JP4858148B2 - Solid catalyst for producing oxetane compound and process for producing the same - Google Patents

Solid catalyst for producing oxetane compound and process for producing the same Download PDF

Info

Publication number
JP4858148B2
JP4858148B2 JP2006338001A JP2006338001A JP4858148B2 JP 4858148 B2 JP4858148 B2 JP 4858148B2 JP 2006338001 A JP2006338001 A JP 2006338001A JP 2006338001 A JP2006338001 A JP 2006338001A JP 4858148 B2 JP4858148 B2 JP 4858148B2
Authority
JP
Japan
Prior art keywords
producing
catalyst
oxetane compound
solid catalyst
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006338001A
Other languages
Japanese (ja)
Other versions
JP2008149230A (en
Inventor
淳 春田
祥史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2006338001A priority Critical patent/JP4858148B2/en
Publication of JP2008149230A publication Critical patent/JP2008149230A/en
Application granted granted Critical
Publication of JP4858148B2 publication Critical patent/JP4858148B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Compounds (AREA)

Description

本発明は、オキセタン化合物製造用固体触媒及びその製法に関する。オキセタン化合物は、例えば、熱硬化性樹脂等の原料として有用な化合物である。   The present invention relates to a solid catalyst for producing an oxetane compound and a method for producing the same. The oxetane compound is a compound useful as a raw material for a thermosetting resin, for example.

従来、オキセタン化合物製造用触媒としては、例えば、カルシウムヒドロキシアパタイト又はカルシウムの一部がアルカリ金属等で置換された部分置換カルシウムヒドロキシアパタイト(例えば、特許文献1参照)、ヘテロポリ酸又はその塩(例えば、特許文献2参照)、結晶性アルミノシリケート(例えば、特許文献3参照)、結晶性又は非結晶性の金属酸化物(例えば、特許文献4参照)等が知られていた。しかしながら、これらの触媒を用いたオキセタン化合物の合成例が開示されているが、いずれの触媒においても、オキセタン化合物の選択率は低かった。即ち、オキセタン化合物製造用触媒としては、その機能を十分に果たしているものとは言えず、オキセタン化合物の工業的に製造する上での触媒としては問題があった。
特開平10-158255号公報 特開昭61-126080号公報 特開平3-206087号公報 特開平3-200777号公報
Conventionally, as a catalyst for producing an oxetane compound, for example, calcium hydroxyapatite or partially substituted calcium hydroxyapatite in which a part of calcium is substituted with an alkali metal or the like (for example, refer to Patent Document 1), heteropolyacid or a salt thereof (for example, Patent Document 2), crystalline aluminosilicate (for example, see Patent Document 3), crystalline or non-crystalline metal oxide (for example, see Patent Document 4), and the like have been known. However, although the synthesis example of the oxetane compound using these catalysts is disclosed, the selectivity of the oxetane compound was low in any catalyst. That is, it cannot be said that the catalyst for producing oxetane compounds sufficiently fulfills its function, and there is a problem as a catalyst for industrial production of oxetane compounds.
Japanese Patent Laid-Open No. 10-158255 JP 61-126080 A Japanese Patent Laid-Open No. 3-206087 Japanese Unexamined Patent Publication No. 3-200777

本発明の課題は、オキセタン化合物を高選択率で製造できる、オキセタン化合物製造用固体触媒に関するものである。   The subject of this invention is related with the solid catalyst for oxetane compound manufacture which can manufacture an oxetane compound with high selectivity.

50℃において、アンモニアの化学吸着量が100μmol/g以下であり、且つ二酸化炭素の化学吸着量が100μmol/g以下であることを特徴とするオキセタン化合物製造用固体触媒によって解決される。   This is solved by a solid catalyst for producing an oxetane compound, wherein the chemical adsorption amount of ammonia is 100 μmol / g or less at 50 ° C. and the chemical adsorption amount of carbon dioxide is 100 μmol / g or less.

本発明の課題は、又、前記オキセタン化合物製造用固体触媒の製法によっても解決される。   The object of the present invention is also solved by a method for producing the solid catalyst for producing the oxetane compound.

本発明により、熱硬化性樹脂等の原料として有用なオキセタン化合物を高選択率で製造が可能な、工業的に好適なオキセタン化合物製造用固体触媒及びその製法を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, an industrially suitable solid catalyst for producing an oxetane compound capable of producing an oxetane compound useful as a raw material for a thermosetting resin or the like with a high selectivity and a production method thereof can be provided.

