JP2001162428A - Free-form surface machining method - Google Patents

Free-form surface machining method

Info

Publication number
JP2001162428A
JP2001162428A JP35091399A JP35091399A JP2001162428A JP 2001162428 A JP2001162428 A JP 2001162428A JP 35091399 A JP35091399 A JP 35091399A JP 35091399 A JP35091399 A JP 35091399A JP 2001162428 A JP2001162428 A JP 2001162428A
Authority
JP
Japan
Prior art keywords
workpiece
tool
free
form surface
relative position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35091399A
Other languages
Japanese (ja)
Inventor
Satoshi Kai
聡 甲斐
Hisashi Inada
久 稲田
Yoichiro Obayashi
陽一郎 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP35091399A priority Critical patent/JP2001162428A/en
Publication of JP2001162428A publication Critical patent/JP2001162428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turning (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a free-form surface machining method that precisely machines a free-form surface on a workpiece while detecting the relative position between the tool and the workpiece and correcting the positions of both of them. SOLUTION: A working machine 10 comprises an X-axis, a Y-axis and a Z-axis table controllable or movable in the respective axis directions. A workpiece 12 is positioned, for example, on the Z-axis table 11. The working machine 10 is so constructed that a cutting tool 15 is detachably mounted on a wheel 14 coupled to a rotary shaft 13 and is driven or rotated by a drive motor 16. The Z-axis table 11 is equipped with a position measuring arm 19 having a position measuring mark M at the tip face, and that face of the drive motor 16 which opens on the workpiece 12 carries a position measuring sensor 20. Before cutting work by relative displacement between the cutting tool 15 and workpiece 12, the working machine 10 uses the position measuring sensor 20 to measure the distance d between the position measuring mark M and position measuring sensor 20, and controls the position of the cutting tool 15 or workpiece 12 and the relative distance between both of them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自由曲面加工方法
に関し、詳細には、工具と加工物との相対位置を検出し
て、双方の位置修正を行いつつ高精度に加工物に自由曲
面を加工する自由曲面加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a free-form surface, and more particularly, to a method for forming a free-form surface on a work with high accuracy while detecting a relative position between a tool and a work and correcting both positions. The present invention relates to a free-form surface processing method for processing.

【0002】[0002]

【従来の技術】3次元自由曲面形状の加工においては、
一般に、図5に示すように、所定の回転半径を有する円
弧形状の切削工具や研削工具等の工具1を回転させなが
ら、加工物2に対して工具1の回転中心を相対的に移動
させて、曲面形状を創成している。
2. Description of the Related Art In machining a three-dimensional free-form surface shape,
Generally, as shown in FIG. 5, while rotating a tool 1 such as an arc-shaped cutting tool or a grinding tool having a predetermined rotation radius, the rotation center of the tool 1 is relatively moved with respect to the workpiece 2. , Creating a curved surface shape.

【0003】具体的には、工具1は、図示しない3軸制
御の加工機のホイール3に着脱可能に取り付けられてお
り、ホイール3に固定された回転軸4を介して所定の回
転速度で回転軸4を中心として回転駆動される。加工機
は、図示しないX軸テーブル、Y軸テーブル及びZ軸テ
ーブルを備えており、各テーブルは、図示しない制御部
により、数値制御データに基づいてX、Y、Z軸の各軸
方向に移動制御される。上記加工物2は、例えば、Y軸
テーブル上に着脱可能に固定され、加工機は、X軸テー
ブル、Y軸テーブル及びZ軸テーブルを各軸方向に移動
制御することにより、工具1と加工物2との相対位置を
3軸制御して、工具1により加工物2に自由曲面を加工
する。
More specifically, the tool 1 is detachably attached to a wheel 3 of a three-axis control processing machine (not shown), and rotates at a predetermined rotation speed via a rotation shaft 4 fixed to the wheel 3. It is driven to rotate about the shaft 4. The processing machine includes an X-axis table, a Y-axis table, and a Z-axis table (not shown), and each table is moved in each of the X, Y, and Z-axis directions by a control unit (not shown) based on numerical control data. Controlled. The workpiece 2 is, for example, removably fixed on a Y-axis table, and the processing machine controls the movement of the X-axis table, the Y-axis table, and the Z-axis table in each axis direction, so that the tool 1 and the workpiece are controlled. A free-form surface is machined on the workpiece 2 by the tool 1 by controlling the relative position of the workpiece 2 to three axes.

【0004】この場合、図6に矢印で示すように、工具
1の回転中心をA→B→C→D→Eの順に移動させて、
図7に示すように、加工物2の一部分の領域L1を加工
し、領域L1の加工を完了すると、次に工具1の位置を
Y方向に所定ピッチだけ移動させて、同様に領域L2を
加工する。この動作を繰り返し行って、加工物2に曲面
の加工を行う。
In this case, the rotation center of the tool 1 is moved in the order of A → B → C → D → E as shown by an arrow in FIG.
As shown in FIG. 7, a part of the area L1 of the workpiece 2 is processed, and when the processing of the area L1 is completed, the position of the tool 1 is then moved by a predetermined pitch in the Y direction, and the area L2 is similarly processed. I do. By repeating this operation, the workpiece 2 is processed into a curved surface.

【0005】このような動作の繰り返しを行って加工物
2に曲面の加工を行う場合、図8に加工物2のYZ平面
で加工の様子を示すように、領域L1を加工した後、領
域L2を加工するために工具1をY方向に所定ピッチだ
け移動して工具1の加工物2に対するZ方向の位置決め
を行って加工を行う。
When a curved surface is machined on the workpiece 2 by repeating such an operation, the area L1 is machined on the YZ plane of the workpiece 2 as shown in FIG. In order to machine the workpiece, the tool 1 is moved in the Y direction by a predetermined pitch, and the tool 1 is positioned with respect to the workpiece 2 in the Z direction to perform machining.

【0006】すなわち、従来の自由曲面加工方法は、工
具1と加工物2の距離を測定することなく、機械の設定
値で工具1と加工物2の位置制御を行って、工具1で加
工物2を加工している。
That is, in the conventional free-form surface machining method, the position of the tool 1 and the workpiece 2 is controlled by the set value of the machine without measuring the distance between the tool 1 and the workpiece 2, and the workpiece 1 is processed by the tool 1. 2 is processed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の自由曲面加工方法にあっては、加工中に工具
1と加工物2の距離を測定することなく、機械の設定値
で工具1と加工物2の位置制御を行って、工具1で加工
物2を加工しているため、工具1を機械座標で同じZ座
標に移動させても、図8に示すように、領域L1におけ
る加工物2の基準面Sと工具1の距離dL1と、領域L
2における距離dL2が一致せずに、加工形状が狂うこ
とがあった。
However, in such a conventional free-form surface machining method, the distance between the tool 1 and the workpiece 2 is not measured during the machining, and the tool 1 and the workpiece 1 are not measured by the set value of the machine. Since the workpiece 2 is processed by the tool 1 by controlling the position of the workpiece 2, even if the tool 1 is moved to the same Z coordinate in the machine coordinates, as shown in FIG. 2 distance dL1 between reference plane S and tool 1 and region L
In some cases, the processed shape was out of order because the distance dL2 at No. 2 did not match.

【0008】すなわち、図9に示すように、加工機のテ
ーブル上に固定した加工物2に測定点Qを設定し、図示
しない工具1の取り付けられる加工機5に距離測定用セ
ンサ6を取り付けて、工具1をXZ平面上で図9に矢印
で示すように移動させて、測定点QにおけるZ方向の距
離測定用センサ6の測定点Qに対する距離を測定して、
加工機と加工物の位置関係の再現性を調べると、図10
に示すような測定結果になる。
That is, as shown in FIG. 9, a measuring point Q is set on a workpiece 2 fixed on a table of a processing machine, and a distance measuring sensor 6 is mounted on a processing machine 5 on which a tool 1 (not shown) is mounted. The tool 1 is moved on the XZ plane as shown by the arrow in FIG. 9 to measure the distance of the distance measuring sensor 6 in the Z direction at the measuring point Q to the measuring point Q.
Examining the reproducibility of the positional relationship between the processing machine and the workpiece, FIG.
The measurement results are as shown in FIG.

【0009】図10から分かるように、機械の設定値で
は同じ位置に工具1を移動させているにも関わらず、距
離が変動している事がわかる。なお、図10において、
横軸は、工具1の移動回数を示しており、縦軸は工具1
と加工物2の距離、すなわち、距離測定用センサ6と測
定点Qとの距離(nm)を示している。
[0009] As can be seen from FIG. 10, it can be seen that the distance fluctuates at the set value of the machine even though the tool 1 is moved to the same position. In FIG. 10,
The horizontal axis indicates the number of movements of the tool 1, and the vertical axis indicates the tool 1
The distance (nm) between the distance measurement sensor 6 and the measurement point Q is shown.

【0010】すなわち、加工機の設定上は同じ位置に工
具1を移動させても、加工機の誤差、加工機と加工物2
の熱的な変動等によって、工具1と加工物2の距離が変
化してしまうという問題がある。
That is, even if the tool 1 is moved to the same position on the setting of the processing machine, the error of the processing machine, the processing machine and the work 2
There is a problem in that the distance between the tool 1 and the workpiece 2 changes due to thermal fluctuations and the like.

【0011】そこで、請求項1記載の発明は、加工物と
工具の回転中心との相対位置を制御して、回転する工具
で加工物を自由曲面形状に加工するに際して、工具と加
工物との相対位置を検出して、当該検出結果に基づいて
工具と加工物との位置ずれを修正することにより、加工
物と工具との相対位置の位置ずれを最小限に保持し、高
精度な加工を行うことのできる自由曲面加工方法を提供
することを目的としている。
Therefore, the invention according to claim 1 controls the relative position between the workpiece and the center of rotation of the tool, and when the workpiece is processed into a free-form surface shape by the rotating tool, the tool and the workpiece are separated. By detecting the relative position and correcting the misalignment between the tool and the workpiece based on the detection result, the misalignment of the relative position between the workpiece and the tool is kept to a minimum and high-precision machining is performed. It is an object of the present invention to provide a free-form surface processing method that can be performed.

【0012】請求項2記載の発明は、工具が、加工物の
加工面から一旦離れた後に再度当該加工面に接触する際
に、当該加工面への接触前に、工具と加工物との相対位
置を検出して、当該検出結果に基づいて工具と加工物と
の位置ずれを修正することにより、工具で加工物を加工
する毎に加工物と工具との相対位置の位置ずれを当該加
工前に最小限に保持し、より高精度な加工を行うことの
できる自由曲面加工方法を提供することを目的としてい
る。
According to a second aspect of the present invention, when the tool once separates from the processing surface of the workpiece and comes into contact with the processing surface again, the relative position between the tool and the workpiece is changed before the contact with the processing surface. By detecting the position and correcting the positional deviation between the tool and the workpiece based on the detection result, each time the workpiece is processed by the tool, the relative positional deviation between the workpiece and the tool is corrected before the processing. It is an object of the present invention to provide a free-form surface processing method capable of performing processing with higher precision while keeping the minimum.

【0013】請求項3記載の発明は、工具と加工物との
相対位置の検出結果に基づいて工具の位置調整を行っ
て、工具と加工物との位置ずれを修正することにより、
加工物と工具との相対位置の位置ずれを安価に最小限に
保持し、高精度な加工を行うことのできる自由曲面加工
方法を提供することを目的としている。
According to a third aspect of the present invention, the position of the tool is adjusted based on the result of detection of the relative position between the tool and the workpiece to correct the displacement between the tool and the workpiece.
It is an object of the present invention to provide a free-form surface machining method capable of performing high-precision machining while keeping the displacement of a relative position between a workpiece and a tool at a low cost and at a minimum.

【0014】請求項4記載の発明は、工具と加工物との
相対位置の検出結果に基づいて加工物の位置調整を行っ
て、工具と加工物との位置ずれを修正することにより、
加工物と工具との相対位置の位置ずれを最小限に保持
し、高精度な加工を行うことのできる自由曲面加工方法
を提供することを目的としている。
According to a fourth aspect of the present invention, the position of the workpiece is adjusted based on the result of detection of the relative position between the tool and the workpiece, and the displacement between the tool and the workpiece is corrected.
It is an object of the present invention to provide a free-form surface processing method capable of performing high-precision processing while keeping the relative positional deviation between a workpiece and a tool at a minimum.

【0015】請求項5記載の発明は、工具の位置調整可
能な最も細かな移動制御値よりも細かい精度で位置制御
の可能な所定のアクチュエータを用いて加工物の位置調
整を行って、工具と加工物との位置ずれを修正すること
により、加工中に加工機の設定値を変えることが困難な
加工機であっても、加工物と工具との相対位置の位置ず
れを修正し、また、加工機の最小設定値よりも細かい精
度で加工物の位置調整を行って、加工物と工具との相対
位置の位置ずれをより一層最小限に保持し、より一層高
精度な加工を行うことのできる自由曲面加工方法を提供
することを目的としている。
According to a fifth aspect of the present invention, the position of a workpiece is adjusted using a predetermined actuator capable of controlling the position with a finer accuracy than the finest movement control value capable of adjusting the position of the tool. By correcting the misalignment with the workpiece, it is difficult to change the set value of the machining machine during machining, even if the relative displacement between the workpiece and the tool is corrected, Adjusting the position of the workpiece with finer accuracy than the minimum setting value of the processing machine, maintaining the relative positional deviation between the workpiece and the tool to a minimum, and performing more accurate processing An object of the present invention is to provide a free-form surface processing method that can be used.

【0016】請求項6記載の発明は、加工物の近くに位
置測定点を配設し、当該位置測定点を基準として工具と
加工物との相対位置を検出することにより、加工物と工
具との相対位置をより高精度に検出して、加工物と工具
との相対位置の位置ずれを適切に最小限に保持し、より
高精度な加工を行うことのできる自由曲面加工方法を提
供することを目的としている。
[0016] According to a sixth aspect of the present invention, a position measuring point is provided near a workpiece, and a relative position between the tool and the workpiece is detected with reference to the position measuring point, whereby the workpiece and the tool are connected to each other. Provided is a free-form surface machining method capable of detecting a relative position of a workpiece with higher accuracy, appropriately maintaining a relative position shift between a workpiece and a tool to a minimum, and performing more accurate machining. It is an object.

【0017】請求項7記載の発明は、位置測定点を、加
工物の近くに配設された所定の測定物に配設することに
より、加工物と工具との相対位置をより高精度に検出し
て、加工物と工具との相対位置の位置ずれをより適切に
最小限に保持し、より高精度な加工を行うことのできる
自由曲面加工方法を提供することを目的としている。
According to a seventh aspect of the present invention, the relative position between the workpiece and the tool is detected with higher accuracy by arranging the position measurement points on a predetermined measurement object disposed near the workpiece. In addition, it is an object of the present invention to provide a free-form surface processing method capable of more appropriately maintaining a relative displacement between a workpiece and a tool to a minimum and performing more accurate processing.

【0018】請求項8記載の発明は、測定物を、加工物
と熱膨張率の近い材料で形成することにより、測定点の
熱的な変動を避けて加工物と工具との相対位置をより一
層高精度に検出して、加工物と工具との相対位置の位置
ずれをより一層適切に最小限に保持し、より一層高精度
な加工を行うことのできる自由曲面加工方法を提供する
ことを目的としている。
According to the present invention, the object to be measured is formed of a material having a coefficient of thermal expansion close to that of the object to be processed, so that the relative position between the object and the tool can be improved while avoiding thermal fluctuation of the measuring point. Provided is a free-form surface processing method capable of detecting with higher precision, holding the displacement of the relative position between the workpiece and the tool more appropriately to a minimum, and performing higher-precision processing. The purpose is.

【0019】請求項9記載の発明は、工具の近くに所定
の距離測定センサを配設し、当該距離測定センサで位置
測定点との距離を測定して、工具と加工物との相対位置
を検出することにより、加工物と工具との相対位置をよ
り一層高精度に検出して、加工物と工具との相対位置の
位置ずれをより適切に最小限に保持し、より高精度な加
工を行うことのできる自由曲面加工方法を提供すること
を目的としている。
According to a ninth aspect of the present invention, a predetermined distance measuring sensor is provided near the tool, and the distance between the tool and the workpiece is measured by measuring the distance from the position measuring point with the distance measuring sensor. By detecting, the relative position between the workpiece and the tool is detected with even higher accuracy, and the positional deviation of the relative position between the workpiece and the tool is more appropriately kept to a minimum, so that more accurate machining can be performed. It is an object of the present invention to provide a free-form surface processing method that can be performed.

【0020】[0020]

【課題を解決するための手段】請求項1記載の発明の自
由曲面加工方法は、所定の回転半径を有する工具を回転
させながら、加工物と前記工具の回転中心との相対位置
を制御して、前記回転する工具で前記加工物を自由曲面
形状に加工する自由曲面加工方法であって、前記加工中
に、前記工具と前記加工物との相対位置を検出して、当
該検出結果に基づいて前記工具と前記加工物との位置ず
れを修正することにより、上記目的を達成している。
According to a first aspect of the present invention, there is provided a free-form surface machining method for controlling a relative position between a workpiece and a center of rotation of a tool while rotating a tool having a predetermined rotation radius. A free-form surface processing method for processing the workpiece into a free-form surface shape with the rotating tool, wherein during the processing, a relative position between the tool and the workpiece is detected, and based on the detection result, The above object is achieved by correcting a displacement between the tool and the workpiece.

【0021】上記構成によれば、加工物と工具の回転中
心との相対位置を制御して、回転する工具で加工物を自
由曲面形状に加工するに際して、工具と加工物との相対
位置を検出して、当該検出結果に基づいて工具と加工物
との位置ずれを修正しているので、加工物と工具との相
対位置の位置ずれを最小限に保持することができ、高精
度な加工を行うことができる。
According to the above configuration, the relative position between the tool and the workpiece is detected by controlling the relative position between the workpiece and the center of rotation of the tool to process the workpiece into a free-form surface with the rotating tool. Then, since the displacement between the tool and the workpiece is corrected based on the detection result, the displacement of the relative position between the workpiece and the tool can be kept to a minimum, and high-precision machining can be performed. It can be carried out.

【0022】この場合、例えば、請求項2に記載するよ
うに、前記加工において、前記工具が、前記加工物の加
工面から一旦離れた後に再度当該加工面に接触する際
に、当該加工面への接触前に、前記工具と前記加工物と
の相対位置を検出して、当該検出結果に基づいて前記工
具と前記加工物との位置ずれを修正してもよい。
In this case, for example, as described in claim 2, in the machining, when the tool once comes away from the machining surface of the workpiece and contacts the machining surface again, Before the contact, the relative position between the tool and the workpiece may be detected, and the displacement between the tool and the workpiece may be corrected based on the detection result.

【0023】上記構成によれば、工具が、加工物の加工
面から一旦離れた後に再度当該加工面に接触する際に、
当該加工面への接触前に、工具と加工物との相対位置を
検出して、当該検出結果に基づいて工具と加工物との位
置ずれを修正しているので、工具で加工物を加工する毎
に加工物と工具との相対位置の位置ずれを当該加工前に
最小限に保持することができ、より高精度な加工を行う
ことができる。
According to the above arrangement, when the tool once comes off the processing surface of the workpiece and contacts the processing surface again,
Before contacting the processing surface, the relative position between the tool and the workpiece is detected, and the positional deviation between the tool and the workpiece is corrected based on the detection result. In each case, the positional deviation of the relative position between the workpiece and the tool can be kept to a minimum before the processing, and more accurate processing can be performed.

【0024】また、例えば、請求項3に記載するよう
に、前記検出結果に基づいて前記工具の位置調整を行っ
て、前記工具と前記加工物との位置ずれを修正してもよ
い。
Further, for example, as described in claim 3, the position of the tool may be adjusted based on the detection result to correct the positional deviation between the tool and the workpiece.

【0025】上記構成によれば、工具と加工物との相対
位置の検出結果に基づいて工具の位置調整を行って、工
具と加工物との位置ずれを修正しているので、加工物と
工具との相対位置の位置ずれを安価に最小限に保持する
ことができ、高精度な加工を行うことができる。
According to the above configuration, the position of the tool is adjusted based on the result of detection of the relative position between the tool and the workpiece, and the positional deviation between the tool and the workpiece is corrected. The displacement of the relative position can be kept to a minimum at low cost, and high-precision machining can be performed.

【0026】さらに、例えば、請求項4に記載するよう
に、前記検出結果に基づいて前記加工物の位置調整を行
って、前記工具と前記加工物との位置ずれを修正しても
よい。
Further, for example, as described in claim 4, the position of the workpiece may be adjusted based on the detection result to correct the displacement between the tool and the workpiece.

【0027】上記構成によれば、工具と加工物との相対
位置の検出結果に基づいて加工物の位置調整を行って、
工具と加工物との位置ずれを修正しているので、加工物
と工具との相対位置の位置ずれを最小限に保持すること
ができ、高精度な加工を行うことができる。
According to the above arrangement, the position of the workpiece is adjusted based on the result of detection of the relative position between the tool and the workpiece.
Since the displacement between the tool and the workpiece is corrected, the displacement of the relative position between the workpiece and the tool can be kept to a minimum, and high-precision machining can be performed.

【0028】また、例えば、請求項5に記載するよう
に、前記工具の位置調整可能な最も細かな移動制御値よ
りも細かい精度で位置制御の可能な所定のアクチュエー
タを用いて前記加工物の位置調整を行って、前記工具と
前記加工物との位置ずれを修正してもよい。
Further, for example, as described in claim 5, the position of the workpiece is determined using a predetermined actuator capable of controlling the position with a finer precision than the finest movement control value capable of adjusting the position of the tool. An adjustment may be made to correct the misalignment between the tool and the workpiece.

【0029】上記構成によれば、工具の位置調整可能な
最も細かな移動制御値よりも細かい精度で位置制御の可
能な所定のアクチュエータを用いて加工物の位置調整を
行って、工具と加工物との位置ずれを修正しているの
で、加工中に加工機の設定値を変えることが困難な加工
機であっても、加工物と工具との相対位置の位置ずれを
修正し、また、加工機の最小設定値よりも細かい精度で
加工物の位置調整を行って、加工物と工具との相対位置
の位置ずれをより一層最小限に保持することができ、よ
り一層高精度な加工を行うことができる。
According to the above arrangement, the position of the workpiece is adjusted using the predetermined actuator capable of controlling the position with a finer precision than the finest movement control value capable of adjusting the position of the tool. Since it is possible to correct the misalignment between the workpiece and the tool, even if it is difficult to change the set value of the The position of the workpiece is adjusted with finer accuracy than the minimum setting value of the machine, and the positional deviation of the relative position between the workpiece and the tool can be kept to a minimum, and more precise processing is performed be able to.

【0030】さらに、例えば、請求項6に記載するよう
に、前記加工物の近くに位置測定点を配設し、当該位置
測定点を基準として前記工具と前記加工物との相対位置
を検出してもよい。
Further, for example, as set forth in claim 6, a position measuring point is arranged near the workpiece, and a relative position between the tool and the workpiece is detected with reference to the position measuring point. You may.

【0031】上記構成によれば、加工物の近くに位置測
定点を配設し、当該位置測定点を基準として工具と加工
物との相対位置を検出しているので、加工物と工具との
相対位置をより高精度に検出して、加工物と工具との相
対位置の位置ずれを適切に最小限に保持することがで
き、より高精度な加工を行うことができる。
According to the above arrangement, the position measuring point is arranged near the workpiece and the relative position between the tool and the workpiece is detected based on the position measuring point. By detecting the relative position with higher precision, the positional deviation of the relative position between the workpiece and the tool can be appropriately kept to a minimum, and more precise processing can be performed.

【0032】また、例えば、請求項7に記載するよう
に、前記位置測定点は、前記加工物の近くに配設された
所定の測定物に配設されていてもよい。
Further, for example, as described in claim 7, the position measuring point may be arranged on a predetermined measuring object arranged near the workpiece.

【0033】上記構成によれば、位置測定点を、加工物
の近くに配設された所定の測定物に配設しているので、
加工物と工具との相対位置をより高精度に検出して、加
工物と工具との相対位置の位置ずれをより適切に最小限
に保持することができ、より高精度な加工を行うことが
できる。
According to the above configuration, the position measuring point is arranged on the predetermined object arranged near the workpiece.
By detecting the relative position of the workpiece and the tool with higher precision, the positional deviation of the relative position between the workpiece and the tool can be more appropriately kept to a minimum, and more accurate processing can be performed. it can.

【0034】さらに、例えば、請求項8に記載するよう
に、前記測定物は、前記加工物と熱膨張率の近い材料で
形成されていてもよい。
Further, for example, the object to be measured may be formed of a material having a thermal expansion coefficient close to that of the workpiece.

【0035】上記構成によれば、測定物を、加工物と熱
膨張率の近い材料で形成しているので、測定点の熱的な
変動を避けて加工物と工具との相対位置をより一層高精
度に検出して、加工物と工具との相対位置の位置ずれを
より一層適切に最小限に保持することができ、より一層
高精度な加工を行うことができる。
According to the above configuration, since the workpiece is formed of a material having a coefficient of thermal expansion close to that of the workpiece, the relative position between the workpiece and the tool can be further reduced by avoiding thermal fluctuation of the measuring point. By detecting with high precision, the positional deviation of the relative position between the workpiece and the tool can be more appropriately kept to a minimum, and more precise processing can be performed.

【0036】また、例えば、請求項9に記載するよう
に、前記工具の近くに所定の距離測定センサを配設し、
当該距離測定センサで前記位置測定点との距離を測定し
て、前記工具と前記加工物との相対位置を検出してもよ
い。
Further, for example, a predetermined distance measuring sensor is disposed near the tool,
The distance measurement sensor may measure a distance from the position measurement point to detect a relative position between the tool and the workpiece.

【0037】上記構成によれば、工具の近くに所定の距
離測定センサを配設し、当該距離測定センサで位置測定
点との距離を測定して、工具と加工物との相対位置を検
出しているので、加工物と工具との相対位置をより一層
高精度に検出して、加工物と工具との相対位置の位置ず
れをより適切に最小限に保持することができ、より高精
度な加工を行うことができる。
According to the above arrangement, a predetermined distance measuring sensor is arranged near the tool, and the distance measuring sensor measures the distance between the position measuring point and the relative position between the tool and the workpiece. Since the relative position between the workpiece and the tool can be detected with higher accuracy, the positional deviation of the relative position between the workpiece and the tool can be more appropriately kept to a minimum, and a higher precision Processing can be performed.

【0038】[0038]

【発明の実施の形態】以下、本発明の好適な実施の形態
を添付図面に基づいて詳細に説明する。なお、以下に述
べる実施の形態は、本発明の好適な実施の形態であるか
ら、技術的に好ましい種々の限定が付されているが、本
発明の範囲は、以下の説明において特に本発明を限定す
る旨の記載がない限り、これらの態様に限られるもので
はない。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. It should be noted that the embodiments described below are preferred embodiments of the present invention, and therefore, various technically preferable limitations are added. However, the scope of the present invention is not limited to the following description. The embodiments are not limited to these embodiments unless otherwise specified.

【0039】図1〜図4は、本発明の自由曲面加工方法
の一実施の形態を示す図であり、図1は、本発明の自由
曲面加工方法の一実施の形態の自由曲面加工方法の適用
されるXYZの3軸制御の加工機10の部分拡大正面
図、図2は、図1の加工機10の部分斜視図である。
FIGS. 1 to 4 are views showing an embodiment of a free-form surface machining method according to the present invention. FIG. 1 is a diagram showing a free-form surface machining method according to an embodiment of the present invention. FIG. 2 is a partially enlarged front view of the processing machine 10 of the XYZ three-axis control applied, and FIG. 2 is a partial perspective view of the processing machine 10 of FIG.

【0040】図1及び図2において、3軸制御の加工機
10は、X軸テーブル、Y軸テーブル及びZ軸テーブル
を備えており、図1及び図2では、Z軸テーブル11上
に加工物12が設置されているものとする。加工機10
は、Z軸テーブル11を含む各テーブルを、図示しない
制御部により、数値制御データに基づいてX、Y、Z軸
の各軸方向に移動制御する。
In FIGS. 1 and 2, the three-axis control machine 10 includes an X-axis table, a Y-axis table, and a Z-axis table. In FIGS. 12 are installed. Processing machine 10
Controls the movement of each table including the Z-axis table 11 in the directions of the X, Y, and Z axes by a control unit (not shown) based on numerical control data.

【0041】加工機10は、回転軸13にホイール14
が固定されており、ホイール14に切削工具(工具)1
5が着脱可能に取り付けられている。回転軸13は、駆
動モータ16のモータ軸に連結されており、駆動モータ
16により所定の回転速度で回転駆動される。駆動モー
タ16は、X、Z方向に移動可能な移動テーブル17の
アーム18にY方向に移動可能に取り付けられており、
移動テーブル17の移動とアーム18に対するY方向の
移動によりX、Y、Z軸の各軸方向に移動可能となって
いる。したがって、切削工具15は、移動テーブル17
の移動とアーム18に対するY方向の移動により駆動モ
ータ16がX、Y、Z軸の各軸方向に移動することによ
り、X、Y、Z軸の各軸方向に移動制御される。
The processing machine 10 has a wheel 14
Is fixed, and a cutting tool (tool) 1
5 is detachably attached. The rotating shaft 13 is connected to a motor shaft of a driving motor 16 and is driven to rotate at a predetermined rotation speed by the driving motor 16. The drive motor 16 is attached to the arm 18 of the movable table 17 movable in the X and Z directions so as to be movable in the Y direction.
The movement of the movement table 17 and the movement in the Y direction with respect to the arm 18 enable the movement in the X, Y, and Z axes. Therefore, the cutting tool 15 is
The movement of the drive motor 16 in each of the X, Y, and Z axes by the movement of the arm 18 and the movement in the Y direction with respect to the arm 18 causes movement control in the X, Y, and Z axes.

【0042】加工機10は、X軸テーブル、Y軸テーブ
ル及びZ軸テーブル11を各軸方向に移動制御すること
により、また、切削工具15をX、Y、Z軸の各軸方向
に移動制御することにより、切削工具15と加工物12
との相対位置を3軸制御して、切削工具15により加工
物12に自由曲面を加工する。
The processing machine 10 controls the movement of the X-axis table, the Y-axis table and the Z-axis table 11 in the respective axial directions, and also controls the movement of the cutting tool 15 in the respective X, Y and Z-axis directions. By doing so, the cutting tool 15 and the workpiece 12
Is controlled on three axes, and a free-form surface is machined on the workpiece 12 by the cutting tool 15.

【0043】切削工具15は、円弧形状に形成されてお
り、図2に矢印で示すように、回転軸13を中心として
回転駆動されて、加工物12を切削加工する。
The cutting tool 15 is formed in an arc shape, and is driven to rotate about a rotating shaft 13 to cut the workpiece 12 as shown by an arrow in FIG.

【0044】加工機10は、加工物12の設置されるZ
軸テーブル11に、位置測定アーム(測定物)19が配
設されており、位置測定アーム19の切削工具15側の
先端面には、位置測定マーク(位置測定点)Mが設けら
れている。この位置測定マークMの設けられている位置
測定アーム19は、加工物12とその熱的膨張率の値が
近い材料で形成されており、加工物12の近くに配設さ
れている。
The processing machine 10 has a Z
A position measuring arm (object to be measured) 19 is provided on the axis table 11, and a position measuring mark (position measuring point) M is provided on a tip end surface of the position measuring arm 19 on the cutting tool 15 side. The position measurement arm 19 provided with the position measurement mark M is formed of a material having a similar thermal expansion coefficient to that of the workpiece 12, and is disposed near the workpiece 12.

【0045】一方、加工機10の切削工具15の近辺、
具体的には、駆動モータ16の加工物12側の面には、
図1に示すように、位置測定用センサ(距離測定セン
サ)20が取り付けられており、位置測定用センサ20
は、例えば、静電容量式変位センサが用いられている。
On the other hand, near the cutting tool 15 of the processing machine 10,
Specifically, on the surface of the drive motor 16 on the workpiece 12 side,
As shown in FIG. 1, a position measurement sensor (distance measurement sensor) 20 is attached, and the position measurement sensor 20 is attached.
For example, a capacitance type displacement sensor is used.

【0046】次に、本実施の形態の作用を説明する。本
実施の形態の3軸制御の加工機10を使用した自由曲面
加工方法は、切削工具15側に取り付けた位置測定用セ
ンサ20と加工物12側に取り付けた位置測定マークM
との距離を測定して、切削工具15と加工物12との相
対位置を高精度に制御して加工物12を加工するところ
にその特徴がある。
Next, the operation of the present embodiment will be described. The free-form surface machining method using the three-axis control machine 10 according to the present embodiment includes a position measurement sensor 20 attached to the cutting tool 15 and a position measurement mark M attached to the workpiece 12.
Is characterized in that the distance between the cutting tool 15 and the workpiece 12 is measured to control the relative position between the cutting tool 15 and the workpiece 12 with high accuracy.

【0047】すなわち、加工機10は、自由曲面加工に
おいては、円弧形状の切削工具15と加工物12を、図
6の場合と同様に、A→B→C→D→Eの順に相対的に
移動させる。すなわち、加工機10は、切削工具15と
加工物12を長手方向(X方向)に相対移動させて切削
加工を行った後、Z方向に相対移動して切削工具15と
加工物12を離し、X方向に相対移動させてX方向の切
削開始位置に戻すとともにY方向に所定ピッチだけ移動
だけ相対移動して、再度Z方向に相対移動して切削工具
15と加工物12を切削加工位置に位置させて次の切削
加工を行う。
That is, in the free-form surface machining, the machining machine 10 relatively disposes the arc-shaped cutting tool 15 and the workpiece 12 in the order of A → B → C → D → E as in FIG. Move. That is, the processing machine 10 performs the cutting by relatively moving the cutting tool 15 and the workpiece 12 in the longitudinal direction (X direction), and then relatively moves in the Z direction to separate the cutting tool 15 and the workpiece 12, The cutting tool 15 and the workpiece 12 are moved to the cutting position by relatively moving in the X direction, returning to the cutting start position in the X direction, moving relatively by a predetermined pitch in the Y direction, and moving again in the Z direction. Then, the next cutting process is performed.

【0048】ところが、上述のように、単に、切削工具
15と加工物12の距離を測定することなく、機械の設
定値で位置制御を行うと、加工機10の誤差、加工機1
0と加工物12の熱的な変動等によって、切削工具15
と加工物12の距離が変化してしまう。
However, as described above, if position control is performed with machine set values without simply measuring the distance between the cutting tool 15 and the workpiece 12, the error of the machine 10 and the machine 1
0 and the thermal fluctuation of the workpiece 12, etc.
The distance between the workpiece 12 and the workpiece 12 changes.

【0049】そこで、本実施の形態の加工機10は、ま
ず、切削工具15と加工物12を相対移動させて切削加
工を行う前に、位置測定マークMが配設されている位置
である初期位置(図8のAの位置)で位置測定マークM
と位置測定用センサ20との距離dを位置測定用センサ
20で測定するとともに、当該位置測定を行った際の加
工機10の機械座標P(Xp,Yp,Zp)を取得して
図示しない制御部のメモリに記憶する。
Therefore, the processing machine 10 according to the present embodiment, first, moves the cutting tool 15 and the workpiece 12 relative to each other before performing the cutting process, and determines the initial position where the position measurement mark M is provided. Position measurement mark M at position (position A in FIG. 8)
The distance d between the position measurement sensor 20 and the position measurement sensor 20 is measured by the position measurement sensor 20, and the machine coordinates P (Xp, Yp, Zp) of the processing machine 10 at the time of performing the position measurement are obtained and controlled (not shown). Store in the memory of the unit

【0050】次に、加工機10は、切削工具15と加工
物12を上記A→B→C→D→Eの順に相対移動させて
切削工具15で加工物12を切削加工した後、切削工具
15を機械座標の値で上記Pの座標位置に移動させ、再
度、位置測定マークMと位置測定用センサ20との距離
dを位置測定用センサ20で測定して、このときの測定
距離をd’とする。
Next, the processing machine 10 relatively moves the cutting tool 15 and the workpiece 12 in the order of A → B → C → D → E and cuts the workpiece 12 with the cutting tool 15. 15 is moved to the coordinate position of P by the value of the machine coordinate, and the distance d between the position measurement mark M and the position measurement sensor 20 is measured again by the position measurement sensor 20, and the measurement distance at this time is d. '.

【0051】この場合、切削加工前と切削加工後におい
て切削工具15と加工物12の相対位置がずれて、最初
に測定した測定距離dと切削加工後に測定した測定距離
d’との間に差δが生じていると、すなわち、d’−d
=δ(|δ|>0)であると、加工機10は、この差δ
だけ切削工具15と加工物12の相対位置を修正制御し
て、次の切削加工を上記同様に行う。
In this case, the relative positions of the cutting tool 15 and the workpiece 12 are shifted before and after the cutting, and the difference between the first measured distance d and the measured distance d ′ measured after the cutting is changed. δ occurs, that is, d′−d
= Δ (| δ |> 0), the processing machine 10
Only the relative position between the cutting tool 15 and the workpiece 12 is corrected and controlled, and the next cutting is performed in the same manner as described above.

【0052】加工機10は、この切削工具15と加工物
12の相対位置の修正制御を、図3に示すように、切削
工具15を差δだけ加工物12に対して移動させて位置
修正するが、図4に示すように、加工物12を差δだけ
切削工具15に対して移動させて位置修正してもよい。
なお、図3及び図4においては、差δが正の場合(δ>
0)を示しているが、差δが負の場合(δ<0)には、
切削工具15あるいは加工物12を図3あるいは図4に
示す矢印方向と逆方向に移動させて位置修正する。
The processing machine 10 controls the correction of the relative position between the cutting tool 15 and the workpiece 12 by moving the cutting tool 15 with respect to the workpiece 12 by the difference δ, as shown in FIG. However, as shown in FIG. 4, the workpiece 12 may be moved relative to the cutting tool 15 by the difference δ to correct the position.
3 and 4, when the difference δ is positive (δ>
0), but when the difference δ is negative (δ <0),
The position is corrected by moving the cutting tool 15 or the workpiece 12 in the direction opposite to the direction of the arrow shown in FIG. 3 or FIG.

【0053】加工機10は、上記切削工具15と加工物
12の相対位置の位置修正においては、加工機10の位
置設定可能な水準が位置測定用センサ20の分解能より
も粗い場合には、相対位置の差δがもっとも小さくなる
ように切削工具15あるいは加工物12の位置修正を行
う。
When correcting the relative position between the cutting tool 15 and the workpiece 12, if the level at which the position of the processing machine 10 can be set is coarser than the resolution of the position measuring sensor 20, the processing machine 10 The position of the cutting tool 15 or the workpiece 12 is corrected so that the position difference δ is minimized.

【0054】また、加工物12の位置調整を行って切削
工具15と加工物12の相対位置の修正を行う場合に
は、図4に示すように、切削工具15の位置調整可能な
最も細かな移動制御値よりも細かい精度で位置精度の可
能なアクチュエータ30を用いて加工物の位置調整を行
ってもよい。
When the relative position between the cutting tool 15 and the workpiece 12 is corrected by adjusting the position of the workpiece 12, as shown in FIG. 4, the finest position adjustment of the cutting tool 15 is possible. The position adjustment of the workpiece may be performed by using the actuator 30 capable of position accuracy with a finer accuracy than the movement control value.

【0055】このように、本実施の形態の加工機10
は、加工物12と切削工具15の回転中心との相対位置
を制御して、回転する切削工具15で加工物12を自由
曲面形状に加工するに際して、切削工具15と加工物1
2との相対位置を検出して、当該検出結果に基づいて切
削工具15と加工物12との位置ずれを修正している。
As described above, the processing machine 10 of the present embodiment
Controls the relative position between the workpiece 12 and the center of rotation of the cutting tool 15 to form the workpiece 12 into a free-form surface with the rotating cutting tool 15.
2, and the positional deviation between the cutting tool 15 and the workpiece 12 is corrected based on the detection result.

【0056】したがって、加工物12と切削工具15と
の相対位置の位置ずれを最小限に保持することができ、
高精度な加工を行うことができる。
Accordingly, the relative displacement between the workpiece 12 and the cutting tool 15 can be kept to a minimum.
High-precision processing can be performed.

【0057】また、本実施の形態の加工機10は、切削
工具15が、加工物12の加工面から一旦離れた後に再
度当該加工面に接触する際に、当該加工面への接触前
に、切削工具15と加工物12との相対位置を検出し
て、当該検出結果に基づいて切削工具15と加工物12
との位置ずれを修正している。
Further, when the cutting tool 15 is once separated from the machined surface of the workpiece 12 and comes into contact with the machined surface again when the cutting tool 15 A relative position between the cutting tool 15 and the workpiece 12 is detected, and based on the detection result, the cutting tool 15 and the workpiece 12 are detected.
Has been corrected.

【0058】したがって、切削工具15で加工物12を
加工する毎に加工物12と切削工具15との相対位置の
位置ずれを当該加工前に最小限に保持することができ、
より高精度な加工を行うことができる。
Therefore, each time the workpiece 12 is machined by the cutting tool 15, the relative positional deviation between the workpiece 12 and the cutting tool 15 can be kept to a minimum before the machining.
Higher precision processing can be performed.

【0059】さらに、切削工具15と加工物12との相
対位置の検出結果に基づいて切削工具15または加工物
12の位置調整を行って、切削工具15と加工物12と
の位置ずれを修正している。
Further, the position of the cutting tool 15 or the workpiece 12 is adjusted based on the detection result of the relative position between the cutting tool 15 and the workpiece 12, and the positional deviation between the cutting tool 15 and the workpiece 12 is corrected. ing.

【0060】したがって、加工物12と切削工具15と
の相対位置の位置ずれを安価に最小限に保持することが
でき、高精度な加工を行うことができる。
Accordingly, the relative displacement between the workpiece 12 and the cutting tool 15 can be kept to a minimum at low cost, and high-precision machining can be performed.

【0061】また、加工物12の位置調整を、図4に示
したように、切削工具15の位置調整可能な最も細かな
移動制御値よりも細かい精度で位置精度の可能なアクチ
ュエータ30を用いて加工物12の位置調整を行って、
切削工具15と加工物12との位置ずれを修正すると、
加工中に加工機10の設定値を変えることが困難な加工
機10であっても、加工物12と切削工具15との相対
位置の位置ずれを修正し、また、加工機10の最小設定
値よりも細かい精度で加工物12の位置調整を行って、
加工物12と切削工具15との相対位置の位置ずれをよ
り一層最小限に保持することができ、より一層高精度な
加工を行うことができる。
Further, as shown in FIG. 4, the position of the workpiece 12 is adjusted by using an actuator 30 capable of adjusting the position with a finer accuracy than the finest movement control value capable of adjusting the position of the cutting tool 15. By adjusting the position of the workpiece 12,
When the displacement between the cutting tool 15 and the workpiece 12 is corrected,
Even in the case of the processing machine 10 in which it is difficult to change the setting value of the processing machine 10 during the processing, the positional deviation of the relative position between the workpiece 12 and the cutting tool 15 is corrected, and the minimum setting value of the processing machine 10 is corrected. By adjusting the position of the workpiece 12 with finer accuracy than
The positional deviation of the relative position between the workpiece 12 and the cutting tool 15 can be kept to a minimum, and more precise processing can be performed.

【0062】さらに、本実施の形態の加工機10は、加
工物12の近くに配設した測定物である位置測定アーム
19に位置測定点である位置測定マークMを配置して、
当該位置測定マークMを基準として切削工具15と加工
物12との相対位置を検出している。
Further, in the processing machine 10 of the present embodiment, a position measuring mark M, which is a position measuring point, is arranged on a position measuring arm 19 which is a measuring object arranged near the workpiece 12.
The relative position between the cutting tool 15 and the workpiece 12 is detected based on the position measurement mark M.

【0063】したがって、加工物12と切削工具15と
の相対位置をより高精度に検出して、加工物12と切削
工具15との相対位置の位置ずれを適切に最小限に保持
することができ、より高精度な加工を行うことができ
る。
Therefore, the relative position between the workpiece 12 and the cutting tool 15 can be detected with higher precision, and the positional deviation of the relative position between the workpiece 12 and the cutting tool 15 can be appropriately kept to a minimum. , More precise processing can be performed.

【0064】また、本実施の形態の加工機10は、測定
物である位置測定アーム19を、加工物12と熱膨張率
の近い材料で形成している。
Further, in the processing machine 10 of the present embodiment, the position measuring arm 19 which is the object to be measured is formed of a material having a thermal expansion coefficient close to that of the object 12 to be processed.

【0065】したがって、位置測定マークMの熱的な変
動を避けて加工物12と切削工具15との相対位置をよ
り一層高精度に検出して、加工物12と切削工具15と
の相対位置の位置ずれをより一層適切に最小限に保持す
ることができ、より一層高精度な加工を行うことができ
る。
Therefore, the relative position between the workpiece 12 and the cutting tool 15 is detected with higher accuracy while avoiding the thermal fluctuation of the position measurement mark M, and the relative position between the workpiece 12 and the cutting tool 15 is detected. The positional deviation can be more appropriately kept to a minimum, and processing with higher accuracy can be performed.

【0066】さらに、本実施の形態の加工機10は、切
削工具15の近くに所定の距離測定用センサ20を配設
し、当該距離測定用センサ20で位置測定マークMとの
距離を測定して、切削工具15と加工物12との相対位
置を検出している。
Further, in the processing machine 10 of the present embodiment, a predetermined distance measuring sensor 20 is arranged near the cutting tool 15 and the distance measuring sensor 20 measures the distance to the position measuring mark M. Thus, the relative position between the cutting tool 15 and the workpiece 12 is detected.

【0067】したがって、加工物12と切削工具15と
の相対位置をより一層高精度に検出して、加工物12と
切削工具15との相対位置の位置ずれをより適切に最小
限に保持することができ、より高精度な加工を行うこと
ができる。
Therefore, the relative position between the workpiece 12 and the cutting tool 15 is detected with higher accuracy, and the positional deviation of the relative position between the workpiece 12 and the cutting tool 15 is more appropriately kept to a minimum. And more accurate processing can be performed.

【0068】以上、本発明者によってなされた発明を好
適な実施の形態に基づき具体的に説明したが、本発明は
上記のものに限定されるものではなく、その要旨を逸脱
しない範囲で種々変更可能であることはいうまでもな
い。
Although the invention made by the inventor has been specifically described based on the preferred embodiments, the invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the invention. It goes without saying that it is possible.

【0069】例えば、上記実施の形態においては、切削
工具15と加工物12との相対距離を測定する位置測定
用センサ20として、静電容量式変位センサを用いてい
るが、位置測定用センサ20としては、静電容量式変位
センサに限るものではなく、切削工具15と加工物12
との相対距離を必要な精度で測定できるものであれば、
どのようなものであってもよい。
For example, in the above embodiment, the capacitance type displacement sensor is used as the position measuring sensor 20 for measuring the relative distance between the cutting tool 15 and the workpiece 12. Is not limited to the capacitance type displacement sensor, but the cutting tool 15 and the workpiece 12
If it can measure the relative distance with the required accuracy,
Anything may be used.

【0070】[0070]

【発明の効果】請求項1記載の発明の自由曲面加工方法
によれば、加工物と工具の回転中心との相対位置を制御
して、回転する工具で加工物を自由曲面形状に加工する
に際して、工具と加工物との相対位置を検出して、当該
検出結果に基づいて工具と加工物との位置ずれを修正し
ているので、加工物と工具との相対位置の位置ずれを最
小限に保持することができ、高精度な加工を行うことが
できる。
According to the free-form surface machining method according to the first aspect of the present invention, the relative position between the workpiece and the center of rotation of the tool is controlled so that the workpiece can be machined into a free-form surface shape by the rotating tool. , The relative position between the tool and the workpiece is detected, and the displacement between the tool and the workpiece is corrected based on the detection result. It can be held and high-precision processing can be performed.

【0071】請求項2記載の発明の自由曲面加工方法に
よれば、工具が、加工物の加工面から一旦離れた後に再
度当該加工面に接触する際に、当該加工面への接触前
に、工具と加工物との相対位置を検出して、当該検出結
果に基づいて工具と加工物との位置ずれを修正している
ので、工具で加工物を加工する毎に加工物と工具との相
対位置の位置ずれを当該加工前に最小限に保持すること
ができ、より高精度な加工を行うことができる。
According to the free-form surface machining method of the present invention, when the tool once comes off the machined surface of the workpiece and contacts the machined surface again, Since the relative position between the tool and the workpiece is detected, and the positional deviation between the tool and the workpiece is corrected based on the detection result, the relative position between the workpiece and the tool is changed each time the workpiece is machined. The positional displacement can be kept to a minimum before the processing, and more accurate processing can be performed.

【0072】請求項3記載の発明の自由曲面加工方法に
よれば、工具と加工物との相対位置の検出結果に基づい
て工具の位置調整を行って、工具と加工物との位置ずれ
を修正しているので、加工物と工具との相対位置の位置
ずれを安価に最小限に保持することができ、高精度な加
工を行うことができる。
According to the free-form surface machining method of the third aspect, the position of the tool is adjusted based on the result of detection of the relative position between the tool and the workpiece, and the positional deviation between the tool and the workpiece is corrected. As a result, the displacement of the relative position between the workpiece and the tool can be kept to a minimum at low cost, and high-precision machining can be performed.

【0073】請求項4記載の発明の自由曲面加工方法に
よれば、工具と加工物との相対位置の検出結果に基づい
て加工物の位置調整を行って、工具と加工物との位置ず
れを修正しているので、加工物と工具との相対位置の位
置ずれを最小限に保持することができ、高精度な加工を
行うことができる。
According to the free-form surface machining method of the present invention, the position of the workpiece is adjusted based on the result of detection of the relative position between the tool and the workpiece, and the positional deviation between the tool and the workpiece is determined. Since the correction is performed, the displacement of the relative position between the workpiece and the tool can be kept to a minimum, and high-precision machining can be performed.

【0074】請求項5記載の発明の自由曲面加工方法に
よれば、工具の位置調整可能な最も細かな移動制御値よ
りも細かい精度で位置制御の可能な所定のアクチュエー
タを用いて加工物の位置調整を行って、工具と加工物と
の位置ずれを修正しているので、加工中に加工機の設定
値を変えることが困難な加工機であっても、加工物と工
具との相対位置の位置ずれを修正し、また、加工機の最
小設定値よりも細かい精度で加工物の位置調整を行っ
て、加工物と工具との相対位置の位置ずれをより一層最
小限に保持することができ、より一層高精度な加工を行
うことができる。
According to the free-form surface machining method of the present invention, the position of the workpiece is determined by using a predetermined actuator capable of controlling the position with a finer precision than the finest movement control value capable of adjusting the position of the tool. Since the adjustment is performed to correct the misalignment between the tool and the workpiece, even if it is difficult to change the set value of the processing machine during machining, the relative position between the workpiece and the tool can be adjusted. It is possible to correct misalignment and adjust the position of the workpiece with a finer precision than the minimum setting value of the processing machine, to further minimize the positional deviation of the relative position between the workpiece and the tool. In addition, it is possible to perform processing with higher accuracy.

【0075】請求項6記載の発明の自由曲面加工方法に
よれば、加工物の近くに位置測定点を配設し、当該位置
測定点を基準として工具と加工物との相対位置を検出し
ているので、加工物と工具との相対位置をより高精度に
検出して、加工物と工具との相対位置の位置ずれを適切
に最小限に保持することができ、より高精度な加工を行
うことができる。
According to the sixth aspect of the present invention, a position measuring point is provided near a workpiece, and a relative position between the tool and the workpiece is detected based on the position measuring point. Since the relative position between the workpiece and the tool can be detected with higher precision, the positional deviation between the relative position between the workpiece and the tool can be appropriately kept to a minimum, and more accurate processing can be performed. be able to.

【0076】請求項7記載の発明の自由曲面加工方法に
よれば、位置測定点を、加工物の近くに配設された所定
の測定物に配設しているので、加工物と工具との相対位
置をより高精度に検出して、加工物と工具との相対位置
の位置ずれをより適切に最小限に保持することができ、
より高精度な加工を行うことができる。
According to the free-form surface machining method of the present invention, since the position measurement points are arranged on the predetermined object arranged near the object, the position of the object and the tool can be reduced. By detecting the relative position with higher accuracy, it is possible to more appropriately hold the positional deviation of the relative position between the workpiece and the tool to a minimum,
Higher precision processing can be performed.

【0077】請求項8記載の発明の自由曲面加工方法に
よれば、測定物を、加工物と熱膨張率の近い材料で形成
しているので、測定点の熱的な変動を避けて加工物と工
具との相対位置をより一層高精度に検出して、加工物と
工具との相対位置の位置ずれをより一層適切に最小限に
保持することができ、より一層高精度な加工を行うこと
ができる。
According to the method for processing a free-form surface of the present invention, since the object to be measured is formed of a material having a coefficient of thermal expansion close to that of the object to be processed, thermal fluctuation of the measuring point is avoided while avoiding thermal fluctuation of the measuring point. Detecting the relative position between the tool and the tool with higher accuracy, the position of the relative position between the workpiece and the tool can be more appropriately kept to a minimum, and performing higher-precision machining. Can be.

【0078】請求項9記載の発明の自由曲面加工方法に
よれば、工具の近くに所定の距離測定センサを配設し、
当該距離測定センサで位置測定点との距離を測定して、
工具と加工物との相対位置を検出しているので、加工物
と工具との相対位置をより一層高精度に検出して、加工
物と工具との相対位置の位置ずれをより適切に最小限に
保持することができ、より高精度な加工を行うことがで
きる。
According to the free-form surface machining method of the ninth aspect, a predetermined distance measuring sensor is provided near the tool,
Measure the distance to the position measurement point with the distance measurement sensor,
Since the relative position between the tool and the workpiece is detected, the relative position between the workpiece and the tool is detected with higher accuracy, and the positional deviation of the relative position between the workpiece and the tool is more appropriately minimized. , And more accurate processing can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の自由曲面加工方法の一実施の形態を適
用した3軸制御の加工機の部分拡大正面図。
FIG. 1 is a partially enlarged front view of a three-axis control processing machine to which an embodiment of a free-form surface processing method according to the present invention is applied.

【図2】図1の加工機の部分拡大斜視図。FIG. 2 is a partially enlarged perspective view of the processing machine of FIG.

【図3】図1の加工機の切削工具と加工物の位置修正を
切削工具を移動させて行っている状態の拡大正面図。
FIG. 3 is an enlarged front view of a state in which the position of the cutting tool and the workpiece of the processing machine of FIG. 1 is corrected by moving the cutting tool.

【図4】図1の加工機の切削工具と加工物の位置修正を
加工物を移動させて行っている状態の拡大正面図。
FIG. 4 is an enlarged front view of a state in which the positions of the cutting tool and the workpiece of the processing machine of FIG. 1 are corrected by moving the workpiece.

【図5】従来の加工機の切削工具と加工物部分の拡大斜
視図。
FIG. 5 is an enlarged perspective view of a cutting tool and a workpiece of a conventional processing machine.

【図6】図5の加工機の切削工具の移動軌跡を示す図。FIG. 6 is a diagram illustrating a movement locus of a cutting tool of the processing machine in FIG. 5;

【図7】図5の切削工具による加工物の切削領域を示す
斜視図。
FIG. 7 is a perspective view showing a cutting area of a workpiece by the cutting tool of FIG. 5;

【図8】図7の切削された加工物の切削領域を示す側面
断面図。
FIG. 8 is a side cross-sectional view showing a cutting area of the cut workpiece of FIG. 7;

【図9】図5の従来の加工機の切削工具と加工物の相対
位置の再現性の測定を行っている状態の要部平面図。
9 is a plan view of a main part of the conventional processing machine in FIG. 5 in a state where reproducibility of a relative position between a cutting tool and a workpiece is measured.

【図10】図9の切削工具と加工物の相対位置の測定結
果を示すグラフ。
FIG. 10 is a graph showing the measurement results of the relative positions of the cutting tool and the workpiece in FIG. 9;

【符号の説明】[Explanation of symbols]

10 加工機 11 Z軸テーブル 12 加工物 13 回転軸 14 ホイール 15 切削工具 16 駆動モータ 17 移動テーブル 18 アーム 19 位置測定アーム 20 位置測定用センサ 30 アクチュエータ M 位置測定マーク DESCRIPTION OF SYMBOLS 10 Processing machine 11 Z-axis table 12 Workpiece 13 Rotation axis 14 Wheel 15 Cutting tool 16 Drive motor 17 Moving table 18 Arm 19 Position measuring arm 20 Position measuring sensor 30 Actuator M Position measuring mark

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】所定の回転半径を有する工具を回転させな
がら、加工物と前記工具の回転中心との相対位置を制御
して、前記回転する工具で前記加工物を自由曲面形状に
加工する自由曲面加工方法であって、前記加工中に、前
記工具と前記加工物との相対位置を検出して、当該検出
結果に基づいて前記工具と前記加工物との位置ずれを修
正することを特徴とする自由曲面加工方法。
1. A method of controlling a relative position between a workpiece and a center of rotation of a tool while rotating a tool having a predetermined radius of rotation, and processing the workpiece into a free-form surface by the rotating tool. A curved surface processing method, wherein during the processing, a relative position between the tool and the workpiece is detected, and a positional deviation between the tool and the workpiece is corrected based on the detection result. Free curved surface processing method.
【請求項2】前記加工において、前記工具が、前記加工
物の加工面から一旦離れた後に再度当該加工面に接触す
る際に、当該加工面への接触前に、前記工具と前記加工
物との相対位置を検出して、当該検出結果に基づいて前
記工具と前記加工物との位置ずれを修正することを特徴
とする請求項1記載の自由曲面加工方法。
2. In the machining, when the tool once contacts the machining surface after leaving the machining surface of the workpiece, the tool and the workpiece are contacted with each other before contacting the machining surface. 2. The free-form surface machining method according to claim 1, wherein a relative position of the tool is detected, and a positional shift between the tool and the workpiece is corrected based on the detection result.
【請求項3】前記検出結果に基づいて前記工具の位置調
整を行って、前記工具と前記加工物との位置ずれを修正
することを特徴とする請求項1または請求項2記載の自
由曲面加工方法。
3. The free-form surface machining according to claim 1, wherein the position of the tool is adjusted based on the detection result to correct a positional deviation between the tool and the workpiece. Method.
【請求項4】前記検出結果に基づいて前記加工物の位置
調整を行って、前記工具と前記加工物との位置ずれを修
正することを特徴とする請求項1または請求項2記載の
自由曲面加工方法。
4. The free-form surface according to claim 1, wherein the position of the workpiece is adjusted based on the detection result to correct the positional deviation between the tool and the workpiece. Processing method.
【請求項5】前記工具の位置調整可能な最も細かな移動
制御値よりも細かい精度で位置制御の可能な所定のアク
チュエータを用いて前記加工物の位置調整を行って、前
記工具と前記加工物との位置ずれを修正することを特徴
とする請求項4記載の自由曲面加工方法。
5. The tool and the workpiece by performing position adjustment of the workpiece using a predetermined actuator capable of controlling the position with a finer precision than the finest movement control value capable of adjusting the position of the tool. 5. The method for processing a free-form surface according to claim 4, wherein the positional deviation from the position is corrected.
【請求項6】前記加工物の近くに位置測定点を配設し、
当該位置測定点を基準として前記工具と前記加工物との
相対位置を検出することを特徴とする請求項1から請求
項5のいずれかに記載の自由曲面加工方法。
6. A position measuring point is provided near said workpiece,
The free-form surface machining method according to claim 1, wherein a relative position between the tool and the workpiece is detected based on the position measurement point.
【請求項7】前記位置測定点は、前記加工物の近くに配
設された所定の測定物に配設されていることを特徴とす
る請求項6記載の自由曲面加工方法。
7. The free-form surface machining method according to claim 6, wherein the position measurement points are arranged on a predetermined object arranged near the workpiece.
【請求項8】前記測定物は、前記加工物と熱膨張率の近
い材料で形成されていることを特徴とする請求項7記載
の自由曲面加工方法。
8. The free-form surface machining method according to claim 7, wherein said workpiece is made of a material having a thermal expansion coefficient close to that of said workpiece.
【請求項9】前記工具の近くに所定の距離測定センサを
配設し、当該距離測定センサで前記位置測定点との距離
を測定して、前記工具と前記加工物との相対位置を検出
することを特徴とする請求項6から請求項8のいずれか
に記載の自由曲面加工方法。
9. A predetermined distance measuring sensor is disposed near the tool, and the distance measuring sensor measures a distance from the position measuring point to detect a relative position between the tool and the workpiece. The free-form surface processing method according to claim 6, wherein:
JP35091399A 1999-12-10 1999-12-10 Free-form surface machining method Pending JP2001162428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35091399A JP2001162428A (en) 1999-12-10 1999-12-10 Free-form surface machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35091399A JP2001162428A (en) 1999-12-10 1999-12-10 Free-form surface machining method

Publications (1)

Publication Number Publication Date
JP2001162428A true JP2001162428A (en) 2001-06-19

Family

ID=18413762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35091399A Pending JP2001162428A (en) 1999-12-10 1999-12-10 Free-form surface machining method

Country Status (1)

Country Link
JP (1) JP2001162428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268653A (en) * 2006-03-31 2007-10-18 Konica Minolta Opto Inc Cutting device and method, method of calculating radius of rotation of cutting blade and manufacturing method of cut work

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268653A (en) * 2006-03-31 2007-10-18 Konica Minolta Opto Inc Cutting device and method, method of calculating radius of rotation of cutting blade and manufacturing method of cut work

Similar Documents

Publication Publication Date Title
JP5836314B2 (en) Machine tool calibration method
JP2002103220A (en) Measuring method and working method for working portion
JP4510755B2 (en) Tool edge position calculation method and machine tool
JPS6033006A (en) Truing device for cylindrical grinding wheel
JP2009519137A5 (en)
JP2000198047A (en) Machine tool
JP6101115B2 (en) Machine tool and method of processing workpiece by machine tool
JPH10156692A (en) Cam grinding machine
JP4857861B2 (en) Cutting device and method thereof, method of calculating cutting radius of cutting blade, and method of manufacturing cut product
JP2005034934A (en) Numerically controlled apparatus, machine tool equipped with the same, and method for calculating coordinate of workpiece
JP2003039282A (en) Free-form surface working device and free-form surface working method
JP2001162428A (en) Free-form surface machining method
JP2002001568A (en) Parameter setting method for laser beam machining head of nc control three-dimensional laser beam machine and nc control three-dimensional laser beam machine
JPH05337787A (en) Boring diameter correcting device of machine tool
JP2018130781A (en) Nc lathe and machining method using the same
JPH05200649A (en) Tool centering device
JPH10277889A (en) Cutter tip position measuring device
JP4048434B2 (en) Grooving method and numerical control device
JP2767852B2 (en) Grinding machine with tool length setting function
JPH0760505A (en) Cutting tool setting method
JPH08141801A (en) Cutting tool moving type cutting method
JP2000246589A (en) Free form surface machining method
JP3797393B2 (en) How to align the center height between the cutting tool and the workpiece
JPS63232965A (en) Grinding machine
JPS60177848A (en) Correction of original point in nc machine tool