JP4857861B2 - Cutting device and method thereof, method of calculating cutting radius of cutting blade, and method of manufacturing cut product - Google Patents

Cutting device and method thereof, method of calculating cutting radius of cutting blade, and method of manufacturing cut product Download PDF

Info

Publication number
JP4857861B2
JP4857861B2 JP2006096967A JP2006096967A JP4857861B2 JP 4857861 B2 JP4857861 B2 JP 4857861B2 JP 2006096967 A JP2006096967 A JP 2006096967A JP 2006096967 A JP2006096967 A JP 2006096967A JP 4857861 B2 JP4857861 B2 JP 4857861B2
Authority
JP
Japan
Prior art keywords
cutting blade
moving
cutting
unit
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006096967A
Other languages
Japanese (ja)
Other versions
JP2007268653A (en
Inventor
信 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006096967A priority Critical patent/JP4857861B2/en
Publication of JP2007268653A publication Critical patent/JP2007268653A/en
Application granted granted Critical
Publication of JP4857861B2 publication Critical patent/JP4857861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,工具を回転させて自由曲面の切削加工を行う切削加工装置とその方法および切削刃の回転半径の算出方法,切削加工物の製造方法に関する。さらに詳細には,機上計測装置を備えた切削加工装置とその方法および切削刃の回転半径の算出方法,切削加工物の製造方法に関するものである。   The present invention relates to a cutting apparatus and method for cutting a free-form surface by rotating a tool, a method for calculating a rotation radius of a cutting blade, and a method for manufacturing a cut product. More specifically, the present invention relates to a cutting device including an on-machine measuring device and a method thereof, a method of calculating a turning radius of a cutting blade, and a method of manufacturing a cut product.

従来より,例えばミラーやレンズ等の自由曲面を有する光学部品成型用の型を作成する方法として,フライカット方式の切削加工装置が使用されている(例えば,特許文献1参照。)。フライカット方式の切削加工装置では例えば,切削対象ワークがX軸方向スライドテーブルとZ軸方向スライドテーブルとによってX−Z面内に位置決めされる。そして,Y軸に平行に配置されたスピンドルに切削刃が取り付けられて,回転軸回りに回転される。これにより,切削刃の刃先が円を描く。この切削刃の描く円周の1箇所に接触するように,ワークがX−Z面内で1ライン移動制御されることにより,1ライン分の切削が行われる。次に,切削刃をY軸方向に所定の距離だけ送り,次の1ラインの切削を行う。   Conventionally, for example, a fly-cut type cutting device has been used as a method of creating a mold for molding an optical component having a free-form surface such as a mirror or a lens (see, for example, Patent Document 1). In a fly-cut cutting apparatus, for example, a workpiece to be cut is positioned in the XZ plane by an X-axis direction slide table and a Z-axis direction slide table. A cutting blade is attached to a spindle arranged in parallel to the Y axis, and is rotated about the rotation axis. As a result, the cutting edge of the cutting blade draws a circle. Cutting of one line is performed by controlling the movement of the workpiece by one line in the XZ plane so as to contact one place on the circumference drawn by the cutting blade. Next, the cutting blade is fed a predetermined distance in the Y-axis direction, and the next one line is cut.

このような切削装置では,精密な加工のために,切削刃の先端の回転中心からの距離である工具回転半径を正確に把握する必要がある。切削刃は摩耗により徐々に劣化する。摩耗は,わずかながら工具回転半径を小さくする。あるいは,摩耗の程度がある程度以上大きくなったり,刃先が破損した場合では切削刃が交換される。切削刃の交換の前後で,工具回転半径は厳密には一致しない。従って,加工の前に切削刃の工具回転半径を求めている。一般には,測定用のワークをスライドテーブルの所定の位置に配置し,工具を1回転させる。その後,ワークを取り外してその切削痕の深さを測定し,これにより工具回転半径を算出する。   In such a cutting apparatus, it is necessary to accurately grasp the tool rotation radius, which is the distance from the rotation center at the tip of the cutting blade, for precise machining. Cutting blades gradually deteriorate due to wear. Wear slightly reduces the tool turning radius. Alternatively, the cutting blade is replaced when the degree of wear increases to a certain degree or the cutting edge is damaged. The tool turning radius does not exactly match before and after cutting blade replacement. Therefore, the tool turning radius of the cutting blade is obtained before machining. In general, a work for measurement is placed at a predetermined position on the slide table, and the tool is rotated once. Then, the workpiece is removed and the depth of the cutting trace is measured, thereby calculating the tool turning radius.

一方,このようにして加工されたワーク等の形状を,スライドテーブルに載置したままで高精度に測定するための機上計測技術が開示されている(例えば,特許文献2参照。)。この文献に記載されている測定方法によれば,プローブヘッドを気体中に浮遊させることによって,小さい測定圧で精密な測定が可能になるとされている。
特開2001−162426号公報 再公表WO00/52419号公報
On the other hand, an on-machine measuring technique for measuring the shape of a workpiece or the like processed in this way with high accuracy while being placed on a slide table is disclosed (for example, see Patent Document 2). According to the measurement method described in this document, it is said that precise measurement can be performed with a small measurement pressure by suspending the probe head in the gas.
JP 2001-162426 A Republished WO00 / 52419

しかしながら,前記した従来の切削装置では,測定用ワークの取り付け,取り外し時に多少の誤差が生じることは避けられない。工具回転半径は,工具の回転中心から切削刃先端までの距離であるため,工具の回転中心に対する測定用ワークの取り付け位置に誤差が含まれていると,切削痕の深さと工具回転半径との間の関係に誤差が含まれることになる。そのため,工具回転半径の測定結果にもある程度の誤差が含まれるという問題点があった。また,機上計測技術は,対象物に接触させて相対的な距離を測るものであり,工具の回転中心のように直接接触できない位置の測定には不向きであった。   However, in the above-described conventional cutting apparatus, it is inevitable that some errors occur when the measuring workpiece is attached or detached. Since the tool turning radius is the distance from the tool rotation center to the cutting edge tip, if there is an error in the mounting position of the measurement workpiece with respect to the tool rotation center, the depth of the cutting trace and the tool turning radius An error is included in the relationship between them. Therefore, there is a problem that the measurement result of the tool turning radius includes a certain amount of error. On-machine measurement technology measures the relative distance by contacting an object, and is not suitable for measuring a position where it cannot be directly touched, such as the center of rotation of a tool.

本発明は,前記した従来の切削加工装置が有する問題点を解決するためになされたものである。すなわちその課題とするところは,容易に工具回転半径を求めることができ,精密な加工を可能とする切削加工装置とその方法および切削刃の回転半径の算出方法,切削加工物の製造方法を提供することにある。   The present invention has been made to solve the problems of the conventional cutting apparatus described above. In other words, the problem is to provide a cutting device and method capable of easily obtaining the tool turning radius and enabling precise machining, a method for calculating the turning radius of the cutting blade, and a method for manufacturing a cut product. There is to do.

この課題の解決を目的としてなされた本発明の切削加工装置は,加工対象物を支持する対象物支持部と,切削刃をその刃先が軸回りに円を描くように回転させる切削刃回転部と,対象物支持部と切削刃回転部とを相互に,切削刃回転部における回転軸方向に移動させる第1移動部と,対象物支持部と切削刃回転部とを相互に,第1移動部の移動方向と交差し加工対象物の加工面と切削刃とを接近させ離隔させる方向に移動させる第2移動部と,対象物支持部と切削刃回転部とを相互に,第1移動部の移動方向および第2移動部の移動方向と交差する方向に移動させる第3移動部とを有し,第3移動部による移動を行いつつ,切削刃回転部により切削刃を回転させてその刃先で加工対象物の加工面の一部を削り取ることにより加工対象物を切削加工する切削加工装置であって,第1ないし第3移動部による移動に関して切削刃回転部と同じ側に設けられており,先端を対象物支持部に支持された加工対象物の対象面に接触させることにより,その接触箇所の第2移動部の移動方向における位置を測定する機上計測器と,機上計測器の退避状態での先端位置の,切削刃回転部の回転軸の位置に対する,第2移動部の移動方向における相対位置を記憶する相対位置記憶部と,対象物支持部に支持された加工対象物の対象面を切削刃で1回切削したときの切削痕の底部を機上計測器で計測してその指示値を取得する切削痕測定部と,切削痕測定部が取得した指示値から,機上計測器の退避状態での指示値と,相対位置記憶部に記憶されている相対位置とを差し引くことにより,切削刃回転部による切削刃の刃先の回転半径を算出する回転半径算出部と,回転半径算出部が算出した回転半径に基づいて,実際の加工時の第2移動部の移動量を決定する実加工制御部とを有するものである。   In order to solve this problem, the cutting device of the present invention includes an object support unit that supports a workpiece, a cutting blade rotating unit that rotates the cutting blade so that the cutting edge draws a circle around the axis, and A first moving unit that moves the object support unit and the cutting blade rotating unit to each other in the direction of the rotation axis of the cutting blade rotating unit; and a first moving unit that moves the object support unit and the cutting blade rotating unit to each other. Of the first moving unit, the second moving unit that moves in a direction that intersects and separates the machining surface of the workpiece and the cutting blade, and the object supporting unit and the cutting blade rotating unit. And a third moving part that moves in a direction intersecting the moving direction and the moving direction of the second moving part. While moving by the third moving part, the cutting blade is rotated by the cutting blade rotating part, Cutting a workpiece by scraping a part of the machined surface of the workpiece. A cutting device to be machined, which is provided on the same side as the cutting blade rotating part with respect to the movement by the first to third moving parts, and whose tip is in contact with the object surface of the object to be processed supported by the object supporting part. By measuring the position of the contact point in the moving direction of the second moving unit, and the position of the tip of the measuring unit in the retracted state with respect to the position of the rotation axis of the cutting blade rotating unit, The relative position storage unit for storing the relative position in the moving direction of the second moving unit, and the bottom of the cutting trace when the target surface of the workpiece supported by the target support unit is cut once with a cutting blade The cutting trace measuring unit that measures with the measuring instrument and obtains the indicated value, the indicated value obtained by the cutting trace measuring unit, stored in the retracted state of the on-machine measuring instrument, and the relative position storage unit The cutting blade rotating part is subtracted from the relative position A turning radius calculation unit that calculates the turning radius of the cutting edge of the cutting blade, and an actual machining control unit that determines the amount of movement of the second moving unit during actual machining based on the turning radius calculated by the turning radius calculation unit; It is what has.

本発明の切削加工装置によれば,加工対象物を支持する対象物支持部と,切削刃を回転させる切削刃回転部とは,相互に,第1移動部,第2移動部,第3移動部によって移動される。また,これらの移動部の移動に関して切削刃回転部と同じ側に,機上計測器が設けられている。そして,機上計測器によって,加工対象物に切削刃回転部で付けられた切削痕の底部が計測される。このときの指示値と機上計測器の退避状態での指示値との差から,機上計測器の退避状態での位置を基準とした切削刃の刃先位置までの距離が得られる。さらに,本発明では,相対位置記憶部によって,機上計測器の退避状態での先端位置の,切削刃回転部の回転軸の位置に対する,第2移動部の移動方向における相対位置が記憶されている。従って,切削刃回転部の回転軸の位置に対する切削刃の刃先位置,すなわち,切削刃回転部による切削刃の刃先の回転半径が算出される。これにより,容易に工具回転半径を求めることができる。   According to the cutting device of the present invention, the object support part that supports the object to be processed and the cutting blade rotating part that rotates the cutting blade are mutually connected to the first moving part, the second moving part, and the third moving part. Moved by part. Further, an on-machine measuring instrument is provided on the same side as the cutting blade rotating part with respect to the movement of these moving parts. And the bottom part of the cutting trace attached to the workpiece by the cutting blade rotating part is measured by the on-machine measuring instrument. From the difference between the indicated value at this time and the indicated value in the retracted state of the on-machine measuring instrument, the distance to the cutting edge position of the cutting blade based on the position of the on-machine measuring instrument in the retracted state is obtained. Further, according to the present invention, the relative position storage unit stores the relative position in the moving direction of the second moving unit with respect to the position of the rotation axis of the cutting blade rotating unit in the retracted state of the on-machine measuring instrument. Yes. Accordingly, the cutting edge position of the cutting blade with respect to the position of the rotation axis of the cutting blade rotation part, that is, the rotation radius of the cutting edge of the cutting blade by the cutting blade rotation part is calculated. Thereby, the tool turning radius can be easily obtained.

さらに本発明は,本発明の切削加工装置を用いて,同様の方法で切削刃の刃先の回転半径を求める切削刃の回転半径の算出方法にも及ぶ。さらに,求められた切削刃の刃先の回転半径を用いて切削を行う切削加工方法にも及ぶ。さらに,その切削加工方法によって製造される切削加工物の製造方法にも及ぶ。なお,この製造方法で製造された金型により成形された成形品も,この製造方法による製造物に含まれるものとする。   Furthermore, the present invention extends to a method for calculating the rotation radius of a cutting blade by using the cutting apparatus of the present invention to obtain the rotation radius of the cutting edge of the cutting blade in the same manner. Further, the present invention extends to a cutting method in which cutting is performed using the rotation radius of the cutting edge of the obtained cutting blade. Furthermore, it extends to a manufacturing method of a cut product manufactured by the cutting method. It should be noted that a molded product molded by a mold manufactured by this manufacturing method is also included in a product manufactured by this manufacturing method.

本発明の切削加工装置とその方法および切削刃の回転半径の算出方法,切削加工物の製造方法によれば,容易に工具回転半径を求めることができ,精密な加工が可能となっている。   According to the cutting device and method of the present invention, the method for calculating the radius of rotation of a cutting blade, and the method for manufacturing a cut product, the tool rotation radius can be easily obtained, and precise machining is possible.

以下,本発明を具体化した最良の形態について,添付図面を参照しつつ詳細に説明する。本形態は,切削によって自由曲面を加工するフライカット加工機に本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode for embodying the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, the present invention is applied to a fly-cut processing machine that processes a free-form surface by cutting.

本形態のフライカット加工機1は,図1に示すように,定盤11には,X軸方向スライドテーブル12とZ軸方向スライドテーブル13とが重ねて備え付けられている。さらに,定盤11には,これらと並んでY軸方向スライドテーブル14が備え付けられている。また,Y軸方向スライドテーブル14には工具スピンドル15が取り付けられている。工具スピンドル15の先端部にはその外周面に切削刃16が取り付けられている。   As shown in FIG. 1, the fly-cut processing machine 1 of the present embodiment is provided with an X-axis direction slide table 12 and a Z-axis direction slide table 13 that are stacked on a surface plate 11. Furthermore, the surface plate 11 is provided with a Y-axis direction slide table 14 along with these. A tool spindle 15 is attached to the Y-axis direction slide table 14. A cutting blade 16 is attached to the outer peripheral surface of the tip of the tool spindle 15.

各軸方向スライドテーブル12,13,14は,それぞれの軸方向へ移動制御され,工具スピンドル15は切削刃16をその主軸回りに回転させるように回転制御される。これらのスライドテーブル12,13,14としては,その位置制御の精度が0.01μm以下のものが使用されている。また,工具スピンドル15の回転の主軸は常にY軸に平行に設けられている。ここで,Y軸方向スライドテーブル14が第1移動部に,Z軸方向スライドテーブル13が第2移動部に,X軸方向スライドテーブル12が第3移動部にそれぞれ相当する。また,これらのうちワークWを支持しているX軸方向スライドテーブル12とZ軸方向スライドテーブル13とが対象物支持部に相当する。また,工具スピンドル15が切削刃回転部に相当する。   Each of the axial slide tables 12, 13, and 14 is controlled to move in the respective axial direction, and the tool spindle 15 is controlled to rotate so that the cutting blade 16 rotates about its main axis. As these slide tables 12, 13, and 14, those having an accuracy of position control of 0.01 μm or less are used. The main spindle of the tool spindle 15 is always provided parallel to the Y axis. Here, the Y-axis direction slide table 14 corresponds to the first moving unit, the Z-axis direction slide table 13 corresponds to the second moving unit, and the X-axis direction slide table 12 corresponds to the third moving unit. Of these, the X-axis direction slide table 12 and the Z-axis direction slide table 13 that support the workpiece W correspond to the object support portion. The tool spindle 15 corresponds to the cutting blade rotating part.

このフライカット加工機1によれば,図1に示すように,Z軸方向スライドテーブル13の上に載置されるワークWは,X軸方向スライドテーブル12とZ軸方向スライドテーブル13とによってX−Z平面内における所定の位置に配置される。そして,ワークWが所定の速度でX−Z平面内を移動するように制御することもできる。また,切削刃16は,Y軸方向スライドテーブル14によってY軸方向へ位置制御される。さらに,工具スピンドル15によって,切削刃16は所定の回転速度で主軸周りに回転される。これにより切削刃16の先端部が円を描く。   According to the fly-cut processing machine 1, as shown in FIG. 1, the workpiece W placed on the Z-axis direction slide table 13 is moved by the X-axis direction slide table 12 and the Z-axis direction slide table 13. It is arranged at a predetermined position in the −Z plane. The workpiece W can be controlled to move in the XZ plane at a predetermined speed. Further, the position of the cutting blade 16 is controlled in the Y-axis direction by the Y-axis direction slide table 14. Further, the cutting blade 16 is rotated around the main axis at a predetermined rotational speed by the tool spindle 15. Thereby, the front-end | tip part of the cutting blade 16 draws a circle.

本形態では,切削刃16とワークWとを相対的に近づけ,切削刃16を工具スピンドル15によって回転させることによって,ワークWを切削する。すなわち,切削刃16の刃先の描く円周の1箇所で切削刃16に接するようにワークWを配置させることにより,その接する箇所で刃先がワークWを削り取る。この削り取った箇所が切削箇所であり,ワークWのうち,切削箇所が形成される面が切削面である。例えば図1では,ワークWの左奥側の面が切削面である。そして,切削刃16に接することによりワークWの切削面がZ軸方向右手前向きに切削される。この切削深さ方向のZ軸方向右手前向きを切り込み方向ともいう。   In this embodiment, the cutting blade 16 and the workpiece W are relatively brought close to each other, and the cutting blade 16 is rotated by the tool spindle 15 to cut the workpiece W. That is, by disposing the workpiece W so as to contact the cutting blade 16 at one place on the circumference drawn by the cutting edge of the cutting blade 16, the cutting edge scrapes off the workpiece W at the contacted location. The cut portion is the cutting portion, and the surface of the workpiece W where the cutting portion is formed is the cutting surface. For example, in FIG. 1, the surface on the back left side of the workpiece W is a cutting surface. Then, the cutting surface of the workpiece W is cut toward the right front side in the Z-axis direction by coming into contact with the cutting blade 16. This right-front direction in the Z-axis direction in the cutting depth direction is also referred to as a cutting direction.

さらに,本形態のフライカット加工機1は,機上計測装置21を有している。機上計測装置21は,図1に示すように,Y軸方向スライドテーブル14に取り付けられ,工具スピンドル15とともにY軸方向へ移動される。工具スピンドル15と機上計測装置21との相対的な位置関係は固定である。また,機上計測装置21の先端部であるプローブ22は,図1中右手前向きに付勢されており,測定対象に接してZ軸方向に進退される。すなわち,機上計測装置21の測定方向はZ軸方向であり,これはフライカット加工機1の切り込み方向と平行である。   Furthermore, the fly-cut processing machine 1 of this embodiment has an on-machine measuring device 21. As shown in FIG. 1, the on-machine measuring device 21 is attached to the Y-axis direction slide table 14 and moved in the Y-axis direction together with the tool spindle 15. The relative positional relationship between the tool spindle 15 and the on-machine measuring device 21 is fixed. Further, the probe 22 which is the distal end portion of the on-machine measuring device 21 is urged toward the right front side in FIG. 1, and is advanced and retracted in the Z-axis direction in contact with the measurement target. That is, the measuring direction of the on-machine measuring device 21 is the Z-axis direction, which is parallel to the cutting direction of the fly-cut processing machine 1.

本形態の機上計測装置21のプローブ22では,測定時以外ではその先端部がワークW等に接触しないように退避されている。ワークWに対する加工は,この退避状態で行われる。この退避状態での機上計測装置21の指示値をAとする。機上計測装置21の指示値は所定の不明の原点からの距離を示しており,一般には,2点の測定結果の指示値の差から,対象物の測定方向の大きさを得る。なお,機上計測装置21は,そのプローブ22の付勢力や摺動抵抗,慣性等は小さく,ワークWの切削面に対する追随性がよい。よって,原点からの変位量が精密に測定できるものである。   The probe 22 of the on-machine measuring device 21 according to the present embodiment is retracted so that the tip thereof is not in contact with the workpiece W or the like except during measurement. Processing on the workpiece W is performed in this retracted state. The indicated value of the on-machine measuring device 21 in this retracted state is A. The indicated value of the on-machine measuring device 21 indicates a distance from a predetermined unknown origin. In general, the magnitude of the measurement direction of the object is obtained from the difference between the indicated values of the two measurement results. The on-machine measuring device 21 has a small urging force, sliding resistance, inertia and the like of the probe 22 and has good followability to the cutting surface of the workpiece W. Therefore, the amount of displacement from the origin can be measured accurately.

さらに本形態では,退避状態のプローブ22の先端と工具スピンドル15の回転中心とのX軸方向およびZ軸方向の距離は,予め精密に測定されている。ここでは,X軸方向の距離を距離S,Z軸方向の距離を距離Pとする。この測定により,距離S,Pは以下では既知の値となる。また,機上計測装置21のY軸方向の配置は,後述するように,プローブ22の原点が切削刃16の刃先より図1中やや上方となるようにする。   Further, in this embodiment, the distances in the X-axis direction and the Z-axis direction between the tip of the probe 22 in the retracted state and the rotation center of the tool spindle 15 are measured in advance in advance. Here, the distance in the X-axis direction is distance S, and the distance in the Z-axis direction is distance P. By this measurement, the distances S and P are known values below. The on-machine measuring device 21 is arranged in the Y-axis direction so that the origin of the probe 22 is slightly above the cutting edge of the cutting blade 16 in FIG.

さらに本形態では,図2に示すように,制御部25を有している。制御部25は,X軸方向スライドテーブル12,Z軸方向スライドテーブル13,Y軸方向スライドテーブル14および工具スピンドル15を制御する。さらに,機上計測装置21の測定結果を受けて,工具回転半径Rを求める。なお,ワークWに対する切削位置のX座標や切削深さ(Z座標)等は,工具スピンドル15の工具回転中心(図4のO)を基準に設定される。   Furthermore, in this embodiment, as shown in FIG. The control unit 25 controls the X-axis direction slide table 12, the Z-axis direction slide table 13, the Y-axis direction slide table 14, and the tool spindle 15. Further, the tool turning radius R is obtained based on the measurement result of the on-machine measuring device 21. Note that the X coordinate, the cutting depth (Z coordinate), and the like of the cutting position with respect to the workpiece W are set based on the tool rotation center (O in FIG. 4) of the tool spindle 15.

本形態のフライカット加工機1では,ワークWに対する切削加工に先立ち,測定用ワークを使用して切削刃16の現在の工具回転半径Rを精密に求める。切削刃16は,摩耗等によって劣化することがあり,劣化がひどくなれば交換されるので,それにより工具回転半径も変化するからである。そこで,まず,測定用ワークW1をZ軸方向スライドテーブル13上の所定の位置に固定する。そして,所定の切削深さを指定して,フライカット加工機1に1回だけ測定用ワークW1の切削を行うように指示する。   In the fly-cut processing machine 1 of the present embodiment, the current tool rotation radius R of the cutting blade 16 is accurately obtained using the measurement work prior to cutting the work W. This is because the cutting blade 16 may be deteriorated due to wear or the like, and is replaced when the deterioration becomes severe, so that the tool turning radius also changes. Therefore, first, the measurement workpiece W1 is fixed at a predetermined position on the Z-axis direction slide table 13. Then, a predetermined cutting depth is designated and the fly cutting machine 1 is instructed to cut the measuring workpiece W1 only once.

すなわち,各軸方向スライドテーブル12,13,14を制御して,測定用ワークW1と工具スピンドル15の切削刃16とを所定の距離関係まで近づけ,工具スピンドル15を1回転させる。これにより,ワークWに切削刃16による切削痕が1箇所作成される。この切削深さの指示値は,1回の切削で無理がない程度のごく小さいものでなければならない。   That is, the axial slide tables 12, 13, and 14 are controlled to bring the measuring workpiece W1 and the cutting blade 16 of the tool spindle 15 close to a predetermined distance, and the tool spindle 15 is rotated once. As a result, one cut mark by the cutting blade 16 is created on the workpiece W. The indicated value for the depth of cut must be so small that it is reasonable for a single cut.

次に,X軸方向スライドテーブル12を駆動して,作成された切削痕が機上計測装置21に対面するように測定用ワークW1を移動させる。すなわち,工具スピンドル15の回転中心と機上計測装置21のプローブ22の先端とのX軸方向距離(距離S)だけ,X軸方向スライドテーブル12を図1中左手前向きに移動させる。このとき,Z軸方向スライドテーブル13とY軸方向スライドテーブル14とは動かさない。また,プローブ22は退避状態とされているので,測定用ワークW1と接触することはない。   Next, the X-axis direction slide table 12 is driven to move the measurement workpiece W <b> 1 so that the created cutting traces face the on-machine measuring device 21. That is, the X-axis direction slide table 12 is moved forward in the left direction in FIG. 1 by the X-axis direction distance (distance S) between the rotation center of the tool spindle 15 and the tip of the probe 22 of the on-machine measuring device 21. At this time, the Z-axis direction slide table 13 and the Y-axis direction slide table 14 do not move. Further, since the probe 22 is in the retracted state, it does not come into contact with the measurement workpiece W1.

次に,機上計測装置21のプローブ22をワークW1に接触するまで突出させ,測定状態とする。この結果,プローブ22の先端は,X軸方向には切削痕の最も深い位置と同じ位置に配置され,Y軸方向には切削痕の最も深い位置よりやや上方に配置されたことになる。そして,プローブ22は測定用ワークW1の切削痕に向けて付勢された状態となる。次に,図3に示すように,Y軸方向スライドテーブル14を上から下に駆動しつつ,機上計測装置21の指示値の変位を取得する。そして,Y軸方向スライドテーブル14の移動による機上計測装置21の指示値の極値として,切削痕の最も深い箇所の指示値が得られる。この切削痕の底部での指示値をBとする。   Next, the probe 22 of the on-machine measuring device 21 is projected until it comes into contact with the workpiece W1, and the measurement state is set. As a result, the tip of the probe 22 is disposed at the same position as the deepest position of the cutting trace in the X-axis direction, and is disposed slightly above the deepest position of the cutting trace in the Y-axis direction. And the probe 22 will be in the state urged | biased toward the cutting trace of the workpiece | work W1 for a measurement. Next, as shown in FIG. 3, the displacement of the indicated value of the on-machine measuring device 21 is acquired while driving the Y-axis direction slide table 14 from top to bottom. Then, as the extreme value of the indicated value of the on-machine measuring device 21 due to the movement of the Y-axis direction slide table 14, the indicated value at the deepest part of the cutting trace is obtained. The indicated value at the bottom of this cutting mark is B.

なお,万一切削痕がなかった場合,つまり切削刃16がワークWに対して空振りだった場合には,再びX軸方向スライドテーブル12を駆動して先の切削位置に戻し,切削深さの指示量をわずかに大きくしてやり直す。また,プローブ22を測定状態としたときに,図3に示すように,プローブ22の先端が切削痕の内部で切削痕の最も深い位置よりは上方に配置されるようにしてもよい。このようにすれば,指示値Bを求めるためのY軸方向スライドテーブル14の移動距離はごく小さなものとなるので,短時間での測定ができる。   If there is no cutting trace, that is, if the cutting blade 16 is swung with respect to the workpiece W, the X-axis direction slide table 12 is driven again to return to the previous cutting position, and the cutting depth is adjusted. Increase the indicated amount slightly and try again. Further, when the probe 22 is in a measurement state, as shown in FIG. 3, the tip of the probe 22 may be arranged above the deepest position of the cutting trace inside the cutting trace. In this way, the moving distance of the Y-axis direction slide table 14 for obtaining the instruction value B is extremely small, so that measurement can be performed in a short time.

次に,機上計測装置21の各指示値A,Bと工具スピンドル15とのZ軸方向の位置関係を比較し,図4に示す。この図に示すように,工具回転半径Rは,実際に切削された切削痕の最も深い位置の工具回転中心Oからの距離と等しい。そして,退避状態の機上計測装置21の指示値Aと上記のように切削痕を走査して得られた指示値Bとから,図中にCで示した距離が得られる。これは,図4に示すように,工具回転半径Rとあらかじめ得られているP(退避状態のプローブ22の先端と工具スピンドル15の回転中心とのZ軸方向の距離)との和である。従って,工具回転半径Rは,以下の式で求められる。
R=C−P=|A−B|−P
なお,図4では,プローブ22の原点の位置と,工具回転中心Oおよび工具回転半径Rとの関係をZ軸方向のみに着目して単純に比較して図示している。
Next, the positional relationship in the Z-axis direction between the indicated values A and B of the on-machine measuring device 21 and the tool spindle 15 is compared and shown in FIG. As shown in this figure, the tool rotation radius R is equal to the distance from the tool rotation center O at the deepest position of the cutting trace actually cut. The distance indicated by C in the figure is obtained from the indicated value A of the on-machine measuring device 21 in the retracted state and the indicated value B obtained by scanning the cutting trace as described above. This is the sum of the tool rotation radius R and P (the distance in the Z-axis direction between the tip of the retracted probe 22 and the rotation center of the tool spindle 15) as shown in FIG. Therefore, the tool turning radius R is obtained by the following equation.
R = C−P = | A−B | −P
In FIG. 4, the relationship between the position of the origin of the probe 22, the tool rotation center O, and the tool rotation radius R is simply compared and focused on only the Z-axis direction.

測定が終了したら,測定用ワークW1を取り外し,実際に加工するワークWを所定の位置に固定する。そして,求められた工具回転半径Rを利用してZ軸方向スライドテーブル13を制御し,ワークWに切削加工を行う。すなわち,ワークWをX−Z面内で移動させつつ,工具スピンドル15を回転させる。例えば,X軸方向スライドテーブル12をおよそ図1中右奥から左手前方向へ移動させつつ1ラインの切削を行う。このとき同時に,切削面形状に合わせて,Z軸方向スライドテーブル13も制御する。そして,1ラインの切削が終了したら,一旦切削刃16とワークWを離し,切削刃16をY軸方向へ所定量移動させるとともに,ワークWを右奥位置に戻す。そして,再び切削刃16とワークWとを接触させて次の1ラインの切削を行う。この繰り返しにより所望の形状の加工面を得る。   When the measurement is completed, the workpiece W1 for measurement is removed, and the workpiece W to be actually processed is fixed at a predetermined position. Then, the Z-axis direction slide table 13 is controlled using the obtained tool rotation radius R, and the workpiece W is cut. That is, the tool spindle 15 is rotated while moving the workpiece W in the XZ plane. For example, one line of cutting is performed while moving the X-axis direction slide table 12 from the right back to the left front in FIG. At the same time, the Z-axis direction slide table 13 is also controlled in accordance with the cutting surface shape. When the cutting of one line is completed, the cutting blade 16 is once separated from the workpiece W, the cutting blade 16 is moved by a predetermined amount in the Y-axis direction, and the workpiece W is returned to the right back position. Then, the cutting blade 16 and the workpiece W are brought into contact again to perform the next one-line cutting. By repeating this, a processed surface having a desired shape is obtained.

以上詳細に説明したように,本形態のフライカット加工機1によれば,測定用ワークW1を固定したままでその切削深さを測定し,工具回転半径Rを求めるので,測定用ワークW1の取り付け位置の誤差が含まれない測定ができる。従って,容易に工具回転半径を求めることができ,精密な加工が可能となっている。   As described above in detail, according to the fly-cut processing machine 1 of this embodiment, the cutting depth is measured while the measurement workpiece W1 is fixed, and the tool rotation radius R is obtained. Measurements that do not include mounting position errors are possible. Therefore, the tool turning radius can be easily obtained, and precise machining is possible.

なお,本形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,機上計測装置21の配置は切削刃16より上方としたが,下方として下から上向きに走査しても同様の測定は可能である。また,測定用ワークと実際のワークとを区別せず,測定を行ったワークをそのまま加工して切削加工物を得ることもできる。この場合には,実際に切削される箇所に,実際の加工で必要な切削深さ量よりも小さい切削痕を作って上記と同様に測定すればよい。このようにすれば,この切削痕がその後の加工に影響を与えることはない。   In addition, this form is only a mere illustration and does not limit this invention at all. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, although the on-machine measuring device 21 is disposed above the cutting blade 16, the same measurement can be performed by scanning upward from below as the lower side. In addition, it is possible to obtain a cut product by machining the measured workpiece as it is without distinguishing between the workpiece for measurement and the actual workpiece. In this case, a cutting trace smaller than the cutting depth required for actual machining may be made at the location where cutting is actually performed, and measurement may be performed in the same manner as described above. In this way, this cutting trace does not affect the subsequent processing.

本形態に係るフライカット加工機の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the fly cut processing machine which concerns on this form. フライカット加工機の制御関係を示すブロック図である。It is a block diagram which shows the control relationship of a fly cut processing machine. 機上計測装置による計測方法を示す説明図である。It is explanatory drawing which shows the measuring method by an on-machine measuring device. Z軸方向の各値の比較状況を示す説明図である。It is explanatory drawing which shows the comparison condition of each value of a Z-axis direction.

符号の説明Explanation of symbols

1 フライカット加工機
12 X軸方向スライドテーブル
13 Z軸方向スライドテーブル
14 Y軸方向スライドテーブル
15 工具スピンドル
16 切削刃
21 機上計測装置
25 制御部
DESCRIPTION OF SYMBOLS 1 Fly cut processing machine 12 X-axis direction slide table 13 Z-axis direction slide table 14 Y-axis direction slide table 15 Tool spindle 16 Cutting blade 21 On-machine measuring device 25 Control part

Claims (4)

加工対象物を支持する対象物支持部と,
切削刃をその刃先が軸回りに円を描くように回転させる切削刃回転部と,
前記対象物支持部と前記切削刃回転部とを相互に,前記切削刃回転部における回転軸方向に移動させる第1移動部と,
前記対象物支持部と前記切削刃回転部とを相互に,前記第1移動部の移動方向と交差し加工対象物の加工面と切削刃とを接近させ離隔させる方向に移動させる第2移動部と,
前記対象物支持部と前記切削刃回転部とを相互に,前記第1移動部の移動方向および前記第2移動部の移動方向と交差する方向に移動させる第3移動部とを有し,
前記第3移動部による移動を行いつつ,前記切削刃回転部により切削刃を回転させてその刃先で加工対象物の加工面の一部を削り取ることにより加工対象物を切削加工する切削加工装置において,
前記第1ないし第3移動部による移動に関して前記切削刃回転部と同じ側に設けられており,先端を前記対象物支持部に支持された加工対象物の対象面に接触させることにより,その接触箇所の前記第2移動部の移動方向における位置を測定する機上計測器と,
前記機上計測器の退避状態での先端位置の,前記切削刃回転部の回転軸の位置に対する,前記第2移動部の移動方向における相対位置を記憶する相対位置記憶部と,
前記対象物支持部に支持された加工対象物の対象面を切削刃で1回切削したときの切削痕の底部を前記機上計測器で計測してその指示値を取得する切削痕測定部と,
前記切削痕測定部が取得した指示値から,前記機上計測器の退避状態での指示値と,前記相対位置記憶部に記憶されている相対位置とを差し引くことにより,前記切削刃回転部による切削刃の刃先の回転半径を算出する回転半径算出部と,
前記回転半径算出部が算出した回転半径に基づいて,実際の加工時の前記第2移動部の移動量を決定する実加工制御部とを有することを特徴とする切削加工装置。
An object support for supporting the workpiece;
A cutting blade rotating part for rotating the cutting blade so that the cutting edge draws a circle around the axis;
A first moving part that moves the object support part and the cutting blade rotating part to each other in the direction of the rotation axis of the cutting blade rotating part;
A second moving unit that moves the object support unit and the cutting blade rotation unit in a direction that intersects the moving direction of the first moving unit and moves the processing surface of the processing object and the cutting blade closer to and away from each other. When,
A third moving part that moves the object support part and the cutting blade rotating part to each other in a direction crossing the moving direction of the first moving part and the moving direction of the second moving part;
In a cutting apparatus for cutting a workpiece by rotating a cutting blade by the cutting blade rotating portion and scraping a part of a processing surface of the workpiece with the blade edge while moving by the third moving portion. ,
The movement by the first to third moving parts is provided on the same side as the cutting blade rotating part, and the tip is brought into contact with the target surface of the workpiece supported by the target object supporting part. An on-machine measuring instrument for measuring the position of the second moving part in the moving direction;
A relative position storage unit for storing a relative position in a moving direction of the second moving unit with respect to a position of a rotation axis of the cutting blade rotating unit at a tip position in the retracted state of the on-machine measuring device;
A cutting trace measuring unit that measures the bottom of a cutting trace when the target surface of the workpiece supported by the target supporting unit is cut once by a cutting blade with the on-machine measuring instrument and obtains the indicated value; ,
By subtracting the instruction value in the retracted state of the on-machine measuring instrument and the relative position stored in the relative position storage unit from the instruction value acquired by the cutting trace measuring unit, the cutting blade rotating unit A turning radius calculator for calculating the turning radius of the cutting edge of the cutting blade;
A cutting apparatus comprising: an actual machining control unit that determines a movement amount of the second moving unit during actual machining based on the rotation radius calculated by the rotation radius calculation unit.
加工対象物を支持する対象物支持部と,
切削刃をその刃先が軸回りに円を描くように回転させる切削刃回転部と,
前記対象物支持部と前記切削刃回転部とを相互に,前記切削刃回転部における回転軸方向に移動させる第1移動部と,
前記対象物支持部と前記切削刃回転部とを相互に,前記第1移動部の移動方向と交差し加工対象物の加工面と切削刃とを接近させ離隔させる方向に移動させる第2移動部と,
前記対象物支持部と前記切削刃回転部とを相互に,前記第1移動部の移動方向および前記第2移動部の移動方向と交差する方向に移動させる第3移動部とを有し,
前記第3移動部による移動を行いつつ,前記切削刃回転部により切削刃を回転させてその刃先で加工対象物の加工面の一部を削り取ることにより加工対象物を切削加工する切削加工装置における切削刃の回転半径の算出方法において,
前記第1ないし第3移動部による移動に関して前記切削刃回転部と同じ側に設けられており,先端を前記対象物支持部に支持された加工対象物の対象面に接触させることにより,その接触箇所の前記第2移動部の移動方向における位置を測定する機上計測器を用い,
前記機上計測器の退避状態での先端位置の,前記切削刃回転部の回転軸の位置に対する,前記第2移動部の移動方向における相対位置をあらかじめ測定しておき,
前記対象物支持部に支持された加工対象物の対象面を切削刃で1回切削したときの切削痕の底部を前記機上計測器で計測してその指示値を取得し,
取得した指示値から,前記機上計測器の退避状態での指示値と,あらかじめ測定した相対位置とを差し引くことにより,前記切削刃回転部による切削刃の刃先の回転半径を算出することを特徴とする切削刃の回転半径の算出方法。
An object support for supporting the workpiece;
A cutting blade rotating part for rotating the cutting blade so that the cutting edge draws a circle around the axis;
A first moving part that moves the object support part and the cutting blade rotating part to each other in the direction of the rotation axis of the cutting blade rotating part;
A second moving unit that moves the object support unit and the cutting blade rotation unit in a direction that intersects the moving direction of the first moving unit and moves the processing surface of the processing object and the cutting blade closer to and away from each other. When,
A third moving part that moves the object support part and the cutting blade rotating part to each other in a direction crossing the moving direction of the first moving part and the moving direction of the second moving part;
In a cutting apparatus for cutting a workpiece by rotating a cutting blade by the cutting blade rotating portion and scraping a part of a processing surface of the workpiece with the cutting edge while moving by the third moving portion In the method of calculating the turning radius of the cutting blade,
The movement by the first to third moving parts is provided on the same side as the cutting blade rotating part, and the tip is brought into contact with the target surface of the workpiece supported by the target object supporting part. Using an on-machine measuring instrument for measuring the position of the second moving part in the moving direction,
Measuring the relative position in the moving direction of the second moving part with respect to the position of the rotational axis of the cutting blade rotating part in the retracted state of the on-machine measuring instrument;
Measuring the bottom of the cutting trace when the target surface of the processing target supported by the target support is cut once with a cutting blade, and obtaining the indicated value;
The radius of rotation of the cutting edge of the cutting blade by the cutting blade rotating portion is calculated by subtracting the instruction value in the retracted state of the on-machine measuring instrument and the previously measured relative position from the acquired instruction value. The calculation method of the turning radius of the cutting blade.
加工対象物を支持する対象物支持部と,
切削刃をその刃先が軸回りに円を描くように回転させる切削刃回転部と,
前記対象物支持部と前記切削刃回転部とを相互に,前記切削刃回転部における回転軸方向に移動させる第1移動部と,
前記対象物支持部と前記切削刃回転部とを相互に,前記第1移動部の移動方向と交差し加工対象物の加工面と切削刃とを接近させ離隔させる方向に移動させる第2移動部と,
前記対象物支持部と前記切削刃回転部とを相互に,前記第1移動部の移動方向および前記第2移動部の移動方向と交差する方向に移動させる第3移動部とを有し,
前記第3移動部による移動を行いつつ,前記切削刃回転部により切削刃を回転させてその刃先で加工対象物の加工面の一部を削り取ることにより加工対象物を切削加工する切削加工方法において,
前記第1ないし第3移動部による移動に関して前記切削刃回転部と同じ側に設けられており,先端を前記対象物支持部に支持された加工対象物の対象面に接触させることにより,その接触箇所の前記第2移動部の移動方向における位置を測定する機上計測器を用い,
前記機上計測器の退避状態での先端位置の,前記切削刃回転部の回転軸の位置に対する,前記第2移動部の移動方向における相対位置をあらかじめ測定しておき,
前記対象物支持部に支持された加工対象物の対象面を切削刃で1回切削したときの切削痕の底部を前記機上計測器で計測してその指示値を取得し,
取得した指示値から,前記機上計測器の退避状態での指示値と,あらかじめ測定した相対位置とを差し引くことにより,前記切削刃回転部による切削刃の刃先の回転半径を算出し,
算出した回転半径に基づいて,実際の加工時の前記第2移動部の移動量を決定することを特徴とする切削加工方法。
An object support for supporting the workpiece;
A cutting blade rotating part for rotating the cutting blade so that the cutting edge draws a circle around the axis;
A first moving part that moves the object support part and the cutting blade rotating part to each other in the direction of the rotation axis of the cutting blade rotating part;
A second moving unit that moves the object support unit and the cutting blade rotation unit in a direction that intersects the moving direction of the first moving unit and moves the processing surface of the processing object and the cutting blade closer to and away from each other. When,
A third moving part that moves the object support part and the cutting blade rotating part to each other in a direction crossing the moving direction of the first moving part and the moving direction of the second moving part;
In a cutting method of cutting a processing object by rotating a cutting blade by the cutting blade rotating unit and scraping a part of a processing surface of the processing object at the cutting edge while moving by the third moving unit. ,
The movement by the first to third moving parts is provided on the same side as the cutting blade rotating part, and the tip is brought into contact with the target surface of the workpiece supported by the target object supporting part. Using an on-machine measuring instrument for measuring the position of the second moving part in the moving direction,
Measuring the relative position in the moving direction of the second moving part with respect to the position of the rotational axis of the cutting blade rotating part in the retracted state of the on-machine measuring instrument;
Measuring the bottom of the cutting trace when the target surface of the processing target supported by the target support is cut once with a cutting blade, and obtaining the indicated value;
By subtracting the instruction value in the retracted state of the on-machine measuring instrument from the acquired instruction value and the relative position measured in advance, the rotation radius of the cutting edge of the cutting blade by the cutting blade rotating part is calculated,
The cutting method characterized by determining the movement amount of the said 2nd moving part at the time of an actual process based on the calculated turning radius.
加工対象物を支持する対象物支持部と,
切削刃をその刃先が軸回りに円を描くように回転させる切削刃回転部と,
前記対象物支持部と前記切削刃回転部とを相互に,前記切削刃回転部における回転軸方向に移動させる第1移動部と,
前記対象物支持部と前記切削刃回転部とを相互に,前記第1移動部の移動方向と交差し加工対象物の加工面と切削刃とを接近させ離隔させる方向に移動させる第2移動部と,
前記対象物支持部と前記切削刃回転部とを相互に,前記第1移動部の移動方向および前記第2移動部の移動方向と交差する方向に移動させる第3移動部とを有し,
前記第3移動部による移動を行いつつ,前記切削刃回転部により切削刃を回転させてその刃先で加工対象物の加工面の一部を削り取ることにより加工対象物を切削加工する切削加工物の製造方法において,
前記第1ないし第3移動部による移動に関して前記切削刃回転部と同じ側に設けられており,先端を前記対象物支持部に支持された加工対象物の対象面に接触させることにより,その接触箇所の前記第2移動部の移動方向における位置を測定する機上計測器を用い,
前記機上計測器の退避状態での先端位置の,前記切削刃回転部の回転軸の位置に対する,前記第2移動部の移動方向における相対位置をあらかじめ測定しておき,
前記対象物支持部に支持された加工対象物の対象面を切削刃で1回切削したときの切削痕の底部を前記機上計測器で計測してその指示値を取得し,
取得した指示値から,前記機上計測器の退避状態での指示値と,あらかじめ測定した相対位置とを差し引くことにより,前記切削刃回転部による切削刃の刃先の回転半径を算出し,
算出した回転半径に基づいて,実際の加工時の前記第2移動部の移動量を決定することを特徴とする切削加工物の製造方法。
An object support for supporting the workpiece;
A cutting blade rotating part for rotating the cutting blade so that the cutting edge draws a circle around the axis;
A first moving part that moves the object support part and the cutting blade rotating part to each other in the direction of the rotation axis of the cutting blade rotating part;
A second moving unit that moves the object support unit and the cutting blade rotation unit in a direction that intersects the moving direction of the first moving unit and moves the processing surface of the processing object and the cutting blade closer to and away from each other. When,
A third moving part that moves the object support part and the cutting blade rotating part to each other in a direction crossing the moving direction of the first moving part and the moving direction of the second moving part;
A cutting workpiece that cuts the workpiece by rotating the cutting blade by the cutting blade rotating portion and scraping a part of the machining surface of the workpiece with the blade edge while moving by the third moving portion. In the manufacturing method,
The movement by the first to third moving parts is provided on the same side as the cutting blade rotating part, and the tip is brought into contact with the target surface of the workpiece supported by the target object supporting part. Using an on-machine measuring instrument for measuring the position of the second moving part in the moving direction,
Measuring the relative position in the moving direction of the second moving part with respect to the position of the rotational axis of the cutting blade rotating part in the retracted state of the on-machine measuring instrument;
Measuring the bottom of the cutting trace when the target surface of the processing target supported by the target support is cut once with a cutting blade, and obtaining the indicated value;
By subtracting the instruction value in the retracted state of the on-machine measuring instrument from the acquired instruction value and the relative position measured in advance, the rotation radius of the cutting edge of the cutting blade by the cutting blade rotating part is calculated,
A method for manufacturing a cut workpiece, wherein the amount of movement of the second moving portion during actual machining is determined based on the calculated turning radius.
JP2006096967A 2006-03-31 2006-03-31 Cutting device and method thereof, method of calculating cutting radius of cutting blade, and method of manufacturing cut product Expired - Fee Related JP4857861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096967A JP4857861B2 (en) 2006-03-31 2006-03-31 Cutting device and method thereof, method of calculating cutting radius of cutting blade, and method of manufacturing cut product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096967A JP4857861B2 (en) 2006-03-31 2006-03-31 Cutting device and method thereof, method of calculating cutting radius of cutting blade, and method of manufacturing cut product

Publications (2)

Publication Number Publication Date
JP2007268653A JP2007268653A (en) 2007-10-18
JP4857861B2 true JP4857861B2 (en) 2012-01-18

Family

ID=38671981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096967A Expired - Fee Related JP4857861B2 (en) 2006-03-31 2006-03-31 Cutting device and method thereof, method of calculating cutting radius of cutting blade, and method of manufacturing cut product

Country Status (1)

Country Link
JP (1) JP4857861B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5980593B2 (en) * 2012-06-29 2016-08-31 東芝機械株式会社 Mirror surface processing method and groove processing method of film workpiece by fly cut
CN102744424B (en) * 2012-07-30 2014-08-06 中国人民解放军国防科学技术大学 Single-point diamond compensation cutting processing method for thin plate optical parts
CN107498393A (en) * 2017-08-11 2017-12-22 安徽华隆精密机械有限公司 A kind of precise vertical machining centre intelligence control system
CN113182933B (en) * 2021-05-07 2023-03-24 浙江陀曼智能科技股份有限公司 Method for detecting whether feeding beat of carriage device reaches standard

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162428A (en) * 1999-12-10 2001-06-19 Ricoh Co Ltd Free-form surface machining method
JP2001162426A (en) * 1999-12-10 2001-06-19 Ricoh Co Ltd Curved surface cutting device and curved surface cutting method
JP4545501B2 (en) * 2004-07-08 2010-09-15 東芝機械株式会社 Tool centering method and tool measuring method

Also Published As

Publication number Publication date
JP2007268653A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5515639B2 (en) Machine Tools
US9367047B2 (en) Wire electric discharge machine performing turning tool machining, turning tool machining method with wire electric discharge machine, and program creation apparatus for wire electric discharge machine that performs turning tool machining
US20150160049A1 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
EP2584419B1 (en) CNC machine for cutting with plasma, oxygen and water jet used as a cutting tool with automatic setting up a precise position of a cutting tool in a cutting head by autocalibration and method thereof
US11486696B2 (en) On-machine measurement device, machine tool, and on-machine measurement method
JP2017037640A (en) Machine toolpath compensation using vibration sensing
JP5444590B2 (en) Workpiece reference point on-machine detection method and machining apparatus using the method
JP5473846B2 (en) Processing method
JP4857861B2 (en) Cutting device and method thereof, method of calculating cutting radius of cutting blade, and method of manufacturing cut product
JP2008272861A (en) Tool position measuring method, tool position measuring system and machining method
JP2007118100A (en) Method and apparatus for working curved surface symmetric with respect to rotation axis
JP5490498B2 (en) Cutting apparatus and cutting method
JP3740265B2 (en) Storage medium storing a program for calculating cutting edge movement data
JP6168396B2 (en) Machine Tools
JP5359651B2 (en) Shape measuring device
JP3756793B2 (en) Machine tool thermal displacement compensation device
JP2002001568A (en) Parameter setting method for laser beam machining head of nc control three-dimensional laser beam machine and nc control three-dimensional laser beam machine
JP4859941B2 (en) Processing apparatus and processing method
JP6615285B1 (en) Tool runout adjustment method and machine tool
JP2021125592A5 (en) Dicing device, blade height correction method, and work processing method
JPH11138391A (en) Surface roughness testing method and its device
CN112775720A (en) Method and system for measuring position of object of machine tool, and computer-readable recording medium
JP2007054930A (en) Positioning method and device for tool
JP2015044248A (en) Lathe-turning processing device
JP2003165053A (en) Dicing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees