JPH03206087A - Production of oxetanes - Google Patents

Production of oxetanes

Info

Publication number
JPH03206087A
JPH03206087A JP1340850A JP34085089A JPH03206087A JP H03206087 A JPH03206087 A JP H03206087A JP 1340850 A JP1340850 A JP 1340850A JP 34085089 A JP34085089 A JP 34085089A JP H03206087 A JPH03206087 A JP H03206087A
Authority
JP
Japan
Prior art keywords
propanediol
catalyst
reaction
oxetanes
crystalline aluminosilicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1340850A
Other languages
Japanese (ja)
Inventor
Masahiko Furuya
方彦 古谷
Hitoshi Nakajima
斉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1340850A priority Critical patent/JPH03206087A/en
Publication of JPH03206087A publication Critical patent/JPH03206087A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain oxetanes useful as synthetic raw material for organic chemicals industrially and advantageously by subjecting a 1,3-propanediol to ring formation using crystalline aluminosilicate as a catalyst. CONSTITUTION:A 1,3-propanediol is subjected to ring formation by using 0.01-5 times as much a crystalline aluminosilicate (preferably zeolite containing a cation such as alkyl metal cation) as the 1,3-propanediol by batch method at 50-350 deg.C (preferably 100-300 deg.C) for 0.1-20 hours to give the objective oxetanes.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はオキセタン類の製造方法の改良に関するもので
ある。さらに詳しくいえば、本発明は、反応液からの分
離、回収が容易な結晶性アルミノシリケート触媒を用い
、入手の容易な1.3−プロパンジオール類を環化させ
て、オキセタン類を収率よく工業的有利に製造する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to an improvement in a method for producing oxetanes. More specifically, the present invention uses a crystalline aluminosilicate catalyst that is easily separated and recovered from the reaction solution to cyclize easily available 1,3-propanediols to produce oxetanes in high yields. This invention relates to an industrially advantageous manufacturing method.

従来の技術 従来、オキセタン類は、種々の有機薬品の合戒原料や水
溶性ポリマー原料などとして重要な化合物であり、その
製造方法としては、例えば(1)3−ハロゲノブ口バノ
ール類を水酸化カリウムで処理する方法、(2)3−ハ
ロゲノプロバノールの酢酸エステル類をアルカリで処理
する方法、(3)1.3−ジオールのカーポネートを加
熱分解する方法、(4)1.3−ジオキサン類を酸触媒
で分解する方法、(5)1.3−プロパンジオール類の
硫酸溶液を濃水酸化ナトリウム水溶液中に滴下する方法
〔「ネイチ+ 一(Nature)J第187巻、第4
73号、第592ページ(1960午))、(6)ジオ
ール類をジアリールジアルコキシスル7ランと反応させ
る方法〔「ジャーナル・オブ・アメリカン・ケミカル・
ソサエテイ(J.Amer.Chem.Soc.)J第
96巻、第4604ページ(1974年)〕、(7)ジ
オール類をアルミナを用いて脱水する方法〔「ビュレテ
ィン・オブ・ケミカル・ソサエテ4”ジャパン(Bul
l.Chem.Soc.Japan)J第53巻、第3
031ページ(1980午))、(8)ジオール類をヘ
テロポリ酸を触媒に用いて環化する方法(特開昭61−
 126080号公報)などが知られている。
Conventional technology Oxetanes have traditionally been important compounds as raw materials for various organic drugs and raw materials for water-soluble polymers, and their production methods include, for example, (1) mixing 3-halogenated vanols with potassium hydroxide; (2) A method of treating acetic esters of 3-halogenoprobanol with an alkali, (3) A method of thermally decomposing a carbonate of 1,3-diol, (4) A method of treating 1,3-dioxanes with an alkali. A method of decomposition with an acid catalyst, (5) A method of dropping a sulfuric acid solution of 1,3-propanediol into a concentrated aqueous sodium hydroxide solution [Nature J Vol. 187, No. 4]
73, p. 592 (1960 pm)), (6) Method of reacting diols with diaryldialkoxysul 7ranes [Journal of American Chemical
Society (J.Amer.Chem.Soc.) J Vol. 96, No. 4604 (1974)], (7) Method of dehydrating diols using alumina [``Buretin of Chemical Society 4'' Japan (Bul
l. Chem. Soc. Japan) J Vol. 53, No. 3
031 page (1980 noon)), (8) Method for cyclizing diols using a heteropolyacid as a catalyst (Japanese Unexamined Patent Publication No. 1983-1999)
126080) and the like are known.

しかしながら、前記(1)ないし(4)の製造方法にお
いては、原料として3−ハロゲノブロバノール、その酢
酸エステル、l,3−ジオールのカーポネート、l,3
−ジオキサン類などの1.3−プロパンジオールから誘
導されたものを用いるため、工程が煩雑である上、高濃
度のアルカリを用いたりするなど、実用的でないという
欠点があるし、(5)及び(6)の1,3−プロパンジ
オール類から直接オキセタン類を製造する方法は、高濃
度のアルカリ、硫酸を用いたり、特殊な反応試剤を用い
るため、前記と同様実用的でないという欠点を有してい
る。
However, in the production methods (1) to (4) above, the raw materials are 3-halogenolobanol, its acetate, l,3-diol carbonate, l,3-diol carbonate,
- Because it uses a substance derived from 1,3-propanediol such as dioxane, it has the drawbacks that it is not practical as the process is complicated and a high concentration of alkali is used. The method (6) of directly producing oxetanes from 1,3-propanediol has the same drawbacks as above: it is not practical because it uses highly concentrated alkali or sulfuric acid, or special reaction reagents. ing.

一方、(7)のジオール類をアルミナを用いて脱水する
方法においては、触媒が固体であるため、反応液からの
触媒の分離回収が容易であるものの、該アルミナは極め
て触媒活性が低く、選択性に著しく劣るという欠点があ
る。さらに、(8)のジオール類をヘテロポリ酸を触媒
に用いて環化する方法は、該ヘテロポリ酸が反応液に溶
解するため、反応液からの触媒の分離、回収が困難であ
り、かつオキセタン類の選択率も十分でないなどの欠点
を有している。
On the other hand, in the method (7) of dehydrating diols using alumina, since the catalyst is solid, it is easy to separate and recover the catalyst from the reaction solution, but the alumina has extremely low catalytic activity and is not suitable for use. It has the disadvantage of being significantly inferior in gender. Furthermore, in the method (8) of cyclizing diols using a heteropolyacid as a catalyst, since the heteropolyacid is dissolved in the reaction solution, it is difficult to separate and recover the catalyst from the reaction solution, and oxetane It has disadvantages such as insufficient selectivity.

発明が解決しようとする課題 本発明は、このような従来のオキセクン類の製造方法が
有する欠点を克服し、反応液からの分離、回収が容易な
、固体触媒を用い、入手の容易なl,3−プロパンジオ
ール類を環化させて、直接オキセタン類を収率よく工業
的有利に製造するための方法を提供することを目的とし
てなされたものである。
Problems to be Solved by the Invention The present invention overcomes the drawbacks of such conventional methods for producing oxecunes, uses a solid catalyst that is easy to separate and recover from the reaction solution, and uses readily available l, The object of this invention is to provide a method for directly producing oxetanes in high yield and industrially advantageously by cyclizing 3-propanediols.

課題を解決するための手段 本発明者らは、前記目的を達戊するために鋭意研究を重
ねた結果、1,3−ブロバンジオール類を、結晶性アル
ミノシリケート触媒を用いて環化させることにより、そ
の目的を達成しうろことを見い出し、この知見に基づい
て本発明を完戒するに至つIこ。
Means for Solving the Problems As a result of extensive research to achieve the above object, the present inventors discovered that by cyclizing 1,3-brobanediols using a crystalline aluminosilicate catalyst, , I have discovered how to accomplish this purpose, and based on this knowledge, I have completed the present invention.

すなわち、本発明は、1.3−プロパンジオール類を環
化させて、オキセタン類を製造するに当り、触媒として
結晶性アルミノシリケートを用いることを特徴とするオ
キセタン類の製造方法を提供するものである。
That is, the present invention provides a method for producing oxetanes, which is characterized in that a crystalline aluminosilicate is used as a catalyst in producing oxetanes by cyclizing 1,3-propanediol. be.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明方法において、原料として用いられる1,3−ブ
ロバンジオール類としては、例えば1.3−プロパンジ
オール及び2,2−ジメチルプロパンジオール、2−メ
チルプロパンジオール、2−エチルブロバンジオール、
1−メチルプロパンジオール、1,2−ジメチルブロバ
ンジオールなどのアルキル置換1.3−ジオール類やこ
れらの置換基がハロゲンを含む1,3−ブロバンジオー
ル類など、さらにはこれらジオールの酢酸、プロビオン
酸などのエステル類を挙げることができる。
In the method of the present invention, examples of 1,3-propanediol used as a raw material include 1,3-propanediol, 2,2-dimethylpropanediol, 2-methylpropanediol, 2-ethylbropanediol,
Alkyl-substituted 1,3-diols such as 1-methylpropanediol and 1,2-dimethylbrobanediol, and 1,3-brobanediols whose substituents contain halogen, as well as acetic acid and probionic acid of these diols. Examples include esters such as.

本発明方法で用いられる結晶性アルミノシリケートとし
ては、例えばゼオライトx,y,モルデナイ1−、ヘー
タ、L,ZSIJ−5、ZSM− 10, ZSM− 
11,ZSM−12、ZSM−20などを挙げることが
できるが、これらの中で特にゼオライトY1モルデナイ
ト及びベータが好適である。これらの結晶性アルミノシ
リケートは、公知の方法により部分的に脱アルミニウム
処理したものも用いることができる。これら結晶性アル
ミノシリケートは、通常プロトン又はNa, K1Rb
, Cs%Cu, Agなどの1族、lJg, Ca,
Sr, Znなとの2族金属、AQ.Ca.Y−, L
a, Ceなどの3族、Ge, In, TiSZrな
どの4族、V, Sb, Biなどの5族、CrSMo
、.Wなどの6族、Mn, Reなとの7族、Fe, 
Co、Ni, Ru1Rh, Pd, Pt, bなど
の8族金属或分のいずれか1つ以上を含有した状態で用
いられるが、特に、アルカリ金属カチオン、アルカリ土
類カチオンから選ばれたカチオンを有するものが好まし
い。前記結晶性アルミノシリケートは1種用いてもよい
し、2種以上を組み合わせて用いてもよい。
Examples of the crystalline aluminosilicate used in the method of the present invention include zeolite x,y, mordenai 1-, heta, L, ZSIJ-5, ZSM-10, ZSM-
Among them, zeolite Y1 mordenite and beta are particularly preferred. These crystalline aluminosilicates may also be partially dealuminated by a known method. These crystalline aluminosilicates are usually proton or Na, K1Rb
, Cs%Cu, Group 1 such as Ag, lJg, Ca,
Group 2 metals such as Sr and Zn, AQ. Ca. Y-, L
Group 3 such as a, Ce, Group 4 such as Ge, In, TiSZr, Group 5 such as V, Sb, Bi, CrSMo
,. Group 6 such as W, Group 7 such as Mn, Re, Fe,
It is used in a state containing one or more of Group 8 metals such as Co, Ni, Ru1Rh, Pd, Pt, b, etc., and in particular, it has a cation selected from alkali metal cations and alkaline earth cations. Preferably. One type of the crystalline aluminosilicate may be used, or two or more types may be used in combination.

本発明方法は液相で実施してもよいし、気相で実施して
もよく、また、固体触媒の使用形式としては、固定床方
式や流動床方式など、通常固体触媒の使用に際して用い
られている方式を採用することができる。該結晶性アル
ミノシリケートを固定床方式などで用いる場合、通常結
晶性アルミノシリケートは、シリカ、アルミナ、ジルコ
ニア、マグネシア、チタニア、粘土などの無機バインダ
ーを添加して用いられる。
The method of the present invention may be carried out in a liquid phase or a gas phase, and the method of using a solid catalyst may be a fixed bed method or a fluidized bed method, which is usually used when using a solid catalyst. It is possible to adopt the following method. When the crystalline aluminosilicate is used in a fixed bed method or the like, the crystalline aluminosilicate is usually used with the addition of an inorganic binder such as silica, alumina, zirconia, magnesia, titania, or clay.

本発明における環化反応条件については、反応温度は、
通常50〜350°C1好ましくはlOO〜300゜C
の範囲で選ばれる。また、バッチ方式で実施する場合に
は、反応時間は触媒量や反応温度によって異なるが、通
常0.1〜20時間程度で十分であり、触媒の使用量は
通常ジオール類に対して0.Ol〜5重量倍、好ましく
は0.05〜1重量倍の範囲で選ばれる。一方、流通方
式で実施する場合には、重量時間空間速度( WHSV
)として、通常0.05〜20Hr−’、好ましくは0
.1−108r−’が用いられる。
Regarding the cyclization reaction conditions in the present invention, the reaction temperature is:
Normally 50-350°C1 Preferably lOO-300°C
selected within the range. In addition, when carrying out in a batch method, the reaction time varies depending on the amount of catalyst and reaction temperature, but usually about 0.1 to 20 hours is sufficient, and the amount of catalyst used is usually 0.1 to 20 hours relative to the diols. The amount is selected within the range of 0.05 to 1 times by weight, preferably 0.05 to 1 times by weight. On the other hand, when implementing the distribution method, the weight hourly space velocity (WHSV
), usually 0.05 to 20 Hr-', preferably 0
.. 1-108r-' is used.

このようにして、■,3−プロパンジオール類から、収
率よく対応するオキセタン類が得られる。
In this way, the corresponding oxetanes can be obtained from the 1,3-propanediols in good yields.

発明の効果 本発明方法によると、1.3−プロパンジオール類から
、直接オキセタン類を収率よく製造することができ、か
つ触媒として反応原料や反応生戒物に不溶な固体触媒を
用いるため、反応液からの触媒の分離、回収が極めて容
易であり、また、酸やアルカリなどの処理も必要がない
。このように、本発明方法は優れた特徴を有し、工業的
価値が大きい。
Effects of the Invention According to the method of the present invention, oxetanes can be produced directly from 1,3-propanediol in good yield, and a solid catalyst that is insoluble in the reaction raw materials and reactants is used as a catalyst. It is extremely easy to separate and recover the catalyst from the reaction solution, and there is no need for treatment with acids or alkalis. As described above, the method of the present invention has excellent characteristics and is of great industrial value.

実施例 次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
Examples Next, the present invention will be explained in more detail with reference to examples.
The present invention is not limited in any way by these examples.

実施例l 2.2−ジメチル−1,3−プロパンジオール109及
び触媒としてのプロトン交換のY型ゼオライト2gを、
スタラー及び流出冷却管付き50cc三つ口フラスコに
入れ、オイルバスにて所定温度に設定し反応を行った。
Example l 2.2-dimethyl-1,3-propanediol 109 and 2 g of proton-exchanged Y-type zeolite as a catalyst,
The mixture was placed in a 50 cc three-necked flask equipped with a stirrer and an outflow condenser, and the reaction was carried out by setting a predetermined temperature in an oil bath.

2時間反応させたところ、約4gの流出液が得られた。After reacting for 2 hours, about 4 g of effluent was obtained.

この流出液をオイル相と水相とに分離し、オイル相をガ
スクロマトグラフにより分析した。また、流出残液は冷
却後、クロロホルムを加え溶解させてろ過し、ろ液を同
様にガスクロマトグラフにより分析した。
This effluent was separated into an oil phase and an aqueous phase, and the oil phase was analyzed by gas chromatography. After cooling, the residual liquid was dissolved in chloroform and filtered, and the filtrate was similarly analyzed by gas chromatography.

反応温度170〜175°Cで実施した結果、2,2−
ジメチルオキセタンの収率は12mo1%であった。
As a result of carrying out the reaction at a temperature of 170 to 175°C, 2,2-
The yield of dimethyloxetane was 12 mo1%.

実施例2 実施例1において、触媒としてプロトン交換Y型ゼオラ
イトの代りに、市販のY型ゼオライトを塩化カリウム水
溶液を用いてカリウム交換したものを用いた以外は、実
施例1と同様にして実施した。2.2−ジメチルオキセ
タンの収率は15mo1%であった。
Example 2 The procedure was carried out in the same manner as in Example 1, except that instead of the proton-exchanged Y-type zeolite as the catalyst, a commercially available Y-type zeolite that had been potassium-exchanged using an aqueous potassium chloride solution was used. . The yield of 2.2-dimethyloxetane was 15 mo1%.

実施例3 触媒として、市販のモルデナイト型ゼオライト(ンリカ
/アルミナ比20)を公知方法により塩化アンモニウム
水溶液を用いアンモニウムカチオン交換し、次いで12
 0 ’Oで乾燥したのち、450゜Cで加熱処理して
プロトン交換モルデナイトとしたものを用い、実施例l
同様条件で反応させた。2,2ージメチルオキセタンの
収率はlomol%であった。
Example 3 As a catalyst, commercially available mordenite-type zeolite (phosphoric acid/alumina ratio 20) was subjected to ammonium cation exchange using an aqueous ammonium chloride solution by a known method, and then 12
Example l
The reaction was carried out under the same conditions. The yield of 2,2-dimethyloxetane was lomol%.

実施例4 触媒として、米国特許第3,308,069号明細書に
従って、テトラエチルアンモニウムヒドロキシドをテン
プレートに用い、150゜C,6日間水熱合或したベー
タ型ゼオライトを1規定硝酸により室温で約6時間処理
して、プロトン型(シリカ/アルミナ比90)としたも
のを用い、反応温度160’c!,反応時間3時間の条
件で、実施例1と同様にして反応を行った。2.2−ジ
メチルオキセタンの収率はllmol%であった。
Example 4 Beta-type zeolite, which was hydrothermally synthesized at 150° C. for 6 days using tetraethylammonium hydroxide as a template according to U.S. Pat. A proton type (silica/alumina ratio of 90) was used after 6 hours of treatment, and the reaction temperature was 160'c! The reaction was carried out in the same manner as in Example 1 under the following conditions: , reaction time 3 hours. The yield of 2.2-dimethyloxetane was 11mol%.

実施例5 実施例1において、2.2−ジメチル−1.3−プロパ
ンジオールの代りに1.3−プロパンジオールを用い、
かつ反応温度を160°C1反応時間を2時間とした以
外は、実施例lと同様にして反応を行ったところ、オキ
セタンの収率は3mo1%であった。
Example 5 In Example 1, 1,3-propanediol was used instead of 2,2-dimethyl-1,3-propanediol,
The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 160° C. and the reaction time was 2 hours, and the yield of oxetane was 3 mo1%.

実施例6 内径10mmの石英製反応管に、8〜20メッシュの粒
度のプロトン型モルデナイト(シリカ/アルミナ比96
)及びプロトン型ZSM−5ゼオライト(アルミナバイ
ンダー3Qwt%を含む) 2.5gづつを混合し充て
んした。
Example 6 A proton-type mordenite (silica/alumina ratio 96) with a particle size of 8 to 20 mesh was placed in a quartz reaction tube with an inner diameter of 10 mm.
) and proton type ZSM-5 zeolite (containing 3Qwt% alumina binder) were mixed and filled.

この反応管を電気炉により300’Cに加熱し、窒素を
流しながら十分な乾燥を行ったのち、反応温度200゜
Cに設定し、これに、2.2−ジメチル−1,3ープロ
パンジオールの15wt%クロロホルム溶液を2.5c
c/Hrの流量で供給し、反応させた。・反応流出物は
氷冷しトラップした。通液開始後5時間目?流出液を分
析したところ、2.2−ジメチル−1,3ープロパンジ
オールの転化率は65%で、2.2−ジメチルオキセタ
ンの選択率は33mo1%であった。
This reaction tube was heated to 300°C in an electric furnace, thoroughly dried while flowing nitrogen, and then the reaction temperature was set at 200°C, and 2,2-dimethyl-1,3-propanediol 2.5c of a 15wt% chloroform solution of
It was supplied at a flow rate of c/Hr and reacted.・The reaction effluent was ice-cooled and trapped. 5th hour after starting fluid passage? Analysis of the effluent revealed that the conversion rate of 2,2-dimethyl-1,3-propanediol was 65% and the selectivity of 2,2-dimethyloxetane was 33 mo1%.

実施例7 触媒として、Na−Yゼオライト(UCc社製)戊形品
5gを充てんして用い、2,2−ジメチル−1,3一プ
ロパンジオールの50vt%水溶液を2.5cc/Hr
で供給し、反応温度220℃にて実施例6と同様に反応
を行ったところ、2,2−ジメチルーl,3−プロパン
ジオールの転化率は15%で、2.2−ジメチルオキセ
タンの選択率は35mo1%であった。
Example 7 As a catalyst, 5 g of Na-Y zeolite (manufactured by UCc) was filled and used, and a 50 vt% aqueous solution of 2,2-dimethyl-1,3-propanediol was added at 2.5 cc/Hr.
When the reaction was carried out in the same manner as in Example 6 at a reaction temperature of 220°C, the conversion rate of 2,2-dimethyl-l,3-propanediol was 15%, and the selectivity of 2,2-dimethyloxetane was was 35mo1%.

実施例8 市販のY型ゼオライトを常法により塩化リチウム水溶液
を用いカチオン交換して、Li交換Y型ゼオライトパウ
ダーを調製したのち、シリカゾル(S10■として30
wt%)をバインダーに用い、押出し戊形して約1.5
mmp X 4 mmのペレットとし、次いでllo’
c!で乾燥後、550°Cで仮焼したものを触媒として
用い、反応温度250゜O, WHSV 0.2Hr−
’の条件にて実施例7と同様に反応させた。通液開始後
10〜15時間目の流出反応液を分析したところ、2.
2−ジメチル−1.3−プロパンジオールの転化率はl
6%で、2.2−ジメチルオキセタンの選択率は4Qm
ol%であった。
Example 8 A commercially available Y-type zeolite was cation-exchanged using a lithium chloride aqueous solution in a conventional manner to prepare a Li-exchanged Y-type zeolite powder.
wt%) as a binder and extruded into a shape of approximately 1.5
mmp x 4 mm pellets, then llo'
c! After drying at 550°C, the catalyst was calcined at 550°C, and the reaction temperature was 250°O, WHSV 0.2Hr-
The reaction was carried out in the same manner as in Example 7 under the conditions of '. Analysis of the effluent reaction solution 10 to 15 hours after the start of liquid passage revealed that 2.
The conversion rate of 2-dimethyl-1,3-propanediol is l
6%, the selectivity for 2,2-dimethyloxetane is 4Qm
It was ol%.

実施例9 触媒として市販のY型ゼオライトを常法により塩化セシ
ウム水溶液を用いてCs交換Yゼオライトとしたものを
用い、反応温度220’OSWHSV O.4Hr”’
の条件で実施例7と同様にして反応を行ったとこロ、2
.2−ジメチル−1,3−プロパンジオールの転化率は
l5%で、2,2−ジメチルオキセタンの選択率は30
mo1%であった。
Example 9 Commercially available Y-type zeolite was converted into Cs-exchanged Y-zeolite using a cesium chloride aqueous solution in a conventional manner as a catalyst, and the reaction temperature was 220'OSWHSV O. 4Hr"'
The reaction was carried out in the same manner as in Example 7 under the conditions of 2.
.. The conversion rate of 2-dimethyl-1,3-propanediol was 15%, and the selectivity of 2,2-dimethyloxetane was 30%.
The mo was 1%.

Claims (1)

【特許請求の範囲】[Claims] 1 1,3−プロパンジオール類を環化させて、オキセ
タン類を製造するに当り、触媒として結晶性アルミノシ
リケートを用いることを特徴とするオキセタン類の製造
方法。
1. A method for producing oxetanes, which comprises using a crystalline aluminosilicate as a catalyst in producing oxetanes by cyclizing 1,3-propanediol.
JP1340850A 1989-12-30 1989-12-30 Production of oxetanes Pending JPH03206087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1340850A JPH03206087A (en) 1989-12-30 1989-12-30 Production of oxetanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1340850A JPH03206087A (en) 1989-12-30 1989-12-30 Production of oxetanes

Publications (1)

Publication Number Publication Date
JPH03206087A true JPH03206087A (en) 1991-09-09

Family

ID=18340883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1340850A Pending JPH03206087A (en) 1989-12-30 1989-12-30 Production of oxetanes

Country Status (1)

Country Link
JP (1) JPH03206087A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418296A (en) * 1993-11-23 1995-05-23 Shell Oil Company Capping of anionic polymers with oxetanes
JP2007217382A (en) * 2006-02-20 2007-08-30 Ube Ind Ltd Method for producing oxetane compound
JP2008150300A (en) * 2006-12-15 2008-07-03 Ube Ind Ltd Method for producing oxetane compound
JP2008149230A (en) * 2006-12-15 2008-07-03 Ube Ind Ltd Solid catalyst for manufacturing oxetane compound, and its manufacturing method
EP3409663A1 (en) * 2017-06-01 2018-12-05 Vioryl Chemical and Agricultural Industry, Research S.A. Conversion of sclareol to manoyl oxide under mordenite catalysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418296A (en) * 1993-11-23 1995-05-23 Shell Oil Company Capping of anionic polymers with oxetanes
JP2007217382A (en) * 2006-02-20 2007-08-30 Ube Ind Ltd Method for producing oxetane compound
JP2008150300A (en) * 2006-12-15 2008-07-03 Ube Ind Ltd Method for producing oxetane compound
JP2008149230A (en) * 2006-12-15 2008-07-03 Ube Ind Ltd Solid catalyst for manufacturing oxetane compound, and its manufacturing method
EP3409663A1 (en) * 2017-06-01 2018-12-05 Vioryl Chemical and Agricultural Industry, Research S.A. Conversion of sclareol to manoyl oxide under mordenite catalysis

Similar Documents

Publication Publication Date Title
JPS59206323A (en) Manufacture of phenol and acetone
JPS59210036A (en) Manufacture of phenol and acetone
EP0129846B1 (en) (3-amino-1h-pyrazol-4-yl)(aryl)methanones
EP0232182A2 (en) Process for producing bases
JPH03206087A (en) Production of oxetanes
KR19980024829A (en) Triethylenediamine Synthesis Using Base-treated Zeolite as Catalyst
RU2270186C2 (en) Method for preparing aniline derivative and 3-methyl-7-nitro-3h-isobenzofuran-1-one
CN110756222B (en) Nucleoside triphosphate artificial metalloenzyme and preparation and application thereof
JP2003503499A (en) Method for producing triethylenediamine using ethylenediamine
JPH03200777A (en) Preparation of oxetanes
CN108947995B (en) Preparation method of polysubstituted oxadiazine derivative
JP4800532B2 (en) Method for producing acylated 1,3-dicarbonyl compounds
DE4005163A1 (en) Acrolein in-situ prodn. - by gas-phase isomerisation of propargyl alcohol at 300-550 deg. C. on heterogeneous catalysts contg. alkaline-reacting metal ions
EP0167021A1 (en) Process for the preparation of 2-methyl-2-alkenals
EP0162387A1 (en) Process for the preparation of ketones by isomerization of aldehydes
RU2021273C1 (en) Method of synthesis of 2,6-disubstituted 2,4,6,8-tetraazabicyclo[3,3,0]octane-3,7-diones
RU2241710C1 (en) Method for preparing substituted pyrido[1,2-a][1,3]-benzimidazoles
JPS63123441A (en) Catalyst for gaseous phase intramolecular dehydration reaction of alkanolamines
JPS62249963A (en) Manufacture of n-(sulfonylmethyl)formaldehydes
JPH01261367A (en) Production of phenylpyridines
Ertan et al. Synthesis of New Annellated Flavonoid Derivatives Possessing Spasmolytic Activity‐VII
JPH08277281A (en) New 4- formyltetrahydropyran
JP4769996B2 (en) Process for producing triethylenediamines and piperazines
RU2103062C1 (en) Triethylenediamine production catalyst
JPH023672A (en) 2,6-diethylaniline derivative and production thereof