本発明のオキセタン化合物製造用固体触媒は、50℃において、アンモニアの化学吸着量が100μmol/g以下であり、且つ二酸化炭素の化学吸着量が100μmol/g以下であることを特徴とするものである。   The solid catalyst for producing an oxetane compound according to the present invention is characterized in that, at 50 ° C., the chemisorption amount of ammonia is 100 μmol / g or less and the chemisorption amount of carbon dioxide is 100 μmol / g or less. .

前記のアンモニア及び二酸化炭素の化学吸着量の測定は、例えば、以下の手順によって行うことができる。
(1)当該固体触媒を、ヒーター等により50℃で保温しておき、高真空状態から徐々にアンモニア又は二酸化炭素に晒し、これらの吸着量を測定することで、全吸着等温線(化学吸着と物理吸着の両方を含む)を得る。
(2)次に、固体触媒を高真空におき、物理吸着したアンモニア又は二酸化炭素だけを完全に除去した後、そのまま再度アンモニア又は二酸化炭素に晒すことで、同様に二度目の吸着等温線(物理吸着等温線に該当する)を得る。
(3)全吸着等温線(一度目の吸着等温線;化学吸着と物理吸着の両方を含む)と物理吸着等温線の差により化学吸着等温線を得る。
(4)その化学吸着等温線は、ほぼ直線となるため、これを化学吸着等温線のP=0に外挿することで、固体触媒に単分子層で化学吸着したアンモニア量又は二酸化炭素量(化学吸着量)を認識する。
The measurement of the amount of chemisorption of ammonia and carbon dioxide can be performed, for example, by the following procedure.
(1) The solid catalyst is kept at 50 ° C. with a heater or the like, gradually exposed to ammonia or carbon dioxide from a high vacuum state, and the amount of adsorption is measured. Including both physical adsorption).
(2) Next, the solid catalyst is placed in a high vacuum, and after only the physically adsorbed ammonia or carbon dioxide is completely removed, it is exposed again to ammonia or carbon dioxide as it is. Corresponding to the adsorption isotherm).
(3) A chemical adsorption isotherm is obtained by the difference between the total adsorption isotherm (first adsorption isotherm; including both chemical adsorption and physical adsorption) and the physical adsorption isotherm.
(4) Since the chemisorption isotherm is almost a straight line, by extrapolating this to P = 0 of the chemisorption isotherm, the amount of ammonia or carbon dioxide chemisorbed on the solid catalyst in a monomolecular layer ( Recognize the amount of chemisorption.

なお、アンモニア及び二酸化炭素の化学吸着量の測定に当たり、前記の固体触媒を、加熱処理や真空排気処理、又はこれらを合わせた方法等によって、予め、固体触媒に吸着した水や酸性物質、塩基性物質を脱離させるための前処理を行うことが望ましい。当該前処理は、触媒の性状を考慮して適宜選択すれば良く、例えば加熱処理や真空排気処理、これらを合わせた方法等が挙げられる。加熱温度や真空度および時間等といった処理条件は、いずれも固体触媒の性状を損なわない範囲であれば特に制限されない。   When measuring the amount of chemical adsorption of ammonia and carbon dioxide, the solid catalyst is preliminarily adsorbed to the solid catalyst by heat treatment, vacuum evacuation treatment, or a combination thereof. It is desirable to perform a pretreatment for desorbing the substance. The pretreatment may be appropriately selected in consideration of the properties of the catalyst, and examples thereof include heat treatment, vacuum exhaust treatment, and a method combining them. Processing conditions such as heating temperature, degree of vacuum and time are not particularly limited as long as the properties of the solid catalyst are not impaired.

本発明のオキセタン化合物製造用固体触媒は、アルカリ金属化合物が担体に担持されているものであるものが望ましく、アルカリ金属としては、例えば、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。なお、これらのアルカリ金属は、単独又は二種以上が担持されていても良い。又、これらのアルカリ金属の担体への担持は、例えば、硝酸塩、炭酸塩、水酸化物、酸化物、塩化物、酢酸塩、シュウ酸塩等の形態をアルカリ金属供給源として、当該固体触媒を調製する際に使用される。   The solid catalyst for producing an oxetane compound of the present invention is preferably a catalyst in which an alkali metal compound is supported on a carrier. Examples of the alkali metal include lithium, sodium, potassium, cesium and the like. In addition, these alkali metals may be carried alone or in combination of two or more. In addition, these alkali metals are supported on a carrier, for example, in the form of nitrate, carbonate, hydroxide, oxide, chloride, acetate, oxalate or the like, using the solid catalyst as an alkali metal supply source. Used in preparation.

前記アルカリ金属の担体への担持量としては、担体1gに対して、好ましくは0.01〜2g、更に好ましくは0.02〜0.2gである。   The amount of the alkali metal supported on the carrier is preferably 0.01 to 2 g, more preferably 0.02 to 0.2 g, relative to 1 g of the carrier.

本発明のオキセタン化合物製造用固体触媒は、先のアルカリ金属に加えて、リン化合物が担体に担持されているものが望ましい。リンの担体への担持は、例えば、リン酸(その水溶液も含む)又はそれらのアルカリ金属塩(その水溶液も含む)等をリン供給源として、当該固体触媒を調製する際に使用される。   The solid catalyst for producing an oxetane compound of the present invention is preferably one in which a phosphorus compound is supported on a carrier in addition to the alkali metal. The support of phosphorus on the carrier is used, for example, when preparing the solid catalyst using phosphoric acid (including an aqueous solution thereof) or an alkali metal salt thereof (including an aqueous solution thereof) as a phosphorus supply source.

前記リンの担体への担持量としては、担体1gに対して、好ましくは0.001〜1g、更に好ましくは0.005〜2gである。   The amount of the phosphorus supported on the carrier is preferably 0.001 to 1 g, more preferably 0.005 to 2 g, relative to 1 g of the carrier.

本発明のオキセタン化合物製造用固体触媒の担体としては、反応を阻害しないものならば特に限定されないが、例えば、シリカ、アルミナ、シリカアルミナ、ジルコニア、ゼオライト及び活性炭からなる少なくとも1種の担体が好適に使用される。   The carrier of the solid catalyst for producing the oxetane compound of the present invention is not particularly limited as long as it does not inhibit the reaction. For example, at least one carrier comprising silica, alumina, silica alumina, zirconia, zeolite and activated carbon is preferably used. used.

本発明のオキセタン化合物製造用固体触媒の製法としては、例えば、アルカリ金属供給源、水、担体、必要ならばリン供給源を加え、水を蒸発乾固させた後、焼成することによって行われる。その際の焼成温度は、好ましくは200〜1000℃、更に好ましくは400〜800℃であり、圧力は特に制限されない。又、焼成雰囲気も特に限定されないが、好ましくは酸素の存在下(例えば、空気中)で行う。   The solid catalyst for producing the oxetane compound of the present invention is produced, for example, by adding an alkali metal source, water, a carrier and, if necessary, a phosphorus source, evaporating water to dryness, and calcining. The firing temperature at that time is preferably 200 to 1000 ° C., more preferably 400 to 800 ° C., and the pressure is not particularly limited. Also, the firing atmosphere is not particularly limited, but is preferably performed in the presence of oxygen (for example, in air).

なお、固体触媒の形状は、粉体、成型体のいずれでも良く、反応方式や反応器の形状に応じて適宜選択でき、例えば、成型体であれば、球状、円柱状、顆粒状等が好適に使用される。   The shape of the solid catalyst may be either a powder or a molded body, and can be appropriately selected according to the reaction method and the shape of the reactor. For example, a spherical shape, a cylindrical shape, a granular shape, etc. are suitable for a molded body. Used for.

次に、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。なお、アンモニア及び二酸化炭素の化学吸着量の測定は、高性能・全自動ガス吸着量測定装置Autosorb−1−C型(ユアサアイオニクス社製)を使用した。又、参考例において、トリメチロールプロパン及び3-エチル-3-ヒドロキシメチルオキセタン(オキセタン化合物)はガスクロマトグラフィーにより分析し、オキセタン化合物の選択率(mol%)は、転化したトリメチロールプロパンに対する生成した3-エチル-3-ヒドロキシメチルオキセタンの割合(mol比)により求めた。   Next, although an Example and a comparative example are given and this invention is demonstrated concretely, the scope of the present invention is not limited to these. In addition, the chemical adsorption amount of ammonia and carbon dioxide was measured using a high-performance, fully automatic gas adsorption amount measuring device Autosorb-1-C type (manufactured by Yuasa Ionics). In the Reference Example, trimethylolpropane and 3-ethyl-3-hydroxymethyloxetane (oxetane compound) were analyzed by gas chromatography, and the selectivity (mol%) of the oxetane compound was generated relative to the converted trimethylolpropane. It calculated | required by the ratio (mol ratio) of 3-ethyl-3-hydroxymethyl oxetane.

実施例1(触媒A;セシウム−リン−酸素/シリカ(Cs-P-O/SiO2)の製造)
ガラス製フラスコに、硝酸セシウム5.2g及びイオン交換水20gを加えて撹拌し、硝酸セシウム水溶液を得た。次いで、アモルファスシリカ(粒径:10〜20メッシュ)16gに、先の硝酸セシウム水溶液を加えた後、更にリン酸水溶液(85%リン酸水溶液2.5gにイオン交換水10gを加えて調製したもの)を加えた。得られた水溶液を蒸発乾固させた後に、空気中にて600℃で2時間焼成して触媒Aを得た。
Example 1 (Catalyst A; Production of cesium-phosphorus-oxygen / silica (Cs-PO / SiO 2 ))
To a glass flask, 5.2 g of cesium nitrate and 20 g of ion exchange water were added and stirred to obtain an aqueous cesium nitrate solution. Next, after adding the above cesium nitrate aqueous solution to 16 g of amorphous silica (particle size: 10 to 20 mesh), phosphoric acid aqueous solution (prepared by adding 10 g of ion-exchanged water to 2.5 g of 85% phosphoric acid aqueous solution) Was added. The resulting aqueous solution was evaporated to dryness and then calcined in air at 600 ° C. for 2 hours to obtain Catalyst A.

実施例2(触媒Aのアンモニア及び二酸化炭素の化学吸着量測定)
触媒A1.5gをガラス製サンプルセルに入れ、4Pa以下にて、380℃で2時間加熱した(前処理)。次に、アンモニアの化学吸着量測定を行うため、前処理された触媒Aを、サンプルセルのまま高性能・全自動ガス吸着量測定装置Autosorb−1−C型(ユアサアイオニクス社製)に設置した。
固体触媒をヒーターにより50℃で保温し、真空状態から徐々にアンモニアガスをサンプルセルに導入し、絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、化学吸着量と物理吸着量を合わせた全吸着量)を測定(測定温度;50℃、熱平衡時間;60分、圧力公差;4、吸着平衡時間;2分)し、全吸着等温線(化学吸着と物理吸着の両方を含む)を作成した。
その後、高真空で排気することにより物理吸着したアンモニアを除去し、再度絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、物理吸着量)を測定し、物理吸着等温線を作成した。全吸着量と物理吸着量の差から化学吸着等温線を作成し、これをP=0に外挿した。その結果、触媒Aのアンモニア化学吸着量は6μmol/gであった。
又、吸着ガスをアンモニアガスから二酸化炭素に変えて、二酸化炭素の化学吸着量測定を行った。その結果、二酸化炭素化学吸着量は1μmol/g以下であった。
Example 2 (Measurement of chemisorption amount of ammonia and carbon dioxide of catalyst A)
1.5 g of catalyst A was put into a glass sample cell and heated at 380 ° C. for 2 hours at 4 Pa or less (pretreatment). Next, in order to perform the chemical adsorption amount measurement of ammonia, the pretreated catalyst A is installed in a high-performance, fully automatic gas adsorption amount measuring device Autosorb-1-C type (manufactured by Yuasa Ionics Co., Ltd.) as a sample cell. did.
The solid catalyst is kept at 50 ° C. with a heater, and ammonia gas is gradually introduced from the vacuum state into the sample cell, and the adsorption amount (that is, the chemical adsorption amount and the total adsorption point) is 20 points from the absolute pressure 5.3 kPa to 5.3 kPa at 106.7 kPa. Measure the total adsorption amount) (measurement temperature: 50 ° C, thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical adsorption and physical adsorption) Including both).
Then, the ammonia that was physically adsorbed was removed by evacuating in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) was measured at a total of 20 points from absolute pressure 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa. Created a line. A chemical adsorption isotherm was created from the difference between the total adsorption amount and the physical adsorption amount, and extrapolated to P = 0. As a result, the ammonia chemisorption amount of catalyst A was 6 μmol / g.
Further, the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide. As a result, the amount of carbon dioxide chemisorption was 1 μmol / g or less.

参考例1(触媒Aによる3-エチル-3-ヒドロキシメチルオキセタンの合成)
内径7mmのパイレックス(登録商標)ガラス製縦型反応管に、触媒A1mlを充填し、その上層に直径2mmのガラスビーズ8gを充填した。次いで、触媒層温度を350℃に保持した後、アルゴンを毎分5mlで通気しながら、5質量%トリメチロールプロパン水溶液を流量2.9g/hで、反応管上方からメタリングポンプにより供給した。供給開始から1〜5時間(合計4時間分)の反応液を捕集して分析した結果、トリメチロールプロパンの転化率は12.1mol%、3-エチル-3-ヒドロキシメチルオキセタンの選択率は82.7mol%であった。
Reference Example 1 (Synthesis of 3-ethyl-3-hydroxymethyloxetane with catalyst A)
A Pyrex (registered trademark) glass vertical reaction tube having an inner diameter of 7 mm was filled with 1 ml of catalyst A, and 8 g of glass beads with a diameter of 2 mm were filled in the upper layer. Next, after the catalyst layer temperature was maintained at 350 ° C., a 5 mass% trimethylolpropane aqueous solution was supplied from above the reaction tube with a metering pump at a flow rate of 2.9 g / h while bubbling argon at 5 ml per minute. As a result of collecting and analyzing the reaction liquid for 1 to 5 hours (total 4 hours) from the start of the supply, the conversion of trimethylolpropane was 12.1 mol%, and the selectivity for 3-ethyl-3-hydroxymethyloxetane was 82.7. mol%.

実施例3(触媒B;ナトリウム−リン−酸素/シリカ(Na-P-O/SiO2)の製造)
実施例1において、硝酸セシウムを硝酸ナトリウム2.3gに変えたこと以外は、実施例1と同様に触媒を製造した(触媒B)。
Example 3 (Catalyst B; Production of sodium-phosphorus-oxygen / silica (Na-PO / SiO 2 ))
A catalyst was produced in the same manner as in Example 1 except that cesium nitrate was changed to 2.3 g of sodium nitrate in Example 1 (Catalyst B).

実施例4(触媒Bのアンモニア及び二酸化炭素の化学吸着量測定)
実施例2において、触媒Aを触媒Bに変えたこと以外は、実施例2と同様に化学吸着量測定を行った。その結果、アンモニアの化学吸着量は11μmol/g、二酸化炭素の化学吸着量は1μmol/g以下であった。
Example 4 (Measurement of chemisorption amounts of ammonia and carbon dioxide of catalyst B)
In Example 2, the amount of chemical adsorption was measured in the same manner as in Example 2 except that the catalyst A was changed to the catalyst B. As a result, the chemisorption amount of ammonia was 11 μmol / g, and the chemisorption amount of carbon dioxide was 1 μmol / g or less.

参考例2(触媒Bによる3-エチル-3-ヒドロキシメチルオキセタンの合成)
参考例1において、触媒Aを触媒Bに変えたこと以外は、参考例1と同様に反応を行った。その結果、トリメチロールプロパンの転化率は11.4mol%、3-エチル-3-ヒドロキシメチルオキセタンの選択率は50.6mol%であった。
Reference Example 2 (Synthesis of 3-ethyl-3-hydroxymethyloxetane with catalyst B)
In Reference Example 1, the reaction was performed in the same manner as Reference Example 1 except that Catalyst A was changed to Catalyst B. As a result, the conversion of trimethylolpropane was 11.4 mol%, and the selectivity for 3-ethyl-3-hydroxymethyloxetane was 50.6 mol%.

実施例5(触媒C;ナトリウム−酸素/シリカ(Na-O/SiO2)の製造)
実施例1において、リン酸を加えなかったこと以外は、実施例1と同様に触媒を製造した(触媒C)。
Example 5 (Catalyst C; sodium - production of oxygen / silica (Na-O / SiO 2) )
A catalyst was produced in the same manner as in Example 1 except that phosphoric acid was not added (Catalyst C).

実施例5(触媒Cのアンモニア及び二酸化炭素の化学吸着量測定)
実施例2において、触媒Aを触媒Cに変えたこと以外は、実施例2と同様に化学吸着量測定を行った。その結果、アンモニアの化学吸着量は8μmol/g、二酸化炭素の化学吸着量は15μmol/gであった。
Example 5 (Measurement of chemisorption amount of ammonia and carbon dioxide of catalyst C)
In Example 2, the amount of chemical adsorption was measured in the same manner as in Example 2 except that the catalyst A was changed to the catalyst C. As a result, the chemisorption amount of ammonia was 8 μmol / g, and the chemisorption amount of carbon dioxide was 15 μmol / g.

参考例3(触媒Cによる3-エチル-3-ヒドロキシメチルオキセタンの合成)
参考例1において、触媒Aを触媒Cに変えたこと以外は、参考例1と同様に反応を行った。その結果、トリメチロールプロパンの転化率は12.8mol%、3-エチル-3-ヒドロキシメチルオキセタンの選択率は66.3mol%であった。
Reference Example 3 (Synthesis of 3-ethyl-3-hydroxymethyloxetane with catalyst C)
In Reference Example 1, the reaction was performed in the same manner as Reference Example 1 except that Catalyst A was changed to Catalyst C. As a result, the conversion of trimethylolpropane was 12.8 mol%, and the selectivity for 3-ethyl-3-hydroxymethyloxetane was 66.3 mol%.

比較例1(触媒X;リン−酸素/シリカ(P/SiO2)の製造)
実施例1において、硝酸セシウムを加えず、イオン交換水10gを加えたこと以外は、実施例1と同様に触媒を製造した(触媒X)。
Comparative Example 1 (Catalyst X; Production of Phosphorus -Oxygen / Silica (P / SiO 2 ))
In Example 1, a catalyst was produced in the same manner as in Example 1 except that 10 g of ion-exchanged water was added without adding cesium nitrate (Catalyst X).

比較例2(触媒Xのアンモニア及び二酸化炭素の化学吸着量測定)
実施例2において、触媒Aを触媒Xに変えたこと以外は、実施例2と同様に化学吸着量測定を行った。その結果、アンモニアの化学吸着量は278μmol/g、二酸化炭素の化学吸着量は1μmol/g以下であった。
Comparative Example 2 (Measurement of chemisorption amount of ammonia and carbon dioxide of catalyst X)
In Example 2, the amount of chemical adsorption was measured in the same manner as in Example 2 except that the catalyst A was changed to the catalyst X. As a result, the chemisorption amount of ammonia was 278 μmol / g, and the chemisorption amount of carbon dioxide was 1 μmol / g or less.

参考例4(触媒Xによる3-エチル-3-ヒドロキシメチルオキセタンの合成)
参考例2において、触媒Aを触媒Xに変えたこと以外は、参考例2と同様に反応を行った。その結果、トリメチロールプロパンの転化率は25.7mol%であったが、3-エチル-3-ヒドロキシメチルオキセタンの生成は確認されなかった。
Reference Example 4 (Synthesis of 3-ethyl-3-hydroxymethyloxetane with catalyst X)
In Reference Example 2, the reaction was performed in the same manner as Reference Example 2 except that the catalyst A was changed to the catalyst X. As a result, the conversion rate of trimethylolpropane was 25.7 mol%, but formation of 3-ethyl-3-hydroxymethyloxetane was not confirmed.

比較例3(γ-アルミナ(NST-7;日揮ユニバーサル社製)のアンモニア及び二酸化炭素の化学吸着量測定)
実施例2において、触媒Aをγ-アルミナ(NST-7;日揮ユニバーサル社製)に変えたこと以外は、実施例2と同様に化学吸着量測定を行った。その結果、アンモニアの化学吸着量は477μmol/g、二酸化炭素の化学吸着量は104μmol/g以下であった。
Comparative Example 3 (Ammonia and carbon dioxide chemisorption measurements of γ-alumina (NST-7; manufactured by JGC Universal))
In Example 2, the amount of chemical adsorption was measured in the same manner as in Example 2 except that the catalyst A was changed to γ-alumina (NST-7; manufactured by JGC Universal). As a result, the chemisorption amount of ammonia was 477 μmol / g, and the chemisorption amount of carbon dioxide was 104 μmol / g or less.

参考例5(γ-アルミナ(NST-7;日揮ユニバーサル社製)による3-エチル-3-ヒドロキシメチルオキセタンの合成)
参考例2において、触媒Aをγ-アルミナ(NST-7;日揮ユニバーサル社製)に変えたこと以外は、参考例2と同様に反応を行った。その結果、トリメチロールプロパンの転化率は100mol%であったが、3-エチル-3-ヒドロキシメチルオキセタンの生成は確認されなかった。
Reference Example 5 (Synthesis of 3-ethyl-3-hydroxymethyloxetane using γ-alumina (NST-7; manufactured by JGC Universal))
In Reference Example 2, the reaction was performed in the same manner as in Reference Example 2 except that the catalyst A was changed to γ-alumina (NST-7; manufactured by JGC Universal). As a result, the conversion rate of trimethylolpropane was 100 mol%, but formation of 3-ethyl-3-hydroxymethyloxetane was not confirmed.

比較例4(酸化ジルコニウム(XZ16052;NORTON社製)のアンモニア及び二酸化炭素の化学吸着量測定)
実施例2において、触媒Aを酸化ジルコニウム(XZ16052;NORTON社製)に変えたこと以外は、実施例2と同様に化学吸着量測定を行った。その結果、アンモニアの化学吸着量は376μmol/g、二酸化炭素の化学吸着量は276μmol/gであった。
Comparative Example 4 (Ammonia and carbon dioxide chemisorption measurements of zirconium oxide (XZ16052; manufactured by NORTON))
In Example 2, the amount of chemical adsorption was measured in the same manner as in Example 2 except that the catalyst A was changed to zirconium oxide (XZ16052; manufactured by NORTON). As a result, the chemisorption amount of ammonia was 376 μmol / g, and the chemisorption amount of carbon dioxide was 276 μmol / g.

参考例6(酸化ジルコニウム(XZ16052;NORTON社製)による3-エチル-3-ヒドロキシメチルオキセタンの合成)
参考例2において、触媒Aを酸化ジルコニウム(XZ16052;NORTON社製)に変えたこと以外は、参考例2と同様に反応を行った。その結果、トリメチロールプロパンの転化率は100mol%であったが、3-エチル-3-ヒドロキシメチルオキセタンの生成は確認されなかった。
Reference Example 6 (Synthesis of 3-ethyl-3-hydroxymethyloxetane with zirconium oxide (XZ16052; manufactured by NORTON))
In Reference Example 2, the reaction was performed in the same manner as in Reference Example 2 except that the catalyst A was changed to zirconium oxide (XZ16052; manufactured by NORTON). As a result, the conversion rate of trimethylolpropane was 100 mol%, but formation of 3-ethyl-3-hydroxymethyloxetane was not confirmed.

比較例5(NaY型ゼオライト(320NAA;東ソー社製)のアンモニア及び二酸化炭素の化学吸着量測定)
実施例2において、触媒AをNaY型ゼオライト(320NAA;東ソー社製)に変えたこと以外は、実施例2と同様に化学吸着量測定を行った。その結果、アンモニアの化学吸着量は2596μmol/g、二酸化炭素の化学吸着量は3μmol/gであった。
Comparative Example 5 (Ammonia and carbon dioxide chemisorption measurements of NaY-type zeolite (320NAA; manufactured by Tosoh Corporation))
In Example 2, the amount of chemical adsorption was measured in the same manner as in Example 2 except that the catalyst A was changed to NaY-type zeolite (320NAA; manufactured by Tosoh Corporation). As a result, the chemisorption amount of ammonia was 2596 μmol / g, and the chemisorption amount of carbon dioxide was 3 μmol / g.

参考例7(NaY型ゼオライト(320NAA;東ソー社製)による3-エチル-3-ヒドロキシメチルオキセタンの合成)
参考例2において、触媒AをNaY型ゼオライト(320NAA;東ソー社製)に変えたこと以外は、参考例2と同様に反応を行った。その結果、トリメチロールプロパンの転化率は100mol%であったが、3-エチル-3-ヒドロキシメチルオキセタンの生成は確認されなかった。
Reference Example 7 (Synthesis of 3-ethyl-3-hydroxymethyloxetane with NaY-type zeolite (320NAA; manufactured by Tosoh Corporation))
In Reference Example 2, the reaction was performed in the same manner as in Reference Example 2 except that the catalyst A was changed to NaY-type zeolite (320NAA; manufactured by Tosoh Corporation). As a result, the conversion rate of trimethylolpropane was 100 mol%, but formation of 3-ethyl-3-hydroxymethyloxetane was not confirmed.

本発明により、熱硬化性樹脂等の原料として有用なオキセタン化合物を高選択率で製造が可能な、工業的に好適なオキセタン化合物製造用固体触媒及びその製法を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, an industrially suitable solid catalyst for producing an oxetane compound capable of producing an oxetane compound useful as a raw material for a thermosetting resin or the like with a high selectivity and a production method thereof can be provided.

Claims (6)

トリメチロールアルカンを脱水反応させてオキセタン化合物を製造する反応に用いる、アルカリ金属化合物が担体に担持されている触媒であって、50℃において、アンモニアの化学吸着量が100μmol/g以下であり、且つ二酸化炭素の化学吸着量が100μmol/g以下であることを特徴とするオキセタン化合物製造用固体触媒。 A catalyst in which an alkali metal compound is supported on a support used in a reaction for producing an oxetane compound by dehydrating trimethylolalkane, and at 50 ° C., the chemical adsorption amount of ammonia is 100 μmol / g or less, and A solid catalyst for producing an oxetane compound, wherein a chemical adsorption amount of carbon dioxide is 100 μmol / g or less. オキセタン化合物製造用固体触媒が、更にリン酸化合物が担体に担持されているものである請求項1記載のオキセタン化合物製造用固体触媒。 The solid catalyst for producing an oxetane compound according to claim 1, wherein the solid catalyst for producing an oxetane compound further comprises a phosphoric acid compound supported on a carrier. オキセタン化合物製造用固体触媒の担体が、シリカ、アルミナ、シリカアルミナ、ジルコニア、ゼオライト及び活性炭からなる少なくとも1種の担体である、請求項1又は2記載のオキセタン化合物製造用固体触媒。 The solid catalyst for producing an oxetane compound according to claim 1 or 2 , wherein the carrier of the solid catalyst for producing an oxetane compound is at least one carrier comprising silica, alumina, silica alumina, zirconia, zeolite and activated carbon. アルカリ金属供給源、水及び担体を加え、水を蒸発乾固させた後、焼成する請求項1又は3記載のオキセタン化合物製造用固体触媒の製法。 The method for producing a solid catalyst for producing an oxetane compound according to claim 1 or 3 , wherein an alkali metal supply source, water and a carrier are added, water is evaporated to dryness, and then calcined. アルカリ金属供給源、水、担体及びリン供給源を加え、水を蒸発乾固させた後、焼成する請求項2又は3記載のオキセタン化合物製造用固体触媒の製法。 The method for producing a solid catalyst for producing an oxetane compound according to claim 2 or 3 , wherein an alkali metal supply source, water, a carrier and a phosphorus supply source are added, the water is evaporated to dryness, and then calcined. オキセタン化合物が3−アルキル−3−ヒドロキシメチルオキセタンである請求項1乃至記載のオキセタン化合物製造用固体触媒。 Oxetane compound 3-alkyl-3-hydroxymethyl-oxetane and is claims 1 to 3, wherein the oxetane compound for producing a solid catalyst.
JP2006338001A 2006-12-15 2006-12-15 Solid catalyst for producing oxetane compound and process for producing the same Expired - Fee Related JP4858148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338001A JP4858148B2 (en) 2006-12-15 2006-12-15 Solid catalyst for producing oxetane compound and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338001A JP4858148B2 (en) 2006-12-15 2006-12-15 Solid catalyst for producing oxetane compound and process for producing the same

Publications (2)

Publication Number Publication Date
JP2008149230A JP2008149230A (en) 2008-07-03
JP4858148B2 true JP4858148B2 (en) 2012-01-18

Family

ID=39652019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338001A Expired - Fee Related JP4858148B2 (en) 2006-12-15 2006-12-15 Solid catalyst for producing oxetane compound and process for producing the same

Country Status (1)

Country Link
JP (1) JP4858148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150300A (en) * 2006-12-15 2008-07-03 Ube Ind Ltd Method for producing oxetane compound

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03206087A (en) * 1989-12-30 1991-09-09 Asahi Chem Ind Co Ltd Production of oxetanes
JPH10158255A (en) * 1996-11-29 1998-06-16 Toagosei Co Ltd Production of oxetane alcohol
JPH1112261A (en) * 1997-06-20 1999-01-19 Ube Ind Ltd Production of oxetanes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150300A (en) * 2006-12-15 2008-07-03 Ube Ind Ltd Method for producing oxetane compound

Also Published As

Publication number Publication date
JP2008149230A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
KR101841317B1 (en) Zeolite having copper and alkali earth metal supported thereon
AU711973B2 (en) Epoxidation catalyst and process
EP2796410B1 (en) Strontium-exchanged clinoptilolite
KR102220690B1 (en) Mn+-substituted beta zeolite, gas adsorbent comprising same, method for producing same, and method for removing nitrogen monoxide
KR102149320B1 (en) Post-treatment of deboronated zeolite beta
JP6503473B2 (en) Stabilized microporous crystalline material, method of making it and its use for the selective catalytic reduction of NOx
JP4858148B2 (en) Solid catalyst for producing oxetane compound and process for producing the same
JP6383188B2 (en) Method for producing α-sodium ferrites
García Ruiz et al. Synthesis and characterization of a mesoporous cerium oxide catalyst for the conversion of glycerol
JP2008151563A (en) Method of measuring chemically adsorbed amounts of basic gas and acidic gas, in solid catalyst for manufacturing oxetane compound
JP2017128457A (en) Afx type zeolite and production method thereof
JP5098322B2 (en) Method for producing oxetane compound
KR20060103439A (en) Process for the preparation of molecular sieve adsorbent for selective adsorption of oxygen from air
JP6052749B2 (en) REACTION SOLUTION FOR HYDROTHERMAL SYNTHESIS AND PROCESS FOR PRODUCING ZEOLITE BULK BODY
ES2238541T3 (en) METHOD TO PREPARE GLICEROL POLYMERS WITH A SAPONITE CATALYST.
JP4512972B2 (en) Activated alumina compact
JP4895251B2 (en) Method for producing catalyst for production of methacrylic acid ester
CN113891762A (en) Beta-zeolite and catalyst containing same
JP2018083723A (en) Silica alumina and manufacturing method therefor
JPH11246216A (en) Activated low-silica x-zeolite compact
JP4606340B2 (en) Crystalline silicate porous material
JP2005263529A (en) Method for producing activated alumina having low alkali content
JP5165441B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
WO2024204403A1 (en) Gas separation apparatus, method for managing gas separation apparatus, gas separation method, and method for producing purified gas
JP5581058B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees