JP4862808B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP4862808B2
JP4862808B2 JP2007310622A JP2007310622A JP4862808B2 JP 4862808 B2 JP4862808 B2 JP 4862808B2 JP 2007310622 A JP2007310622 A JP 2007310622A JP 2007310622 A JP2007310622 A JP 2007310622A JP 4862808 B2 JP4862808 B2 JP 4862808B2
Authority
JP
Japan
Prior art keywords
emitting element
light
light emitting
heat dissipation
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007310622A
Other languages
Japanese (ja)
Other versions
JP2008072143A (en
Inventor
拓磨 橋本
勝 杉本
良二 横谷
浩二 西岡
裕 岩堀
哲 森
秀吉 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2007310622A priority Critical patent/JP4862808B2/en
Publication of JP2008072143A publication Critical patent/JP2008072143A/en
Application granted granted Critical
Publication of JP4862808B2 publication Critical patent/JP4862808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve lifetime and efficiency of a light-emitting device by enhancing the heat dissipation of a light-emitting element, the light-emitting device using an LED. <P>SOLUTION: The light-emitting device is formed by mounting one or more light-emitting element sub-mount structures 3, which is equipped with a mounting substrate 30 having wiring parts 301 and 302 and an LED chip 33 mounted on the mounting substrate 30, on a first heat dissipating substrate which also serves as a wiring substrate. The mounting substrate 30 in the light-emitting element sub-mount structure 3 consists of two conductor blocks 301 and 302 which sandwich an insulating member 300. A p-side electrode and an n-side electrode of the LED chip 33 are connected to the conductor blocks 301 and 302, respectively. A surface, which is in the side different from the side which faces the first heat dissipating substrate of the light-emitting element sub-mount structure 3, is contacted or joined to a second heat dissipating substrate. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明はLED(発光ダイオード)を用いた発光装置に関するものである。   The present invention relates to a light emitting device using an LED (light emitting diode).

近年、窒化ガリウム系化合物半導体によって、青色光あるいは紫外線を放射するLEDチップが開発された。そして、LEDチップを種々の蛍光体と組み合わせることにより、白色を含め、LEDチップの発光色とは異なる色合いの光を出すことができるLED発光装置の開発が試みられている。このLED発光装置には、小型、軽量、省電力といった長所があり、現在、表示用光源、小型電球の代替光源、あるいは液晶パネル用光源等として広く用いられている。しかしながら、現在のLEDは1チップ当たりの明るさが小さいために、照明用光源や液晶パネル用光源などに使用する場合には、配線部を有する実装基板にLEDチップを実装封止してなるLEDパッケージを複数個、プリント配線基板に実装して必要な明るさを得るのが一般的である。また、大きな光出力を得るためには注入電流を大きくする必要がある。なお、特許文献1には、金属平板上に、凹部にLEDチップを収納した金属ブロックを取り付けた構造が開示されている。
特開2002−141558号公報
In recent years, LED chips that emit blue light or ultraviolet light have been developed using gallium nitride-based compound semiconductors. An attempt has been made to develop an LED light emitting device that can emit light having a color different from that of the LED chip, including white, by combining the LED chip with various phosphors. This LED light emitting device has advantages such as small size, light weight, and power saving, and is currently widely used as a light source for display, an alternative light source for a small light bulb, or a light source for a liquid crystal panel. However, since current LEDs have low brightness per chip, when used for illumination light sources, liquid crystal panel light sources, etc., LEDs are formed by mounting and sealing LED chips on a mounting substrate having a wiring portion. Generally, a plurality of packages are mounted on a printed wiring board to obtain a necessary brightness. In order to obtain a large light output, it is necessary to increase the injection current. Patent Document 1 discloses a structure in which a metal block in which an LED chip is housed in a recess is attached on a metal flat plate.
JP 2002-141558 A

現在のLEDは、効率が10%程度であるため、入力した電気エネルギーの大部分が熱になる特性を有しており、発熱量は電流を多く流すと増大する。発熱によりLEDの温度が上昇すると、寿命や効率などの特性に悪影響を与えることが知られている。しかしながら、上記のようなプリント配線基板は一般に熱伝導率が低いポリイミド、エポキシなどの樹脂材料を用いて形成されているので、LEDパッケージにおいて発生した熱を効率良く放散させることができないといった問題があった。   Since the current LED has an efficiency of about 10%, it has a characteristic that most of the input electric energy becomes heat, and the calorific value increases when a large amount of current flows. It is known that when the temperature of the LED rises due to heat generation, characteristics such as life and efficiency are adversely affected. However, since the printed wiring board as described above is generally formed using a resin material such as polyimide or epoxy having low thermal conductivity, there is a problem that heat generated in the LED package cannot be efficiently dissipated. It was.

そこで、本出願人は先に特願2003−148050号において、この問題を解決するための構造案を特許出願した。配線部を有する実装基板と、実装基板上に実装されたLEDチップからなる発光素子サブマウント構造体を、金属板上に絶縁層を介して形成された配線パターンからなる配線基板に実装して発光装置と成した。この発光装置において、実装基板上の配線部は配線基板方向に引き出されて配線パターンに電気的に接続されており、金属板の一部が露出されて実装基板に接触されている。金属板の露出した部位と実装基板とを接触させたことにより、放熱性が向上するので、LEDチップにおいて発生した熱を速やかに配線基板側に逃がすことができる。さらに、一回のリフロー工程により、実装基板と配線基板とを接合し、且つ、放熱路の形成も行える構造としたため、従来例に比べて製造工程を簡略化できる効果を有する。   Therefore, the present applicant previously filed a patent application for a structure plan for solving this problem in Japanese Patent Application No. 2003-148050. A light emitting element submount structure composed of a mounting substrate having a wiring portion and an LED chip mounted on the mounting substrate is mounted on a wiring substrate composed of a wiring pattern formed on a metal plate via an insulating layer to emit light. Made with equipment. In this light emitting device, the wiring portion on the mounting board is drawn out in the direction of the wiring board and electrically connected to the wiring pattern, and a part of the metal plate is exposed and is in contact with the mounting board. Since the heat radiation performance is improved by bringing the exposed portion of the metal plate into contact with the mounting substrate, the heat generated in the LED chip can be quickly released to the wiring substrate side. Furthermore, since the mounting substrate and the wiring substrate are joined and the heat radiation path can be formed by a single reflow process, the manufacturing process can be simplified as compared with the conventional example.

しかしながら、上述の発光装置においては、発光素子サブマウント構造体の裏面側の配線基板との接触部以外には放熱の経路が無い。そのため、照明に必要な光出力を得るために、LEDチップに注入する電流をある限度以上に増加させると、発熱によりLEDチップの温度が上昇して、発光装置の寿命や効率などの特性に悪影響を与えるという課題があった。   However, in the above-described light emitting device, there is no heat dissipation path other than the contact portion with the wiring substrate on the back surface side of the light emitting element submount structure. Therefore, if the current injected into the LED chip is increased beyond a certain limit in order to obtain the light output required for illumination, the temperature of the LED chip rises due to heat generation, which adversely affects the characteristics such as the lifetime and efficiency of the light emitting device. There was a problem of giving.

請求項1の発明は、上記の課題を解決するために、図1、図2に示すように、配線部301,302を有する実装基板30と、前記実装基板30上に実装されたLEDチップ33とを備える1個または複数個の発光素子サブマウント構造体3を、配線基板を兼ねる第1の放熱用基板1に搭載してなる発光装置であって、前記発光素子サブマウント構造体3における前記実装基板30は、絶縁部材300を間に挟む2つの導電体ブロック301,302から成り、LEDチップ33のp側電極、n側電極が、前記2つの導電体ブロック301,302の各々に接続されており、前記発光素子サブマウント構造体3の第1の放熱用基板1に面する側とは異なる側の面を、第2の放熱用基板2に接触または接合したことを特徴とするものである。   In order to solve the above problems, the invention of claim 1 is a mounting substrate 30 having wiring portions 301 and 302 and an LED chip 33 mounted on the mounting substrate 30 as shown in FIGS. A light-emitting device in which one or a plurality of light-emitting element submount structures 3 each having a plurality of light-emitting element submount structures 3 are mounted on a first heat dissipation substrate 1 that also serves as a wiring board. The mounting substrate 30 includes two conductor blocks 301 and 302 with an insulating member 300 interposed therebetween. The p-side electrode and the n-side electrode of the LED chip 33 are connected to the two conductor blocks 301 and 302, respectively. The surface of the light emitting element submount structure 3 that is different from the side facing the first heat dissipation substrate 1 is in contact with or joined to the second heat dissipation substrate 2. is there.

請求項2の発明は、上記の課題を解決するために、図1、図2に示すように、配線部301,302を有する実装基板30と、前記実装基板30上に実装されたLEDチップ33とを備える第1の発光素子サブマウント構造体3を、配線基板を兼ねる第1の放熱用基板1に複数個搭載してなる発光装置であって、前記第1の発光素子サブマウント構造体3の第1の放熱用基板1に面する側とは異なる側の面を、第2の放熱用基板2に接触または接合し、第1の発光素子サブマウント構造体3と同じ構造の第2の発光素子サブマウント構造体3を、配線基板を兼ねる第3の放熱用基板4に複数個搭載し、前記第2の発光素子サブマウント構造体3の第3の放熱用基板4に面する側とは異なる側の面を、前記第2の放熱用基板2における前記第1の発光素子サブマウント構造体3が接触または接合する側とは異なる側の面に接触または接合し、前記第1、第2の放熱用基板1,2に挟みこまれた第1の発光素子サブマウント構造体3と、第2、第3の放熱用基板2,4に挟みこまれた第2の発光素子サブマウント構造体3とが、千鳥格子状に互い違いに配列されており、前記第2の放熱用基板2における第1の発光素子サブマウント構造体3との接触または接合面の直背面には、第2の発光素子サブマウント構造体3が配置されないことを特徴とするものである。 In order to solve the above problems, the invention of claim 2 is a mounting substrate 30 having wiring portions 301 and 302 and an LED chip 33 mounted on the mounting substrate 30 as shown in FIGS. a first light-emitting element submount structure 3, a plurality mounted comprising the light emitting device to the first heat radiating substrate 1 serving also as a wiring substrate with bets, the first light emitting element submount structure 3 A second surface having the same structure as that of the first light emitting element submount structure 3 is formed by contacting or joining a surface on the side different from the side facing the first heat radiating substrate 1 to the second heat radiating substrate 2. A plurality of light emitting element submount structures 3 are mounted on a third heat dissipation substrate 4 that also serves as a wiring board, and the side facing the third heat dissipation substrate 4 of the second light emitting element submount structure 3 is provided. Is different from the first side of the second heat dissipation substrate 2. Contact or bonded to the surface of a different side to the side where the light emitting device submount structure 3 in contact with or joined, the first, the first light emitting element submount sandwiched second radiating substrate 1 the structure 3, the second, and the second light-emitting element submount structure 3 which is sandwiched the third radiating substrate 2 and 4, are staggered in a zigzag lattice shape, the second The second light emitting element submount structure 3 is not disposed on the heat radiation substrate 2 in contact with the first light emitting element submount structure 3 or directly behind the bonding surface .

請求項1の発明によれば、発光素子サブマウント構造体からの放熱の経路が増加するので、発光素子サブマウント構造体の放熱性が向上し、LEDチップの温度が低下する効果がある。また、発光素子サブマウント構造体を、熱伝導性に優れる導電性ブロックで構成したことにより、LEDチップから実装基板に伝達された熱が、速やかに第1、第2の放熱用基板方向へ拡散する。このことにより、発光素子サブマウント構造体の放熱性が向上し、LEDチップの温度がさらに低下する効果がある。   According to the first aspect of the present invention, since the heat dissipation path from the light emitting element submount structure is increased, the heat dissipation of the light emitting element submount structure is improved, and the temperature of the LED chip is reduced. In addition, since the light-emitting element submount structure is composed of a conductive block having excellent thermal conductivity, heat transferred from the LED chip to the mounting substrate is quickly diffused toward the first and second heat dissipation substrates. To do. Thereby, the heat dissipation of the light emitting element submount structure is improved, and the temperature of the LED chip is further reduced.

請求項2の発明によれば、発光素子サブマウント構造体からの放熱の経路が増加するので、発光素子サブマウント構造体の放熱性が向上し、LEDチップの温度が低下する効果がある。また、隣り合う発光素子サブマウント構造体同士の距離を最大限に離すことができる。従って、発光素子サブマウントの温度を低下させることができ、LEDチップの温度がさらに低下する効果がある。   According to the invention of claim 2, since the heat radiation path from the light emitting element submount structure is increased, the heat radiation property of the light emitting element submount structure is improved and the temperature of the LED chip is lowered. In addition, the distance between adjacent light emitting element submount structures can be maximized. Therefore, the temperature of the light emitting element submount can be lowered, and the temperature of the LED chip is further lowered.

(実施例1)
図1及び図2に実施例1の概略構造を示す。発光素子サブマウント構造体3として、図1に示すように、実装基板30が絶縁部材300を間に挟む2つの導電体ブロック301,302から成り、LEDチップ33のp側電極、n側電極が、前記2つの導電体ブロック301,302の各々に接続されたものを用いる。
Example 1
1 and 2 show a schematic structure of the first embodiment. As the light-emitting element submount structure 3, as shown in FIG. 1, a mounting substrate 30 is composed of two conductor blocks 301 and 302 with an insulating member 300 interposed therebetween, and the p-side electrode and the n-side electrode of the LED chip 33 are The one connected to each of the two conductor blocks 301 and 302 is used.

図2に示すように、第1、第2の放熱用基板1,2を平行に配置し、発光素子サブマウント構造体3を2枚の放熱用基板1,2の間に配置する。発光素子サブマウント構造体3と放熱用基板1,2は接触または接合させる。また、第2、第3の放熱用基板2,4を平行に配置し、発光素子サブマウント構造体3を2枚の放熱用基板2,4の間に配置する。発光素子サブマウント構造体3と放熱用基板2,4は接触または接合させる。   As shown in FIG. 2, the first and second heat dissipation substrates 1 and 2 are arranged in parallel, and the light emitting element submount structure 3 is arranged between the two heat dissipation substrates 1 and 2. The light emitting element submount structure 3 and the heat dissipating substrates 1 and 2 are contacted or joined. Further, the second and third heat radiation substrates 2 and 4 are arranged in parallel, and the light emitting element submount structure 3 is arranged between the two heat radiation substrates 2 and 4. The light-emitting element submount structure 3 and the heat dissipation substrates 2 and 4 are contacted or joined.

発光素子サブマウント構造体3は、図2に示すように、千鳥格子状に配置する。つまり、両面に発光素子サブマウント構造体3を接続する放熱用基板2において、片面の発光素子サブマウント構造体3との接触面の直背面には、他面の発光素子サブマウント構造体3を配置しない。放熱用基板の枚数、素材、発光素子サブマウントの配置間隔は図示されたものに限定されない。   The light emitting element submount structures 3 are arranged in a staggered pattern as shown in FIG. That is, in the heat dissipation substrate 2 that connects the light emitting element submount structure 3 on both sides, the light emitting element submount structure 3 on the other surface is disposed on the back side of the contact surface with the light emitting element submount structure 3 on one side. Do not place. The number of the heat dissipating substrates, the material, and the arrangement interval of the light emitting element submounts are not limited to those illustrated.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、発光素子サブマウント構造体を千鳥格子状に配置することによって、放熱性が向上する。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. In addition, heat dissipation is improved by arranging the light emitting element submount structures in a staggered pattern.

(実施例2)
図3に実施例2の概略構造を示す。発光素子サブマウント構造体3と放熱用基板1,2を交互に配置する。放熱用基板1,2の一端に発光素子サブマウント構造体3のp極側、他の一端にn極側を接続する。電気的に直列接続となる発光素子サブマウント構造体3と放熱用基板1,2からなる集合体を構成する。放熱用基板の枚数、素材、発光素子サブマウント構造体の配置間隔は限定されない。
(Example 2)
FIG. 3 shows a schematic structure of the second embodiment. The light emitting element submount structure 3 and the heat dissipation substrates 1 and 2 are alternately arranged. The p-pole side of the light-emitting element submount structure 3 is connected to one end of the heat dissipation substrates 1 and 2 and the n-pole side is connected to the other end. An assembly including the light emitting element submount structure 3 and the heat dissipation substrates 1 and 2 that are electrically connected in series is formed. The number of the heat dissipation substrates, the material, and the arrangement interval of the light emitting element submount structures are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、集合体を構成するLEDに均一の電流が流れるため、個々のLEDチップ間の光出力のばらつきが少ない。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. In addition, since a uniform current flows through the LEDs constituting the assembly, there is little variation in light output between individual LED chips.

(実施例3)
図4に実施例3の概略構造を示す。一定間隔で配置したリードフレーム5を樹脂材料6で固定することにより、放熱用基板1,2を構成する。当該放熱用基板1,2のリードフレーム面を対向させ、発光素子サブマウント構造体3をリードフレーム5に接合し、電気的に直列接続となる発光素子サブマウント構造体3と放熱用基板1,2からなる集合体を構成する。放熱用基板の枚数、素材、発光素子サブマウント構造体の配置間隔、リードフレームの材質、厚さ、樹脂材料の材質は限定されない。
(Example 3)
FIG. 4 shows a schematic structure of the third embodiment. The heat dissipating substrates 1 and 2 are configured by fixing the lead frames 5 arranged at regular intervals with the resin material 6. The light-emitting element submount structure 3 and the heat-dissipating substrate 1 are electrically connected in series by connecting the light-emitting element submount structure 3 to the lead frame 5 with the lead frame surfaces of the heat-dissipating substrates 1 and 2 facing each other. 2 constitutes an aggregate. The number of heat dissipation substrates, the material, the arrangement interval of the light emitting element submount structures, the material and thickness of the lead frame, and the material of the resin material are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。集合体を構成するLEDに均一の電流が流れるため、個々のLEDチップ間の光出力のばらつきが少ない。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. Since a uniform current flows through the LEDs constituting the assembly, there is little variation in light output between individual LED chips.

(実施例4)
図5に実施例4の概略構造を示す。一定間隔で配置したリードフレーム5を樹脂材料6で固定することにより、放熱用基板1,2を構成する。当該放熱用基板1,2のリードフレーム面を対向させ、発光素子サブマウント構造体3をリードフレーム5に接合する。電気的に直列接続となる発光素子サブマウント構造体3と放熱用基板1,2からなる集合体を構成する。さらに放熱用基板1,2のリードフレーム5の反対面に金属板11,21を接合する。このように、第1、第2の放熱用基板の少なくとも1つは、サブマウント構造体に面する側に金属製のリードフレームを用いた基板とすることで、リードフレームを介して発光素子サブマウント構造体からの放熱性が向上する。また、リードフレームは加工性が良いので、個々の発光素子サブマウント構造体への配線の自由度が増加する。放熱用基板の枚数、素材、発光素子サブマウントの配置間隔、リードフレームの材質、厚さ、樹脂材料の材質、金属板の材質、形状は限定されない。
Example 4
FIG. 5 shows a schematic structure of the fourth embodiment. The heat dissipating substrates 1 and 2 are configured by fixing the lead frames 5 arranged at regular intervals with the resin material 6. The light emitting element submount structure 3 is joined to the lead frame 5 with the lead frame surfaces of the heat dissipation substrates 1 and 2 facing each other. An assembly including the light emitting element submount structure 3 and the heat dissipation substrates 1 and 2 that are electrically connected in series is formed. Further, metal plates 11 and 21 are joined to the opposite surfaces of the heat dissipation substrates 1 and 2 to the lead frame 5. In this way, at least one of the first and second heat dissipation substrates is a substrate using a metal lead frame on the side facing the submount structure, so that the light emitting element sub-layer is interposed via the lead frame. Heat dissipation from the mount structure is improved. In addition, since the lead frame has good workability, the degree of freedom of wiring to each light emitting element submount structure increases. The number of heat-dissipating substrates, the material, the arrangement interval of the light emitting element submounts, the material and thickness of the lead frame, the material of the resin material, the material and the shape of the metal plate are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。集合体を構成するLEDに均一の電流が流れるため、個々のLEDチップ間の光出力のばらつきが少ない。外郭面に金属板を接合することにより、放熱性の更なる向上が可能となる。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. Since a uniform current flows through the LEDs constituting the assembly, there is little variation in light output between individual LED chips. By joining the metal plate to the outer surface, the heat dissipation can be further improved.

(実施例5)
図6に実施例5の概略構造を示す。金属板11上に絶縁層12を介して配線パターン13を形成してなる放熱用基板1を設ける。また、金属板21上に絶縁層22を介して配線パターン23を形成してなる放熱用基板2を設ける。配線パターン13,23を対向させ、平行に配置し、当該基板1,2間に発光素子サブマウント構造体3を配置する。配線パターン13,23と発光素子サブマウント構造体3は、接触または接合している。電気的に直列接続となる発光素子サブマウント構造体3と放熱用基板1,2からなる集合体を構成する。放熱用基板1,2の枚数、素材、発光素子サブマウント構造体の配置間隔は限定されない。
(Example 5)
FIG. 6 shows a schematic structure of the fifth embodiment. A heat radiating substrate 1 formed by forming a wiring pattern 13 on an insulating layer 12 on a metal plate 11 is provided. Further, a heat dissipation substrate 2 formed by forming a wiring pattern 23 on an insulating layer 22 on a metal plate 21 is provided. The wiring patterns 13 and 23 are opposed to each other and arranged in parallel, and the light emitting element submount structure 3 is arranged between the substrates 1 and 2. The wiring patterns 13 and 23 and the light emitting element submount structure 3 are in contact with or bonded to each other. An assembly including the light emitting element submount structure 3 and the heat dissipation substrates 1 and 2 that are electrically connected in series is formed. The number of the heat dissipating substrates 1 and 2, the material, and the arrangement interval of the light emitting element submount structures are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、集合体を構成するLEDチップに均一の電流が流れるため、個々のLEDチップ間の光出力のばらつきが少ない。さらに、放熱用基板の絶縁部材を薄膜化できるため、金属板への放熱効果が向上する。また、任意のパターン構成により、発光素子以外の電子部品の配置も可能となる。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. In addition, since a uniform current flows through the LED chips constituting the assembly, there is little variation in light output between the individual LED chips. Furthermore, since the insulating member of the heat dissipation substrate can be made thin, the heat dissipation effect to the metal plate is improved. In addition, it is possible to arrange electronic components other than the light emitting elements by using an arbitrary pattern configuration.

(実施例6)
図7に実施例6の概略構造を示す。樹脂材料6を中心に構成される放熱用基板1,2を平行に配置する。対向する放熱用基板1,2間を接続するリードフレーム5を構成する。電気的に直列接続となる発光素子サブマウント構造体3と放熱用基板1,2からなる集合体を構成する。放熱用基板の枚数、素材、発光素子サブマウント構造体の配置間隔、リードフレームの材質、厚さ、樹脂材料の材質は限定されない。
(Example 6)
FIG. 7 shows a schematic structure of the sixth embodiment. The heat dissipating substrates 1 and 2 configured around the resin material 6 are arranged in parallel. A lead frame 5 for connecting the opposing heat dissipating substrates 1 and 2 is configured. An assembly including the light emitting element submount structure 3 and the heat dissipation substrates 1 and 2 that are electrically connected in series is formed. The number of heat dissipation substrates, the material, the arrangement interval of the light emitting element submount structures, the material and thickness of the lead frame, and the material of the resin material are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、集合体を構成するLEDに均一の電流が流れるため、個々のLEDチップ間の光出力のばらつきが少ない。さらに、放熱用基板に接続される発光素子サブマウント構造体の極性がp極もしくはn極に統一されるため、実装性が向上する。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. In addition, since a uniform current flows through the LEDs constituting the assembly, there is little variation in light output between individual LED chips. Furthermore, since the polarity of the light emitting element submount structure connected to the heat dissipation substrate is unified to the p-pole or the n-pole, the mountability is improved.

(実施例7)
図8に実施例7の概略構造を示す。同心円状に配置された金属製の放熱用基板1,2を設ける。発光素子サブマウント構造体3を2枚の放熱用基板1,2の間に配置する。発光素子サブマウント構造体3と放熱用基板1,2は接触または接合する。放熱用基板の枚数、素材、発光素子サブマウント構造体の配置間隔は限定されない。
(Example 7)
FIG. 8 shows a schematic structure of the seventh embodiment. Metal heat dissipating substrates 1 and 2 are provided concentrically. The light emitting element submount structure 3 is disposed between the two heat dissipating substrates 1 and 2. The light emitting element submount structure 3 and the heat dissipating substrates 1 and 2 are in contact with or bonded to each other. The number of the heat dissipation substrates, the material, and the arrangement interval of the light emitting element submount structures are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、円形状の器具装置に好適な光出力が可能となる。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. Moreover, the light output suitable for a circular instrument apparatus is attained.

(実施例8)
図9に実施例8の概略構造を示す。同心円状に配置された多角形状の金属製の放熱用基板1,2を設ける。発光素子サブマウント構造体3を2枚の放熱用基板1,2の間に配置する。発光素子サブマウント構造体3と放熱用基板1,2は接触または接合させる。放熱用基板の枚数、素材、発光素子サブマウント構造体の配置間隔、多角形の角数(六角形、八角形、…等)は限定されない。
(Example 8)
FIG. 9 shows a schematic structure of the eighth embodiment. Polygonal metal heat dissipating substrates 1 and 2 are provided concentrically. The light emitting element submount structure 3 is disposed between the two heat dissipating substrates 1 and 2. The light emitting element submount structure 3 and the heat dissipating substrates 1 and 2 are contacted or joined. The number of heat dissipation substrates, the material, the arrangement interval of the light emitting element submount structures, and the number of polygonal corners (hexagons, octagons, etc.) are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、比較的半径の小さい円形状において、発光素子サブマウント構造体と放熱用基板の接合性を向上させることができる。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. Further, in a circular shape having a relatively small radius, the bonding property between the light emitting element submount structure and the heat dissipation substrate can be improved.

(実施例9)
図10に実施例9の概略構造を示す。円形状の放熱用基板1,2を平行に配置する。発光素子サブマウント構造体3を2枚の放熱用基板1,2の間に配置する。発光素子サブマウント構造体3と放熱用基板1,2は接触または接合させる。発光素子サブマウント構造体3の底部に接する極性毎に放熱用基板1,2に接続した。なお、同図(b)に示すように、金属製リング状部材7を設けてもよい。放熱用基板の枚数、素材、発光素子サブマウント構造体の配置間隔は限定されない。
Example 9
FIG. 10 shows a schematic structure of the ninth embodiment. Circular heat dissipation substrates 1 and 2 are arranged in parallel. The light emitting element submount structure 3 is disposed between the two heat dissipating substrates 1 and 2. The light emitting element submount structure 3 and the heat dissipating substrates 1 and 2 are contacted or joined. Each of the polarities in contact with the bottom of the light emitting element submount structure 3 was connected to the heat dissipation substrates 1 and 2. In addition, as shown to the same figure (b), you may provide metal ring-shaped members 7. FIG. The number of the heat dissipation substrates, the material, and the arrangement interval of the light emitting element submount structures are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、指向性の強いLEDを用いて、全方位への光放射が可能となる。さらに、金属製リング状部材を用いた場合は更なる放熱性向上が可能となる。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. Further, light emission in all directions can be performed using a highly directional LED. Furthermore, when a metal ring-shaped member is used, it is possible to further improve heat dissipation.

(実施例10)
図11に実施例10の概略構造を示す。柔軟性を有する導電性材料からなる放熱用基板1,2を少なくとも2枚有する。複数の発光素子サブマウント構造体3のp極側を一枚の放熱用基板1に、n極側を他の放熱用基板2に接続する。発光素子サブマウント構造体3と放熱用基板1,2は接触または接合させる。放熱基板の枚数、素材、発光素子サブマウントの配置間隔は限定されない。
(Example 10)
FIG. 11 shows a schematic structure of the tenth embodiment. At least two heat dissipating substrates 1 and 2 made of a flexible conductive material are provided. The p-pole side of the plurality of light-emitting element submount structures 3 is connected to one heat dissipation substrate 1, and the n-pole side is connected to another heat dissipation substrate 2. The light emitting element submount structure 3 and the heat dissipating substrates 1 and 2 are contacted or joined. The number of heat dissipation substrates, the material, and the arrangement interval of the light emitting element submounts are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱することができる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。さらに、柔軟性を有した構造であるため、ユーザーの必要に応じた形状の発光体の実現が可能となる。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. Furthermore, since the structure has flexibility, it is possible to realize a light emitter having a shape according to the needs of the user.

本発明の発光装置は、表示装置や照明装置の光源として利用することができる。   The light emitting device of the present invention can be used as a light source of a display device or a lighting device.

本発明の実施例1の発光装置に用いる発光素子サブマウント構造体の断面図である。It is sectional drawing of the light emitting element submount structure used for the light-emitting device of Example 1 of this invention. 本発明の実施例1の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 1 of this invention. 本発明の実施例2の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 2 of this invention. 本発明の実施例3の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 3 of this invention. 本発明の実施例4の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 4 of this invention. 本発明の実施例5の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 5 of this invention. 本発明の実施例6の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 6 of this invention. 本発明の実施例7の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 7 of this invention. 本発明の実施例8の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 8 of this invention. 本発明の実施例9の発光装置を示す図であり、(a)は正面図、(b)は断面図である。It is a figure which shows the light-emitting device of Example 9 of this invention, (a) is a front view, (b) is sectional drawing. 本発明の実施例10の発光装置の製造工程を示す図であり、(a)は半製品の断面図、(b)は完成品の断面図である。It is a figure which shows the manufacturing process of the light-emitting device of Example 10 of this invention, (a) is sectional drawing of a semi-finished product, (b) is sectional drawing of a finished product.

符号の説明Explanation of symbols

1 第1の放熱用基板
2 第2の放熱用基板
3 発光素子サブマウント構造体
4 第3の放熱用基板
30 実装基板
33 LEDチップ
300 絶縁部材
301 導電体ブロック(配線部)
302 導電体ブロック(配線部)
DESCRIPTION OF SYMBOLS 1 1st heat dissipation board 2 2nd heat dissipation board 3 Light emitting element submount structure 4 3rd heat dissipation board 30 Mounting substrate 33 LED chip 300 Insulating member 301 Conductor block (wiring part)
302 Conductor block (wiring section)

Claims (2)

配線部を有する実装基板と、前記実装基板上に実装されたLEDチップとを備える1個または複数個の発光素子サブマウント構造体を、配線基板を兼ねる第1の放熱用基板に搭載してなる発光装置であって、前記発光素子サブマウント構造体における前記実装基板は、絶縁部材を間に挟む2つの導電体ブロックから成り、LEDチップのp側電極、n側電極が、前記2つの導電体ブロックの各々に接続されており、前記発光素子サブマウント構造体の第1の放熱用基板に面する側とは異なる側の面を、第2の放熱用基板に接触または接合したことを特徴とする発光装置。 One or a plurality of light emitting element submount structures each including a mounting substrate having a wiring portion and an LED chip mounted on the mounting substrate are mounted on a first heat dissipation substrate that also serves as the wiring substrate. In the light-emitting device, the mounting substrate in the light-emitting element submount structure includes two conductor blocks sandwiching an insulating member therebetween, and the p-side electrode and the n-side electrode of the LED chip are the two conductors. Connected to each of the blocks, and a surface of the light emitting element submount structure that is different from the side facing the first heat dissipation substrate is in contact with or bonded to the second heat dissipation substrate. Light-emitting device. 配線部を有する実装基板と、前記実装基板上に実装されたLEDチップとを備える第1の発光素子サブマウント構造体を、配線基板を兼ねる第1の放熱用基板に複数個搭載してなる発光装置であって、前記第1の発光素子サブマウント構造体の第1の放熱用基板に面する側とは異なる側の面を、第2の放熱用基板に接触または接合し、
第1の発光素子サブマウント構造体と同じ構造の第2の発光素子サブマウント構造体を、配線基板を兼ねる第3の放熱用基板に複数個搭載し、前記第2の発光素子サブマウント構造体の第3の放熱用基板に面する側とは異なる側の面を、前記第2の放熱用基板における前記第1の発光素子サブマウント構造体が接触または接合する側とは異なる側の面に接触または接合し、
前記第1、第2の放熱用基板に挟みこまれた第1の発光素子サブマウント構造体と、第2、第3の放熱用基板に挟みこまれた第2の発光素子サブマウント構造体とが、千鳥格子状に互い違いに配列されており、前記第2の放熱用基板における第1の発光素子サブマウント構造体との接触または接合面の直背面には、第2の発光素子サブマウント構造体が配置されないことを特徴とする発光装置。
Light emission in which a plurality of first light emitting element submount structures each including a mounting substrate having a wiring portion and an LED chip mounted on the mounting substrate are mounted on a first heat dissipation substrate that also serves as a wiring substrate. An apparatus, wherein a surface of the first light emitting element submount structure that is different from the side facing the first heat dissipation substrate is in contact with or joined to the second heat dissipation substrate,
A plurality of second light emitting element submount structures having the same structure as the first light emitting element submount structure are mounted on a third heat dissipation substrate also serving as a wiring board, and the second light emitting element submount structure is provided. The surface on the side different from the side facing the third heat dissipation substrate is a surface on a side different from the side on which the first light emitting element submount structure contacts or is joined on the second heat dissipation substrate. Contact or join,
The first, a first light emitting element submount structure that is sandwiched second radiating board, and the second, the second light emitting element submount structure that is sandwiched third radiating substrate Are arranged alternately in a staggered pattern, and the second light-emitting element submount is provided on the back surface of the second heat dissipation substrate in contact with or in contact with the first light-emitting element submount structure. A light-emitting device characterized in that no structure is disposed .
JP2007310622A 2007-11-30 2007-11-30 Light emitting device Expired - Fee Related JP4862808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007310622A JP4862808B2 (en) 2007-11-30 2007-11-30 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007310622A JP4862808B2 (en) 2007-11-30 2007-11-30 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003394451A Division JP2005158957A (en) 2003-05-26 2003-11-25 Light emitting device

Publications (2)

Publication Number Publication Date
JP2008072143A JP2008072143A (en) 2008-03-27
JP4862808B2 true JP4862808B2 (en) 2012-01-25

Family

ID=39293397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007310622A Expired - Fee Related JP4862808B2 (en) 2007-11-30 2007-11-30 Light emitting device

Country Status (1)

Country Link
JP (1) JP4862808B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200448772Y1 (en) * 2009-11-02 2010-05-17 백성곤 Bendable LED Bar

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153372A (en) * 1989-10-26 1991-07-01 Hewlett Packard Co <Hp> Light emitting diode print head
JP2000031548A (en) * 1998-07-09 2000-01-28 Stanley Electric Co Ltd Surface mount light-emitting diode and its manufacture
JP4215306B2 (en) * 1998-08-27 2009-01-28 シチズン電子株式会社 Semiconductor package and manufacturing method thereof
JP2002329896A (en) * 2001-05-02 2002-11-15 Kansai Tlo Kk Led surface light emission device
JP2003163378A (en) * 2001-11-26 2003-06-06 Citizen Electronics Co Ltd Surface mount light emitting diode and its manufacturing method

Also Published As

Publication number Publication date
JP2008072143A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4241658B2 (en) Light emitting diode light source unit and light emitting diode light source formed using the same
JP2005158957A (en) Light emitting device
US7777237B2 (en) Semiconductor light-emitting device and method of fabricating the same
JP3131390U (en) Connection structure of LED and heat dissipation sheet
JP4623730B2 (en) Light emitting diode light source using light emitting diode light source unit
US7804105B2 (en) Side view type LED package
US20060001361A1 (en) Light-emitting diode
US7538356B2 (en) Combination assembly of LED and liquid-vapor thermally dissipating device
US20080123367A1 (en) Light source unit for use in a backlight module
JP2004265986A (en) High luminance light emitting element, and method for manufacturing the same and light emitting device using the same
JP2004172170A (en) High luminance light emitting device and method of manufacturing the same
US9349930B2 (en) LED module and lighting assembly
KR20110056306A (en) Efficient led array
JP2008258264A (en) Structure of light-emitting diode for light source unit
KR20100028468A (en) Light emitting module
CN107845715B (en) Light emitting device
JP2006319290A (en) Light emitting diode light source unit and valve type thereof
JP2006269078A (en) Led light source module
JP2011103353A (en) Light emitting module
JP2009021384A (en) Electronic component and light emitting device
JP6210720B2 (en) LED package
JP4862808B2 (en) Light emitting device
TWI766900B (en) Light emitting device
JP2020150097A (en) Light emitting device, light emitting module and manufacturing method therefor
KR101259876B1 (en) Led package having a thermoelectric element and method for manufacturin thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees