the market use a TN (twisted nematic) type liquid crystal material, and two polarizing plates 19 are usually required. Although not shown, in the transmissive liquid crystal panel, a back light source is disposed as a light source, and white light is irradiated from below.

液晶17に接して2枚のガラス基板2,9上に形成された例えば厚さ0.1μm程度のポリイミド系樹脂薄膜20は液晶分子を決められた方向に配向させるための配向膜である。21は絶縁ゲート型トランジスタ10のドレインと透明導電性の絵素電極22を接続するドレイン電極(配線)であり、信号線(ソース線)12と同時に形成されることが多い。ソース電極12とドレイン電極21との間に位置するのは半導体層23であり詳細は後述する。カラーフィルタ9上で隣り合った着色層18の境界に形成された厚さ0.1μm程度のCr薄膜層24は半導体層23と走査線11及び信号線12に外部光が入射するのを防止するための光遮蔽部材で、所謂ブラックマトリクス(Black Matrix 略語はBM)として定着化した技術である。 The polyimide resin thin film 20 having a thickness of, for example, about 0.1 μm formed on the two glass substrates 2 and 9 in contact with the liquid crystal 17 is an alignment film for aligning liquid crystal molecules in a predetermined direction. Reference numeral 21 denotes a drain electrode (wiring) that connects the drain of the insulated gate transistor 10 and the transparent conductive pixel electrode 22, and is often formed simultaneously with the signal line (source line) 12. The semiconductor layer 23 is located between the source electrode 12 and the drain electrode 21 and will be described in detail later. The Cr thin film layer 24 having a thickness of about 0.1 μm formed at the boundary between the adjacent colored layers 18 on the color filter 9 prevents external light from entering the semiconductor layer 23, the scanning line 11, and the signal line 12. This is a light shielding member for fixing a black matrix (Black Matrix abbreviated as BM).

走査線、信号線、スイッチング素子としての絶縁ゲート型トランジスタ、及び絵素電極を形成されたアクティブ基板(ガラス基板)2の作製には半導体集積回路のようにフォトマスクを用いた複数回のフォトリソグラフィ(写真食刻)工程が不可欠である。詳細な経緯は省略するが、半導体層の島化工程の合理化と走査線へのコンタクト形成工程が削減された結果、当初は7〜8枚程度必要であったフォトマスクもドライエッチ技術の導入により現時点では5枚に減少してプロセスコストの削減に大きく寄与している。液晶表示装置の生産コストを下げるためにはアクティブ基板の作製工程ではプロセスコストを、またパネル組立工程とモジュール実装工程では部材コストを下げることが有効であることは周知の開発目標であり、写真食刻工程を含めて製造工程数を削減する事が液晶表示装置の生産性向上とコストダウンに大きく寄与することは自明である。 The active substrate (glass substrate) 2 on which the scanning line, the signal line, the insulated gate transistor as the switching element, and the pixel electrode are formed is produced by a plurality of times of photolithography using a photomask like a semiconductor integrated circuit. The (photo-etching) process is essential. Although detailed details are omitted, as a result of rationalizing the process of islanding the semiconductor layer and reducing the process of forming the contact to the scanning line, the photomask that originally required about 7 to 8 was also introduced by dry etching technology. At present, the number is reduced to five, which greatly contributes to the reduction of process costs. It is a well-known development target that it is effective to reduce the process cost in the manufacturing process of the active substrate and to reduce the material cost in the panel assembly process and module mounting process in order to reduce the production cost of the liquid crystal display device. Obviously, reducing the number of manufacturing processes including the engraving process greatly contributes to improving the productivity and cost reduction of the liquid crystal display device.

既に述べたようにアクティブ基板2の作製において5回の写真食刻工程を必要とする製造方法が一般的であり、さらなる製造コスト低減のために提案されている先行例の中から一部で既に量産されており、特許文献1の特開2002−206571号公報で開示されている4枚マスク・プロセスを従来例として紹介する。この4枚マスク・プロセスは下記に説明するようにハーフトーン露光技術を用いてチャネルを含む半導体層の島化工程とソース・ドレイン配線工程を1枚のフォトマスクで形成する工程削減技術あるいは合理化技術である。図11は4枚マスク・プロセスに対応したアクティブ基板の単位絵素の平面図で、図11(f)のA−A’(絶縁ゲート型トランジスタ領域)、B−B’(走査線の電極端子領域)及びC−C’線(信号線の電極端子領域)上の製造工程断面図を図12に示す。現在、絶縁ゲート型トランジスタには2種類のものが多用されているが、ここではチャネルエッチ型の絶縁ゲート型トランジスタを採用している。 As described above, a manufacturing method that requires five photolithography steps in the production of the active substrate 2 is common, and some of the previous examples that have been proposed for further reduction in manufacturing cost have already been made. A four-mask process, which is mass-produced and disclosed in Japanese Patent Application Laid-Open No. 2002-206571 of Patent Document 1, will be introduced as a conventional example. As described below, this four-mask process is a process reduction technique or rationalization technique in which a semiconductor layer including a channel is formed into an island and a source / drain wiring process with a single photomask using a halftone exposure technique. It is. FIG. 11 is a plan view of a unit picture element of an active substrate corresponding to a four-mask process. AA ′ (insulated gate transistor region) and BB ′ (scan line electrode terminals) in FIG. Area) and CC ′ line (signal line electrode terminal area) are shown in FIG. At present, two types of insulated gate transistors are widely used, but here, channel-etched insulated gate transistors are employed.

先ず図11(a)と図12(a)に示したように耐熱性と耐薬品性と透明性が高い絶縁性基板として厚さ0.5〜1.1mm程度のガラス基板2、例えばコーニング社製の商品名1737の一主面上にSPT(スパッタ)等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層を被着し、微細加工技術によりゲート電極11Aも兼ねる走査線11と蓄積容量線16を選択的に形成する。走査線の材質は耐熱性、耐薬品性、耐弗酸性及び導電性を総合的に勘案して選択するが一般的にはCr,Ta等の耐熱性の高い金属薄膜層またはMoW合金等の耐熱性の高い合金薄膜層が使用される。 First, as shown in FIGS. 11 (a) and 12 (a), a glass substrate 2 having a thickness of about 0.5 to 1.1 mm as an insulating substrate having high heat resistance, chemical resistance and transparency, for example, Corning A first metal layer having a film thickness of about 0.1 to 0.3 μm is deposited on one main surface of a product name 1737 manufactured by using a vacuum film forming apparatus such as SPT (sputtering), and gates are formed by a fine processing technique. The scanning lines 11 and the storage capacitor lines 16 that also serve as the electrodes 11A are selectively formed. The material of the scanning line is selected by comprehensively considering heat resistance, chemical resistance, hydrofluoric acid resistance and conductivity, but in general heat resistant metal thin film layers such as Cr and Ta or heat resistance such as MoW alloy A highly alloy thin film layer is used.

液晶パネルの大画面化や高精細化に対応して走査線の抵抗値を下げるためには走査線の材料としてAL(アルミニウム)を用いるのが合理的であるが、ALは単体では耐熱性が低いので上記した耐熱金属であるCr,Ta,Moまたはそれらのシリサイドと積層化する構成が現在では一般的である。すなわち走査線11は1層以上の金属層で構成される。 It is reasonable to use AL (aluminum) as the scanning line material to reduce the resistance value of the scanning line in response to the increase in the screen size and resolution of the liquid crystal panel. Since it is low, a structure in which it is laminated with Cr, Ta, Mo or silicide thereof, which are the above-mentioned refractory metals, is now common. That is, the scanning line 11 is composed of one or more metal layers.

次にガラス基板2の全面にPCVD(プラズマ・シーブイディ)装置を用いてゲート絶縁層となる第1のシリコン窒化(SiNx)層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン(a−Si)層31、及び不純物として燐を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層(n+a−Si)33と3種類の薄膜層を、例えば0.3−0.2−0.05μm程度の膜厚で順次被着する。引き続き、図11(b)と図12(b)に示したようにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi薄膜層34と、膜厚0.3μm程度の低抵抗金属層としてAL薄膜層35と、さらに膜厚0.1μm程度の中間導電層として例えばTi薄膜層36を、すなわちソース・ドレイン配線材を順次被着する。 Next, a first silicon nitride (SiNx) layer 30 serving as a gate insulating layer is formed on the entire surface of the glass substrate 2 by using a PCVD (plasma sieve) device, and the first silicon nitride (SiNx) layer 30 containing almost no impurities is used as a channel of an insulated gate transistor. An amorphous silicon (a-Si) layer 31, a second amorphous silicon layer (n + a-Si) 33 containing phosphorus as an impurity and serving as a source / drain of an insulated gate transistor, and three kinds of thin film layers, For example, the film is sequentially deposited with a film thickness of about 0.3-0.2-0.05 μm. Subsequently, as shown in FIGS. 11B and 12B, for example, a Ti thin film layer 34 having a thickness of about 0.1 μm as a heat-resistant metal layer having a thickness of about 0.1 μm using a vacuum film forming apparatus such as SPT. An AL thin film layer 35 as a low resistance metal layer of about 3 μm and a Ti thin film layer 36 as an intermediate conductive layer of a thickness of about 0.1 μm, that is, a source / drain wiring material are sequentially deposited.

そして微細加工技術によりゲート電極11Aと一部重なるように耐熱金属層34A、低抵抗金属層35A及び中間導電層36Aとの積層よりなり絶縁ゲート型トランジスタのソース電極も兼ねる信号線12と、同じくゲート電極11Aと一部重なるように耐熱金属層34B、低抵抗金属層35B及び中間導電層36Bとの積層よりなる絶縁ゲート型トランジスタのドレイン電極21を選択的に形成するのであるが、この選択的パターン形成に当たりハーフトーン露光技術により図11(c)と図12(c)に示したようにソース・ドレイン間のチャネル形成領域80B(斜線部)の膜厚が例えば1.5μmで、ソース・ドレイン配線形成領域80A(12),80A(21)の膜厚が3μmであるような感光性樹脂パターン80A,80Bを形成する点が合理化された4枚マスク・プロセスの大きな特徴である。 Then, the signal line 12 which is formed by stacking the heat-resistant metal layer 34A, the low-resistance metal layer 35A and the intermediate conductive layer 36A so as to partially overlap the gate electrode 11A by microfabrication technology and also serves as the source electrode of the insulated gate transistor, A drain electrode 21 of an insulated gate transistor comprising a stacked layer of a refractory metal layer 34B, a low resistance metal layer 35B and an intermediate conductive layer 36B is selectively formed so as to partially overlap with the electrode 11A. When forming, the film thickness of the source / drain channel formation region 80B (shaded portion) is 1.5 μm, for example, as shown in FIGS. 11 (c) and 12 (c) by the halftone exposure technique. The photosensitive resin patterns 80A and 80B are formed so that the film thickness of the formation regions 80A (12) and 80A (21) is 3 μm. This is a major feature of the streamlined four-mask process.

アクティブ基板2の作製には通常ポジ型の感光性樹脂を用いるので、このような感光性樹脂パターン80A,80Bは、ソース・ドレイン配線形成領域80Aが黒、すなわちCr薄膜が形成されており、チャネル形成領域80Bは灰色(中間調)でフォトマスク通過光を低減させるようなたとえば幅0.5〜1.5μm程度のラインアンドスペースのCrパターンが形成されており、その他の領域は白、すなわちCr薄膜が除去されているようなフォトマスクを用いれば良い。灰色領域は露光機の解像力が不足しているためにラインアンドスペースが解像されることはなく、ランプ光源からのフォトマスク照射光を半分程度透過させることが可能であるので、ポジ型感光性樹脂の残膜特性に応じて図12(c)に示したような凹型の断面形状を有する感光性樹脂パターン80A,80Bを得ることができる。なお、灰色領域はスリットに変えて膜厚や透過率の異なった金属層、例えばMoSi2の薄膜で構成することも可能である。 Since the active substrate 2 is usually made of a positive photosensitive resin, the photosensitive resin patterns 80A and 80B have the source / drain wiring formation region 80A black, that is, a Cr thin film is formed. The formation region 80B is gray (halftone) and is formed with a line-and-space Cr pattern having a width of, for example, about 0.5 to 1.5 μm so as to reduce light passing through the photomask, and the other regions are white, that is, Cr A photomask from which the thin film has been removed may be used. In the gray area, the line-and-space is not resolved because the resolving power of the exposure machine is insufficient, and about half of the photomask irradiation light from the lamp light source can be transmitted. Photosensitive resin patterns 80A and 80B having a concave cross-sectional shape as shown in FIG. 12C can be obtained according to the residual film characteristics of the resin. The gray region may be formed of a metal layer having a different film thickness or transmittance, for example, a MoSi2 thin film, instead of a slit.

上記感光性樹脂パターン80A,80Bをマスクとして図11(c)と図12(c)に示したようにTi薄膜層36、AL薄膜層35、Ti薄膜層34、第2の非晶質シリコン層33及び第1の非晶質シリコン層31を順次食刻してゲート絶縁層30を露出した後、酸素プラズマ等の灰化手段により感光性樹脂パターン80A,80Bを1.5μm以上膜減りさせると感光性樹脂パターン80Bが消失してチャネル形成領域のTi薄膜層36A(図示せず)が露出するとともに、ソース・ドレイン配線形成領域にのみ膜減りした感光性樹脂パターン80C(12),80C(21)を残すことができる。 Ti thin film layer 36, AL thin film layer 35, Ti thin film layer 34, and second amorphous silicon layer as shown in FIGS. 11C and 12C using photosensitive resin patterns 80A and 80B as a mask. 33 and the first amorphous silicon layer 31 are sequentially etched to expose the gate insulating layer 30, and then the photosensitive resin patterns 80A and 80B are reduced by 1.5 μm or more by ashing means such as oxygen plasma. The photosensitive resin pattern 80B disappears, the Ti thin film layer 36A (not shown) in the channel formation region is exposed, and the photosensitive resin patterns 80C (12) and 80C (21) are reduced only in the source / drain wiring formation region. ) Can be left.

そこで膜減りした感光性樹脂パターン80C(12),80C(21)をマスクとして図11(d)と図12(d)に示したように、再びソース・ドレイン配線間(チャネル形成領域)のTi薄膜層,AL薄膜層,Ti薄膜層,第2の非晶質シリコン層33A及び第1の非晶質シリコン層31Aを順次食刻し、第1の非晶質シリコン層31Aは0.05〜0.1μm程度残して食刻する。この時点で第2の非晶質シリコン層よりなるソース33Sとドレイン33Dの分離がなされる。ソース・ドレイン配線12,21の形成が金属層をエッチングした後に第1の非晶質シリコン層31Aを0.05〜0.1μm程度残して食刻することによりなされるので、このような製法で得られる絶縁ゲート型トランジスタはチャネルエッチと呼称されている。なお上記酸素プラズマ処理において感光性樹脂パターン80Aは膜減りした感光性樹脂パターン80Cに変換されるのでパターン寸法の変化を抑制するため異方性を強めることが望ましく、具体的にはRIE(Reactive Ion Etching)方式、さらに高密度のプラズマ源を有するICP(Inductive Coupled Plasma)方式やTCP(Transfer Coupled Plasma)方式の酸素プラズマ処理がより望ましい。 Therefore, as shown in FIGS. 11D and 12D, the photosensitive resin patterns 80C (12) and 80C (21) whose thickness is reduced are used as a mask, and Ti between the source and drain wirings (channel formation region) is again formed. The thin film layer, the AL thin film layer, the Ti thin film layer, the second amorphous silicon layer 33A, and the first amorphous silicon layer 31A are sequentially etched, and the first amorphous silicon layer 31A is 0.05 to Etch leaving about 0.1 μm. At this time, the source 33S and the drain 33D made of the second amorphous silicon layer are separated. Since the source / drain wirings 12 and 21 are formed by etching the metal layer and then leaving the first amorphous silicon layer 31A about 0.05 to 0.1 .mu.m in length, such a manufacturing method is used. The resulting insulated gate transistor is called channel etch. In the oxygen plasma treatment, the photosensitive resin pattern 80A is converted into a photosensitive resin pattern 80C having a reduced film thickness. Therefore, it is desirable to increase the anisotropy in order to suppress a change in pattern dimension. Specifically, RIE (Reactive Ion) Etching method, ICP (Inductively Coupled Plasma) method having a high density plasma source and TCP (Transfer Coupled Plasma) method oxygen plasma treatment are more desirable.

さらに上記感光性樹脂パターン80C(12),80C(21)を除去した後はガラス基板2の全面に透明性の絶縁層として0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、図11(e)と図12(e)に示したようにドレイン電極21上と、画像表示部外の領域で走査線11と信号線12の電極端子が形成される領域に夫々開口部62,63,64を形成し、開口部63内のパシベーション絶縁層37とゲート絶縁層30を除去して開口部63内に走査線の一部5を露出するとともに、開口部62,64内のパシベーション絶縁層37を除去してドレイン電極21の一部と信号線の一部6を露出する。同様に蓄積容量線16上には開口部65を形成して蓄積容量線16の一部を露出する。 Further, after removing the photosensitive resin patterns 80C (12) and 80C (21), a second SiNx layer having a thickness of about 0.3 μm is deposited on the entire surface of the glass substrate 2 as a transparent insulating layer. As the passivation insulating layer 37, as shown in FIGS. 11 (e) and 12 (e), an area where the electrode terminals of the scanning line 11 and the signal line 12 are formed on the drain electrode 21 and outside the image display section. The openings 62, 63, 64 are respectively formed in the opening 63, the passivation insulating layer 37 and the gate insulating layer 30 in the opening 63 are removed, and a part 5 of the scanning line is exposed in the opening 63. , 64 is removed to expose part of the drain electrode 21 and part 6 of the signal line. Similarly, an opening 65 is formed on the storage capacitor line 16 to expose a part of the storage capacitor line 16.

最後にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層として例えばITO(Indium−Tin−Oxide)またはIZO(Indium−Zinc−Oxide)あるいはこれらの混晶体を被着し、図11(f)と図12(f)に示したように微細加工技術によりパシベーション絶縁層37上に開口部62を含んで透明導電性の絵素電極22を選択的に形成してアクティブ基板2として完成する。図11(e)と図12(e)に示したように微細加工技術によりパシベーション絶縁層37上に開口部62を含んで透明導電性の絵素電極22を選択的に形成してアクティブ基板2として完成する。蓄積容量15の構成に関しては、図11(e)と図12(e)に示したようにドレイン電極21と蓄積容量線16とがゲート絶縁層30と第1の非晶質シリコン層31Aと第2の非晶質シリコン層33Dを介して平面的に重なることで構成している例(右下がり斜線部50)を例示している。また電極端子に関しては開口部63,64を含んでパシベーション絶縁層37上に透明導電性の電極端子5A,6Aを選択的に形成している。 Finally, for example, ITO (Indium-Tin-Oxide) or IZO (Indium-Zinc-Oxide) or a mixed crystal thereof is formed as a transparent conductive layer having a film thickness of about 0.1 to 0.2 μm using a vacuum film forming apparatus such as SPT. As shown in FIG. 11 (f) and FIG. 12 (f), the transparent conductive pixel electrode 22 including the opening 62 is selectively formed on the passivation insulating layer 37 by a fine processing technique as shown in FIGS. Thus, the active substrate 2 is completed. As shown in FIGS. 11 (e) and 12 (e), the transparent conductive picture element electrode 22 including the opening 62 is selectively formed on the passivation insulating layer 37 by the microfabrication technique to form the active substrate 2. To be completed. Regarding the configuration of the storage capacitor 15, as shown in FIGS. 11 (e) and 12 (e), the drain electrode 21 and the storage capacitor line 16 include the gate insulating layer 30, the first amorphous silicon layer 31A, and the first storage layer 15A. The example (lower right slanting line part 50) comprised by overlapping two planes through the amorphous silicon layer 33D is illustrated. As for the electrode terminals, transparent conductive electrode terminals 5A and 6A are selectively formed on the passivation insulating layer 37 including the openings 63 and 64.

上記したようにソース・ドレイン配線12,21にALを用いようとすると、第2の非晶質シリコン33との間の電気的な接続を確保するために耐熱金属層34が必要であり、さらに透明導電層との間にはアルカリ液中での電池効果を回避するために中間導電層36が必要であり、結果的にソース・ドレイン配線は3層構成とならざるを得ないが、ソース・ドレイン配線の抵抗値の制約が厳しくなる大画面あるいは高精細の液晶パネルでは低抵抗金属層の使用を回避することは困難である。さらに耐熱金属層34と中間導電層36にTiを用いると、その食刻には塩素系のガスを用いたドライエッチ処理が必要であり、自動的にALの食刻も塩素系のガスを用いたドライエッチ処理となり、材料面のみならず生産設備上の負担も大きくなる。Tiに換えて耐熱金属層34と中間導電層36にMoを用いた場合には、適量の硝酸を添加した燐酸溶液でMo/AL/Moの3層構成を1回の薬液処理で行うことが可能であり、生産設備の投資負担も低減するがソース・ドレイン配線の簡素化も生産コスト低減には有効である事は説明を要しない。 As described above, when AL is used for the source / drain wirings 12 and 21, the refractory metal layer 34 is necessary to ensure electrical connection with the second amorphous silicon 33, and An intermediate conductive layer 36 is required between the transparent conductive layer and the transparent conductive layer in order to avoid a battery effect in an alkaline solution. As a result, the source / drain wiring must be composed of three layers. It is difficult to avoid the use of a low-resistance metal layer in a large-screen or high-definition liquid crystal panel where the resistance value of the drain wiring becomes severe. Further, when Ti is used for the refractory metal layer 34 and the intermediate conductive layer 36, a dry etching process using a chlorine-based gas is necessary for the etching, and the chlorine-based gas is automatically used for the AL etching. As a result, the burden on the production equipment as well as on the material side increases. When Mo is used for the refractory metal layer 34 and the intermediate conductive layer 36 instead of Ti, a three-layer structure of Mo / AL / Mo can be performed by a single chemical treatment with a phosphoric acid solution to which an appropriate amount of nitric acid is added. It is possible to reduce the investment burden of production equipment, but it is not necessary to explain that simplification of source / drain wiring is effective in reducing production costs.

このように4枚マスク・プロセスにおいてはドレイン電極21と走査線11へのコンタクト形成工程が同時になされるため、それらに対応した開口部62,63内の絶縁層の厚さと種類が異なっている。パシベーション絶縁層37はゲート絶縁層30に比べると製膜温度が低く膜質が劣悪で、弗酸系のエッチング液による食刻では食刻速度が夫々数1000Å/分、数100Å/分と1桁も異なり、ドレイン電極21上の開口部62の断面形状は上部に余りにも過食刻が生じて穴径が制御できない理由から弗素系のガスを用いた乾式食刻(ドライエッチ)を採用している。 As described above, in the four-mask process, the contact electrode forming step for the drain electrode 21 and the scanning line 11 is performed at the same time. Therefore, the thicknesses and types of the insulating layers in the openings 62 and 63 corresponding thereto are different. The passivation insulating layer 37 has a lower film forming temperature and inferior film quality as compared with the gate insulating layer 30, and the etching speed with a hydrofluoric acid-based etching solution is several thousand liters / minute and several hundreds liters / minute, respectively. In contrast, the cross-sectional shape of the opening 62 on the drain electrode 21 employs dry etching using a fluorine-based gas for the reason that too much etching occurs at the upper portion and the hole diameter cannot be controlled.

しかしながらドライエッチを採用してもドレイン電極21上の開口部62はパシベーション絶縁層37のみであるので、走査線11上の開口部63と比較して過食刻になるのは避けられず、材質によってはドレイン電極21(中間導電層36B)が食刻ガスによって膜減りすることがある。また食刻終了後の感光性樹脂パターンの除去に当たり、まずは弗素化された表面のポリマー除去のために酸素プラズマ灰化で感光性樹脂パターンの表面を0.1〜0.3μm程度削り、その後に有機剥離液、例えば東京応化社製の剥離液106等を用いた薬液処理がなされるのが一般的であるが、中間導電層36Bが膜減りして下地のアルミニウム層35Bが露出した状態になっていると、酸素プラズマ灰化処理でアルミニウム層35Bの表面に絶縁体であるAL2O3が形成されて、ドレイン電極36Bと絵素電極22との間でオーミック接触が得られなくなることも稀ではない。 However, even if dry etching is employed, since the opening 62 on the drain electrode 21 is only the passivation insulating layer 37, overetching is unavoidable as compared with the opening 63 on the scanning line 11, depending on the material. In some cases, the drain electrode 21 (intermediate conductive layer 36B) may be reduced in thickness by the etching gas. In removing the photosensitive resin pattern after the etching, the surface of the photosensitive resin pattern is first shaved by about 0.1 to 0.3 μm by oxygen plasma ashing to remove the polymer on the fluorinated surface. In general, chemical treatment using an organic stripping solution, for example, a stripping solution 106 manufactured by Tokyo Ohka Co., Ltd. is performed, but the intermediate conductive layer 36B is reduced in thickness and the underlying aluminum layer 35B is exposed. In this case, it is not rare that AL2O3, which is an insulator, is formed on the surface of the aluminum layer 35B by the oxygen plasma ashing process, and ohmic contact between the drain electrode 36B and the pixel electrode 22 cannot be obtained.

そこで中間導電層36Bが膜減りしても良いようにその膜厚を例えば0.2μmと厚く設定することでこの問題から逃れようとしている。あるいは開口部62〜65の形成時、アルミニウム層35Bを除去して下地の耐熱金属層であるTi薄膜層34Bを露出してから絵素電極22を形成する回避策も可能であり、この場合には当初から中間導電層36は不要となるメリットもある。 In order to avoid this problem, the thickness of the intermediate conductive layer 36B is set to, for example, 0.2 μm so that the thickness of the intermediate conductive layer 36B may be reduced. Alternatively, when forming the openings 62 to 65, it is possible to avoid the formation of the pixel electrode 22 after removing the aluminum layer 35B and exposing the Ti thin film layer 34B, which is the underlying heat-resistant metal layer. There is also an advantage that the intermediate conductive layer 36 is unnecessary from the beginning.

しかしながら前者の対策ではこれら薄膜の膜厚の面内均一性が良好でないとこの取組も必ずしも有効に作用するわけではなく、また食刻速度の面内均一性が良好でない場合にも全く同様である。後者の対策では中間導電層36Bは不要となるが、アルミニウム層35Bの除去工程が増加し、また開口部62の断面制御が不十分であると絵素電極22が段切れを起こす恐れがあった。 However, if the in-plane uniformity of the film thickness of these thin films is not good in the former measure, this approach does not necessarily work effectively, and the same is true even when the in-plane uniformity of the etching speed is not good. . The latter measure eliminates the need for the intermediate conductive layer 36B, but the number of steps for removing the aluminum layer 35B increases, and if the cross section control of the opening 62 is insufficient, the pixel electrode 22 may be disconnected. .

また4枚マスク・プロセスにおいて適用されているチャネル形成工程はソース・ドレイン配線12,21間のソース・ドレイン配線材と不純物を含む半導体層を同時に除去するので、絶縁ゲート型トランジスタのON特性を大きく左右するチャネルの長さ(現在の量産品で4〜6μm)を決定する工程である。このチャネル長の変動は絶縁ゲート型トランジスタのON電流値を大きく変化させるので、通常は厳しい製造管理を要求されるが、チャネル長、すなわちハーフトーン露光領域のパターン寸法は露光量(光源強度とフォマスクのパターン精度、特にライン&スペース寸法)、感光性樹脂の塗布厚、感光性樹脂の現象処理条件、および当該のエッチング工程における感光性樹脂の膜減り量等多くのパラメータに左右され、加えてこれら諸量の面内均一性もあいまって必ずしも歩留高く安定して生産できるわけではなく、従来の製造管理よりも一段と厳しい製造管理が必要となり、決して高度に完成したレベルにあるとは言えないのが現状である。特にチャネル長が6μm以下では感光性樹脂パターン80A(12),80A(21)の膜厚減少に伴って発生するパターン寸法の影響が大きくその傾向が顕著となる。 In addition, the channel formation process applied in the four-mask process removes the source / drain wiring material between the source / drain wirings 12 and 21 and the semiconductor layer containing impurities at the same time, so that the ON characteristics of the insulated gate transistor are greatly increased. This is a step of determining the length of the channel that is affected (4 to 6 μm in the current mass-produced product). Since the fluctuation of the channel length greatly changes the ON current value of the insulated gate transistor, usually strict manufacturing control is required. However, the channel length, that is, the pattern size of the halftone exposure region, depends on the exposure amount (light source intensity and phosphor mask). Pattern accuracy (especially line & space dimensions), photosensitive resin coating thickness, photosensitive resin phenomenon processing conditions, and the amount of photosensitive resin film reduction in the etching process, etc. Combined with the in-plane uniformity of various quantities, it is not always possible to produce a product with high yield and stability. It requires more stringent manufacturing control than conventional manufacturing control, and it cannot be said that it is at a highly completed level. Is the current situation. In particular, when the channel length is 6 μm or less, the influence of the pattern dimension generated as the film thickness decreases of the photosensitive resin patterns 80A (12) and 80A (21) is large, and this tendency becomes remarkable.

フォトマスクの寸法を前もって太くしておき、前記感光性樹脂パターンの膜厚減少に伴って発生するパターン寸法の細りを回避することは比較的容易であるが、チャネル領域である感光性樹脂パターン80C(12)と80C(21)との間隙は露光機の解像力(最小3μm程度)よりも細くすることは出来ないので、結局、チャネル長は感光性樹脂パターンの横方向の膜減り量の2倍分だけ長くなり、しかもその膜減り量のガラス基板面内における変動も大きく、現存するガラス基板サイズが1m以上の生産ラインに4枚マスク・プロセスの導入が遅れている原因の一つと考えられる。 Although it is relatively easy to increase the size of the photomask in advance and avoid the thinning of the pattern size that occurs as the film thickness of the photosensitive resin pattern decreases, the photosensitive resin pattern 80C that is the channel region is relatively easy. Since the gap between (12) and 80C (21) cannot be made thinner than the resolving power of the exposure machine (minimum of about 3 μm), the channel length is eventually twice the amount of film loss in the lateral direction of the photosensitive resin pattern. It is considered that this is one of the reasons that the introduction of the four-mask process is delayed in a production line with an existing glass substrate size of 1 m or more.

本発明はかかる現状に鑑みなされたもので、厳しいパターン精度管理を必要としないだけでなく、信号線12の構成を簡素化し、かつ絵素電極形成工程の合理化により製造工程の削減を推進するものである。
特開2002−206571号公報 特願2005−88866号公報
The present invention has been made in view of the current situation, and not only does not require strict pattern accuracy management, but also simplifies the configuration of the signal line 12 and promotes the reduction of the manufacturing process by rationalizing the pixel electrode formation process. It is.
JP 2002-206571 A Japanese Patent Application No. 2005-88866

本発明は、絵素電極をドレイン電極に接続するための開口部形成工程において、絵素電極形成領域の絶縁層を除去してガラス基板を露出し、露出したドレイン電極を含んでガラス基板上に絵素電極をリフトオフで形成することで製造工程の削減を達成している。リフトオフによる絵素電極形成を容易ならしめるために、上記絶縁層の除去工程ではその断面形状が逆テーパ状である感光性樹脂パターンを用いる点と、絵素電極がドレイン電極と段切れする事なく良好な電気接続が得られるように低抵抗金属層と耐熱金属層との積層よりなるドレイン電極の上層部の低抵抗金属層を除去して下層部の耐熱金属層を露出する工程が付加されている点が本発明の重要な着眼点である。 In the opening forming step for connecting the pixel electrode to the drain electrode, the present invention exposes the glass substrate by removing the insulating layer in the pixel electrode formation region, and includes the exposed drain electrode on the glass substrate. The production process can be reduced by forming the pixel electrodes by lift-off. In order to facilitate the formation of the picture element electrode by lift-off, the photosensitive resin pattern whose cross-sectional shape is a reverse taper is used in the step of removing the insulating layer, and the picture element electrode is not disconnected from the drain electrode. In order to obtain a good electrical connection, a step of removing the lower resistance metal layer on the upper part of the drain electrode made of a laminate of the low resistance metal layer and the refractory metal layer and exposing the lower heat resistance metal layer is added. This is an important point of focus of the present invention.

また、上記の感光性樹脂パターンを用いたサイドエッチング、あるいは上記の感光性樹脂パターンの形成にハーフトーン露光技術を付加することで、半導体層の選択的パターン形成のための写真食刻工程を削減する技術ともあいまって特許文献2で開示したものとは異なった内容の工程削減が実現し、3枚のフォトマスクを用いてアクティブ基板を作製することが可能となる。 In addition, the side etching using the above photosensitive resin pattern, or the halftone exposure technology is added to the formation of the above photosensitive resin pattern, thereby reducing the photolithography process for selective patterning of the semiconductor layer. In combination with this technology, the process can be reduced with a content different from that disclosed in Patent Document 2, and an active substrate can be manufactured using three photomasks.

請求項1に記載の液晶表示装置はスイッチング素子である絶縁ゲート型トランジスタがチャネルエッチ型であり、
第1の透明性絶縁基板の一主面上にその一部をゲート電極とする走査線が形成され、
ゲート絶縁層とその一部がチャネルである不純物を含まない第1の半導体層を介して低抵抗金属層と、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層との積層よりなるソース・ドレイン配線が形成され、
前記ドレイン配線は走査線と直交し、
絶縁ゲート型トランジスタを保護するためのパシベーション絶縁層を最上層に有し、
画像表示部では一方のドレイン配線の端部を含む絵素電極形成領域と、他方のドレイン配線の端部を含む擬似絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域、及び信号線の一部を含む信号線の電極端子形成領域において、前記パシベーション絶縁層と前記第1の半導体層と前記ゲート絶縁層とを貫通した開口部が形成され、夫々前記耐熱金属層よりなる一方のドレイン配線の端部と前記第1の透明性絶縁基板、他方のドレイン配線の端部と前記第1の透明性絶縁基板、走査線の一部、及び前記耐熱金属層よりなる信号線の一部が露出し、
前記ソース・ドレイン配線間のチャネル領域の第1の半導体層はゲート電極よりも幅細く形成され、
同一の導電性薄膜よりなり、前記一方のドレイン配線の端部を含んで絵素電極形成領域に絵素電極と、前記他方のドレイン配線の端部を含んで擬似絵素電極形成領域に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子が形成されていることを特徴とする。
In the liquid crystal display device according to claim 1, the insulated gate transistor that is a switching element is a channel etch type,
A scanning line having a part thereof as a gate electrode is formed on one main surface of the first transparent insulating substrate,
A stack of a low-resistance metal layer and a heat-resistant metal layer that can be removed by an etching gas of the gate insulating layer through a gate insulating layer and a first semiconductor layer that does not contain impurities, part of which is a channel Source / drain wiring consisting of
The drain wiring is orthogonal to the scanning line,
A passivation insulating layer for protecting the insulated gate transistor is provided in the uppermost layer,
In the image display unit, a pixel electrode forming region including the end of one drain wiring, a pseudo pixel electrode forming region including the end of the other drain wiring, and a part of the scanning line in the region outside the image displaying unit. electrode terminal formation region of the scanning lines, including, and Oite the electrode terminal formation region of the signal lines including a portion of the signal line, the passivation insulating layer and said first semiconductor layer and said gate insulating layer through openings Of the drain wiring and the first transparent insulating substrate each made of the heat-resistant metal layer, the end of the other drain wiring and the first transparent insulating substrate, and a part of the scanning line. And a part of the signal line made of the refractory metal layer is exposed,
The first semiconductor layer in the channel region between the source / drain wirings is formed to be narrower than the gate electrode,
It is made of the same conductive thin film and includes a pixel electrode in the pixel electrode formation region including the end of the one drain wiring and a pseudo picture in the pseudo pixel electrode formation region including the end of the other drain wiring. An electrode terminal of the scanning line in the electrode terminal forming region of the scanning line including a part of the scanning line, and an electrode terminal of the signal line in the electrode terminal forming region of the signal line including a part of the signal line Is formed.

この構成により耐熱金属層よりなるドレイン電極の一部と絵素電極、同じく耐熱金属層よりなる信号線の一部と信号線の電極端子との電気的な接続は確保され、さらにソース・ドレイン配線が低抵抗金属層と耐熱金属層との2層構成で良く信号線の構成が簡素化される。そしてアクティブ基板はパシベーション絶縁層によって保護されている。また絶縁ゲート型トランジスタのチャネルを構成し、走査線の一部であるゲート電極上の不純物を含まない第1の非晶質シリコン層はゲート電極よりも幅細く形成されているため、裏面光源からの照射光で絶縁ゲート型トランジスタのOFF電流が増大する不具合は回避されている。 This configuration ensures electrical connection between part of the drain electrode made of the refractory metal layer and the pixel electrode, part of the signal line also made of the refractory metal layer, and the electrode terminal of the signal line. However, a two-layer structure of a low-resistance metal layer and a heat-resistant metal layer is sufficient, and the signal line structure is simplified. The active substrate is protected by a passivation insulating layer. Further, the first amorphous silicon layer which forms the channel of the insulated gate transistor and does not contain impurities on the gate electrode which is a part of the scanning line is formed to be narrower than the gate electrode. The problem that the OFF current of the insulated gate transistor increases due to the irradiated light is avoided.

請求項2に記載の液晶表示装置はスイッチング素子である絶縁ゲート型トランジスタがチャネルエッチ型であり、
第1の透明性絶縁基板の一主面上に分岐されたゲート電極を有する走査線が形成され、
ゲート絶縁層とその一部がチャネルである不純物を含まない第1の半導体層を介して低抵抗金属層と、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層との積層よりなるソース・ドレイン配線が前記ゲート電極と一部重なるように形成され、
絶縁ゲート型トランジスタを保護するためのパシベーション絶縁層を最上層に有し、
画像表示部ではドレイン配線の一部を含む絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域、及び信号線の一部を含む信号線の電極端子形成領域において、前記パシベーション絶縁層と前記第1の半導体層と前記ゲート絶縁層とを貫通した開口部が形成され、夫々前記耐熱金属層よりなるドレイン配線の一部と前記第1の透明性絶縁基板、走査線の一部、及び前記耐熱金属層よりなる信号線の一部が露出し、
前記絵素電極形成領域と連続してゲート電極の端部を含む領域及びゲート電極の分岐部上において、前記パシベーション絶縁層と前記第1の半導体層とを貫通した開口部が形成され、前記ゲート絶縁層が露出し、
同一の導電性薄膜よりなり、前記ゲート電極の端部上と前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部上に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子が形成されていることを特徴とする。
In the liquid crystal display device according to claim 2, the insulated gate transistor that is a switching element is a channel etch type,
A scanning line having a gate electrode branched on one main surface of the first transparent insulating substrate is formed;
A stack of a low-resistance metal layer and a heat-resistant metal layer that can be removed by an etching gas of the gate insulating layer through a gate insulating layer and a first semiconductor layer that does not contain impurities, part of which is a channel A source / drain wiring formed so as to partially overlap the gate electrode,
A passivation insulating layer for protecting the insulated gate transistor is provided in the uppermost layer,
In the image display area, the pixel electrode formation area including a part of the drain wiring, in the area outside the image display area, the electrode terminal formation area of the scanning line including a part of the scanning line, and the signal line including a part of the signal line Oite the electrode terminal formation region, the opening of the passivation insulating layer and said first semiconductor layer through the said gate insulating layer is formed, the part of the drain wiring made of each said refractory metal layer a 1 part of the transparent insulating substrate, a part of the scanning line, and a part of the signal line made of the refractory metal layer are exposed;
The Oite the end of the picture element electrode formation region and the continuously gate electrode on bifurcation including regions and the gate electrode, the opening extending through the said a passivation insulating layer first semiconductor layer is formed The gate insulating layer is exposed;
It is made of the same conductive thin film, and includes a pixel electrode on the end portion of the gate electrode and a part of the drain wiring, a pixel electrode on the pixel electrode formation region, a pseudo pixel electrode on the branch portion of the gate electrode, A scanning line electrode terminal is formed in a scanning line electrode terminal formation region including a part of the scanning line, and a signal line electrode terminal is formed in a signal line electrode terminal formation region including a part of the signal line. It is characterized by being.

この構成により絵素電極の一部はゲート電極の端部上のゲート絶縁層を含んで形成され、またゲート電極の分岐部上の開口部内にもゲート絶縁層が露出し、前記開口部内には電気的に浮遊している擬似絵素電極が形成されているので、ソース・ドレイン間のチャネル領域近傍に不純物を含まない第1の非晶質シリコン層は存在せず、請求項1に記載の液晶表示装置と同様に裏面光源からの照射光で絶縁ゲート型トランジスタのOFF電流が増大する不具合は回避されている。 With this configuration, a part of the pixel electrode is formed including the gate insulating layer on the end portion of the gate electrode, and the gate insulating layer is exposed also in the opening on the branch portion of the gate electrode, and in the opening 2. The first amorphous silicon layer containing no impurities does not exist in the vicinity of the channel region between the source and the drain because the pseudo-pixel electrode that is electrically floating is formed. Similar to the liquid crystal display device, the problem that the OFF current of the insulated gate transistor increases due to the irradiation light from the back light source is avoided.

請求項3に記載の液晶表示装置は、
第1の透明性絶縁基板の一主面上に分岐されたゲート電極と分離した光シールド電極が形成され、
前記絵素電極形成領域と連続して一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域において、前記パシベーション絶縁層と前記第1の半導体層とを貫通した開口部が形成され、前記ゲート絶縁層が露出し、
同一の導電性薄膜よりなり、前記一方の光シールド電極の端部上と前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部上の開口部に第1の擬似絵素電極と、他方の光シールド電極の端部とゲート電極の端部を含む開口部に第2の擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子が形成されていることを特徴とする請求項2に記載の液晶表示装置である。
The liquid crystal display device according to claim 3,
A light shield electrode separated from the branched gate electrode is formed on one main surface of the first transparent insulating substrate,
Oite the upper end of one of the light shielding electrode is continuous with the pixel electrode forming region, and the upper branch of the gate electrode, the region including the end portions of the gate electrode of the other light shielding electrode, the opening passivation insulating layer and extending through the first semiconductor layer is formed, the gate insulating layer is exposed,
It is made of the same conductive thin film, on the end of the one light shield electrode and in the pixel electrode forming region including a part of the drain wiring, and in the opening on the branch of the gate electrode. The first pseudo-pixel electrode, the second pseudo-pixel electrode in the opening including the end of the other light shield electrode and the end of the gate electrode, and an electrode of the scan line including a part of the scan line 3. The liquid crystal according to claim 2, wherein an electrode terminal of the scanning line is formed in the terminal formation region, and an electrode terminal of the signal line is formed in the electrode terminal formation region of the signal line including a part of the signal line. It is a display device.

この構成により絵素電極の一部は一方の光シールド電極の端部上のゲート絶縁層を含んで形成され、前記ゲート電極の分岐部上のゲート絶縁層上に第1の擬似絵素電極と、他方の光シールド電極の端部とゲート電極の端部を含む領域のゲート絶縁層上に第2の擬似絵素電極が形成されている。前記第1と第2の擬似絵素電極は何れも電気的に浮遊しており、ソース・ドレイン間のチャネル領域近傍に不純物を含まない第1の非晶質シリコン層は存在せず、絵素電極と第2の擬似絵素電極間に存在する第1の非晶質シリコン層は光シールド電極によって光遮蔽されており、請求項1に記載の液晶表示装置と同様に裏面光源からの照射光で絶縁ゲート型トランジスタのOFF電流が増大する不具合は回避されている。 With this configuration, a part of the picture element electrode is formed including a gate insulating layer on the end of one light shield electrode, and the first pseudo picture element electrode and the first pseudo picture element electrode are formed on the gate insulating layer on the branch part of the gate electrode. The second pseudo picture element electrode is formed on the gate insulating layer in the region including the end of the other light shield electrode and the end of the gate electrode. The first and second pseudo picture element electrodes are both electrically floating, and there is no first amorphous silicon layer containing no impurities in the vicinity of the channel region between the source and drain. 2. The first amorphous silicon layer existing between the electrode and the second pseudo-pixel electrode is light-shielded by the light shield electrode, and the irradiation light from the back surface light source as in the liquid crystal display device according to claim 1. Thus, the problem that the OFF current of the insulated gate transistor increases is avoided.

請求項4は請求項1に記載の液晶表示装置の製造方法であって、
第1の透明性絶縁基板の一主面上にその一部をゲート電極とする走査線を形成する工程と、
ゲート絶縁層、不純物を含まない第1の非晶質シリコン層、不純物を含む第2の非晶質シリコン層、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層、及び低抵抗金属層を順次被着する工程と、
前記低抵抗金属層、耐熱金属層、第2の非晶質シリコン層、及び第1の非晶質シリコン層の一部を選択的に除去し、走査線と直交するドレイン配線と信号線も兼ねるソース配線を形成する工程と、
前記第1の透明性絶縁基板上にパシベーション絶縁層を被着後、画像表示部では一方のドレイン配線の端部を含む絵素電極形成領域と他方のドレイン配線の端部を含む擬似絵素電極形成領域、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域と信号線の一部を含む信号線の電極端子形成領域に開口部を有するとともに、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、
前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層を除去し、前記開口部内に夫々前記一方のドレイン配線の端部と前記第1の透明性絶縁基板、他方のドレイン配線の端部と前記第1の透明性絶縁基板、走査線の一部、及び信号線の一部を露出する工程と、
前記第1の非晶質シリコン層をサイドエッチングする工程と、
前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなる一方のドレイン配線の端部と他方のドレイン配線の端部及び信号線の一部を露出する工程と、
前記第1の透明性絶縁基板上に導電性薄膜層を被着する工程と、
前記感光性樹脂パターンを除去し、前記一方のドレイン配線の端部を含んで絵素電極形成領域に絵素電極と、前記他方のドレイン配線の端部を含んで擬似絵素電極形成領域に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程とからなることを特徴とする。
A fourth aspect of the present invention provides a method for manufacturing the liquid crystal display device according to the first aspect,
Forming a scanning line having a part of a gate electrode on one main surface of the first transparent insulating substrate;
A gate insulating layer, a first amorphous silicon layer containing no impurities, a second amorphous silicon layer containing impurities, a heat-resistant metal layer removable with an etching gas between the passivation insulating layer and the gate insulating layer, and a low Sequentially applying a resistive metal layer;
A part of the low-resistance metal layer, the refractory metal layer, the second amorphous silicon layer, and the first amorphous silicon layer is selectively removed, and also serves as a drain wiring and a signal line orthogonal to the scanning line. Forming a source wiring; and
After depositing a passivation insulating layer on the first transparent insulating substrate, in the image display portion, a pixel electrode forming region including an end portion of one drain wiring and a pseudo pixel electrode including an end portion of the other drain wiring In the formation area and the area outside the image display portion, the electrode terminal formation area of the scanning line including a part of the scanning line and the electrode terminal formation area of the signal line including a part of the signal line have openings, and the cross-sectional shape thereof is Forming a reverse-tapered photosensitive resin pattern on the first transparent insulating substrate;
Using the photosensitive resin pattern as a mask, the passivation insulating layer, the first amorphous silicon layer, and the gate insulating layer in the opening are removed, and the end of the one drain wiring and the first insulating layer are respectively formed in the opening. Exposing a transparent insulating substrate, an end of the other drain wiring and the first transparent insulating substrate, a part of the scanning line, and a part of the signal line;
Side etching the first amorphous silicon layer;
Removing the low-resistance metal layer exposed in the opening and exposing the end of one drain wiring, the end of the other drain wiring, and a part of the signal line, both of which are made of a refractory metal layer;
Depositing a conductive thin film layer on the first transparent insulating substrate;
The photosensitive resin pattern is removed, and a pixel electrode is formed in the pixel electrode formation region including the end portion of the one drain wiring, and a pseudo pixel electrode formation region is formed including the end portion of the other drain wiring. A pixel electrode, an electrode terminal of the scanning line in the electrode terminal formation region of the scanning line including a part of the scanning line, and an electrode of the signal line in the electrode terminal formation region of the signal line including a part of the signal line And a step of forming a terminal.

この構成により走査線の形成工程、ソース・ドレイン配線の形成工程、及び開口部と絵素電極の同時形成と、3枚のフォトマスクを用いてアクティブ基板を作製することができる。そして半導体層の島化工程は開口部形成時に第1の非晶質シリコンのサイドエッチングによってなされる。 With this configuration, an active substrate can be manufactured using a scanning line formation process, a source / drain wiring formation process, simultaneous formation of an opening and a pixel electrode, and three photomasks. The step of forming the island of the semiconductor layer is performed by side etching of the first amorphous silicon when the opening is formed.

請求項5は請求項2に記載の液晶表示装置の製造方法であって、
第1の透明性絶縁基板の一主面上に分岐されたゲート電極を有する走査線を形成する工程と、
ゲート絶縁層、不純物を含まない第1の非晶質シリコン層、不純物を含む第2の非晶質シリコン層、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層、及び低抵抗金属層を順次被着する工程と、
前記低抵抗金属層、耐熱金属層、第2の非晶質シリコン層、及び第1の非晶質シリコン層の一部を選択的に除去し、ゲート電極と一部重なるようにソース(信号線)・ドレイン配線を形成する工程と、
前記第1の透明性絶縁基板上にパシベーション絶縁層を被着後、画像表示部ではドレイン配線の一部を含む絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域と信号線の一部を含む信号線の電極端子形成領域に開口部を有するとともに、前記絵素電極形成領域と連続してゲート電極の端部を含む領域とゲート電極の分岐部を含む領域の膜厚が他の領域よりも薄く、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、
前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層を除去し、前記開口部内に夫々前記ドレイン配線の一部と前記第1の透明性絶縁基板、走査線の一部、及び信号線の一部を露出する工程と、
前記感光性樹脂パターンの膜厚を減じて前記ゲート電極の端部を含む領域とゲート電極の分岐部を含む領域のパシベーション絶縁層を露出する工程と、
前記膜厚を減ぜられた感光性樹脂パターンをマスクとして前記ゲート電極の端部を含む領域とゲート電極の分岐部を含む領域のパシベーション絶縁層と第1の非晶質シリコン層を除去してゲート絶縁層を露出する工程と、
前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなるドレイン配線の一部と信号線の一部を露出する工程と、
前記第1の透明性絶縁基板上に導電性薄膜層を被着する工程と、
前記膜厚を減ぜられた感光性樹脂パターンを除去し、前記ドレイン配線の一部とゲート電極の端部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部上に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程とからなることを特徴とする。
A fifth aspect of the present invention provides a method for manufacturing the liquid crystal display device according to the second aspect,
Forming a scanning line having a gate electrode branched on one main surface of the first transparent insulating substrate;
A gate insulating layer, a first amorphous silicon layer containing no impurities, a second amorphous silicon layer containing impurities, a heat-resistant metal layer removable with an etching gas between the passivation insulating layer and the gate insulating layer, and a low Sequentially applying a resistive metal layer;
A part of the low-resistance metal layer, the refractory metal layer, the second amorphous silicon layer, and the first amorphous silicon layer is selectively removed, and a source (signal line) is overlapped with the gate electrode. ) -Drain wiring forming step;
After depositing a passivation insulating layer on the first transparent insulating substrate, the image display unit includes a pixel electrode formation region including a part of the drain wiring, and a region outside the image display unit includes a part of the scanning line. An electrode terminal forming region of the scanning line and an electrode terminal forming region of the signal line including a part of the signal line, and an area including the end portion of the gate electrode and the gate electrode continuous with the pixel electrode forming region Forming a photosensitive resin pattern on the first transparent insulating substrate, the film thickness of the region including the branched portion is thinner than other regions, and the cross-sectional shape of the region is a reverse taper shape;
Using the photosensitive resin pattern as a mask, the passivation insulating layer, the first amorphous silicon layer, and the gate insulating layer in the opening are removed, and a part of the drain wiring and the first transparency are respectively formed in the opening. Exposing the insulating substrate, a part of the scanning line, and a part of the signal line;
Reducing the thickness of the photosensitive resin pattern to expose a passivation insulating layer in a region including an end portion of the gate electrode and a region including a branch portion of the gate electrode;
Using the reduced photosensitive resin pattern as a mask, the passivation insulating layer and the first amorphous silicon layer in the region including the end portion of the gate electrode and the region including the branch portion of the gate electrode are removed. Exposing the gate insulating layer;
Removing the low-resistance metal layer exposed in the opening and exposing a part of the drain wiring and a part of the signal line, both of which are made of a refractory metal layer;
Depositing a conductive thin film layer on the first transparent insulating substrate;
The photosensitive resin pattern having a reduced thickness is removed, and a pixel electrode is formed in a pixel electrode formation region including a part of the drain wiring and an end of the gate electrode, and on a branch portion of the gate electrode. The pseudo-pixel electrode, the electrode terminal of the scanning line including a part of the scanning line, the electrode terminal of the scanning line in the electrode terminal forming area of the scanning line, and the signal line of the signal line in the electrode terminal forming area of the signal line including the part of the signal line A step of forming an electrode terminal.

この構成により走査線の形成工程、ソース・ドレイン配線の形成工程、及びハーフトーン露光技術を用いた開口部と絵素電極の同時形成と、3枚のフォトマスクを用いてアクティブ基板を作製することができる。半導体層の島化工程は開口部形成時にチャネル近傍の第1の非晶質シリコンを選択的に除去する事によってなされる。 With this configuration, a scanning line forming process, source / drain wiring forming process, and simultaneous formation of an opening and a pixel electrode using a halftone exposure technique, and an active substrate using three photomasks are manufactured. Can do. The step of islanding the semiconductor layer is performed by selectively removing the first amorphous silicon near the channel when the opening is formed.

請求項6は請求項3に記載の液晶表示装置の製造方法であって、
第1の透明性絶縁基板の一主面上にゲート電極と分離した光シールド電極が形成され、
画像表示部ではドレイン配線の一部を含む絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域と信号線の一部を含む信号線の電極端子形成領域に開口部を有するとともに、前記絵素電極形成領域と連続して一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域上の膜厚が他の領域よりも薄く、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、
前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層を除去し、前記開口部内に夫々ドレイン配線の一部と前記第1の透明性絶縁基板、走査線の一部、及び信号線の一部を露出する工程と、
前記感光性樹脂パターンの膜厚を減じて前記一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域上のパシベーション絶縁層を露出する工程と、
前記膜厚を減ぜられた感光性樹脂パターンをマスクとして前記一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域上のパシベーション絶縁層と第1の非晶質シリコン層を除去してゲート絶縁層を露出する工程と、
前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなるドレイン配線の一部と信号線の一部を露出する工程と、
前記第1の透明性絶縁基板上に導電性薄膜層を被着する工程と、
前記膜厚を減ぜられた感光性樹脂パターンを除去し、前記一方の光シールド電極の端部上と前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部の開口部に第1の擬似絵素電極と、他方の光シールド電極の端部とゲート電極の端部を含む開口部に第2の擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程とからなることを特徴とする。
A sixth aspect of the present invention provides a method for manufacturing the liquid crystal display device according to the third aspect,
A light shield electrode separated from the gate electrode is formed on one main surface of the first transparent insulating substrate,
In the image display area, the pixel electrode forming area including a part of the drain wiring, and in the area outside the image display area, the electrode terminal forming area of the scanning line including a part of the scanning line and the signal line including a part of the signal line. The electrode terminal forming region has an opening, and is continuous with the pixel electrode forming region, on one end of the light shield electrode, on the branch portion of the gate electrode, and on the other end of the light shield electrode and the gate Forming a photosensitive resin pattern on the first transparent insulating substrate, the film thickness on the region including the end of the electrode being thinner than other regions, and the cross-sectional shape of which is a reverse taper shape;
The passivation insulating layer, the first amorphous silicon layer, and the gate insulating layer in the opening are removed using the photosensitive resin pattern as a mask, and a part of the drain wiring and the first transparent insulating layer are respectively formed in the opening. Exposing a substrate, a part of a scanning line, and a part of a signal line;
Reduce the film thickness of the photosensitive resin pattern, on the end portion of the one light shield electrode, on the branch portion of the gate electrode, and on the region including the end portion of the other light shield electrode and the end portion of the gate electrode Exposing the passivation insulating layer;
Using the photosensitive resin pattern with the reduced film thickness as a mask, the end of the one light shield electrode, the branch of the gate electrode, the end of the other light shield electrode, and the end of the gate electrode Removing the passivation insulating layer and the first amorphous silicon layer on the containing region to expose the gate insulating layer;
Removing the low-resistance metal layer exposed in the opening and exposing a part of the drain wiring and a part of the signal line, both of which are made of a refractory metal layer;
Depositing a conductive thin film layer on the first transparent insulating substrate;
Removing the photosensitive resin pattern having the reduced film thickness, and including a pixel electrode in the pixel electrode formation region on the end of the one light shield electrode and a part of the drain wiring, and the gate electrode A first pseudo-pixel electrode in the opening of the branch portion, a second pseudo-pixel electrode in the opening including the end of the other light shield electrode and the end of the gate electrode, and part of the scanning line Forming a scanning line electrode terminal in a scanning line electrode terminal forming region, and forming a signal line electrode terminal in a signal line electrode terminal forming region including a part of the signal line. And

この構成により走査線の形成工程、ソース・ドレイン配線の形成工程、及びハーフトーン露光技術を用いた開口部と絵素電極の同時形成と、3枚のフォトマスクを用いてアクティブ基板を作製することができる。半導体層の島化工程は開口部形成時に請求項2記載の液晶表示装置とは異なったチャネル近傍の第1の非晶質シリコンを選択的に除去する事によってなされる。 With this configuration, a scanning line forming process, source / drain wiring forming process, and simultaneous formation of an opening and a pixel electrode using a halftone exposure technique, and an active substrate using three photomasks are manufactured. Can do. The step of island formation of the semiconductor layer is performed by selectively removing the first amorphous silicon near the channel, which is different from the liquid crystal display device according to the second aspect, at the time of forming the opening.

請求項7に記載の液晶表示装置は、
液晶が電圧無印加時に垂直配向する垂直配向型の液晶であり、
第1の透明性絶縁基板上に前記液晶に電圧を印加した時に液晶が配向する方向を規制する第1の配向制御手段が、第1の透明性絶縁基板上に形成された複数の透明導電層よりなる帯状の絵素電極間に位置するパシベーション絶縁層と第1の半導体層とゲート絶縁層絶縁層との積層よりなり、
第2の透明性絶縁基板上またはカラーフィルタ上に前記液晶に電圧を印加した時に液晶が配向する方向を規制する第2の配向制御手段を備えていることを特徴とする請求項1及び請求項2に記載の液晶表示装置である。
The liquid crystal display device according to claim 7,
It is a vertical alignment type liquid crystal in which the liquid crystal is vertically aligned when no voltage is applied,
A plurality of transparent conductive layers formed on the first transparent insulating substrate, wherein a first alignment control means for regulating a direction in which the liquid crystal is aligned when a voltage is applied to the liquid crystal on the first transparent insulating substrate. A lamination of a passivation insulating layer, a first semiconductor layer, and a gate insulating layer insulating layer located between the strip-shaped pixel electrodes,
2. A second alignment control means for restricting a direction in which the liquid crystal is aligned when a voltage is applied to the liquid crystal on a second transparent insulating substrate or a color filter. 2. A liquid crystal display device according to 2.

この構成により帯状の絵素電極間に存在するパシベーション絶縁層と第1の半導体層とゲート絶縁層絶縁層とからなる積層が垂直配向液晶の配向制御手段として機能して液晶セルが配向分割される結果、TN型液晶表示装置よりも視野角の優れたVA(Vertical−Align:垂直配向)方式の液晶表示装置を得ることができる。 With this configuration, the stack of the passivation insulating layer, the first semiconductor layer, and the gate insulating layer insulating layer existing between the strip-like pixel electrodes functions as the alignment control means of the vertical alignment liquid crystal, and the liquid crystal cell is aligned and divided. As a result, a VA (vertical alignment) type liquid crystal display device having a viewing angle superior to that of a TN liquid crystal display device can be obtained.

以上述べたように本発明の中心に位置するのは、低抵抗金属層と、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層との積層よりなるソース・ドレイン配線を形成し、パシベーション絶縁層を付与した後、ドレイン電極の一部を含む絵素電極形成領域と走査線の一部を含む電極端子形成領域及び信号線の一部を含む電極端子形成領域に開口部を有するとともに、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の半導体層とゲート絶縁層を除去し、前記開口部内に夫々ドレイン配線の一部と第1の透明性絶縁基板、走査線の一部及び信号線の一部を露出する工程と、半導体層を選択的に除去する工程と、前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなるドレイン配線の一部と信号線の一部を露出する工程と、前記第1の透明性絶縁基板上に絵素電極となる導電性薄膜層を被着する工程と、前記感光性樹脂パターンを除去し、前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程を有する液晶表示装置の製造方法であって、この構成によりゲート絶縁層への開口部形成工程と絵素電極形成工程を1枚のフォトマスクで処理する工程削減を実現している。 As described above, the center of the present invention is to form a source / drain wiring composed of a low resistance metal layer and a lamination of a passivation insulating layer and a heat-resistant metal layer that can be removed by an etching gas of the gate insulating layer. After providing the passivation insulating layer, openings are formed in the pixel electrode formation region including a part of the drain electrode, the electrode terminal formation region including a part of the scanning line, and the electrode terminal formation region including a part of the signal line. And a step of forming a photosensitive resin pattern having a cross-sectional shape of an inversely tapered shape on the first transparent insulating substrate, and using the photosensitive resin pattern as a mask, the passivation insulating layer in the opening and the first A step of removing the semiconductor layer and the gate insulating layer, exposing a part of the drain wiring, the first transparent insulating substrate, a part of the scanning line, and a part of the signal line in the opening; Removing the low resistance metal layer exposed in the opening, exposing a part of the drain wiring and the signal line, both of which are made of a refractory metal layer, and the first A step of depositing a conductive thin film layer to be a pixel electrode on the transparent insulating substrate, and removing the photosensitive resin pattern and including a part of the drain wiring in the pixel electrode formation region And forming a scanning line electrode terminal in a scanning line electrode terminal formation region including a part of the scanning line, and forming a signal line electrode terminal in a signal line electrode terminal formation region including a part of the signal line. This method realizes a reduction in the number of steps of processing the opening forming step in the gate insulating layer and the pixel electrode forming step with a single photomask.

加えてソース・ドレイン配線が耐熱金属層と低抵抗金属層との積層で構成されるので信号線の低抵抗化が容易なだけでなく、中間導電層を含む従来の3層構成よりも簡素化されてさらなる低コスト化にも寄与する。 In addition, since the source / drain wiring is composed of a stack of heat-resistant metal layers and low-resistance metal layers, not only can the resistance of the signal lines be reduced, but it is also simpler than the conventional three-layer configuration including an intermediate conductive layer. This contributes to further cost reduction.

アクティブ基板の作製には、走査線の形成工程、ソース・ドレイン配線の形成工程、及び上記のゲート絶縁層への開口部形成工程と絵素電極形成工程の同時形成に加えて半導体層の選択的形成が必要である。 For the production of the active substrate, the scanning line forming process, the source / drain wiring forming process, and the opening forming process to the gate insulating layer and the pixel electrode forming process are simultaneously formed, and the semiconductor layer is selectively formed. Formation is necessary.

本発明における半導体層の選択的形成方法の一つは、絶縁ゲート型トランジスタを走査線上に配置し、チャネルと平行する絵素電極領域及び擬似絵素電極領域に開口部を形成し、ソース・ドレイン間の不純物を含まない第1の非晶質シリコン層をこれらの開口部からのサイドエッチングにより除去して、チャネル領域を走査線よりも幅細く形成することによってなされ、その結果3枚のフォトマスクを用いてアクティブ基板を作製することが可能となる。 One of the methods for selectively forming a semiconductor layer in the present invention is that an insulated gate transistor is arranged on a scanning line, an opening is formed in a pixel electrode region and a pseudo pixel electrode region parallel to the channel, and a source / drain is formed. The first amorphous silicon layer that does not contain any interstitial impurities is removed by side etching from these openings, and the channel region is formed narrower than the scanning line, resulting in three photomasks. Thus, an active substrate can be manufactured.

本発明における半導体層の他の選択的形成方法は、その断面形状が逆テーパ形状の感光性樹脂パターンの形成に当たり、ハーフトーン露光技術を併用して半導体層の除去が必要な領域の膜厚を他の領域よりも薄く形成し、前記感光性樹脂パターンをマスクとして絵素電極形成領域、走査線の電極端子形成領域及び信号線の電極端子形成領域のパシベーション絶縁層と第1の半導体層とゲート絶縁層を除去した後、前記感光性樹脂パターンの膜厚を減じて半導体層の除去が必要な領域のパシベーション絶縁層を露出し、前記膜厚を減ぜられた感光性樹脂パターンをマスクとして前記領域のパシベーション絶縁層と第1の半導体層を除去してゲート絶縁層を露出することによってなされる。したがってここでも3枚のフォトマスクを用いてアクティブ基板を作製することが可能である。 Another method for selectively forming a semiconductor layer according to the present invention is to form a photosensitive resin pattern having a cross-sectional shape of an inversely tapered shape. Passivation insulating layers, first semiconductor layers and gates formed in thinner regions than other regions, and using the photosensitive resin pattern as a mask, pixel electrode formation regions, scanning line electrode terminal formation regions, and signal line electrode terminal formation regions After removing the insulating layer, the thickness of the photosensitive resin pattern is reduced to expose a passivation insulating layer in a region where the semiconductor layer needs to be removed, and the photosensitive resin pattern having the reduced thickness is used as a mask. This is done by removing the passivation insulating layer and the first semiconductor layer in the region and exposing the gate insulating layer. Therefore, an active substrate can also be manufactured using three photomasks.

絵素電極のリフトオフ形成の支障にならない膜質と膜厚であれば、絵素電極用導電性薄膜への制約は緩く、透明性の有無は問題にはならない。ただし、図示はしないが反射型液晶表示装置の絵素電極は鏡面反射を回避するため、その下地が平坦ではなく、深さが0.5〜1μm前後の凹凸面が必要である。多くの場合、このような凹凸面を有する下地の形成には感光性アクリル樹脂が用いられており、コスト的な課題はあるが、ゲート絶縁層の被着後、適切な時期に感光性アクリル樹脂層を用いて凹凸を形成しておき、本発明によるゲート絶縁層への開口部形成工程と、反射電極か透過電極の何れかの絵素電極形成工程を1枚のフォトマスクを用いてアクティブ基板を作製してもプロセス削減の目的は達せられる。
より合理的には透明導電層と(アルカリ反応抑制のためのMo薄膜層と)高反射率のAL薄膜層を被着した後、本発明による透明導電層と(Mo薄膜層と)AL薄膜層との積層よりなる擬似絵素電極形成を行い、微細加工技術により透明電極形成領域の(Mo薄膜層と)AL薄膜層を除去すると良いが、詳細な説明は別の機会に譲る。
As long as the film quality and thickness do not hinder the lift-off formation of the picture element electrode, restrictions on the conductive thin film for the picture element electrode are relaxed, and the presence or absence of transparency does not matter. However, although not shown, the pixel electrode of the reflection type liquid crystal display device needs to have an uneven surface having a depth of about 0.5 to 1 μm, not a flat base, in order to avoid specular reflection. In many cases, a photosensitive acrylic resin is used to form a base having such an uneven surface, and although there is a cost problem, the photosensitive acrylic resin is used at an appropriate time after the gate insulating layer is deposited. An active substrate is formed by using a single photomask to form an unevenness using a layer, and to perform the step of forming an opening in the gate insulating layer according to the present invention and the step of forming a pixel electrode of either a reflective electrode or a transmissive electrode. The purpose of reducing the process can be achieved even if manufactured.
More rationally, after depositing a transparent conductive layer and a high reflectivity AL thin film layer (Mo thin film layer for suppressing alkali reaction), the transparent conductive layer according to the present invention and (Mo thin film layer) AL thin film layer It is preferable to form a pseudo picture element electrode consisting of a laminate of and to remove the AL thin film layer (Mo thin film layer) in the transparent electrode forming region by a microfabrication technique, but the detailed explanation will be given to another opportunity.

本発明はこのように透過型だけでなく反射型や半透過型の液晶表示装置においても有効であり、さらに製造方法は同一であるが、透明導電性の絵素電極のパターン形状を変えることによりTN型液晶モードに限らず、垂直配向型の液晶モードに対しても有効であり、工程削減と視野角改善の2つの課題を同時に克服できる優れた技術である。 The present invention is effective not only in the transmissive type but also in the reflective type and transflective type liquid crystal display devices. Further, the manufacturing method is the same, but the pattern shape of the transparent conductive pixel electrode is changed. This technique is effective not only for the TN liquid crystal mode but also for the vertical alignment type liquid crystal mode, and is an excellent technology that can simultaneously overcome the two problems of process reduction and viewing angle improvement.

本発明の要件は上記の説明からも明らかなように低抵抗金属層と、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層との積層よりなるソース・ドレイン配線を形成し、絶縁ゲート型トランジスタを保護するパシベーション絶縁層を付与した後、その断面形状が逆テーパ形状の感光性樹脂パターンを用いて前記パシベーション絶縁層と非晶質シリコン層とゲート絶縁層を貫通する開口部を形成し、前記開口部内に露出する電極部位の低抵抗金属層を除去して前記電極の下地の耐熱金属層を露出した後、前記感光性樹脂パターンをリフトオフ材として絵素電極用導電性薄膜層のリフトオフにより絵素電極を形成することで、開口部形成工程と開口部形成工程に続く絵素電極形成工程を1枚のフォトマスクでハーフトーン露光技術を用いずに処理可能とした点と、さらに半導体層の選択的形成に当たりサイドエッチングあるいはハーフトーン露光技術の採用により3枚のフォトマスクでアクティブ基板の作製を可能とした点にある。したがって、それ以外の構成に関しては走査線、ゲート絶縁層等の材質や膜厚等が異なった液晶表示装置あるいはその製造方法の差異も本発明の範疇に属することは自明であり、本発明が透過型だけでなく反射型や半透過型の液晶表示装置においても有効であることも証明されている。また絶縁ゲート型トランジスタの半導体層も非晶質シリコン層に限定されないことも明らかである。 As is apparent from the above description, the requirement of the present invention is to form a source / drain wiring comprising a low resistance metal layer, and a lamination of a heat-resistant metal layer that can be removed by an etching gas of the passivation insulating layer and the gate insulating layer. Then, after providing a passivation insulating layer that protects the insulated gate transistor, an opening that penetrates the passivation insulating layer, the amorphous silicon layer, and the gate insulating layer using a photosensitive resin pattern whose cross-sectional shape is inversely tapered After removing the low-resistance metal layer of the electrode portion exposed in the opening and exposing the heat-resistant metal layer underlying the electrode, the conductive thin film for pixel electrodes is formed using the photosensitive resin pattern as a lift-off material By forming the pixel electrode by layer lift-off, the pixel electrode forming process following the opening forming process and the opening forming process can be performed with a single photomask. A point which enables processing without using techniques, in that it further allowed the fabrication of the active substrate in three photomasks adoption of side etching or half-tone exposure technology Upon selective formation of the semiconductor layer. Therefore, regarding other configurations, it is self-evident that differences in liquid crystal display devices having different materials and film thicknesses, such as scanning lines and gate insulating layers, and manufacturing methods thereof also belong to the scope of the present invention. It has been proved that it is effective not only in a type but also in a reflection type or a transflective type liquid crystal display device. It is also clear that the semiconductor layer of the insulated gate transistor is not limited to an amorphous silicon layer.

本発明の実施例を図1〜図7に基づいて説明する。図1に本発明の実施例1に係るアクティブ基板(表示装置用半導体装置)の平面図を示し、図2に図1(g)のA−A’(絶縁ゲート型トランジスタ領域)、B−B’(走査線の電極端子領域)及びC−C’(信号線の電極端子領域)、D−D’(チャネル領域)、及びE−E’(ドレイン電極)線上の製造工程の断面図を示す。同様に実施例2は図3と図4、実施例3は図5と図6、そして実施例4は図7で夫々アクティブ基板の平面図と(製造工程)の断面図を示す。なお従来例と同一の部位については同一の符号を付して詳細な説明は省略する。 An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a plan view of an active substrate (semiconductor device for display device) according to a first embodiment of the present invention, and FIG. 2 shows AA ′ (insulated gate transistor region) and BB in FIG. Sectional views of manufacturing steps on the lines '(electrode terminal region of scanning line) and CC' (electrode terminal region of signal line), DD '(channel region), and EE' (drain electrode) are shown. . Similarly, FIG. 3 and FIG. 4 show Example 2, FIG. 5 and FIG. 6 show Example 3, and FIG. 7 shows Example 4 showing a plan view of the active substrate and a cross-sectional view of (manufacturing process). In addition, about the site | part same as a prior art example, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

実施例1では先ずガラス基板2の一主面上にSPT等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層として例えばCr等の耐熱性の高い金属層を被着し、微細加工技術によりその一部をゲート電極とする走査線11を選択的に形成する。走査線の低抵抗化のためにALを用いるならば先述したように耐熱金属層でサンドイッチすると良い。あるいは本発明の信号線と同様に適当な耐熱金属層と、耐熱性を高めるためTa,Nd,Hf,Ni等の金属を添加したAL合金との積層も可能である。その理由は後述する。 In Example 1, first, a metal having high heat resistance such as Cr is used as a first metal layer having a film thickness of about 0.1 to 0.3 μm on one main surface of the glass substrate 2 using a vacuum film forming apparatus such as SPT. The layer is deposited, and the scanning line 11 having a part of the gate electrode as a gate electrode is selectively formed by a fine processing technique. If AL is used to reduce the resistance of the scanning line, it is preferable to sandwich it with a refractory metal layer as described above. Alternatively, similarly to the signal line of the present invention, it is possible to laminate an appropriate refractory metal layer and an AL alloy to which a metal such as Ta, Nd, Hf, or Ni is added in order to improve heat resistance. The reason will be described later.

次に従来例と同様にガラス基板2の全面にPCVD装置を用いてゲート絶縁層となる第1のSiNx層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン層31、及び不純物を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層33と3種類の薄膜層を、例えば0.3−0.2−0.05μm程度の膜厚で順次被着する。さらに図1(a)と図2(a)に示したようにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばMoSi2等の薄膜層34と、膜厚0.3μm程度の低抵抗金属層としてAL薄膜層35を順次被着する。本発明において、耐熱金属層34は後続の開口部形成工程で用いられる弗素系のガスで除去可能な性質が必要であり、例えばMo,W,Ta等の高融点金属とその合金、あるいはCr,Ti,Mo,W,Ta等の高融点金属のシリサイドが選ばれる。また低抵抗金属層としてCuを用いても良い。 Next, as in the conventional example, a first SiNx layer 30 that becomes a gate insulating layer is formed on the entire surface of the glass substrate 2 using a PCVD apparatus, and the first amorphous silicon that hardly contains impurities and becomes a channel of an insulated gate transistor. The layer 31, the second amorphous silicon layer 33 containing impurities and serving as the source / drain of the insulated gate transistor, and the three types of thin film layers are, for example, about 0.3-0.2-0.05 μm thick In order to deposit. Further, as shown in FIG. 1A and FIG. 2A, a thin film layer 34 such as MoSi 2 is formed as a heat-resistant metal layer having a thickness of about 0.1 μm using a vacuum film forming apparatus such as SPT, and a film thickness of 0 The AL thin film layer 35 is sequentially deposited as a low resistance metal layer of about 3 μm. In the present invention, the refractory metal layer 34 needs to be removable with a fluorine-based gas used in the subsequent opening forming step. For example, a refractory metal such as Mo, W, Ta and its alloy, or Cr, Silicides of refractory metals such as Ti, Mo, W, and Ta are selected. Further, Cu may be used as the low resistance metal layer.

引き続きソース・ドレイン配線の形成工程では図1(b)と図2(b)に示したように微細加工技術により感光性樹脂パターンを用いてこれらの薄膜層を順次食刻し、耐熱金属層34Aと低抵抗金属層35Aとの積層よりなり絶縁ゲート型トランジスタのソース配線も兼ねる信号線12と、走査線11と直交するように耐熱金属層34Bと低抵抗金属層35Bとの積層よりなる絶縁ゲート型トランジスタのドレイン電極21を選択的に形成するが、ここでは前記感光性樹脂パターンを用いて引き続き第2の非晶質シリコン層33及び第1の非晶質シリコン層31を順次食刻し、第1の非晶質シリコン層31は0.05〜0.1μm程度残して食刻する。この時点で第2の非晶質シリコン層よりなるソース33Aとドレイン33Bの分離がなされ、ソース33Aとドレイン33Bの下地の第1の非晶質シリコン31S,31Dを除いてガラス基板2上には膜厚を減ぜられた第1の非晶質シリコン層31Aが露出する。ドレイン電極21は図1(b)に示したように信号線12と平行して走査線11と交差しており、TFT on Gate構成としている。またソース・ドレイン配線12,21の形成と同時に前段の走査線11上に蓄積容量15を構成する蓄積電極72も形成する。 Subsequently, in the process of forming the source / drain wiring, as shown in FIGS. 1B and 2B, these thin film layers are sequentially etched using a photosensitive resin pattern by a microfabrication technique, and the refractory metal layer 34A. And a low resistance metal layer 35A and an insulated gate comprising a signal line 12 also serving as a source wiring of an insulated gate transistor and a laminate of a heat resistant metal layer 34B and a low resistance metal layer 35B so as to be orthogonal to the scanning line 11. The drain electrode 21 of the type transistor is selectively formed. Here, the second amorphous silicon layer 33 and the first amorphous silicon layer 31 are successively etched using the photosensitive resin pattern, The first amorphous silicon layer 31 is etched leaving about 0.05 to 0.1 μm. At this time, the source 33A and the drain 33B made of the second amorphous silicon layer are separated, and the first amorphous silicon 31S and 31D underlying the source 33A and the drain 33B are excluded on the glass substrate 2. The first amorphous silicon layer 31A having a reduced thickness is exposed. As shown in FIG. 1B, the drain electrode 21 intersects the scanning line 11 in parallel with the signal line 12 and has a TFT on Gate configuration. Simultaneously with the formation of the source / drain wirings 12 and 21, the storage electrode 72 constituting the storage capacitor 15 is also formed on the preceding scanning line 11.

ソース・ドレイン配線12,21の形成後、ガラス基板2の全面に透明性の絶縁層として0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とした後、図1(c)と図2(c)に示したように微細加工技術により一方のドレイン電極21の端部と蓄積電極72の一部を含んで絵素電極形成領域と、他方のドレイン電極21の端部を含んで小さな面積の擬似絵素電極形成領域と、画像表示部外の領域で走査線11の一部5上及び信号線12の一部6上に夫々開口部38,39,63及び64を有するとともに、開口部の断面形状が逆テーパ状の感光性樹脂パターン88を形成する。開口部の断面形状が逆テーパ状となるような感光性樹脂としては、例えば東京応化社の製品名TELR−N101PMを用いると良い。その膜厚としては1μm以上あれば十分である。この製品は有機EL表示装置の製作にあたり有機EL発光層形成後の電極形成工程においてその逆テーパ状の断面形状のため、被着される電極用の導電性薄膜層を開口部内に分断して形成する用途で開発された化学増幅型のネガ型感光性樹脂であって、通常のポジ型感光性樹脂との差異は現像処理に先立ち、露光後に加熱処理(Post−Exposure−Bake)が必要な特質を有する。 After the formation of the source / drain wirings 12 and 21, a second SiNx layer having a thickness of about 0.3 μm is deposited on the entire surface of the glass substrate 2 as a transparent insulating layer to form a passivation insulating layer 37. 1 (c) and FIG. 2 (c), the pixel electrode forming region including the end of one drain electrode 21 and a part of the storage electrode 72 and the other drain electrode 21 are formed by microfabrication technology. The pseudo pixel electrode forming region having a small area including the end portion, and the openings 38, 39, 63 and 63 on the part 5 of the scanning line 11 and the part 6 of the signal line 12 in the region outside the image display part, respectively. 64 and a photosensitive resin pattern 88 having an opening with a cross-sectional shape that is inversely tapered. As the photosensitive resin whose cross-sectional shape of the opening is inversely tapered, for example, a product name TELR-N101PM manufactured by Tokyo Ohka Co., Ltd. may be used. A film thickness of 1 μm or more is sufficient. This product is formed by dividing the conductive thin film layer for the electrode to be deposited into the opening because of the reverse tapered cross-sectional shape in the electrode forming process after forming the organic EL light emitting layer in manufacturing the organic EL display device This is a chemically amplified negative photosensitive resin developed for applications that require a heat treatment (post-exposure-bake) after exposure prior to development processing. Have

そして感光性樹脂パターン88をマスクとして前記開口部内のパシベーション絶縁層37と第1の非晶質シリコン層31Aとゲート絶縁層30を選択的に除去してガラス基板2を露出するとともに上記の電極を露出する。通常、SiNxよりなるパシベーション絶縁層37とゲート絶縁層30の除去には弗素系のガス、例えばCF4またはSF6あるいはこれらの混合ガスを用いたドライエッチングが行われる。既に述べたように耐熱金属34A,34B,34Cと第1の非晶質シリコン層31S,31D,31Aも弗素系のガスでエッチングされるが、低抵抗金属層35A,35B,35CはALとCuの何れであっても弗素系のガスではエッチングされないので、図2(c)に示したように低抵抗金属層35A,35B(35B1と35B2),35Cがマスクとして機能し、これらの下層の耐熱金属層34A,34B(34B1と34B2),34Cと第1の非晶質シリコン層31S,31D,31Bとゲート絶縁層30Aが過食刻(オーバーエッチ)によりサイドエッチされる結果、開口部64,38,39内に露出している低抵抗金属層35A,35B,35Cの周囲には庇(オーバハング)が形成されてしまう。 Then, using the photosensitive resin pattern 88 as a mask, the passivation insulating layer 37, the first amorphous silicon layer 31A, and the gate insulating layer 30 in the opening are selectively removed to expose the glass substrate 2 and the electrodes described above. Exposed. Usually, dry etching using a fluorine-based gas, for example, CF4, SF6, or a mixed gas thereof is performed to remove the passivation insulating layer 37 and the gate insulating layer 30 made of SiNx. As already described, the refractory metals 34A, 34B, and 34C and the first amorphous silicon layers 31S, 31D, and 31A are also etched with a fluorine-based gas, but the low-resistance metal layers 35A, 35B, and 35C are formed of AL and Cu. Since any of these materials is not etched with a fluorine-based gas, the low-resistance metal layers 35A, 35B (35B1 and 35B2), 35C function as a mask as shown in FIG. As a result of the side etching of the metal layers 34A, 34B (34B1 and 34B2), 34C, the first amorphous silicon layers 31S, 31D, 31B and the gate insulating layer 30A by overetching, the openings 64, 38 are formed. , 39, soot (overhang) is formed around the low resistance metal layers 35A, 35B, 35C exposed.

さらにエッチングガスを塩素ガスに切り替えて図1(d)と図2(d)に示したように耐熱金属層34A,34B,34Cと第1の非晶質シリコン層31S,31D,31Bのサイドエッチングを行う。パシベーション絶縁層37Aとゲート絶縁層30A及び低抵抗金属層35においては塩素ガスによるエッチングレートが上記の耐熱金属層と第1の非晶質シリコン層とは1桁近く小さいことからこのサイドエッチングは可能である。ただし、低抵抗金属層35にALを採用した場合は、塩素ガスによるALのエッチングを防止するため塩素ガスによるエッチングに先立ち酸素プラズマ処理によりその表面に酸化アルミニウムを強制的に形成しておく必要がある。ソース・ドレイン配線12,21間のチャネル領域の第1の非晶質シリコン層31Cがゲート電極11Aよりも細くなるように、サイドエッチ量はマスク合せ精度の3ミクロン以上必要である。サイドエッチングを効果的に進行させるには塩素ガスプラズマが異方性を持たないように好ましくはこのエッチング工程はプラズマモードを使用すべきであり、RIEモードであれば10Pa以上の高圧での処理が望ましい。第1の非晶質シリコン層の31Bのサイドエッチングにより、通常の絶縁ゲート型トランジスタと同様にチャネル領域の第1の非晶質シリコン層31Cはゲート電極11Aよりも細くなり裏面光源からの照射光でリーク電流が増大する不具合は回避される。 Further, the etching gas is switched to chlorine gas, and side etching of the refractory metal layers 34A, 34B, 34C and the first amorphous silicon layers 31S, 31D, 31B is performed as shown in FIGS. 1 (d) and 2 (d). I do. In the passivation insulating layer 37A, the gate insulating layer 30A, and the low-resistance metal layer 35, the etching rate by chlorine gas is approximately one digit lower than that of the refractory metal layer and the first amorphous silicon layer, so this side etching is possible. It is. However, when AL is used for the low-resistance metal layer 35, it is necessary to forcibly form aluminum oxide on the surface by oxygen plasma treatment prior to etching with chlorine gas in order to prevent etching of AL with chlorine gas. is there. The amount of side etching is required to be 3 microns or more of mask alignment accuracy so that the first amorphous silicon layer 31C in the channel region between the source / drain wirings 12 and 21 is thinner than the gate electrode 11A. In order for the side etching to proceed effectively, the etching process should preferably use the plasma mode so that the chlorine gas plasma does not have anisotropy. In the RIE mode, processing at a high pressure of 10 Pa or higher is possible. desirable. As a result of side etching of the first amorphous silicon layer 31B, the first amorphous silicon layer 31C in the channel region becomes thinner than the gate electrode 11A in the same manner as in a normal insulated gate transistor, and the irradiation light from the back surface light source. Thus, the problem of increasing the leakage current is avoided.

低抵抗金属層35に銅を選択した場合には、弗酸に微量の硝酸を混入したエッチング液でMo,W,Taを除く耐熱金属層34A,34B,34Cと第1の非晶質シリコン層31S,31D,31Bのサイドエッチングを行うことも可能である。ただし、チャネル領域31C以外は第1の非晶質シリコン層31S,31Dの膜厚も厚く、さらに第2の非晶質シリコン層33A,33Bと、耐熱金属層34A,34B,34Cも積層されているのでサイドエッチング量が大きく、従って低抵抗金属層35Bと35C、すなわちドレイン電極21と蓄積電極72のパターンは開口部38内に露出する面積を多く形成しておく必要があるが、最終的には開口部38内の低抵抗金属層35Bと35Cは除去されるので開口率への影響は小さい。 When copper is selected for the low-resistance metal layer 35, the heat-resistant metal layers 34A, 34B, 34C excluding Mo, W, Ta and the first amorphous silicon layer are etched with an etching solution in which a small amount of nitric acid is mixed with hydrofluoric acid. It is also possible to perform side etching of 31S, 31D, and 31B. However, except for the channel region 31C, the first amorphous silicon layers 31S and 31D are thick, and the second amorphous silicon layers 33A and 33B and the refractory metal layers 34A, 34B and 34C are laminated. Therefore, the amount of side etching is large. Therefore, the low resistance metal layers 35B and 35C, that is, the pattern of the drain electrode 21 and the storage electrode 72 must have a large area exposed in the opening 38. Since the low resistance metal layers 35B and 35C in the opening 38 are removed, the influence on the aperture ratio is small.

耐熱金属層34A,34B,34Cと第1の非晶質シリコン層31S,31D,31Bのサイドエッチングによって低抵抗金属層35A,35B,35Cの周囲形成された庇(オーバハング)は当然大きくなる。このような庇(オーバハング)が存在していると後続の絵素電極形成工程で絵素電極が段切れを起こし、低抵抗金属層35Aと信号線の電極端子との接続、低抵抗金属層35B1と絵素電極との接続、及び低抵抗金属層35B2と擬似絵素電極との接続ができなくなる。さらに低抵抗金属層35A,35B,35CにALを選択した場合にはアルカリ性のレジスト剥離液を用いたレジスト剥離処理において透明導電層であるITO,IZOが還元されて消失しまう不具合も回避困難である。そこで、図1(e)と図2(e)に示したように開口部64,38,39内の低抵抗金属層35A,35B,35Cを除去して庇(オーバーハング)を消去するとともに、これらの電極の下地である耐熱金属層34A,34B,34Cを露出する工程が本発明の重要なポイントである。この低抵抗金属層35A〜34Cの除去には下地の熱金属層34A〜35Cとの選択比を高めるために、低抵抗金属層35にALを選択した場合には燐酸溶液、Cuを選択した場合には塩化第2鉄(FeCl3)または塩化第2銅(CuCl2)水溶液を用いる事が望ましい。さらに低抵抗金属層35にAL、耐熱金属層34にMoまたはWを選択した組合せでは、燐酸を用いたALの除去時にMoまたはWが消失しないように添加剤として硝酸を加えてはならないし、膜減りに対応してMoまたはWの膜厚を厚くする必要性もある。その点前記のシリサイドやTaではそのような制約が無く使い易い材料である。例えばMoシリサイド(MoSi2)は非晶質シリコン層31,33と同様に弗素系ガスのドライエッチ、または弗酸に少量の硝酸を混合した食刻液で食刻可能であり、初期のTFT型液晶表示装置には耐熱金属層として用いられていたが、現在のTFT液晶分野では余り知られていない材料である。 Naturally, the overhang formed around the low-resistance metal layers 35A, 35B, and 35C by the side etching of the refractory metal layers 34A, 34B, and 34C and the first amorphous silicon layers 31S, 31D, and 31B is naturally increased. If such an overhang exists, the pixel electrode is disconnected in the subsequent pixel electrode formation process, and the connection between the low resistance metal layer 35A and the signal line electrode terminal, and the low resistance metal layer 35B1. Cannot be connected to the pixel electrode, and the low-resistance metal layer 35B2 cannot be connected to the pseudo-pixel electrode. Furthermore, when AL is selected for the low-resistance metal layers 35A, 35B, and 35C, it is difficult to avoid the problem that ITO and IZO, which are transparent conductive layers, are reduced and lost in resist stripping using an alkaline resist stripping solution. . Therefore, as shown in FIGS. 1E and 2E, the low-resistance metal layers 35A, 35B, and 35C in the openings 64, 38, and 39 are removed to eliminate the overhang, The process of exposing the heat-resistant metal layers 34A, 34B, and 34C, which are the bases of these electrodes, is an important point of the present invention. When removing the low resistance metal layers 35A to 34C, in order to increase the selection ratio with the underlying thermal metal layers 34A to 35C, when AL is selected for the low resistance metal layer 35, a phosphoric acid solution or Cu is selected. It is desirable to use an aqueous solution of ferric chloride (FeCl3) or cupric chloride (CuCl2). Furthermore, in a combination in which AL is selected for the low-resistance metal layer 35 and Mo or W is selected for the refractory metal layer 34, nitric acid must not be added as an additive so that Mo or W does not disappear when removing AL using phosphoric acid, There is also a need to increase the film thickness of Mo or W in response to film reduction. In that respect, the above-mentioned silicide and Ta are easy to use without such restrictions. For example, Mo silicide (MoSi 2) can be etched with a fluorine-based gas dry etch or an etching solution in which a small amount of nitric acid is mixed with hydrofluoric acid, like the amorphous silicon layers 31 and 33. Although it was used as a heat-resistant metal layer in display devices, it is a material that is not well known in the current TFT liquid crystal field.

このようにして開口部64,38,39内に耐熱金属層34Aの一部と34Bの一部である34B1及び34B2を露出した後、図1(f)と図2(f)に示したようにSPT等の真空製膜装置を用いてガラス基板2上に透明導電層91として膜厚0.1μm程度のITO,IZOまたはこれらの混晶体を被着する。一般的にも透明導電層91の膜厚がこのように薄いことに加えて、断面形状が逆テーパ状であるので感光性樹脂パターン88の側面に被着される透明導電層91は極めて少ない。 After exposing part of the refractory metal layer 34A and part 34B of 34B1 and 34B2 in the openings 64, 38, 39 in this way, as shown in FIGS. 1 (f) and 2 (f). In addition, ITO, IZO, or a mixed crystal thereof having a film thickness of about 0.1 μm is deposited on the glass substrate 2 as a transparent conductive layer 91 using a vacuum film forming apparatus such as SPT. In general, in addition to such a thin film thickness of the transparent conductive layer 91, the cross-sectional shape is an inversely tapered shape, so that the transparent conductive layer 91 deposited on the side surface of the photosensitive resin pattern 88 is very few.

したがってレジスト剥離液あるいは特定の有機溶剤を用いて感光性樹脂パターン88の除去を行うと、感光性樹脂パターン88の側面から溶融が始まり、感光性樹脂パターン88上の透明導電層91は容易に剥離してしまう。所謂エッチオフである。その結果、図1(g)と図2(g)に示したように一方のドレイン電極21の端部を構成する耐熱金属層34B1を含んで絵素電極形成領域である開口部38内のガラス基板2上には絵素電極22Aと、他方のドレイン電極21の端部を構成する耐熱金属層34B2を含んで擬似絵素電極形成領域である開口部39内のガラス基板2上には擬似絵素電極22Dと、走査線の一部5を含んで開口部63内には走査線の電極端子5Aと、信号線の一部である耐熱金属層34Aを含んで開口部64内には信号線の電極端子6Aが自己整合的に形成されるとともにガラス基板2上のパシベーション絶縁層37Aが露出し、アクティブ基板2の製造工程を終える。なお、透明導電層91の被着時に膜質改善のため基板加熱を行うならば、余り加熱温度が高いとリフトオフ工程で感光性樹脂パターン88が変質し、その除去が困難になるので、基板加熱温度は150℃以下が望ましい。 Therefore, when the photosensitive resin pattern 88 is removed using a resist stripping solution or a specific organic solvent, melting starts from the side surface of the photosensitive resin pattern 88, and the transparent conductive layer 91 on the photosensitive resin pattern 88 is easily peeled off. Resulting in. This is so-called etch-off. As a result, as shown in FIG. 1 (g) and FIG. 2 (g), the glass in the opening 38, which is the pixel electrode formation region, includes the refractory metal layer 34B1 constituting the end of one drain electrode 21. The substrate 2 includes a picture element electrode 22A and a heat-resistant metal layer 34B2 constituting the end of the other drain electrode 21, and the pseudo picture is formed on the glass substrate 2 in the opening 39 which is a pseudo picture element electrode formation region. The element electrode 22D, the scanning line part 5 and the opening 63 include the scanning line electrode terminal 5A and the signal line refractory metal layer 34A and the opening 64 includes the signal line. The electrode terminal 6A is formed in a self-aligning manner, and the passivation insulating layer 37A on the glass substrate 2 is exposed, and the manufacturing process of the active substrate 2 is completed. If the substrate is heated to improve the film quality when the transparent conductive layer 91 is deposited, if the heating temperature is excessively high, the photosensitive resin pattern 88 is altered in the lift-off process, which makes it difficult to remove the substrate. Is preferably 150 ° C. or lower.

このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例1が完了する。ただし、擬似絵素電極22Dは隣接する上段絵素の絵素電極であるので、BMで覆って表示能力を失わせる必要がある。蓄積容量15の構成に関しては図1(g)に示したように低抵抗金属層35Cと耐熱金属層34Cとの積層よりなる蓄積電極72と前段の走査線11とがゲート絶縁層30Aと第1の非晶質シリコン層31E及び第2の非晶質シリコン層33E(何れも図示せず)を介して平面的に重なることで構成している例(右下がり斜線部52)を例示している。なお実施例1では従来例と同様にアクティブ基板2の外周部に開口部66を形成して透明導電性の短絡線40を得ており、透明導電性の電極端子5A,6Aと短絡線40との間を細長いストライプ状に形成することにより高抵抗化して静電気対策用の高抵抗としている。 The active substrate 2 and the color filter 9 thus obtained are bonded to form a liquid crystal panel, and Example 1 of the present invention is completed. However, since the pseudo picture element electrode 22D is a picture element electrode of the adjacent upper picture element, it is necessary to cover it with BM to lose the display capability. With respect to the configuration of the storage capacitor 15, as shown in FIG. 1G, the storage electrode 72 formed by stacking the low-resistance metal layer 35C and the refractory metal layer 34C and the scanning line 11 in the previous stage include the gate insulating layer 30A and the first An example (lower right oblique line portion 52) configured by planarly overlapping the amorphous silicon layer 31E and the second amorphous silicon layer 33E (both not shown) is illustrated. . In Example 1, similarly to the conventional example, an opening 66 is formed in the outer peripheral portion of the active substrate 2 to obtain the transparent conductive short-circuit line 40. The transparent conductive electrode terminals 5A and 6A, the short-circuit line 40, By forming the gaps in the form of elongated stripes, the resistance is increased to provide high resistance against static electricity.

開口部内のパシベーション絶縁層37と第1の非晶質シリコン層31Aとゲート絶縁層30を除去し終えた時点で開口部63内には走査線の一部5が露出するが、耐熱性の観点から走査線材料にALが単独で用いられる事はなく、通常Ti,Cr等の耐熱金属層との積層で構成されるため、これらの耐熱金属層を上層、ALを下層とする積層で走査線を構成し、開口部63の大きさを走査線の一部5よりも小さくしておけば開口部63内にはこれらの耐熱金属層が露出するので走査線の一部5がALよりなる低抵抗金属層35A〜35Cの除去時に除去されて消滅する事は無い。この場合には走査線の一部5の大きさが走査線の電極端子の大きさを決定する設計指針を与える。また耐熱性の高い、例えばTa,Nd等を数%含んだアルミニウム合金、AL(Ta)やAL(Nd)の単層で形成された走査線11では上記のAL層の除去時にこれらのAL合金が除去されて消滅するので、この場合にはソース・ドレイン配線12,21と同様に、適当な耐熱金属層を下層、前記AL合金を上層とする積層で走査線11を構成しておけば、走査線の電極端子は前記の耐熱金属層よりなる走査線の一部5を含んで形成されて電気的な接触は確保されるし、開口部63の大きさが走査線の一部5よりも大きくても構わない。このように走査線11の構成もソース・ドレイン配線12,21と同様に2層構成で良いので、従来例の3層構成の電極線と比較すると製膜材料が削減され、製膜装置も製膜室あるいは製膜装置台数を削減できるので生産コストも下がる。 When the passivation insulating layer 37, the first amorphous silicon layer 31A, and the gate insulating layer 30 in the opening are completely removed, a part 5 of the scanning line is exposed in the opening 63, but from the viewpoint of heat resistance Since AL is not used alone as a scanning line material, it is usually composed of a laminated layer with a refractory metal layer such as Ti, Cr, etc., so that the scanning line is composed of these refractory metal layers as upper layers and AL as a lower layer. If the size of the opening 63 is smaller than the part 5 of the scanning line, these heat-resistant metal layers are exposed in the opening 63, so that the part 5 of the scanning line is made of AL. It is not removed when the resistance metal layers 35A to 35C are removed. In this case, the size of the part 5 of the scanning line gives a design guideline for determining the size of the electrode terminal of the scanning line. Further, in the scanning line 11 formed of a single layer of aluminum (Al) (Ta) or AL (Nd) having a high heat resistance, for example, containing several percent of Ta, Nd, etc., these AL alloys are removed when the AL layer is removed. In this case, as in the case of the source / drain wirings 12 and 21, if the scanning line 11 is composed of a laminate having an appropriate refractory metal layer as a lower layer and the AL alloy as an upper layer, The electrode terminal of the scanning line is formed to include a part 5 of the scanning line made of the heat-resistant metal layer to ensure electrical contact, and the size of the opening 63 is larger than that of the part 5 of the scanning line. It does not matter if it is large. Thus, since the scanning line 11 may have a two-layer structure like the source / drain wirings 12 and 21, the film forming material is reduced and the film forming apparatus is manufactured as compared with the conventional three-layer electrode line. Since the number of film chambers or film forming apparatuses can be reduced, the production cost is also reduced.

実施例1ではこのようにハーフトーン露光技術を併用する事無く、走査線の形成工程、ソース・ドレイン配線の形成工程、及び本発明の主目的である開口部と絵素電極の同時形成と、3枚のフォトマスクを用いてアクティブ基板を作製しており、半導体層の島化工程に相当する工程は開口部形成時のサイドエッチングによってなされている。従って各パターニング工程における寸法管理は通常のレベルで良いと言う副次的な効果も得られる。また走査線と信号線の積層構成も2層で良く、低コスト化に少なからず貢献するが、後者は本発明の全ての実施例において発揮される特徴でもある。 In Example 1, without using the halftone exposure technique in this way, the scanning line forming process, the source / drain wiring forming process, and the simultaneous formation of the opening and the pixel electrode, which are the main objects of the present invention, An active substrate is manufactured using three photomasks, and a step corresponding to the step of forming a semiconductor layer is performed by side etching at the time of opening formation. Therefore, the secondary effect that the dimension management in each patterning process may be a normal level can be obtained. Further, the laminated structure of the scanning lines and the signal lines may be two layers, which contributes to a reduction in cost, but the latter is also a feature that is exhibited in all the embodiments of the present invention.

しかしながら、サイドエッチングを採用するに当たり低抵抗金属層35と耐熱金属層34への制約も多く、またサイドエッチでドライエッチングを採用すると処理時間が長くなる傾向は否定できない。そこで開口部形成時にハーフトーン露光技術を用いて開口部形成と半導体層の島化工程を1枚のフォトマスクで処理すれば、これらの制約を回避することが可能となるので、それを実施例2で説明する。 However, in adopting side etching, there are many restrictions on the low-resistance metal layer 35 and the heat-resistant metal layer 34, and if dry etching is adopted in the side etching, the tendency for the processing time to be long cannot be denied. Therefore, if the opening formation and the island formation process of the semiconductor layer are processed with a single photomask using halftone exposure technology at the time of opening formation, these restrictions can be avoided. 2 will be described.

実施例2では図3(b)と図4(b)に示したソース・ドレイン配線12,21の形成工程と、それに続いてパシベーション絶縁層37を被着する工程までは実施例1と同一の製造工程を進行する。ただし、ここでは従来例と同様にゲート電極11Aを走査線11より分岐して形成している。 The second embodiment is the same as the first embodiment up to the step of forming the source / drain wirings 12 and 21 shown in FIGS. 3B and 4B and the subsequent step of depositing the passivation insulating layer 37. Proceed through the manufacturing process. However, here, the gate electrode 11A is branched from the scanning line 11 as in the conventional example.

続いて図3(c)と図4(c)に示したようにハーフトーン露光技術を併用して微細加工技術によりドレイン電極21の一部と蓄積電極72の一部を含んで絵素電極形成領域と、画像表示部外の領域で走査線11の一部5上及び信号線12の一部6上に夫々開口部38,63及び64を有するとともに、前記絵素電極形成領域と隣接するゲート電極11Aの先端部を含む領域(88B1)上と、ゲート電極11Aの走査線11からの分岐部を含む領域(88B2)上の膜厚が例えば1μmでその他の領域の膜厚が2μmであり、開口部の断面形状が逆テーパ状の感光性樹脂パターン88A,88Bを形成する。そして感光性樹脂パターン88A,88Bをマスクとして開口部内のパシベーション絶縁層37と第1の非晶質シリコン層31Aとゲート絶縁層30を選択的に除去してガラス基板2を露出するとともにこれらの電極を露出する。この結果、実施例1と同様に低抵抗金属層35A〜35Cがマスクとして機能し、これらの下層の耐熱金属層34A〜34Cと第1の非晶質シリコン層31S,31D,31Bとゲート絶縁層30Aが過食刻(オーバーエッチ)によりサイドエッチされる結果、開口部64,39内に露出している低抵抗金属層35A〜35Cの周囲には庇(オーバハング)が形成されてしまう。 Subsequently, as shown in FIGS. 3 (c) and 4 (c), a pixel electrode is formed including a part of the drain electrode 21 and a part of the storage electrode 72 by a microfabrication technique using a halftone exposure technique together. A gate adjacent to the pixel electrode formation region and having openings 38, 63 and 64 on the part 5 of the scanning line 11 and the part 6 of the signal line 12 in the region outside the image display part. The film thickness on the region (88B1) including the tip portion of the electrode 11A and the region (88B2) including the branch portion from the scanning line 11 of the gate electrode 11A is, for example, 1 μm, and the film thickness of the other regions is 2 μm. Photosensitive resin patterns 88A and 88B are formed in which the cross-sectional shape of the opening is inversely tapered. Then, using the photosensitive resin patterns 88A and 88B as a mask, the passivation insulating layer 37, the first amorphous silicon layer 31A and the gate insulating layer 30 in the opening are selectively removed to expose the glass substrate 2 and these electrodes. To expose. As a result, the low-resistance metal layers 35A to 35C function as a mask as in the first embodiment, and the lower heat-resistant metal layers 34A to 34C, the first amorphous silicon layers 31S, 31D, and 31B, and the gate insulating layer. As a result of 30A being side-etched by overetching, overhangs are formed around the low-resistance metal layers 35A to 35C exposed in the openings 64 and 39.

この後、酸素プラズマ等の灰化手段により感光性樹脂パターン88A,88Bの膜厚を1μm以上減ずると図3(d)と図4(d)に示したように感光性樹脂パターン88Bが消失してゲート電極11Aの先端部を含む領域のパシベーション絶縁層37Bと走査線11からの分岐部を含む領域のパシベーション絶縁層37Cが露出し、膜厚を減ぜられた感光性樹脂パターン88Aは88Cに変換される。そこで図3(e)と図4(e)に示したように膜減りした感光性樹脂パターン88Cをマスクとしてゲート電極11Aの先端部を含む領域のパシベーション絶縁層37Bと第1の非晶質シリコン層31B、及び走査線11からの分岐部を含む領域のパシベーション絶縁層37Cと第1の非晶質シリコン層31Bを選択的に除去してゲート絶縁層30B,30Cを露出する。この結果、ソース・ドレイン配線12,21間の第1の非晶質シリコン層の31Bが除去されて31Cとなり、チャネル領域の第1の非晶質シリコン31Cはゲート電極11Aよりも短くなるので裏面光源からの照射光でリーク電流が増大する不具合は回避される。 Thereafter, when the film thickness of the photosensitive resin patterns 88A and 88B is reduced by 1 μm or more by ashing means such as oxygen plasma, the photosensitive resin pattern 88B disappears as shown in FIGS. 3 (d) and 4 (d). Then, the passivation insulating layer 37B in the region including the tip of the gate electrode 11A and the passivation insulating layer 37C in the region including the branching portion from the scanning line 11 are exposed, and the photosensitive resin pattern 88A having a reduced thickness is formed to 88C. Converted. Therefore, as shown in FIGS. 3E and 4E, the passivation insulating layer 37B and the first amorphous silicon in the region including the tip of the gate electrode 11A are formed using the photosensitive resin pattern 88C reduced in thickness as a mask. The gate insulating layers 30B and 30C are exposed by selectively removing the layer 31B and the passivation insulating layer 37C and the first amorphous silicon layer 31B in the region including the branch from the scanning line 11. As a result, 31B of the first amorphous silicon layer between the source / drain wirings 12 and 21 is removed to become 31C, and the first amorphous silicon 31C in the channel region is shorter than the gate electrode 11A, so that the back surface The problem that the leakage current increases due to the irradiation light from the light source is avoided.

そして実施例1と同様に開口部内に露出している低抵抗金属層35A〜35Cを除去し、その庇(オーバーハング)を解消するとともに、図3(f)と図4(f)に示したようにこれらの電極の下地である耐熱金属層34A〜34Cを露出する。 Then, as in Example 1, the low resistance metal layers 35A to 35C exposed in the openings are removed to eliminate the wrinkles (overhangs), as shown in FIGS. 3 (f) and 4 (f). Thus, the heat-resistant metal layers 34 </ b> A to 34 </ b> C that are the bases of these electrodes are exposed.

このようにして開口部64,38内に耐熱金属層34A,34B及び34Cを露出した後、図3(g)と図4(g)に示したようにSPT等の真空製膜装置を用いてガラス基板2上に透明導電層91として膜厚0.1μm程度のITO,IZOまたはこれらの混晶体を被着する。 After the heat-resistant metal layers 34A, 34B and 34C are thus exposed in the openings 64 and 38, a vacuum film forming apparatus such as SPT is used as shown in FIGS. 3 (g) and 4 (g). On the glass substrate 2, ITO, IZO, or a mixed crystal thereof having a thickness of about 0.1 μm is deposited as the transparent conductive layer 91.

さらにレジスト剥離液等を用いて前記感光性樹脂パターン88を除去して、感光性樹脂パターン88上の透明導電層91のエッチオフを行う。そして、図3(h)と図4(h)に示したようにドレイン電極21の一部である耐熱金属層34Bと蓄積電極72の一部である耐熱金属層34Cを含んで絵素電極形成領域である開口部38内のガラス基板2上とゲート電極11Aの先端部を含む領域のゲート絶縁層30B上に絵素電極22Aと、ゲート電極11Aの走査線11からの分岐部を含む領域のゲート絶縁層30C上には擬似絵素電極22Bと、走査線の一部5を含んで開口部63内には走査線の電極端子5Aと、信号線の一部である耐熱金属層34Aを含んで開口部64内には信号線の電極端子6Aを自己整合的に形成するとともに、ガラス基板2上のパシベーション絶縁層37Aを露出してアクティブ基板2の製造工程を終える。 Further, the photosensitive resin pattern 88 is removed using a resist stripping solution or the like, and the transparent conductive layer 91 on the photosensitive resin pattern 88 is etched off. Then, as shown in FIGS. 3 (h) and 4 (h), a pixel electrode is formed including the refractory metal layer 34B which is a part of the drain electrode 21 and the refractory metal layer 34C which is a part of the storage electrode 72. On the glass substrate 2 in the opening 38 which is the region and on the gate insulating layer 30B in the region including the tip of the gate electrode 11A, the region including the branch portion from the scanning line 11 of the gate electrode 11A and the pixel electrode 22A. On the gate insulating layer 30C, the pseudo picture element electrode 22B and the scanning line part 5 are included. In the opening 63, the scanning line electrode terminal 5A and the refractory metal layer 34A which is a part of the signal line are included. Thus, the electrode terminal 6A of the signal line is formed in the opening 64 in a self-aligning manner, and the passivation insulating layer 37A on the glass substrate 2 is exposed to complete the manufacturing process of the active substrate 2.

このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例2が完了する。蓄積容量15の構成に関しては図3(h)に示した通りで実施例1と略同一である。従来例と同様に走査線11と同時に蓄積容量線16を形成し、蓄積容量線16によって2分割された絵素電極22Aを得ることも可能であるが詳細は割愛する。静電気対策も実施例1と同一である。 The active substrate 2 and the color filter 9 thus obtained are bonded to form a liquid crystal panel, and Example 2 of the present invention is completed. The configuration of the storage capacitor 15 is substantially the same as that of the first embodiment as shown in FIG. Similarly to the conventional example, it is possible to form the storage capacitor line 16 simultaneously with the scanning line 11 and obtain the pixel electrode 22A divided into two by the storage capacitor line 16, but the details are omitted. The countermeasure against static electricity is the same as in the first embodiment.

実施例2ではこのように走査線の形成工程、ソース・ドレイン配線の同時形成、及び本発明の主目的である開口部及び絵素電極の同時形成と、3枚のフォトマスクを用いてアクティブ基板を作製することが可能となり、製造コストの低減が大きく前進する。半導体層の島化工程は開口部形成時においてハーフトーン露光技術を適用して半導体層を選択的に除去することで実現している。ただしハーフトーン露光技術を用いるので、パターン寸法の変化はゲート絶縁層30Bを介して絵素電極22Aとゲート電極11A及びゲート絶縁層30Cを介して擬似絵素電極22Bとゲート電極11Aとが構成する静電気容量値の変化をもたらす。擬似絵素電極22Bは電気的に浮遊しており表示画像への影響は皆無であるが、前者の静電容量値Cgsは寄生容量として作用するのでその値は小さいことが望ましく、さらに表示画面内で変動しないことが望まれる。そのため、上述した感光性樹脂パターン88A,88Bの膜減り手段としての酸素プラズマ処理においてはガラス基板2内の面内均一性の確保が重要である。 In the second embodiment, a scanning line forming process, source / drain wirings are simultaneously formed, and openings and pixel electrodes are simultaneously formed, which is the main object of the present invention, and an active substrate using three photomasks. The manufacturing cost can be greatly reduced. The step of forming the island of the semiconductor layer is realized by selectively removing the semiconductor layer by applying a halftone exposure technique when forming the opening. However, since the halftone exposure technique is used, the pattern size change is configured by the pseudo pixel electrode 22B and the gate electrode 11A via the gate insulating layer 30B and the pixel electrode 22A and the gate electrode 11A and the gate insulating layer 30C. It causes a change in electrostatic capacity value. The pseudo picture element electrode 22B is electrically floating and has no influence on the display image. However, since the former capacitance value Cgs acts as a parasitic capacitance, it is desirable that the value be small, and the display screen It is desirable that it does not fluctuate. Therefore, in the oxygen plasma treatment as the film reducing means for the photosensitive resin patterns 88A and 88B, it is important to ensure in-plane uniformity in the glass substrate 2.

実施例3は上記のゲート絶縁層30Bを介して絵素電極22Aとゲート電極11Aが構成する静電容量値Cgsを小さくするパターン設計技術であり、アクティブ基板2の製造方法は実施例2と同一である。 The third embodiment is a pattern design technique for reducing the capacitance value Cgs formed by the pixel electrode 22A and the gate electrode 11A via the gate insulating layer 30B, and the manufacturing method of the active substrate 2 is the same as that of the second embodiment. It is.

そのパターン設計の差異は先ず図5(a)と図6(a)に示したように、ゲート電極11Aの近傍に隣接してゲート電極11Aと同じ方向に分離された光シールド電極11Bが形成されることである。 First, as shown in FIG. 5A and FIG. 6A, the difference in pattern design is that a light shield electrode 11B is formed adjacent to the vicinity of the gate electrode 11A and separated in the same direction as the gate electrode 11A. Is Rukoto.

次に図5(c)と図6(c)に示したように、開口部の断面形状が逆テーパ状であり半導体層の島化工程と開口部形成のための感光性樹脂パターン88A,88Bの形成に当たり、膜厚が1μmのハーフトーン露光領域を、絵素電極形成領域と隣接し光シールド電極11Bのゲート電極11Aから遠い一方の先端部を含む領域(88B1)上と、ゲート電極11Aの走査線11からの分岐部を含む領域(88B2)上に加えて、光シールド電極11Bのゲート電極11Aに近い他方の先端部とゲート電極11Aの先端部及びこれらの間隙を含む領域(88B3)上に形成していることである。 Next, as shown in FIG. 5C and FIG. 6C, the cross-sectional shape of the opening is inversely tapered, and the photosensitive resin patterns 88A and 88B for forming the semiconductor layer and forming the opening are formed. In forming the halftone exposure region having a film thickness of 1 μm on the region (88B1) adjacent to the pixel electrode formation region and including one tip portion far from the gate electrode 11A of the light shield electrode 11B, and the gate electrode 11A In addition to the region (88B2) including the branch portion from the scanning line 11, the other tip portion of the light shield electrode 11B near the gate electrode 11A, the tip portion of the gate electrode 11A, and the region (88B3) including these gaps It is formed in.

最終的には図5(h)と図6(h)に示したように、ドレイン電極21の一部である耐熱金属層34Bと蓄積電極72の一部である耐熱金属層34Cを含んで絵素電極形成領域である開口部38内のガラス基板2上と光シールド電極11Bの一方の先端部を含む領域のゲート絶縁層30B上には絵素電極22Aと、走査線11からの分岐部を含む領域のゲート絶縁層30C上には擬似絵素電極22Bと、光シールド電極11Bの他方の先端部とゲート電極11Aの先端部及びこれらの間隙を含む領域上のゲート絶縁層30D上には擬似絵素電極22Cと、走査線の一部5を含んで開口部63内には走査線の電極端子5Aと、信号線の一部である耐熱金属層34Aを含んで開口部64内には信号線の電極端子6Aを自己整合的に形成するとともに、ガラス基板2上のパシベーション絶縁層37Aを露出してアクティブ基板2の製造工程を終える。蓄積容量15と静電気対策に関しては実施例2と同一である。 Finally, as shown in FIGS. 5 (h) and 6 (h), the picture includes a refractory metal layer 34B which is a part of the drain electrode 21 and a refractory metal layer 34C which is a part of the storage electrode 72. On the glass substrate 2 in the opening 38 which is an element electrode formation region and on the gate insulating layer 30B in the region including one tip of the light shield electrode 11B, the pixel electrode 22A and a branching portion from the scanning line 11 are provided. On the gate insulating layer 30C in the region including the pseudo pixel electrode 22B, the other tip of the light shield electrode 11B, the tip of the gate electrode 11A, and on the gate insulating layer 30D in the region including the gap between them are simulated. The pixel electrode 22C, the scanning line part 5 and the opening 63 include the scanning line electrode terminal 5A and the refractory metal layer 34A which is a part of the signal line, and the opening 64 includes the signal. Forming the electrode terminal 6A of the wire in a self-aligning manner It completes the manufacturing process of the active substrate 2 to expose the passivation insulating layer 37A on the glass substrate 2. The storage capacitor 15 and the countermeasure against static electricity are the same as those in the second embodiment.

実施例3の構成によれば、絵素電極22Aはゲート絶縁層30Bを介して光シールド電極11Bと静電的に結合し、擬似絵素電極22Cはゲート絶縁層30Dを介して光シールド電極11B及びゲート電極11Aと静電的に結合している。これによって絵素電極22Aとゲート電極11Aとが構成する静電容量値Cgsは1/3程度にまで減少し、表示画質の維持が容易となる。しかしながらソース・ドレイン配線12,21に光シールド電極11B上の第1の非晶質シリコン層の31Cが並列に付加されるので、絶縁ゲート型トランジスタのリーク電流が増大する課題が新たに発生する。ただし、これは蓄積容量15を大きく設定することでその影響を抑制することは容易であり、開口率が若干低下するに過ぎない。 According to the configuration of the third embodiment, the picture element electrode 22A is electrostatically coupled to the light shield electrode 11B via the gate insulating layer 30B, and the pseudo picture element electrode 22C is connected to the light shield electrode 11B via the gate insulating layer 30D. And electrostatically coupled to the gate electrode 11A. As a result, the capacitance value Cgs formed by the pixel electrode 22A and the gate electrode 11A is reduced to about 1/3, and the display image quality can be easily maintained. However, since the first amorphous silicon layer 31C on the light shield electrode 11B is added in parallel to the source / drain wirings 12 and 21, a problem of increasing the leakage current of the insulated gate transistor newly arises. However, this is easy to suppress the influence by setting the storage capacitor 15 large, and the aperture ratio is only slightly reduced.

上記のように実施例1〜実施例3に記載のアクティブ基板2は、透明導電性の絵素電極22Aとカラーフィルタ9上の対向電極14を電極とする液晶モードを採用したTN型の液晶表示装置において用いられるアクティブ基板であった。本発明ではアクティブ基板2の製造方法を変えることなく、開口部(絵素電極)のパターンを変更することにより、視野角の広い液晶表示装置を得ることができるので、それを以下の実施例で説明する。 As described above, the active substrate 2 described in the first to third embodiments is a TN type liquid crystal display that adopts a liquid crystal mode in which the transparent conductive pixel electrode 22A and the counter electrode 14 on the color filter 9 are used as electrodes. It was an active substrate used in the apparatus. In the present invention, a liquid crystal display device with a wide viewing angle can be obtained by changing the pattern of the opening (pixel electrode) without changing the manufacturing method of the active substrate 2. explain.

TN型液晶やIPS型液晶と異なり配向処理の不要な垂直配向型液晶では液晶セルを構成する2枚のガラス板の少なくとも一方、好ましくは双方のガラス基板に配向規制手段としての構成部材が必要である。垂直配向型液晶パネルでは商品化の開発当初は感光性樹脂を用いてアクティブ基板2とカラーフィルタ9の双方に幅10μm、高さ2〜3μm程度の突起と称する断面形状が蒲鉾型の構造物を作製していたが、突起の形成工程も液晶パネルの製造コストに反映するので、アクティブ基板2の構成を工夫して製造工程が増加しないように技術開発が進められている。 Unlike a TN liquid crystal or an IPS liquid crystal, a vertical alignment liquid crystal that does not require alignment treatment requires a component member as an alignment regulating means on at least one of the two glass plates constituting the liquid crystal cell, preferably both glass substrates. is there. In the initial stage of commercialization of the vertical alignment type liquid crystal panel, a photosensitive resin is used to form a structure having a bowl-shaped cross section called a protrusion having a width of about 10 μm and a height of about 2 to 3 μm on both the active substrate 2 and the color filter 9. However, since the process of forming the protrusions also reflects the manufacturing cost of the liquid crystal panel, technical development is underway so as not to increase the manufacturing process by devising the configuration of the active substrate 2.

既に説明したように本発明によるアクティブ基板の製造方法では絵素電極をアクティブ基板上の絶縁層に設けた開口部内に自己整合的に形成することができる。そこで絵素電極に隣り合って存在する絶縁層を突起として利用することにより、実施例2で説明した3枚マスク・プロセスに対応して図7(a)と図7(b)に示したような垂直配向型液晶パネル向けのアクティブ基板2を得ることができる。ここでも72はソース・ドレイン配線12,21と同時に形成された蓄積電極で、蓄積容量線(共通電極)16とゲート絶縁層30Aを含む絶縁層を介して蓄積容量15を構成する。また複数本の帯状に形成された透明導電性の絵素電極22A−1〜22A−4も蓄積電極72を介して相互接続している。無論、実施例1と実施例3に記載のデバイスでも対応したアレイ設計をすることは容易である。多くの場合、帯状に分割された絵素電極22−1〜22−4のほぼ中央部分に対応して、アクティブ基板2と対向するカラーフィルタ9の一主面上に形成された透明導電性の対向電極14上にその断面形状が蒲鉾型の感光性樹脂よりなる突起60が形成されている。そして絵素電極22A−1と22A−3及び絵素電極22A−2と22A−4とは夫々略直交している。この結果、液晶セルに電圧が印加されて液晶分子が傾斜する方向を4方向に配向分割して視野角の拡大を実現している。配向規制力は低下するが、突起60に変えて対向電極14を部分的に除去してスリット(切れ目)とすることも可能である。 As already described, in the method for manufacturing an active substrate according to the present invention, the pixel electrode can be formed in a self-aligned manner in the opening provided in the insulating layer on the active substrate. Therefore, by using the insulating layer adjacent to the pixel electrode as a protrusion, as shown in FIGS. 7A and 7B corresponding to the three-mask process described in the second embodiment. An active substrate 2 for a vertical alignment type liquid crystal panel can be obtained. Here, 72 is a storage electrode formed at the same time as the source / drain wirings 12 and 21, and constitutes the storage capacitor 15 through the storage capacitor line (common electrode) 16 and an insulating layer including the gate insulating layer 30 </ b> A. Also, transparent conductive pixel electrodes 22A-1 to 22A-4 formed in a plurality of strips are interconnected via the storage electrode 72. Of course, it is easy to design an array corresponding to the devices described in the first and third embodiments. In many cases, the transparent conductive material formed on one main surface of the color filter 9 facing the active substrate 2 corresponding to the substantially central portion of the pixel electrodes 22-1 to 22-4 divided into strips. On the counter electrode 14, a protrusion 60 made of a photosensitive resin having a cross-sectional shape is formed. The pixel electrodes 22A-1 and 22A-3 and the pixel electrodes 22A-2 and 22A-4 are substantially orthogonal to each other. As a result, the viewing angle is increased by dividing the direction in which the liquid crystal molecules are inclined by applying a voltage to the liquid crystal cell in four directions. Although the orientation regulating force is reduced, the counter electrode 14 may be partially removed instead of the protrusion 60 to form a slit (cut).

本発明に記載のプロセスに対応した構成では絵素電極22A−1と絵素電極22A−2との間隙は図7(b)に示したようにパシベーション絶縁層37Aと第1の非晶質シリコン31Cとゲート絶縁層30Aとの積層よりなる蒲鉾型の構造物となる。突起状の蒲鉾型の構造物の側面に沿って垂直配向型の液晶分子は垂直に配向するので、この側面が長い程、すなわち堤防状構造物の高さが高ければ高い程、あるいは堤防状構造物の傾斜が緩やかであればある程、液晶分子の規制力が強くなる。 In the configuration corresponding to the process described in the present invention, the gap between the picture element electrode 22A-1 and the picture element electrode 22A-2 is as shown in FIG. 7B and the passivation insulating layer 37A and the first amorphous silicon. This is a bowl-shaped structure formed by stacking 31C and the gate insulating layer 30A. Since the vertically aligned liquid crystal molecules are aligned vertically along the side surface of the projecting bowl-shaped structure, the longer the side surface, that is, the higher the height of the bank-like structure, or the bank-like structure. The gentler the inclination of the object, the stronger the regulatory power of the liquid crystal molecules.

パシベーション絶縁層37Aとゲート絶縁層30Aの間に位置する第1の非晶質シリコン31Cは既に述べたようにゲート絶縁層30Aよりわずかにパターン幅が細く、パシベーション絶縁層37Aが庇状に形成されているため、絵素電極22A−1と絵素電極22A−2はパシベーション絶縁層37Aとゲート絶縁層30Aの側面では分断して形成される。
垂直配向の液晶パネルにおいては突起の側面に絵素電極が形成されていると、電圧印加時に突起の配向規制力が絵素電極周辺の局所電界によって弱められて液晶パネルの応答速度が遅くなるが、本発明ではパシベーション絶縁層37Aの側面に形成された透明導電層は電気的に浮遊しており、応答速度の低下が抑制される副次的な効果も見逃せない。
As described above, the first amorphous silicon 31C located between the passivation insulating layer 37A and the gate insulating layer 30A is slightly narrower in pattern width than the gate insulating layer 30A, and the passivation insulating layer 37A is formed in a bowl shape. Therefore, the picture element electrode 22A-1 and the picture element electrode 22A-2 are formed separately on the side surfaces of the passivation insulating layer 37A and the gate insulating layer 30A.
In a vertically aligned liquid crystal panel, if pixel electrodes are formed on the side surfaces of the protrusions, the alignment restriction force of the protrusions is weakened by the local electric field around the pixel electrodes when a voltage is applied, and the response speed of the liquid crystal panel slows down. In the present invention, the transparent conductive layer formed on the side surface of the passivation insulating layer 37A is electrically floating, and a secondary effect of suppressing a decrease in response speed cannot be overlooked.

以上述べたように本発明による3枚マスク・プロセスは単に製造工程を削減して製造コストの低減をもたらすだけでなく、製造管理が容易となる、あるいは応答速度が速くなる等の優れた副次効果も多く、またTN型液晶パネル及び垂直配向型液晶パネルと液晶デバイスの差異によらずアクティブ基板の製造プロセスを同一とすることができるので機種変更に伴う生産組換準備ロスが無く、量産規模の大きい生産ライン程、本発明のメリットを享受できる。 As described above, the three-mask process according to the present invention not only reduces the manufacturing process and reduces the manufacturing cost, but also has excellent secondary functions such as easy manufacturing management and high response speed. There are many effects, and the production process of the active substrate can be made the same regardless of the difference between the TN type liquid crystal panel and the vertical alignment type liquid crystal panel and the liquid crystal device, so there is no loss of preparation for recombination due to model change, and the mass production scale The larger the production line, the greater the advantages of the present invention.

本発明の実施例1にかかるアクティブ基板の平面図Plan view of an active substrate according to Embodiment 1 of the present invention. 本発明の実施例1にかかるアクティブ基板の製造工程断面図Manufacturing process sectional drawing of the active substrate concerning Example 1 of this invention 本発明の実施例2にかかるアクティブ基板の平面図The top view of the active substrate concerning Example 2 of this invention 本発明の実施例2にかかるアクティブ基板の製造工程断面図Manufacturing process sectional drawing of the active substrate concerning Example 2 of this invention 本発明の実施例3にかかるアクティブ基板の平面図The top view of the active substrate concerning Example 3 of this invention 本発明の実施例3にかかるアクティブ基板の製造工程断面図Manufacturing process sectional drawing of the active substrate concerning Example 3 of this invention 本発明の実施例4にかかるアクティブ基板の平面図と断面図The top view and sectional drawing of the active substrate concerning Example 4 of this invention 液晶パネルの実装状態を示す斜視図The perspective view which shows the mounting state of a liquid crystal panel 液晶パネルの等価回路図Equivalent circuit diagram of LCD panel 従来の液晶パネルの断面図Sectional view of a conventional LCD panel 従来例の合理化されたアクティブ基板の平面図Plan view of streamlined active substrate of conventional example 従来例の合理化されたアクティブ基板の製造工程断面図Cross-sectional view of the manufacturing process of a streamlined active substrate of the conventional example

符号の説明Explanation of symbols

1:液晶パネル
2:アクティブ基板(ガラス基板)
3:半導体集積回路チップ
4:TCPフィルム
5:走査線の一部または電極端子
5A:透明導電性の走査線の電極端子
6:信号線の一部または電極端子
6A:透明導電性の信号線の電極端子
9:カラーフィルタ(対向するガラス基板)
10:絶縁ゲート型トランジスタ
11:走査線
11A:ゲート配線、ゲート電極
12:信号線(ソース配線、ソース電極)
14:対向電極
16:蓄積容量線、共通電極
17:液晶
21:ドレイン電極(ドレイン配線、ドレイン電極)
22,22A:(透明導電性の)絵素電極
22B,22C,22D:(透明導電性の)擬似絵素電極
30:ゲート絶縁層
31:不純物を含まない(第1の)非晶質シリコン層
33:不純物を含む(第2の)非晶質シリコン層
34:耐熱金属層(シリサイドも含む)
35:低抵抗金属層(AL薄膜層またはCu薄膜層)
36:中間導電層
37:パシベーション絶縁層
38:(絵素電極形成領域)の開口部
39:(擬似絵素電極形成領域)の開口部
50,52:蓄積容量形成領域
60:(カラーフィルタ9上の樹脂製の)突起
62:(ドレイン電極上の)開口部
63:(走査線の一部上または走査線の電極端子上の)開口部
64:(信号線の一部上または信号線の電極端子上の)開口部
65:(対向電極上の)開口部
72:蓄積電極
88:開口部の断面形状が逆テーパ状の感光性樹脂パターン
88A,88B:ハーフトーン露光で形成された開口部の断面形状が逆テーパ状の
感光性樹脂パターン
1: Liquid crystal panel 2: Active substrate (glass substrate)
3: Semiconductor integrated circuit chip 4: TCP film 5: Part of scanning line or electrode terminal 5A: Electrode terminal of transparent conductive scanning line 6: Part of signal line or electrode terminal 6A: Transparent conductive signal line Electrode terminal 9: Color filter (opposing glass substrate)
10: Insulated gate transistor 11: Scanning line 11A: Gate wiring, gate electrode 12: Signal line (source wiring, source electrode)
14: Counter electrode 16: Storage capacitor line, common electrode 17: Liquid crystal 21: Drain electrode (drain wiring, drain electrode)
22, 22A: (transparent conductive) pixel electrode 22B, 22C, 22D: (transparent conductive) pseudo pixel electrode 30: gate insulating layer 31: impurity-free (first) amorphous silicon layer 33: (Second) amorphous silicon layer containing impurities 34: Refractory metal layer (including silicide)
35: Low resistance metal layer (AL thin film layer or Cu thin film layer)
36: Intermediate conductive layer 37: Passivation insulating layer 38: Opening in (pixel electrode forming region) 39: Opening in (pseudo pixel electrode forming region) 50, 52: Storage capacitor forming region 60: (on color filter 9) Projection 62: Opening (on drain electrode) 63: Opening (on part of scanning line or electrode terminal of scanning line) 64: (on part of signal line or electrode of signal line) Opening 65 (on the terminal) 65: Opening (on the counter electrode) 72: Storage electrode 88: Photosensitive resin pattern 88A, 88B having a cross-sectional shape of the opening that is inversely tapered Photosensitive resin pattern with a reverse taper in cross section

Claims (7)

一主面上に少なくともチャネルエッチ型の絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線とソース配線も兼ねる信号線と、ドレイン配線に接続された絵素電極を有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、アクティブ基板の構成は、
第1の透明性絶縁基板の一主面上にその一部をゲート電極とする走査線が形成され、
ゲート絶縁層とその一部がチャネルである不純物を含まない第1の半導体層を介して低抵抗金属層と、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層との積層よりなるソース・ドレイン配線が形成され、
前記ドレイン配線は走査線と直交し、
絶縁ゲート型トランジスタを保護するためのパシベーション絶縁層を最上層に有し、
画像表示部では一方のドレイン配線の端部を含む絵素電極形成領域と、他方のドレイン配線の端部を含む擬似絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域、及び信号線の一部を含む信号線の電極端子形成領域において、前記パシベーション絶縁層と前記第1の半導体層と前記ゲート絶縁層とを貫通した開口部が形成され、夫々前記耐熱金属層よりなる一方のドレイン配線の端部と前記第1の透明性絶縁基板、他方のドレイン配線の端部と前記第1の透明性絶縁基板、走査線の一部、及び前記耐熱金属層よりなる信号線の一部が露出し、
前記ソース・ドレイン配線間のチャネル領域の第1の半導体層はゲート電極よりも幅細く形成され、
同一の導電性薄膜よりなり、前記一方のドレイン配線の端部を含んで絵素電極形成領域に絵素電極と、前記他方のドレイン配線の端部を含んで擬似絵素電極形成領域に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子が形成されていることを特徴とする液晶表示装置。
A unit picture having at least a channel-etched insulated gate transistor, a scanning line also serving as a gate electrode of the insulated gate transistor, a signal line also serving as a source wiring, and a pixel electrode connected to the drain wiring on one main surface A liquid crystal is placed between a first transparent insulating substrate (active substrate) in which elements are arranged in a two-dimensional matrix and a second transparent insulating substrate or color filter facing the first transparent insulating substrate. In the filled liquid crystal display device, the configuration of the active substrate is:
A scanning line having a part thereof as a gate electrode is formed on one main surface of the first transparent insulating substrate,
A stack of a low-resistance metal layer and a heat-resistant metal layer that can be removed by an etching gas of the gate insulating layer through a gate insulating layer and a first semiconductor layer that does not contain impurities, part of which is a channel Source / drain wiring consisting of
The drain wiring is orthogonal to the scanning line,
A passivation insulating layer for protecting the insulated gate transistor is provided in the uppermost layer,
In the image display unit, a pixel electrode forming region including the end of one drain wiring, a pseudo pixel electrode forming region including the end of the other drain wiring, and a part of the scanning line in the region outside the image displaying unit. electrode terminal formation region of the scanning lines, including, and Oite the electrode terminal formation region of the signal lines including a portion of the signal line, the passivation insulating layer and said first semiconductor layer and said gate insulating layer through openings Of the drain wiring and the first transparent insulating substrate each made of the heat-resistant metal layer, the end of the other drain wiring and the first transparent insulating substrate, and a part of the scanning line. And a part of the signal line made of the refractory metal layer is exposed,
The first semiconductor layer in the channel region between the source / drain wirings is formed to be narrower than the gate electrode,
It is made of the same conductive thin film and includes a pixel electrode in the pixel electrode formation region including the end of the one drain wiring and a pseudo picture in the pseudo pixel electrode formation region including the end of the other drain wiring. An electrode terminal of the scanning line in the electrode terminal forming region of the scanning line including a part of the scanning line, and an electrode terminal of the signal line in the electrode terminal forming region of the signal line including a part of the signal line A liquid crystal display device, wherein:
一主面上に少なくともチャネルエッチ型の絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線とソース配線も兼ねる信号線と、ドレイン配線に接続された絵素電極を有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、アクティブ基板の構成は、
第1の透明性絶縁基板の一主面上に分岐されたゲート電極を有する走査線が形成され、
ゲート絶縁層とその一部がチャネルである不純物を含まない第1の半導体層を介して低抵抗金属層と、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層との積層よりなるソース・ドレイン配線が前記ゲート電極と一部重なるように形成され、
絶縁ゲート型トランジスタを保護するためのパシベーション絶縁層を最上層に有し、
画像表示部ではドレイン配線の一部を含む絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域、及び信号線の一部を含む信号線の電極端子形成領域において、前記パシベーション絶縁層と前記第1の半導体層と前記ゲート絶縁層とを貫通した開口部が形成され、夫々前記耐熱金属層よりなるドレイン配線の一部と前記第1の透明性絶縁基板、走査線の一部、及び前記耐熱金属層よりなる信号線の一部が露出し、
前記絵素電極形成領域と連続してゲート電極の端部を含む領域及びゲート電極の分岐部上において、前記パシベーション絶縁層と前記第1の半導体層とを貫通した開口部が形成され、前記ゲート絶縁層が露出し、
同一の導電性薄膜よりなり、前記ゲート電極の端部上と前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部上に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子が形成されていることを特徴とする液晶表示装置。
A unit picture having at least a channel-etched insulated gate transistor, a scanning line also serving as a gate electrode of the insulated gate transistor, a signal line also serving as a source wiring, and a pixel electrode connected to the drain wiring on one main surface A liquid crystal is placed between a first transparent insulating substrate (active substrate) in which elements are arranged in a two-dimensional matrix and a second transparent insulating substrate or color filter facing the first transparent insulating substrate. In the filled liquid crystal display device, the configuration of the active substrate is:
A scanning line having a gate electrode branched on one main surface of the first transparent insulating substrate is formed;
A stack of a low-resistance metal layer and a heat-resistant metal layer that can be removed by an etching gas of the gate insulating layer through a gate insulating layer and a first semiconductor layer that does not contain impurities, part of which is a channel A source / drain wiring formed so as to partially overlap the gate electrode,
A passivation insulating layer for protecting the insulated gate transistor is provided in the uppermost layer,
In the image display area, the pixel electrode formation area including a part of the drain wiring, in the area outside the image display area, the electrode terminal formation area of the scanning line including a part of the scanning line, and the signal line including a part of the signal line Oite the electrode terminal formation region, the opening of the passivation insulating layer and said first semiconductor layer through the said gate insulating layer is formed, the part of the drain wiring made of each said refractory metal layer a 1 part of the transparent insulating substrate, a part of the scanning line, and a part of the signal line made of the refractory metal layer are exposed;
The Oite the end of the picture element electrode formation region and the continuously gate electrode on bifurcation including regions and the gate electrode, the opening extending through the said a passivation insulating layer first semiconductor layer is formed The gate insulating layer is exposed;
It is made of the same conductive thin film, and includes a pixel electrode on the end portion of the gate electrode and a part of the drain wiring, a pixel electrode on the pixel electrode formation region, a pseudo pixel electrode on the branch portion of the gate electrode, A scanning line electrode terminal is formed in a scanning line electrode terminal formation region including a part of the scanning line, and a signal line electrode terminal is formed in a signal line electrode terminal formation region including a part of the signal line. A liquid crystal display device.
第1の透明性絶縁基板の一主面上に分岐されたゲート電極と分離した光シールド電極が形成され、
前記絵素電極形成領域と連続して一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域において、前記パシベーション絶縁層と前記第1の半導体層とを貫通した開口部が形成され、前記ゲート絶縁層が露出し、
同一の導電性薄膜よりなり、前記一方の光シールド電極の端部上と前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部上の開口部に第1の擬似絵素電極と、他方の光シールド電極の端部とゲート電極の端部を含む開口部に第2の擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子が形成されていることを特徴とする請求項2に記載の液晶表示装置。
A light shield electrode separated from the branched gate electrode is formed on one main surface of the first transparent insulating substrate,
Oite the upper end of one of the light shielding electrode is continuous with the pixel electrode forming region, and the upper branch of the gate electrode, the region including the end portions of the gate electrode of the other light shielding electrode, the opening passivation insulating layer and extending through the first semiconductor layer is formed, the gate insulating layer is exposed,
It is made of the same conductive thin film, on the end of the one light shield electrode and in the pixel electrode forming region including a part of the drain wiring, and in the opening on the branch of the gate electrode. The first pseudo-pixel electrode, the second pseudo-pixel electrode in the opening including the end of the other light shield electrode and the end of the gate electrode, and an electrode of the scan line including a part of the scan line 3. The liquid crystal according to claim 2, wherein an electrode terminal of the scanning line is formed in the terminal formation region, and an electrode terminal of the signal line is formed in the electrode terminal formation region of the signal line including a part of the signal line. Display device.
第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、アクティブ基板の作製にあたり、
第1の透明性絶縁基板の一主面上にその一部をゲート電極とする走査線を形成する工程と、
ゲート絶縁層、不純物を含まない第1の非晶質シリコン層、不純物を含む第2の非晶質シリコン層、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層、及び低抵抗金属層を順次被着する工程と、
前記低抵抗金属層、耐熱金属層、第2の非晶質シリコン層、及び第1の非晶質シリコン層の一部を選択的に除去し、走査線と直交するドレイン配線と信号線も兼ねるソース配線を形成する工程と、
前記第1の透明性絶縁基板上にパシベーション絶縁層を被着後、画像表示部では一方のドレイン配線の端部を含む絵素電極形成領域と他方のドレイン配線の端部を含む擬似絵素電極形成領域、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域と信号線の一部を含む信号線の電極端子形成領域に開口部を有するとともに、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、
前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層を除去し、前記開口部内に夫々前記一方のドレイン配線の端部と前記第1の透明性絶縁基板、他方のドレイン配線の端部と前記第1の透明性絶縁基板、走査線の一部、及び信号線の一部を露出する工程と、
前記第1の非晶質シリコン層をサイドエッチングする工程と、
前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなる一方のドレイン配線の端部と他方のドレイン配線の端部及び信号線の一部を露出する工程と、
前記第1の透明性絶縁基板上に導電性薄膜層を被着する工程と、
前記感光性樹脂パターンを除去し、前記一方のドレイン配線の端部を含んで絵素電極形成領域に絵素電極と、前記他方のドレイン配線の端部を含んで擬似絵素電極形成領域に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程とからなる液晶表示装置の製造方法。
In a liquid crystal display device in which liquid crystal is filled between a first transparent insulating substrate (active substrate) and a second transparent insulating substrate or a color filter facing the first transparent insulating substrate, active In making the substrate,
Forming a scanning line having a part of a gate electrode on one main surface of the first transparent insulating substrate;
A gate insulating layer, a first amorphous silicon layer containing no impurities, a second amorphous silicon layer containing impurities, a heat-resistant metal layer removable with an etching gas between the passivation insulating layer and the gate insulating layer, and a low Sequentially applying a resistive metal layer;
A part of the low-resistance metal layer, the refractory metal layer, the second amorphous silicon layer, and the first amorphous silicon layer is selectively removed, and also serves as a drain wiring and a signal line orthogonal to the scanning line. Forming a source wiring; and
After depositing a passivation insulating layer on the first transparent insulating substrate, in the image display portion, a pixel electrode forming region including an end portion of one drain wiring and a pseudo pixel electrode including an end portion of the other drain wiring In the formation area and the area outside the image display portion, the electrode terminal formation area of the scanning line including a part of the scanning line and the electrode terminal formation area of the signal line including a part of the signal line have openings, and the cross-sectional shape thereof is Forming a reverse-tapered photosensitive resin pattern on the first transparent insulating substrate;
Using the photosensitive resin pattern as a mask, the passivation insulating layer, the first amorphous silicon layer, and the gate insulating layer in the opening are removed, and the end of the one drain wiring and the first insulating layer are respectively formed in the opening. Exposing a transparent insulating substrate, an end of the other drain wiring and the first transparent insulating substrate, a part of the scanning line, and a part of the signal line;
Side etching the first amorphous silicon layer;
Removing the low-resistance metal layer exposed in the opening and exposing the end of one drain wiring, the end of the other drain wiring, and a part of the signal line, both of which are made of a refractory metal layer;
Depositing a conductive thin film layer on the first transparent insulating substrate;
The photosensitive resin pattern is removed, and a pixel electrode is formed in the pixel electrode formation region including the end portion of the one drain wiring, and a pseudo pixel electrode formation region is formed including the end portion of the other drain wiring. A pixel electrode, an electrode terminal of the scanning line in the electrode terminal formation region of the scanning line including a part of the scanning line, and an electrode of the signal line in the electrode terminal formation region of the signal line including a part of the signal line A method of manufacturing a liquid crystal display device comprising a step of forming a terminal.
第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、アクティブ基板の作製にあたり、
第1の透明性絶縁基板の一主面上に分岐されたゲート電極を有する走査線を形成する工程と、
ゲート絶縁層、不純物を含まない第1の非晶質シリコン層、不純物を含む第2の非晶質シリコン層、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層、及び低抵抗金属層を順次被着する工程と、
前記低抵抗金属層、耐熱金属層、第2の非晶質シリコン層、及び第1の非晶質シリコン層の一部を選択的に除去し、ゲート電極と一部重なるようにソース(信号線)・ドレイン配線を形成する工程と、
前記第1の透明性絶縁基板上にパシベーション絶縁層を被着後、画像表示部ではドレイン配線の一部を含む絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域と信号線の一部を含む信号線の電極端子形成領域に開口部を有するとともに、前記絵素電極形成領域と連続してゲート電極の端部を含む領域とゲート電極の分岐部を含む領域の膜厚が他の領域よりも薄く、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、
前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層を除去し、前記開口部内に夫々前記ドレイン配線の一部と前記第1の透明性絶縁基板、走査線の一部、及び信号線の一部を露出する工程と、
前記感光性樹脂パターンの膜厚を減じて前記ゲート電極の端部を含む領域とゲート電極の分岐部を含む領域のパシベーション絶縁層を露出する工程と、
前記膜厚を減ぜられた感光性樹脂パターンをマスクとして前記ゲート電極の端部を含む領域とゲート電極の分岐部を含む領域のパシベーション絶縁層と第1の非晶質シリコン層を除去してゲート絶縁層を露出する工程と、
前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなるドレイン配線の一部と信号線の一部を露出する工程と、
前記第1の透明性絶縁基板上に導電性薄膜層を被着する工程と、
前記膜厚を減ぜられた感光性樹脂パターンを除去し、前記ドレイン配線の一部とゲート電極の端部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部上に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程とからなる液晶表示装置の製造方法。
In a liquid crystal display device in which liquid crystal is filled between a first transparent insulating substrate (active substrate) and a second transparent insulating substrate or a color filter facing the first transparent insulating substrate, active In making the substrate,
Forming a scanning line having a gate electrode branched on one main surface of the first transparent insulating substrate;
A gate insulating layer, a first amorphous silicon layer containing no impurities, a second amorphous silicon layer containing impurities, a heat-resistant metal layer removable with an etching gas between the passivation insulating layer and the gate insulating layer, and a low Sequentially applying a resistive metal layer;
A part of the low-resistance metal layer, the refractory metal layer, the second amorphous silicon layer, and the first amorphous silicon layer is selectively removed, and a source (signal line) is overlapped with the gate electrode. ) -Drain wiring forming step;
After depositing a passivation insulating layer on the first transparent insulating substrate, the image display unit includes a pixel electrode formation region including a part of the drain wiring, and a region outside the image display unit includes a part of the scanning line. An electrode terminal forming region of the scanning line and an electrode terminal forming region of the signal line including a part of the signal line, and an area including the end portion of the gate electrode and the gate electrode continuous with the pixel electrode forming region Forming a photosensitive resin pattern on the first transparent insulating substrate, the film thickness of the region including the branched portion is thinner than other regions, and the cross-sectional shape of the region is a reverse taper shape;
Using the photosensitive resin pattern as a mask, the passivation insulating layer, the first amorphous silicon layer, and the gate insulating layer in the opening are removed, and a part of the drain wiring and the first transparency are respectively formed in the opening. Exposing the insulating substrate, a part of the scanning line, and a part of the signal line;
Reducing the thickness of the photosensitive resin pattern to expose a passivation insulating layer in a region including an end portion of the gate electrode and a region including a branch portion of the gate electrode;
Using the reduced photosensitive resin pattern as a mask, the passivation insulating layer and the first amorphous silicon layer in the region including the end portion of the gate electrode and the region including the branch portion of the gate electrode are removed. Exposing the gate insulating layer;
Removing the low-resistance metal layer exposed in the opening and exposing a part of the drain wiring and a part of the signal line, both of which are made of a refractory metal layer;
Depositing a conductive thin film layer on the first transparent insulating substrate;
The photosensitive resin pattern having a reduced thickness is removed, and a pixel electrode is formed in a pixel electrode formation region including a part of the drain wiring and an end of the gate electrode, and on a branch portion of the gate electrode. The pseudo-pixel electrode, the electrode terminal of the scanning line including a part of the scanning line, the electrode terminal of the scanning line in the electrode terminal forming area of the scanning line, and the signal line of the signal line in the electrode terminal forming area of the signal line including the part of the signal line The manufacturing method of the liquid crystal display device which consists of a process of forming an electrode terminal.
第1の透明性絶縁基板の一主面上にゲート電極と分離した光シールド電極が形成され、
画像表示部ではドレイン配線の一部を含む絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域と信号線の一部を含む信号線の電極端子形成領域に開口部を有するとともに、前記絵素電極形成領域と連続して一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域上の膜厚が他の領域よりも薄く、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、
前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層を除去し、前記開口部内に夫々ドレイン配線の一部と前記第1の透明性絶縁基板、走査線の一部、及び信号線の一部を露出する工程と、
前記感光性樹脂パターンの膜厚を減じて前記一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域上のパシベーション絶縁層を露出する工程と、
前記膜厚を減ぜられた感光性樹脂パターンをマスクとして前記一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域上のパシベーション絶縁層と第1の非晶質シリコン層を除去してゲート絶縁層を露出する工程と、
前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなるドレイン配線の一部と信号線の一部を露出する工程と、
前記第1の透明性絶縁基板上に導電性薄膜層を被着する工程と、
前記膜厚を減ぜられた感光性樹脂パターンを除去し、前記一方の光シールド電極の端部上と前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部の開口部に第1の擬似絵素電極と、他方の光シールド電極の端部とゲート電極の端部を含む開口部に第2の擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程を有する請求項5に記載の液晶表示装置の製造方法。
A light shield electrode separated from the gate electrode is formed on one main surface of the first transparent insulating substrate,
In the image display area, the pixel electrode forming area including a part of the drain wiring, and in the area outside the image display area, the electrode terminal forming area of the scanning line including a part of the scanning line and the signal line including a part of the signal line. The electrode terminal forming region has an opening, and is continuous with the pixel electrode forming region, on one end of the light shield electrode, on the branch portion of the gate electrode, and on the other end of the light shield electrode and the gate Forming a photosensitive resin pattern on the first transparent insulating substrate, the film thickness on the region including the end of the electrode being thinner than other regions, and the cross-sectional shape of which is a reverse taper shape;
The passivation insulating layer, the first amorphous silicon layer, and the gate insulating layer in the opening are removed using the photosensitive resin pattern as a mask, and a part of the drain wiring and the first transparent insulating layer are respectively formed in the opening. Exposing a substrate, a part of a scanning line, and a part of a signal line;
Reduce the film thickness of the photosensitive resin pattern, on the end portion of the one light shield electrode, on the branch portion of the gate electrode, and on the region including the end portion of the other light shield electrode and the end portion of the gate electrode Exposing the passivation insulating layer;
Using the photosensitive resin pattern with the reduced film thickness as a mask, the end of the one light shield electrode, the branch of the gate electrode, the end of the other light shield electrode, and the end of the gate electrode Removing the passivation insulating layer and the first amorphous silicon layer on the containing region to expose the gate insulating layer;
Removing the low-resistance metal layer exposed in the opening and exposing a part of the drain wiring and a part of the signal line, both of which are made of a refractory metal layer;
Depositing a conductive thin film layer on the first transparent insulating substrate;
Removing the photosensitive resin pattern having the reduced film thickness, and including a pixel electrode in the pixel electrode formation region on the end of the one light shield electrode and a part of the drain wiring, and the gate electrode A first pseudo-pixel electrode in the opening of the branch portion, a second pseudo-pixel electrode in the opening including the end of the other light shield electrode and the end of the gate electrode, and part of the scanning line And forming a signal line electrode terminal in the signal line electrode terminal formation region including a part of the signal line. The manufacturing method of the liquid crystal display device of description.
液晶が電圧無印加時に垂直配向する垂直配向型の液晶であり、
第1の透明性絶縁基板上に前記液晶に電圧を印加した時に液晶が配向する方向を規制する第1の配向制御手段が、第1の透明性絶縁基板上に形成された複数の透明導電層よりなる帯状の絵素電極間に位置するパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層とからなる積層であり、
第2の透明性絶縁基板上またはカラーフィルタ上に前記液晶に電圧を印加した時に液晶が配向する方向を規制する第2の配向制御手段を備えていることを特徴とする請求項1及び請求項2に記載の液晶表示装置。
It is a vertical alignment type liquid crystal in which the liquid crystal is vertically aligned when no voltage is applied,
A plurality of transparent conductive layers formed on the first transparent insulating substrate, wherein a first alignment control means for regulating a direction in which the liquid crystal is aligned when a voltage is applied to the liquid crystal on the first transparent insulating substrate. A lamination consisting of a passivation insulating layer, a first amorphous silicon layer, and a gate insulating layer located between the strip-shaped pixel electrodes,
2. A second alignment control means for restricting a direction in which the liquid crystal is aligned when a voltage is applied to the liquid crystal on a second transparent insulating substrate or a color filter. 2. A liquid crystal display device according to 2.
JP2005232701A 2005-08-11 2005-08-11 Liquid crystal display device and manufacturing method thereof Active JP4863667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005232701A JP4863667B2 (en) 2005-08-11 2005-08-11 Liquid crystal display device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005232701A JP4863667B2 (en) 2005-08-11 2005-08-11 Liquid crystal display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007047516A JP2007047516A (en) 2007-02-22
JP4863667B2 true JP4863667B2 (en) 2012-01-25

Family

ID=37850382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232701A Active JP4863667B2 (en) 2005-08-11 2005-08-11 Liquid crystal display device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4863667B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3281167B2 (en) * 1994-03-17 2002-05-13 富士通株式会社 Method for manufacturing thin film transistor
JP2003043508A (en) * 2001-07-27 2003-02-13 Hitachi Ltd Liquid crystal display device
KR100436181B1 (en) * 2002-04-16 2004-06-12 엘지.필립스 엘시디 주식회사 method for fabricating of an array substrate for a liquid crystal display device
KR100971955B1 (en) * 2002-11-11 2010-07-23 엘지디스플레이 주식회사 method for fabricating of an array substrate for a liquid crystal display device
JP4538219B2 (en) * 2003-11-27 2010-09-08 エーユー オプトロニクス コーポレイション Liquid crystal display device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007047516A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
KR101085136B1 (en) Thin film transistor substrate of horizontal electric field and fabricating method thereof
KR101225440B1 (en) Liquid crystal display and fabricating method thereof
US8854567B2 (en) Liquid crystal display device and method of manufacturing the same
KR101221261B1 (en) Array substrate for LCD and the fabrication method thereof
WO2010071160A1 (en) Active matrix substrate manufacturing method and liquid crystal display device manufacturing method
JP4442684B2 (en) Liquid crystal display device and manufacturing method thereof
KR20070070382A (en) Array substrate for lcd and the fabrication method therof
JP4646539B2 (en) Liquid crystal display device and manufacturing method thereof
US7321404B2 (en) Liquid crystal display device and a manufacturing method of the same
JP2005108912A (en) Liquid crystal display and its manufacturing method
JP2004271989A (en) Substrate for display device, method for manufacturing the same, and display device equipped with the same
JP5048914B2 (en) Method for manufacturing thin film transistor array panel
JP2005283690A (en) Liquid crystal display and its manufacturing method
JP5064124B2 (en) Display device substrate and method for manufacturing the same, and liquid crystal display device and method for manufacturing the same
JP5342731B2 (en) Liquid crystal display device and manufacturing method thereof
KR100538327B1 (en) Thin film transistor array substrate of horizontal electronic field applying type and fabricating method thereof
JP2005049667A (en) Liquid crystal display and its manufacturing method
JP2005017669A (en) Liquid crystal display and its manufacturing method
JP2005019664A (en) Liquid crystal display unit and its manufacturing method
JP2005106881A (en) Liquid crystal display device and its manufacturing method
JP4863667B2 (en) Liquid crystal display device and manufacturing method thereof
KR20080054629A (en) Thin film transistor array substrate and manufacturing method thereof
JP4538218B2 (en) Liquid crystal display device and manufacturing method thereof
KR102010393B1 (en) Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
JP4846227B2 (en) Liquid crystal display device and manufacturing method thereof

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110309

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4863667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250