JP4859158B2 - Water treatment composition - Google Patents

Water treatment composition Download PDF

Info

Publication number
JP4859158B2
JP4859158B2 JP2001197595A JP2001197595A JP4859158B2 JP 4859158 B2 JP4859158 B2 JP 4859158B2 JP 2001197595 A JP2001197595 A JP 2001197595A JP 2001197595 A JP2001197595 A JP 2001197595A JP 4859158 B2 JP4859158 B2 JP 4859158B2
Authority
JP
Japan
Prior art keywords
acid
sulfonic acid
water
hydroxypropane
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001197595A
Other languages
Japanese (ja)
Other versions
JP2003010886A (en
Inventor
賢一 伊藤
直子 藤後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Original Assignee
Hakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd filed Critical Hakuto Co Ltd
Priority to JP2001197595A priority Critical patent/JP4859158B2/en
Publication of JP2003010886A publication Critical patent/JP2003010886A/en
Application granted granted Critical
Publication of JP4859158B2 publication Critical patent/JP4859158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F14/00Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes
    • C23F14/02Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes by chemical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/173Macromolecular compounds

Abstract

PROBLEM TO BE SOLVED: To provide a water treating composition containing no environment polluting substances such as a heavy metal and effectively preventing a scale and a corrosion in a water system. SOLUTION: The water treating composition contains, as active ingredients, a copolymer containing (A) phosphonated maleic acids represented by the following general formula: [wherein M represents a hydrogen or an alkyl metal and m is an integer of 1-10]; and (B) a mono-ethylenic unsaturated carboxylic acid such as acrylic acid and methacrylic acid, and a mono-ethylenic unsaturated sulfonic acid such as 2-acrylamido-methylpropanesulfonic acid, 2- methacrylamidomethylpropanesulfonic acid, 3-allyloxy-2-hydropropanesulfonic acid, 3-methaloxy-2-hydroxypropanesulfonic acid, 3-allyloxy-1-hydroxypropane-2- sulfonic acid and 3-methaloxy-1-hydroxypropane-2-sulfonic acid.

Description

【0001】
【発明の属する技術分野】
本発明は、冷却水系、温水系、ボイラ水系、洗浄水、水性の金属加工油剤、集塵水系等の水系において水と接する金属材料表面の腐食とスケール付着を効果的に防止することができる水処理組成物に関する。
【0002】
【従来の技術】
冷却水系、温水系、ボイラ水系、洗浄水、水性の金属加工油剤、集塵水系等の水系においては、水と接する金属材料は腐食が発生しやすい環境にある。そこで腐食防止剤としてクロム酸塩、亜鉛塩、モリブデン酸塩等の重金属が使用されていたが、水の一部が系外へ排出されたとき周辺環境に重金属汚染となる問題が指摘された。このような周辺環境汚染の原因となる可能性のある化合物は、その使用が厳しく制限される傾向にある。
【0003】
このような観点から、重金属を含まない化合物として、カルボン酸を含む重合体を用い、水中のカルシウム、マグネシウムと反応し鉄表面にスケール性の皮膜を生成させ防食性を持たせる方法が提案されたが、炭酸カルシウム、珪酸マグネシウム、ポリカルボン酸カルシウム塩等がスケールとなって障害になることがある。
【0004】
例えば、炭酸カルシウムのスケール指数であるリツナー指数が5.5以下になると、炭酸カルシウムが保護皮膜として作用するために軟鋼の腐食速度が低下するが、炭酸カルシウムがスケールとなる傾向が増大するので、スケール防止剤としてポリマレイン酸を使用する方法〔キミア(Chimia)、34巻、1号、32頁(1980)〕、その他マレイン酸重合体を使用する方法〔特公昭53−20475号公報〕、モノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体を使用する方法〔特開昭50−86489号公報〕などカルボン酸基を有する重合体を使用する方法が数多く提案されているが、腐食防止効果は十分でなかった。
【0005】
しかし、これまでは対象とする水のpHを高めに設定し、炭酸カルシウムを保護皮膜として作用させて腐食速度が低下することを前提に、スケール成分の分散などスケール防止を中心に進められてきた。
【0006】
このようにして腐食はかなり抑えられるが、保護皮膜としての炭酸カルシウム皮膜は、緻密さにおいて完璧でなく、腐食もある程度進行しているのが実情である。そこで腐食防止効果を改善した化合物としてホスホン化マレイン酸類を使用する方法〔特開平10−72476号公報〕が提案されている。しかしながらホスホン化マレイン酸類は、水中のカルシウムイオンと反応してホスホン化マレイン酸類のカルシウム塩として沈澱しやすいという問題点があった。
【0007】
本発明が目的とする冷却水系、温水系、ボイラ水系、洗浄水、水性の金属加工油剤、集塵水系等の水系では、スケール防止とともに腐食防止も重要であり、これまでの優れたスケール防止に加え、さらに腐食防止も一段上のものが望まれるようになってきた。すなわち、これまでのスケール防止に着目した開発の進め方から、スケールと腐食の両方に着目してそれらをバランスよく防止するように進めることが必要になってきたのである。
【0008】
そこで、周辺環境への影響を考慮して、重金属を含有せず、かつスケール分散性に優れた腐食防止剤が望まれるのである。
【0009】
【発明が解決しようとする課題】
本発明の目的は、重金属等の環境汚染物質を含有せず、かつ防食効果とスケール防止効果の優れた水系におけるスケール防止ならびに腐食防止に効果のある水処理組成物を提供することにある。
【0010】
【発明が解決するための手段】
本発明者らは、前記目的を達成するべくポリマー合成技術と腐食防止ならびにスケール防止評価技術を駆使して鋭意研究した結果、ホスホン化マレイン酸類に特定の共重合体を併用することにより、顕著なスケール防止効果、顕著な腐食防止効果を発揮することを見出し、本発明に到達した。
【0011】
すなわち請求項1に係る発明は、水と接する金属材料表面の腐食とスケール付着を防止する水処理組成物であり、(A)下記一般式〔ここでMは水素、アルカリ金属を表わし、mは1〜10の整数である〕で示されるホスホン化マレイン酸類と、(B)モノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸を含む共重合体を有効成分とし、且つ、重金属を含有しないことを特徴としている。
【化2】

Figure 0004859158
【0012】
請求項2に係る発明は請求項1記載の水処理組成物であり、モノエチレン性不飽和カルボン酸は、アクリル酸、メタアクリル酸から選択される1種以上であることを特徴としている。
【0013】
請求項3に係る発明は請求項1記載の水処理組成物であり、モノエチレン性不飽和スルホン酸は、2−アクリルアミド−メチルプロパンスルホン酸、2−メタアクリルアミド−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸、3−メタロキシ−2−ヒドロキシプロパンスルホン酸、3−アリロキシ−1−ヒドロキシプロパン−2−スルホン酸、3−メタロキシ−1−ヒドロキシプロパン−2−スルホン酸から選択される1種以上であることを特徴としている。
【0014】
【発明の実施の形態】
本発明の一つの成分はホスホン化マレイン酸類であり、その製造方法は、本発明で限定するものではないが、例えばマレイン酸、マレイン酸塩、無水マレイン酸から選択される1種以上〔以下「マレイン酸類」と記す〕と亜リン酸及び/又は亜リン酸塩〔以下「亜リン酸酸類」と記す〕を中性〜アルカリ性の水性溶媒中で遊離ラジカル開始剤の存在下で反応させて製造することができる〔特開平4−334392号公報〕。このとき、マレイン酸類と亜リン酸類の反応モル比は通常は1:1〜10:1の範囲であるが、好ましくは1:1〜3:1の範囲である。
【0015】
このとき、マレイン酸類の一部をマレイン酸類、亜リン酸酸類と共重合可能な他のモノエチレン性不飽和単量体で置換してもよく、好ましい共重合成分としてアクリル酸が挙げられる。また、ホスホン化マレイン酸類は、オルブライト・アンド・ウイルソン社から「BriCorr288」の商品名で市販されており、本発明に用いることもできる。
【0016】
本発明のもう一方の成分はモノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸を含む共重合体〔以下単に「共重合体」と記す〕である。このとき、モノエチレン性不飽和カルボン酸は、アクリル酸、メタアクリル酸から選択される1種以上を含むことが好ましく、モノエチレン性不飽和スルホン酸は、2−アクリルアミド−2―メチルプロパンスルホン酸、2−メタアクリルアミド−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸、3−メタロキシ−2−ヒドロキシプロパンスルホン酸、3−アリロキシ−1−ヒドロキシプロパン−2−スルホン酸、3−メタロキシ−1−ヒドロキシプロパン−2−スルホン酸から選択される1種以上を含むことが好ましい。
【0017】
共重合体は、モノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸のそれぞれを含む単量体溶液を、重合開始触媒の存在下で加熱して製造することができる。このとき、モノエチレン性不飽和カルボン酸ならびにモノエチレン性不飽和スルホン酸と共重合可能な他のモノエチレン性不飽和単量体を1種以上をさらに含んだ共重合体であってもよい。共重合可能な他のモノエチレン性不飽和単量体の例として、マレイン酸、無水マレイン酸、イタコン酸、メタクリル酸、クロトン酸、フマル酸等のモノエチレン性不飽和カルボン酸およびその水溶性塩、スチレンスルホン酸、スルホアルキル(メタ)アクリレートエステル類、スルホアルキル(メタ)アリルエーテル類、(メタ)アリルスルホン酸、ビニルスルホン酸等のモノエチレン性不飽和スルホン酸類およびその水溶性塩、ビニルホスホン酸、アリルホスホン酸等のモノエチレン性不飽和ホスホン酸類およびその水溶性塩、(メタ)アクリルアミド、アルキル(メタ)アクリレートエステル類、アルキル(メタ)アリルエーテル類、ヒドロキシ置換アルキル(メタ)アクリレートエステル類、ヒドロキシ置換アルキル(メタ)アリルエーテル類、(メタ)アリルアルコール等の非イオン性のモノエチレン性不飽和単量体等が挙げられる。
【0018】
モノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の組成比は、好ましくは90:10〜30:70(重量比)、より好ましくは70:30〜40:60(重量比)である。この組成比範囲は、腐食防止効果の観点から選ばれたものであり、この範囲の外でもそれなりの効果はあるが、充分大きくないことがある。
【0019】
共重合体の重量平均分子量は、2,000〜50,000、好ましくは3,000〜20,000未満である。この分子量の好適範囲は、スケール防止と腐食防止効果の観点から選ばれたものである。重量平均分子量は、例えばゲル・パーミエーション・クロマトグラフィーの手法により分子量既知のポリエチレングリコールを標準物質として測定され、市販の分子量計算用コンピュータソフトウェアを用いて計算して求めることができる。
【0020】
本発明の水処理組成物の作用メカニズムは必ずしも明確でないが、共重合体の分散作用によって、ホスホン化マレイン酸類がカルシウム塩や鉄塩として沈殿するのが抑えられ、水中や金属表面においてホスホン化マレイン酸類濃度が高く維持され、スケール防止と腐食防止に有効に寄与するためと推定される。
【0021】
ホスホン化マレイン酸類の水系への添加量は、対象とする水系の条件、特に水質、温度などにより異なるが、一般的にはその有効成分濃度として1〜5,000mg/L、より好ましくは5〜100ppmの範囲である。
【0022】
共重合体の水系への添加量は、対象とする水系の条件、特に水質、温度などにより異なるが、一般的にはその有効成分濃度として1〜5,000mg/L、より好ましくは5〜100ppmの範囲である。
【0023】
本発明の水処理組成物を適用する水質は、pHが6以上、好ましくはpHが8〜10の水である。腐食防止の観点からはpH、Ca硬度、Mアルカリ度ならびにシリカ濃度が高いスケール性水質で適用した方が好ましい。本発明の組成物は炭酸カルシウム、硫酸カルシウム、珪酸マグネシウム、シリカ等の各種スケールに対する析出防止や付着防止効果も有するため、スケール性の厳しい水質へも適用できる。
【0024】
対象とする水系設備の一部に銅、あるいは銅合金が存在する場合には、上記の成分にアゾール化合物を併用することが好ましい。アゾール化合物の例としてトリルトリアゾール、ベンゾトリアゾール、置換ベンゾトリアゾール、メルカプトベンゾチアゾール等が挙げられる。
【0025】
水中にオルトリン酸が含まれている場合があるが、本発明の共重合体はオルトリン酸がカルシウム塩や亜鉛塩や鉄塩として沈殿するのを防止することができ、さらにオルトリン酸と本発明の組成物は腐食防止に対して相乗効果的作用を示すため好適である。本発明の組成物とともにオルトリン酸や重合リン酸を混合ないし別個に添加しても同じ効果を得ることができる。
【0026】
本発明の水処理組成物は、上記以外の腐食防止剤やスケール防止剤を併用して添加することがある。その他の腐食防止剤やスケール防止剤として代表的な化合物には、2−ヒドロキシエチリデン−2,2−ジホスホン酸・2−ホスホノブタン−1,2,4−トリカルボン酸・ヒドロキシホスホノ酢酸・アミノトリメチレンホスホン酸・ジエチレントリアミン−ペンタメチレンホスホン酸等のホスホン酸化合物、モリブデン酸塩、タングステン酸塩、亜鉛塩、ポリアスパラギン酸、亜硝酸塩、クエン酸・グルコン酸・酒石酸・リンゴ酸等のヒドロキシカルボン酸類、アルミン酸塩などが挙げられる。本発明はこれらの併用に対し、何ら制限を加えるものではない。
【0027】
また、水中微生物に起因して微生物の作るスライムによる障害を防止するため、次亜塩素酸塩、次亜臭素酸塩、オゾン等の酸化性殺菌剤が使用されるが、これら化合物はその強力な酸化力の故に腐食防止剤を分解させることがあるが、本発明のホスホン化マレイン酸類、共重合体は、耐分解性が優れており、通常の使用範囲では腐食防止効果が低下したり、殺菌効果を失活させること少なく、併用使用することができる。
【0028】
【実施例】
以下に本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0029】
[評価に用いた重合体]
ホスホン化マレイン酸類:オルブライト・アンド・ウイルソン社製「BriCorr288」(活性分含量30%、平均重合度約1.5)
共重合体A−1:アクリル酸と2−アクリルアミド−2―メチルプロパンスルホン酸の共重合体(共重合比=60:40重量%、重量平均分子量約10,000)
共重合体A−2:アクリル酸と2−アクリルアミド−2―メチルプロパンスルホン酸の共重合体(共重合比=70:30重量%、重量平均分子量約10,000)
・共重合体A−3:アクリル酸と2−アクリルアミド−2―メチルプロパンスルホン酸の共重合体(共重合比=75:25重量%、重量平均分子量約5,000)
・共重合体B:アクリル酸と3−アリロキシ−2−ヒドロキシプロパンスルホン酸(共重合比=50:50重量%、重量平均分子量約8,000)
・共重合体C:アクリル酸とビニルスルホン酸の共重合体(共重合比75:25重量%、重量平均分子量約5,000)
・共重合体D:マレイン酸とスチレンスルホン酸の共重合体(共重合比1:3モル、重量平均分子量20,000)
・重合体E:アクリル酸重合体(重量平均分子量約5,000)
・重合体F:2−アクリルアミド−2―メチルプロパンスルホン酸重合体(重量平均分子量5,000)
【0030】
[腐食防止効果の評価]
寸法が50×30×1mm、表面積0.316dm2の低炭素鋼(JIS G 3141、SPCC)試験片をアセトン脱脂し、乾燥して重量を測定した。試験片1枚を試験片保持器(JISK0100−1990工業用水腐食試験方法、回転法)に取付け、試験液500mLの入った還流冷却管付きフラスコ中に浸漬した。フラスコを予め40℃に設定した恒温槽中に入れ、試験片保持器モーター回転軸に取り付けて、線速度として0.3m/secの速度で試験片を回転させた。試験期間は3日間とした。試験片表面に付着した腐食性生成物やスケール付着物を流水下ブラシで除去後、乾燥して試験片の重量を測定し、試験前後の重量減より腐食速度(mdd)を次式から計算した。
腐食速度:mdd=A/(B×C)
ここで、
A:試験片の試験前後での重量減少量(mg)、
B:試験片の表面積(dm
C:試験日数(日)
【0031】
試験水の水質はpH8.5、Mアルカリ度150ppm、カルシウム硬度150ppm、塩化物イオン106ppm、硫酸イオン50ppmであった。
【0032】
得られた結果を表1に示した。
【表1】
Figure 0004859158
【0033】
ホスホン化マレイン酸類と本発明の共重合体を併用することにより、それぞれの単独使用時と比較して腐食防止効果が優れていた。
【0034】
[スケール防止効果の評価]
脱イオン水に表2の化合物をそれぞれ添加して、塩化カルシウム、炭酸水素ナトリウムを溶解し、さらに水酸化ナトリウムを加えてpH8 .8、カルシウム硬度500ppm、Mアルカリ度400ppmの試験水を調整した。試験水を密閉したガラス容器に入れ、70℃恒温槽中に7日間放置した後、定量用濾紙No.6で濾過して濾液中のカルシウム硬度をEDTA滴定法(JIS K0101)により測定した。下記の式によりスケール抑止率を計算した。
スケール抑止率(%)={(Ci−Cb)/(Cs−Cb)}×100
ここで、
Ci:処理剤添加時の試験後のカルシウム濃度(mg/L)
Cb:処理剤無添加前の試験後のカルシウム濃度(mg/L)
Cs:試験前のカルシウム濃度(mg/L)
【0035】
また、濾液中の全リン酸濃度を測定して下記式によりリン残留率を計算した。
リン残留率(%)=(Pi/Ps)×100
ここで、
Ps:試験前の全リン酸濃度、
Pi:処理剤添加時の試験後の全リン酸濃度
【0036】
結果を表2に示す。
【表2】
Figure 0004859158
【0037】
ホスホン化マレイン酸類単独ではリン残留率が低いが、これはホスホン化マレイン酸類がカルシウム塩として沈殿したためである。ホスホン化マレイン酸類に本発明の共重合体を併用することによりリン残留率が増加しており、これは共重合体がホスホン化マレイン酸類のカルシウム塩の沈殿防止に有効であることを示唆するものである。またホスホン化マレイン酸類と共重合体を併用することにより、それぞれの単独使用時と比較してスケール抑制効果が優れていた。ここでいうスケール抑制効果とは主に炭酸カルシウムに対する抑制効果を示す。同じスルホン酸系共重合体であっても、アクリル酸とビニルスルホン酸の共重合体やマレイン酸とスチレンスルホン酸の共重合体は、ホスホン化マレイン酸類との併用効果が認められなかった。
【0038】
【発明の効果】
本発明のスケール防止ならびに腐食防止用組成物は、重金属等の環境汚染物質を含まないため環境への影響が少なく、かつ優れた金属の腐食防止効果とスケール防止効果を有しているので、腐食による機器の更新頻度を低下させることができ、装置の安全運転に寄与できる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a water that can effectively prevent corrosion and scale adhesion on the surface of a metal material in contact with water in an aqueous system such as a cooling water system, a hot water system, a boiler water system, a cleaning water, an aqueous metalworking fluid, and a dust collection water system. It relates to a treatment composition.
[0002]
[Prior art]
In a water system such as a cooling water system, a hot water system, a boiler water system, a cleaning water, an aqueous metalworking fluid, and a dust collection water system, the metal material in contact with water is in an environment where corrosion is likely to occur. Therefore, heavy metals such as chromate, zinc salt, molybdate were used as corrosion inhibitors, but it was pointed out that when a part of the water was discharged outside the system, the surrounding environment was contaminated with heavy metals. The use of compounds that can cause such environmental pollution tends to be severely restricted.
[0003]
From this point of view, a method has been proposed in which a polymer containing carboxylic acid is used as a compound that does not contain heavy metals and reacts with calcium and magnesium in water to form a scale-like film on the iron surface to provide corrosion resistance. However, calcium carbonate, magnesium silicate, calcium calcium polycarboxylate, etc. may become an obstacle due to scale.
[0004]
For example, when the Ritzner index, which is the scale index of calcium carbonate, is 5.5 or less, the corrosion rate of mild steel decreases because calcium carbonate acts as a protective film, but the tendency for calcium carbonate to become scaled increases. A method using polymaleic acid as a scale inhibitor [Chimia, Vol. 34, No. 1, p. 32 (1980)], a method using other maleic acid polymer [Japanese Patent Publication No. 53-20475], monoethylene Many methods using a polymer having a carboxylic acid group have been proposed, such as a method using a copolymer of an unsaturated carboxylic acid and a monoethylenically unsaturated sulfonic acid (Japanese Patent Laid-Open No. 50-86489). The corrosion prevention effect was not sufficient.
[0005]
However, until now, the pH of the target water has been set higher, and calcium carbonate has acted as a protective film to reduce the corrosion rate. .
[0006]
Although corrosion can be suppressed considerably in this way, the calcium carbonate film as a protective film is not perfect in terms of density, and the fact is that corrosion has progressed to some extent. Therefore, a method of using phosphonated maleic acids as a compound having an improved corrosion prevention effect [JP-A-10-72476] has been proposed. However, phosphonated maleic acids have a problem that they react with calcium ions in water and are easily precipitated as calcium salts of phosphonated maleic acids.
[0007]
In water systems such as cooling water systems, hot water systems, boiler water systems, cleaning water, aqueous metalworking fluids, dust collection water systems, etc., which are the objectives of the present invention, it is important to prevent corrosion as well as to prevent corrosion. In addition, a higher level of corrosion prevention has been desired. In other words, it has become necessary to focus on both scale and corrosion so as to prevent them in a well-balanced manner from the conventional development method focusing on scale prevention.
[0008]
In view of the influence on the surrounding environment, a corrosion inhibitor that does not contain heavy metals and has excellent scale dispersibility is desired.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a water treatment composition that does not contain environmental pollutants such as heavy metals and is effective in preventing scale and preventing corrosion in an aqueous system having excellent anticorrosion and scale prevention effects.
[0010]
[Means for Solving the Invention]
As a result of earnest research using the polymer synthesis technology, corrosion prevention and scale prevention evaluation technology to achieve the above-mentioned object, the present inventors have achieved remarkable results by using a specific copolymer in combination with phosphonated maleic acids. The inventors have found that a scale preventing effect and a remarkable corrosion preventing effect are exhibited, and the present invention has been achieved.
[0011]
That is , the invention according to claim 1 is a water treatment composition for preventing corrosion and scale adhesion on the surface of a metal material in contact with water, and (A) the following general formula [where M represents hydrogen, an alkali metal, and m represents A phosphonated maleic acid compound represented by (1) and a copolymer containing (B) a monoethylenically unsaturated carboxylic acid and a monoethylenically unsaturated sulfonic acid , and a heavy metal It is characterized by not containing .
[Chemical formula 2]
Figure 0004859158
[0012]
The invention according to claim 2 is the water treatment composition according to claim 1, wherein the monoethylenically unsaturated carboxylic acid is one or more selected from acrylic acid and methacrylic acid.
[0013]
The invention according to claim 3 is the water treatment composition according to claim 1, wherein the monoethylenically unsaturated sulfonic acid is 2-acrylamido-methylpropanesulfonic acid, 2-methacrylamide-methylpropanesulfonic acid, 3-allyloxy. Selected from 2-hydroxypropane sulfonic acid, 3-metaloxy-2-hydroxypropane sulfonic acid, 3-allyloxy-1-hydroxypropane-2-sulfonic acid, 3-metaloxy-1-hydroxypropane-2-sulfonic acid It is characterized by one or more types.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
One component of the present invention is phosphonated maleic acid, and its production method is not limited in the present invention, but one or more selected from, for example, maleic acid, maleate and maleic anhydride [hereinafter referred to as “ Manufactured by reacting maleic acids ”with phosphorous acid and / or phosphites [hereinafter referred to as“ phosphorous acids ”] in neutral to alkaline aqueous solvents in the presence of free radical initiators. [JP-A-4-334392]. At this time, the reaction molar ratio of maleic acid and phosphorous acid is usually in the range of 1: 1 to 10: 1, but preferably in the range of 1: 1 to 3: 1.
[0015]
At this time, a part of maleic acid may be substituted with other monoethylenically unsaturated monomer copolymerizable with maleic acid or phosphorous acid, and acrylic acid is mentioned as a preferable copolymer component. Phosphonated maleic acids are commercially available from Albright & Wilson under the trade name “BriCor288” and can also be used in the present invention.
[0016]
Another component of the present invention is a copolymer (hereinafter simply referred to as “copolymer”) containing a monoethylenically unsaturated carboxylic acid and a monoethylenically unsaturated sulfonic acid. At this time, the monoethylenically unsaturated carboxylic acid preferably contains at least one selected from acrylic acid and methacrylic acid, and the monoethylenically unsaturated sulfonic acid is 2-acrylamido-2-methylpropanesulfonic acid. 2-methacrylamido-methylpropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, 3-metaloxy-2-hydroxypropanesulfonic acid, 3-allyloxy-1-hydroxypropane-2-sulfonic acid, 3-metalloxy It is preferable to include at least one selected from -1-hydroxypropane-2-sulfonic acid.
[0017]
The copolymer can be produced by heating a monomer solution containing each of a monoethylenically unsaturated carboxylic acid and a monoethylenically unsaturated sulfonic acid in the presence of a polymerization initiation catalyst. At this time, it may be a copolymer further containing at least one monoethylenically unsaturated carboxylic acid and other monoethylenically unsaturated monomers copolymerizable with the monoethylenically unsaturated sulfonic acid. Examples of other monoethylenically unsaturated monomers that can be copolymerized include monoethylenically unsaturated carboxylic acids such as maleic acid, maleic anhydride, itaconic acid, methacrylic acid, crotonic acid, fumaric acid, and water-soluble salts thereof. , Styrene sulfonic acid, sulfoalkyl (meth) acrylate esters, sulfoalkyl (meth) allyl ethers, monoethylenically unsaturated sulfonic acids such as (meth) allyl sulfonic acid, vinyl sulfonic acid and water-soluble salts thereof, vinyl phosphones Monoethylenically unsaturated phosphonic acids such as acids and allylphosphonic acids and water-soluble salts thereof, (meth) acrylamide, alkyl (meth) acrylate esters, alkyl (meth) allyl ethers, hydroxy-substituted alkyl (meth) acrylate esters , Hydroxy-substituted alkyl (meth) allylene Ethers, and (meth) nonionic monoethylenically unsaturated monomers such as allyl alcohol.
[0018]
The composition ratio of monoethylenically unsaturated carboxylic acid and monoethylenically unsaturated sulfonic acid is preferably 90:10 to 30:70 (weight ratio), more preferably 70:30 to 40:60 (weight ratio). . This composition ratio range is selected from the viewpoint of the corrosion prevention effect, and although there is a certain effect outside this range, it may not be sufficiently large.
[0019]
The weight average molecular weight of the copolymer is 2,000 to 50,000, preferably 3,000 to less than 20,000. The preferable range of the molecular weight is selected from the viewpoint of scale prevention and corrosion prevention effects. The weight average molecular weight can be determined by, for example, measuring polyethylene glycol having a known molecular weight as a standard substance by a gel permeation chromatography method and using commercially available computer software for molecular weight calculation.
[0020]
Although the action mechanism of the water treatment composition of the present invention is not necessarily clear, the dispersion action of the copolymer suppresses the precipitation of phosphonated maleic acids as calcium salt or iron salt, and the phosphonated malein in water or on the metal surface. It is estimated that the acid concentration is kept high and contributes effectively to scale prevention and corrosion prevention.
[0021]
The amount of phosphonated maleic acid added to the aqueous system varies depending on the target aqueous system conditions, particularly the water quality and temperature, but generally the active ingredient concentration is 1 to 5,000 mg / L, more preferably 5 to 5 mg. The range is 100 ppm.
[0022]
The amount of the copolymer added to the aqueous system varies depending on the target aqueous system conditions, particularly water quality, temperature, etc., but generally the active ingredient concentration is 1 to 5,000 mg / L, more preferably 5 to 100 ppm. Range.
[0023]
The water quality to which the water treatment composition of the present invention is applied is water having a pH of 6 or more, preferably a pH of 8 to 10. From the viewpoint of preventing corrosion, it is preferable to apply in a scaled water quality with high pH, Ca hardness, M alkalinity and silica concentration. Since the composition of the present invention has an effect of preventing precipitation and adhesion to various scales such as calcium carbonate, calcium sulfate, magnesium silicate, and silica, it can be applied to water quality with severe scale properties.
[0024]
When copper or a copper alloy is present in a part of the target aqueous system, it is preferable to use an azole compound in combination with the above components. Examples of the azole compound include tolyltriazole, benzotriazole, substituted benzotriazole, mercaptobenzothiazole and the like.
[0025]
Although orthophosphoric acid may be contained in water, the copolymer of the present invention can prevent orthophosphoric acid from precipitating as a calcium salt, zinc salt or iron salt. The composition is preferred because it exhibits a synergistic effect on corrosion protection. The same effect can be obtained by mixing or separately adding orthophosphoric acid or polymerized phosphoric acid together with the composition of the present invention.
[0026]
The water treatment composition of the present invention may be added in combination with a corrosion inhibitor or a scale inhibitor other than those described above. Other representative compounds as corrosion inhibitors and scale inhibitors include 2-hydroxyethylidene-2,2-diphosphonic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, hydroxyphosphonoacetic acid, aminotrimethylene. Phosphonic acid compounds such as phosphonic acid, diethylenetriamine-pentamethylenephosphonic acid, molybdate, tungstate, zinc salt, polyaspartic acid, nitrite, hydroxycarboxylic acids such as citric acid, gluconic acid, tartaric acid, malic acid, alumine Examples include acid salts. The present invention does not limit any combination of these.
[0027]
In addition, in order to prevent damage by slime produced by microorganisms due to underwater microorganisms, oxidizing disinfectants such as hypochlorite, hypobromite and ozone are used. Although the corrosion inhibitor may be decomposed due to the oxidizing power, the phosphonated maleic acids and copolymers of the present invention are excellent in decomposition resistance, and the corrosion prevention effect is reduced or sterilized in the normal use range. It can be used in combination with little effect deactivation.
[0028]
【Example】
The present invention will be specifically described below, but the present invention is not limited to these examples.
[0029]
[Polymer used for evaluation]
Phosphonated maleic acids: “BriCorr288” manufactured by Albright & Wilson (active content 30%, average degree of polymerization about 1.5)
Copolymer A-1: Copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid (copolymerization ratio = 60: 40% by weight, weight average molecular weight of about 10,000)
Copolymer A-2: A copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid (copolymerization ratio = 70: 30 wt%, weight average molecular weight of about 10,000)
Copolymer A-3: Copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid (copolymerization ratio = 75: 25% by weight, weight average molecular weight of about 5,000)
Copolymer B: acrylic acid and 3-allyloxy-2-hydroxypropanesulfonic acid (copolymerization ratio = 50: 50% by weight, weight average molecular weight of about 8,000)
Copolymer C: A copolymer of acrylic acid and vinyl sulfonic acid (copolymerization ratio 75: 25% by weight, weight average molecular weight about 5,000)
Copolymer D: Copolymer of maleic acid and styrene sulfonic acid (copolymerization ratio 1: 3 mol, weight average molecular weight 20,000)
Polymer E: acrylic acid polymer (weight average molecular weight of about 5,000)
Polymer F: 2-acrylamido-2-methylpropanesulfonic acid polymer (weight average molecular weight 5,000)
[0030]
[Evaluation of corrosion prevention effect]
A test piece of low carbon steel (JIS G 3141, SPCC) having dimensions of 50 × 30 × 1 mm and a surface area of 0.316 dm 2 was degreased with acetone, dried and weighed. One test piece was attached to a test piece holder (JISK0100-1990 industrial water corrosion test method, rotation method), and immersed in a flask with a reflux condenser containing 500 mL of the test solution. The flask was placed in a constant temperature bath set at 40 ° C. in advance, attached to the test piece holder motor rotating shaft, and the test piece was rotated at a linear velocity of 0.3 m / sec. The test period was 3 days. After removing corrosive products and scale deposits adhering to the surface of the test piece with a brush under running water, drying and measuring the weight of the test piece, the corrosion rate (mdd) was calculated from the following equation from the weight loss before and after the test. .
Corrosion rate: mdd = A / (B × C)
here,
A: Weight loss (mg) before and after the test of the test piece,
B: Surface area of the test piece (dm 2 )
C: Test days (days)
[0031]
The water quality of the test water was pH 8.5, M alkalinity 150 ppm, calcium hardness 150 ppm, chloride ions 106 ppm, sulfate ions 50 ppm.
[0032]
The obtained results are shown in Table 1.
[Table 1]
Figure 0004859158
[0033]
By using the phosphonated maleic acid and the copolymer of the present invention in combination, the anticorrosion effect was superior compared to the case of using each of them alone.
[0034]
[Evaluation of scale prevention effect]
Each of the compounds in Table 2 was added to deionized water to dissolve calcium chloride and sodium bicarbonate, and sodium hydroxide was further added to prepare test water having a pH of 8.8, a calcium hardness of 500 ppm, and an M alkalinity of 400 ppm. The test water was put in a sealed glass container and left in a constant temperature bath at 70 ° C. for 7 days. The calcium hardness in the filtrate was measured by EDTA titration method (JIS K0101). The scale inhibition rate was calculated by the following formula.
Scale inhibition rate (%) = {(Ci−Cb) / (Cs−Cb)} × 100
here,
Ci: Calcium concentration after test at the time of treatment agent addition (mg / L)
Cb: Calcium concentration (mg / L) after the test before no treatment agent was added
Cs: Calcium concentration before test (mg / L)
[0035]
Further, the total phosphoric acid concentration in the filtrate was measured, and the phosphorus residual ratio was calculated by the following formula.
Phosphorus residual rate (%) = (Pi / Ps) × 100
here,
Ps: total phosphate concentration before test,
Pi: Total phosphoric acid concentration after the test when the treatment agent was added
The results are shown in Table 2.
[Table 2]
Figure 0004859158
[0037]
Phosphorylated maleic acids alone have a low phosphorus residue rate because phosphonated maleic acids are precipitated as calcium salts. By using the copolymer of the present invention in combination with the phosphonated maleic acid, the phosphorus residual ratio is increased, which suggests that the copolymer is effective in preventing precipitation of the calcium salt of the phosphonated maleic acid. It is. Moreover, the combined use of the phosphonated maleic acids and the copolymer was superior in the scale-inhibiting effect as compared to the single use of each. The scale-inhibiting effect here refers mainly to the inhibitory effect on calcium carbonate. Even when the same sulfonic acid copolymer was used, a copolymer effect of acrylic acid and vinyl sulfonic acid or a copolymer of maleic acid and styrene sulfonic acid did not show the combined effect with phosphonated maleic acids.
[0038]
【Effect of the invention】
The composition for preventing scales and preventing corrosion according to the present invention does not contain environmental pollutants such as heavy metals, has little impact on the environment, and has excellent metal corrosion prevention effect and scale prevention effect. This can reduce the frequency of updating the equipment and contribute to safe driving of the apparatus.

Claims (3)

(A)下記一般式〔ここでMは水素、アルカリ金属を表わし、mは1〜10の整数である〕で示されるホスホン化マレイン酸類と、(B)モノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸を含む共重合体を有効成分とし、且つ、重金属を含有しないことを特徴とする、水と接する金属材料表面の腐食とスケール付着を防止する水処理組成物。
Figure 0004859158
(A) Phosphonated maleic acid represented by the following general formula (where M represents hydrogen or an alkali metal, and m is an integer of 1 to 10), (B) monoethylenically unsaturated carboxylic acid and monoethylene A water treatment composition for preventing corrosion and scale adhesion on the surface of a metal material in contact with water , characterized by comprising a copolymer containing an unsaturated sulfonic acid as an active ingredient and containing no heavy metal .
Figure 0004859158
モノエチレン性不飽和カルボン酸が、アクリル酸、メタアクリル酸から選択される1種以上であることを特徴とする請求項1記載の水処理組成物。  The water treatment composition according to claim 1, wherein the monoethylenically unsaturated carboxylic acid is at least one selected from acrylic acid and methacrylic acid. モノエチレン性不飽和スルホン酸が、2−アクリルアミド−メチルプロパンスルホン酸、2−メタアクリルアミド−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸、3−メタロキシ−2−ヒドロキシプロパンスルホン酸、3−アリロキシ−1−ヒドロキシプロパン−2−スルホン酸、3−メタロキシ−1−ヒドロキシプロパン−2−スルホン酸から選択される1種以上であることを特徴とする請求項1記載の水処理組成物。  Monoethylenically unsaturated sulfonic acid is 2-acrylamido-methylpropane sulfonic acid, 2-methacrylamide-methylpropane sulfonic acid, 3-allyloxy-2-hydroxypropane sulfonic acid, 3-metaloxy-2-hydroxypropane sulfonic acid, The water treatment composition according to claim 1, wherein the composition is one or more selected from 3-allyloxy-1-hydroxypropane-2-sulfonic acid and 3-metaloxy-1-hydroxypropane-2-sulfonic acid. .
JP2001197595A 2001-06-29 2001-06-29 Water treatment composition Expired - Fee Related JP4859158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001197595A JP4859158B2 (en) 2001-06-29 2001-06-29 Water treatment composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197595A JP4859158B2 (en) 2001-06-29 2001-06-29 Water treatment composition

Publications (2)

Publication Number Publication Date
JP2003010886A JP2003010886A (en) 2003-01-14
JP4859158B2 true JP4859158B2 (en) 2012-01-25

Family

ID=19035167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197595A Expired - Fee Related JP4859158B2 (en) 2001-06-29 2001-06-29 Water treatment composition

Country Status (1)

Country Link
JP (1) JP4859158B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006334495A (en) * 2005-06-01 2006-12-14 Kurita Water Ind Ltd Antiadhesive agent for silica-based stain, copolymer for antiadhesive agent and method for preventing adhesion of silica-based stain
CN101356122B (en) * 2006-01-11 2013-06-26 栗田工业株式会社 Antiscaling agent and antiscaling method
JP5903953B2 (en) * 2012-03-15 2016-04-13 栗田工業株式会社 Iron scale inhibitor and method for preventing steam generator
EP2980030B1 (en) * 2013-03-27 2018-10-17 Kurita Water Industries Ltd. Method and agent for treating water in cooling water system
JP5682727B2 (en) * 2014-08-06 2015-03-11 栗田工業株式会社 Water treatment method and water treatment agent for cooling water system
CN113880269A (en) * 2021-10-27 2022-01-04 汇科琪(天津)水质添加剂有限公司 Water treatment agent for drying cylinder of paper machine and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258697A (en) * 1987-04-16 1988-10-26 Hakutou Kagaku Kk Corrosion inhibitor also for suppressing scale of metals in aqueous system
US6207079B1 (en) * 1999-01-28 2001-03-27 Ashland Inc. Scale and/or corrosion inhibiting composition

Also Published As

Publication number Publication date
JP2003010886A (en) 2003-01-14

Similar Documents

Publication Publication Date Title
US4018702A (en) Corrosion inhibition with amine adducts of maleic anhydride polymers
US3965027A (en) Scale inhibition and corrosion inhibition
KR100923743B1 (en) Corrosion Inhibiting Compositions
EP0544345B1 (en) Corrosion and/or scale inhibition
AU617792B2 (en) Method for controlling corrosion using molybdate compositions
JPH0133239B2 (en)
EP1288338A1 (en) Process for inhibiting metallic corrosion in aqueous systems
JP2801465B2 (en) How to prevent corrosion and scale on metal surfaces
JP2011045861A (en) Water treatment agent and water treatment method
EP1288337A2 (en) Inhibiting metallic corrosion in aqueous systems
JPS6312144B2 (en)
JP4859158B2 (en) Water treatment composition
JPS63258697A (en) Corrosion inhibitor also for suppressing scale of metals in aqueous system
JP2002294273A (en) Water corrosion preventing agent composition
JP2003080294A (en) Scaling inhibitor and method for preventing scaling
KR900003981B1 (en) Method for corrosion inhibition of metals
JP4019331B2 (en) Water treatment agent
KR100949354B1 (en) Method of water-treating suitable for water of high conductivity
US4963631A (en) Polymers
JP4383614B2 (en) Stable water treatment composition containing hypochlorite
JP5559629B2 (en) Water-based metal anticorrosion method
AU617791B2 (en) Method and compositions for controlling corrosion in low and high hardness water
JP4237454B2 (en) Water-based metal corrosion control method
JP2001137892A (en) Water treating chemical
JPS60139397A (en) Method of controlling scale in pressure boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4859158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees