JP3756793B2 - Machine tool thermal displacement compensation device - Google Patents

Machine tool thermal displacement compensation device Download PDF

Info

Publication number
JP3756793B2
JP3756793B2 JP2001228309A JP2001228309A JP3756793B2 JP 3756793 B2 JP3756793 B2 JP 3756793B2 JP 2001228309 A JP2001228309 A JP 2001228309A JP 2001228309 A JP2001228309 A JP 2001228309A JP 3756793 B2 JP3756793 B2 JP 3756793B2
Authority
JP
Japan
Prior art keywords
correction
amount
thermal displacement
command
influence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001228309A
Other languages
Japanese (ja)
Other versions
JP2003039278A (en
Inventor
治光 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2001228309A priority Critical patent/JP3756793B2/en
Publication of JP2003039278A publication Critical patent/JP2003039278A/en
Application granted granted Critical
Publication of JP3756793B2 publication Critical patent/JP3756793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、NC旋盤・マシニングセンタなどの工作機械の熱変位補正装置に関するものである。
【0002】
【従来の技術】
一般に工作機械は、機械の特性上各部に熱源として、例えば主軸の転がり軸受けなどを備えており、この熱源によって発生した熱が周囲の機械各部に伝わることで機体の熱変形を引き起こす。この機体の熱変形は、加工精度に大きく影響することから、その防止策として、従来から発熱部を冷却する方法、或いは、機体温度情報から熱変形量を推定し補正して加工をする方法が広く採用されている。例えば、後者の従来技術として、特公昭61−59860号公報には、工作機械の主軸頭部の温度と比較的温度変化の少ない機体部分の温度との二差値と主軸の伸びとの関係を表す温度差−熱変位量の関数式をプログラムメモリ内にストアし、温度検出した即時値をもとにして熱変位量演算し、サーボ出力に補正量を付与する方法が開示されている。
また、特開平10−296586号公報では、算出した熱変位補正量と、予め設定した補正速度の処理方法及び設定値とを基に単位時間当りの補正軸移動量、即ち補正速度を求め補正指令値とする方法が示されている。
【0003】
【発明が解決しようとする課題】
しかし、特公昭61−59860号公報に記載される方法によると熱変位補正のための軸移動が、通常設定で定められた一定間隔ごとに実施されるため、軸移動により補正前後で工具刃先位置に大きな変位変化が生じ、加工面にスジ目が現われ加工面品位が劣化することがあった。
また、特開平10−296586号公報に記載される発明では、機械の軸移動状況や、追従性能に関係なく補正が実施されるため、補正による形状変化や追従性能の悪さによって発生するスティックスリップでも加工面が荒れてしまう。
【0004】
【課題を解決するための手段】
そこで、請求項1に係る本発明では、ワークに創成面を加工する工作機械の熱発生源となる機械各部の温度を測定する温度検出部と、該温度検出部により測定された温度に対応した熱変位補正量を推定する補正量推定部と、該補正量推定部からの熱変位補正量に基づく軸補正座標を演算し補正対象軸に補正指令を出力する加工制御部とを備える熱変位補正装置であって、
該加工制御部は、該補正対象軸に出力された補正指令による創成面への影響量を演算する影響量算出部と、算出された該影響量を予め設定した値と比較し、該影響量が小さければ補正指令を出力し、大きければ補正指令を出力しない影響量判定部とを有することを特徴とする工作機械の熱変位補正装置である。
これにより、補正指令により補正量分動く対象軸が創成面へ大きな影響を与える場合を判定できるので、従来のような加工面品位を劣化させるようなスジ目の発生等を防止できる。
なお、早送り中は刃物は創作面に接触しておらず、補正指令に基づく位置制御を行っても創成面への影響は無い。
次に、切削加工指令中は、刃物が創成面に接触している状態でも、その補正量自体が小さく創成面への影響が小さい場合もあるので、予めその度合いを数値化しておき、その設定値を超えるまでは補正処理を行い、設定値を超えた場合は補正処理を行わないことが可能である。
【0005】
また、請求項2に係る本発明では、ワークに創成面を加工する工作機械の熱発生源となる機械各部の温度を測定する温度検出部と、該温度検出部により測定された温度に対応した熱変位補正量を推定する補正量推定部と、該補正量推定部からの熱変位補正量に基づく軸補正座標を演算し補正対象軸に補正指令を出力する加工制御部とを備える熱変位補正装置であって、
該加工制御部は、該補正対象軸に早送り指令があるときは補正指令を出力する早送り判別部と、切削送り時には補正指令を出力することによる創成面への影響量を補正出力対象軸と加工面の法線との角度から算出する影響量演算部と、演算された該影響量が予め設定した値より小さければ補正指令を出力する影響量判定部とを有することにより、該影響量が予め設定した値より大きい場合に補正指令を出力しないことを特徴とする工作機械の熱変位補正装置である。
これにより、影響量が予め設定した値より大きい場合に発生する品位の劣化を防ぎ、高品位な加工を可能にしている。
ここで、創成面への影響を補正出力対象軸と加工面の法線との角度から算出する演算式は、後述する式1が好適である。これにより、ワークの加工データから得た刃物の軌跡が補正前と補正後でどれだけシフトするか、その変位絶対量又は2本の軌跡直線の補正点における距離を算出して数値化しており、表面粗さへの影響量を客観的に評価できる。
【0006】
【発明の実施の形態】
以下、本発明を具体化したNC旋盤について図面に基づいて説明する。
図1は、NC旋盤を主軸の軸方向から示した説明図である。
NC旋盤の主軸台1は、スラントベッド2の水平面2aに載置され、傾斜面2bには刃物台3が各軸方向へスライド可能に設置されている。そして、主軸4に取り付けた油圧チャック8にワーク9を把持し、主軸4をモータで回転し、各軸方向に位置を制御された刃物台3の刃物10によりワーク9を旋削するようになっている。この刃物台3を各軸方向に位置を制御するNC装置14は、予め入力された切削作業値に基づき各軸のサーボモータ15の移動座標や移動速度を制御している。
【0007】
また、主軸台1の主軸4には第1温度センサ5が、刃物台3には第2温度センサ6が、スラントベッド2には第3温度センサ7がそれぞれの温度を測定するように取り付けられている。そして、各温度センサ5〜7は温度測定装置11に接続され、測定された各温度値をアナログ信号からデジタル信号に変換して数値化し、記憶装置13にあらかじめ決定し記憶した温度データと熱変位量との関係の補正パラメータに基づき、熱変位推定演算器12にて温度データから熱変位量を推定し、公知の方法により補正量を算出し、NC装置14がその補正量に従って各軸の位置移動指令をサーボモータ15に出力するよう構成されている。
【0008】
次に、熱変位補正の処理について説明する。
図2はワーク9にテーパ加工を行う刃物10の送り動作を説明する図面であり、刃物10を初期位置から切削開始位置まで早送り1で移動させ、ワーク9に切削送り1で加工を施し、早送り2で切削終了位置から初期位置まで戻す移動を示している。このように、熱変位補正の指令対象軸は、初期位置のように停止状態と、ワーク9に刃物10が接触しない早送り状態と、接触する切削状態との3態様の軸移動状況があり、ワークの形状により早送り状態と切削状態とが繰り返されることもある。
熱変位は、NC旋盤の動作又は加工により発生する。図4に、熱変位変化曲線Aと、一定間隔で離散的に熱変位量を推定し、その推定量から補正指令値を出力した経時的変化B、並びに補正誤差の遷移Cの一例を示す。始めの頃は補正指令値は大きく、時間が経過するにつれ熱変位変化が小さくなり熱変位の補正量は小さくなる。
【0009】
図3は、熱変位推定演算器12及びNC装置14における熱変位補正制御のフローチャートを示している。
まず、予め加工精度上必要とする表面粗さの値を設定しておく。機体に装着した各温度センサ5,6,7で温度測定を工程S−1にて行い、この結果をもとに工程S−2で公知の方法により熱変位量を計算する。
ここで、熱変位補正する指令の無い状況で、対象軸の軸移動が停止状態であれば、後述する工程S−3、S−5を処理せず、工程S−2で計算された補正指令の反映を実施せず未実施のまま待機する(工程S−8)。これにより、スティックスリップが生じない。
その待機中に熱変位補正演算の更新時間となり、熱変位補正を続行するならば工程S−1に戻り、工程S−2で計算する熱変位演算の更新を優先に行う(工程S−9)。
【0010】
次に、熱変位補正する指令対象軸の軸移動状況が停止状態でない場合、工程S−3で熱変位補正指令対象軸の軸移動状況が早送りであるか否かを判定し、早送り動作であれば工程S−2で計算された補正量を反映させる命令が出力される(工程S−4)。
【0011】
更に、熱変位補正する指令対象軸の軸移動状況が停止状態と早送りのいずれでもない場合、工程S−5で熱変位補正指令対象軸の軸移動状況が切削送りであるか否かを判定する。そして、切削送り動作である場合、工程S−6にて後述する式1により表面粗さへの影響量Eを求め、工程S−7では、求めた影響量Eを、予め工程S−0で設定した加工精度上必要とする表面粗さの入力値と比較して補正を行うか否かを判定する。
【0012】
表面粗さへの影響量Eが設定値よりも大きい場合(工程S−7、No)には、工程S−2で計算された補正指令の反映を実施せず未実施のまま待機して(工程S−8)、待機中に熱変位補正演算の更新時間となり熱変位補正を続行するならば工程S−1に戻り、次の熱変位演算の更新を優先に行う(工程S−9)。これにより、従来は、図5に示すように切削加工中に軸移動指令が入ると軸の移動量や速度が急激に変化するために切削加工面にスジ目が入ってしまう不都合が無くなった。
【0013】
一方、表面粗さへの影響量Eが設定値よりも小さければ(工程S−7、YES)、切削加工時であっても工程S−2で計算された補正量を反映させる命令が出力される(工程S−4)。これにより、切削速度で送られていても加工面に対して影響のない場合は、熱変位に対する補正を実行することで正確な切削加工が実行される。尚、従来は、切削中いかなる状態でも補正が実行されていた
【0014】
なお、工程S−7での表面粗さへの影響量Eと設定値との比較は厳密なものではなく、ほぼ同値の場合はどちらの処理でも良いし、同値の場合を考慮して設定値を決定することも可能である。
【0015】
ここで、工程S−6で算出して求める表面粗さへの影響量Eを説明する。
図6は、一例としてX軸、Z軸の合成2軸でXZ面に切削加工するときに、X軸方向への補正量が入った場合の、補正時の刃物の軌跡を示す。補正点P1における、創成面への影響を考慮するための値Eは、式1により算出する。θは、補正反映軸であるX軸と、創成面の補正点P1を通る法線のなす角度である。
【0016】
E=δ・cosθ 式1
E:表面粗さへの影響量
δ:補正量
θ:補正反映軸と創成面の法線との角度
【0017】
これは、ワークの加工データから得た刃物の軌跡が補正前と補正後でどれだけシフトするかを基に表面粗さへの影響量Eを算出する。そして、工程S−7では式2の判定式で判定を行う。
【0018】
IF しきい設定値<E THEN 補正実行無し 式2
【0019】
例えば、補正対象軸が単軸の場合、補正量の反映を必要とする軸の移動のみで加工を始める場合には、表面粗さへの影響量Eは、加工面に影響が出ないと判定された場合にそのまま補正量が転送されて補正処理される。
そして、加工点P0からP3に至る加工のように補正量を反映する軸と他の軸の合成2軸以上で加工が行われる加工点P0からP1までやP2からP3までの場合には、XZ軸への補正量に分割し、それぞれの軸について創成面への影響量Eを算出した上で、補正を反映させるか否かを決定する。なお、しきい設定値は、ワークの加工要求精度と経験則とから加工操作者が決定し、加工前に加工制御部の影響量判定部に入力しておく。また、ワークの加工要求精度と、経験則を考慮したしきい設定値との対応表を加工制御部に記憶しておき、加工データにより自動選択される熱変位補正装置であってもよい。
【0020】
【発明の効果】
本発明によれば、工作機械が加工処理するワークの加工面への影響を考慮した状態で、補正反映の抑制が効果的に実施されるため、高品質な加工が実現できる。
つまり、請求項1に係る本発明では、熱変位補正装置の加工制御部は、補正対象軸に出力された補正指令による創成面への影響量を演算する影響量算出部と、算出された該影響量を予め設定した値と比較し、創成面への影響が小さければ補正指令を出力し、大きければ補正指令を出力しない影響量判定部とを有する工作機械の熱変位補正装置であるから、補正指令により補正量分動く対象軸が創成面へ大きな影響を与える場合を判定できるので、従来のような加工面品位を劣化させるようなスジ目の発生等を防止できる。
【0021】
また、請求項2に係る本発明では、熱変位補正装置の加工制御部は、補正対象軸に早送り指令があるときは補正指令を出力する早送り判別部と、切削送り時には補正指令を出力することによる創成面への影響量を補正出力対象軸と加工面の法線との角度から算出する影響量演算部と、演算された該影響量が予め設定した値より小さければ補正指令を出力する影響量判定部とを有することにより、該影響量が予め設定した値より大きい場合に補正指令を出力しない工作機械の熱変位補正装置であるから、補正指令により創成面の品位を劣化させるようなスジ目の発生を防ぎながら、正確な位置決めによる切削加工を可能にしている。
【図面の簡単な説明】
【図1】 NC旋盤を主軸の軸方向から示した説明図である。
【図2】 ワークにテーパ加工を行う刃物の送り動作を示す説明図である。
【図3】 熱変位補正制御を示すフローチャートである。
【図4】 熱変位量と補正量との経時変化を示す説明図である。
【図5】 補正処理を行う軸移動量の経時変化を示す説明図である。
【図6】 XZ面に切削加工する刃物の軌跡を示す説明図である。
【符号の説明】
1 主軸台
2 スラントベッド
3 刃物台
4 主軸
5〜7 温度センサ
8 油圧チャック
9 ワーク
10 刃物
11 温度測定装置
12 熱変位推定演算器
13 記憶装置
14 NC装置
15 サーボモータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal displacement correction apparatus for machine tools such as NC lathes and machining centers.
[0002]
[Prior art]
In general, a machine tool is provided with a rolling bearing of a main shaft, for example, as a heat source in each part due to the characteristics of the machine, and heat generated by the heat source is transmitted to surrounding machine parts, thereby causing thermal deformation of the machine body. Since the thermal deformation of the airframe greatly affects the processing accuracy, as a preventive measure, there is a conventional method of cooling the heat generating part, or a method of processing by estimating and correcting the thermal deformation amount from the airframe temperature information. Widely adopted. For example, as the latter prior art, Japanese Examined Patent Publication No. 61-59860 discloses the relationship between the difference between the temperature of the spindle head of a machine tool and the temperature of the machine part having a relatively small temperature change and the elongation of the spindle. A method is disclosed in which a function expression of a temperature difference-thermal displacement amount is stored in a program memory, a thermal displacement amount is calculated based on an immediate value detected by temperature, and a correction amount is given to a servo output.
Japanese Patent Laid-Open No. 10-296586 discloses a correction command for obtaining a correction axis movement amount per unit time, that is, a correction speed based on the calculated thermal displacement correction amount, a preset correction speed processing method, and a set value. The method of value is shown.
[0003]
[Problems to be solved by the invention]
However, according to the method described in Japanese Examined Patent Publication No. 61-59860, the axis movement for correcting the thermal displacement is performed at regular intervals determined by the normal setting. There was a case where a large displacement change occurred, streaks appeared on the machined surface, and the machined surface quality deteriorated.
In the invention described in Japanese Patent Laid-Open No. 10-296586, correction is performed regardless of the axial movement state of the machine and the follow-up performance. Therefore, even a stick slip generated due to a shape change due to the correction or poor follow-up performance. The processed surface will be rough.
[0004]
[Means for Solving the Problems]
Therefore, in the present invention according to claim 1, a temperature detection unit that measures the temperature of each part of the machine that is a heat generation source of the machine tool that processes the generating surface on the work, and the temperature measured by the temperature detection unit Thermal displacement correction comprising: a correction amount estimation unit that estimates a thermal displacement correction amount; and a machining control unit that calculates axis correction coordinates based on the thermal displacement correction amount from the correction amount estimation unit and outputs a correction command to the correction target axis A device,
The machining control unit compares an influence amount calculating unit for calculating an influence amount on the generating surface by the correction command output to the correction target axis, and compares the calculated influence amount with a preset value. A thermal displacement correction device for a machine tool, comprising: an influence amount determination unit that outputs a correction command if the value is small and does not output a correction command if the value is large.
As a result, it is possible to determine the case where the target axis that moves by the correction amount by the correction command has a large influence on the generating surface, and thus it is possible to prevent the occurrence of streaking that deteriorates the machining surface quality as in the conventional case.
During rapid traverse, the cutter is not in contact with the creation surface, and position control based on the correction command does not affect the creation surface.
Next, during the cutting command, even when the blade is in contact with the generating surface, the correction amount itself may be small and the effect on the generating surface may be small. It is possible to perform the correction process until the value is exceeded, and not to perform the correction process when the set value is exceeded.
[0005]
Moreover, in this invention which concerns on Claim 2, it respond | corresponds to the temperature measured by the temperature detection part which measures the temperature of each machine part used as the heat generation source of the machine tool which processes a generating surface to a workpiece | work, and this temperature detection part Thermal displacement correction comprising: a correction amount estimation unit that estimates a thermal displacement correction amount; and a machining control unit that calculates axis correction coordinates based on the thermal displacement correction amount from the correction amount estimation unit and outputs a correction command to the correction target axis A device,
The machining control unit outputs a correction command when a fast feed command is issued to the correction target axis, and a correction output target axis and a machining amount by which the correction command is output during cutting feed. By having an influence amount calculation unit that is calculated from an angle with the normal of the surface and an influence amount determination unit that outputs a correction command if the calculated influence amount is smaller than a preset value, the influence amount is determined in advance. A thermal displacement correction device for a machine tool, wherein a correction command is not output when the value is larger than a set value.
Thus, the influence amount prevent quality degradation that occurs when greater than a preset value, thereby enabling a high-quality pressure Engineering.
Here, Formula 1 described later is preferable as the calculation formula for calculating the influence on the generating surface from the angle between the correction output target axis and the normal of the machining surface. Thereby, how much the locus of the blade obtained from the machining data of the workpiece is shifted before and after the correction, the displacement absolute amount or the distance at the correction point of the two locus straight lines is calculated and digitized, The amount of influence on the surface roughness can be objectively evaluated.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an NC lathe embodying the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view showing the NC lathe from the axial direction of the main shaft.
The headstock 1 of the NC lathe is placed on the horizontal surface 2a of the slant bed 2, and the tool post 3 is installed on the inclined surface 2b so as to be slidable in the respective axial directions. Then, the workpiece 9 is gripped by the hydraulic chuck 8 attached to the spindle 4, the spindle 4 is rotated by a motor, and the workpiece 9 is turned by the cutter 10 of the tool post 3 whose position is controlled in each axial direction. Yes. The NC device 14 that controls the position of the tool post 3 in the direction of each axis controls the movement coordinates and the movement speed of the servo motor 15 of each axis based on the cutting work values input in advance.
[0007]
A first temperature sensor 5 is attached to the spindle 4 of the headstock 1, a second temperature sensor 6 is attached to the tool post 3, and a third temperature sensor 7 is attached to the slant bed 2 to measure the respective temperatures. ing. The temperature sensors 5 to 7 are connected to the temperature measuring device 11, and each measured temperature value is converted from an analog signal to a digital signal to be digitized, and the temperature data and thermal displacement determined and stored in advance in the storage device 13. Based on the correction parameter related to the amount, the thermal displacement estimation calculator 12 estimates the thermal displacement amount from the temperature data, calculates the correction amount by a known method, and the NC device 14 determines the position of each axis according to the correction amount. A movement command is output to the servo motor 15.
[0008]
Next, the thermal displacement correction process will be described.
FIG. 2 is a drawing for explaining the feed operation of the cutter 10 that performs taper machining on the workpiece 9. The cutter 10 is moved from the initial position to the cutting start position with fast feed 1, and the workpiece 9 is machined with the cutting feed 1 to fast feed 2 shows the movement to return from the cutting end position to the initial position. As described above, the command axis for the thermal displacement correction has three types of axis movement states, that is, a stopped state like the initial position, a fast-feed state where the blade 10 does not contact the workpiece 9, and a cutting state where the workpiece 10 contacts. Depending on the shape, the rapid feed state and the cutting state may be repeated.
The thermal displacement is generated by the operation or machining of the NC lathe. FIG. 4 shows an example of a thermal displacement change curve A, a temporal change B in which a thermal displacement amount is discretely estimated at regular intervals, and a correction command value is output from the estimated amount, and a correction error transition C. At the beginning, the correction command value is large, and as time passes, the change in thermal displacement becomes smaller and the correction amount for thermal displacement becomes smaller.
[0009]
FIG. 3 shows a flowchart of the thermal displacement correction control in the thermal displacement estimation calculator 12 and the NC device 14.
First, a surface roughness value required for processing accuracy is set in advance. Temperature measurement is performed in step S-1 with each of the temperature sensors 5, 6 and 7 attached to the airframe, and based on this result, the amount of thermal displacement is calculated by a known method in step S-2.
Here, if there is no command to correct the thermal displacement and the movement of the target axis is in a stopped state, the correction command calculated in step S-2 is not processed without performing steps S-3 and S-5 described later. No reflection is performed, and the process waits without being performed (step S-8). Thereby, stick-slip does not occur.
During the waiting time, it becomes the update time of the thermal displacement correction calculation. If the thermal displacement correction is continued, the process returns to step S-1, and the update of the thermal displacement calculation calculated in step S-2 is preferentially performed (step S-9). .
[0010]
Next, when the axis movement status of the command target axis to be subjected to thermal displacement correction is not in a stopped state, it is determined whether or not the axis movement status of the thermal displacement correction command target axis is rapid feed in step S-3. For example, a command for reflecting the correction amount calculated in step S-2 is output (step S-4).
[0011]
Further, when the axis movement status of the command target axis to be subjected to thermal displacement correction is neither a stopped state nor a rapid feed, it is determined in step S-5 whether or not the axis movement status of the thermal displacement correction command target axis is a cutting feed. . In the case of the cutting feed operation, the influence amount E on the surface roughness is obtained by Equation 1 described later in Step S-6, and in Step S-7, the obtained influence amount E is obtained in advance in Step S-0. It is determined whether or not correction is performed in comparison with the input value of the surface roughness required for the set machining accuracy.
[0012]
When the amount of influence E on the surface roughness is larger than the set value (step S-7, No), the correction command calculated in step S-2 is not reflected and is left unexecuted ( Step S-8) When the thermal displacement correction calculation time is reached during standby, if the thermal displacement correction is continued, the process returns to Step S-1 to preferentially update the next thermal displacement calculation (Step S-9). As a result, conventionally, as shown in FIG. 5, when a shaft movement command is input during cutting, the amount of movement and speed of the shaft change abruptly.
[0013]
On the other hand, if the influence amount E on the surface roughness is smaller than the set value (step S-7, YES), a command for reflecting the correction amount calculated in step S-2 is output even at the time of cutting. (Step S-4). Thus, when there is no effect on the machined surface also be sent in cutting speed, accurate cutting by executing the correction to the thermal displacement Ru is executed. Incidentally, conventionally, the correction has been performed in any state during the cutting.
[0014]
Note that the comparison between the influence amount E on the surface roughness E and the set value in the step S-7 is not strict, and in the case of almost the same value, either processing may be performed, and the set value in consideration of the case of the same value. It is also possible to determine.
[0015]
Here, the influence amount E on the surface roughness calculated and obtained in step S-6 will be described.
FIG. 6 shows, as an example, the trajectory of the blade at the time of correction when a correction amount in the X-axis direction is entered when cutting into the XZ plane with the combined two axes of the X-axis and the Z-axis. A value E for taking into account the influence on the generating surface at the correction point P1 is calculated by Equation 1. θ is an angle formed by an X axis that is a correction reflection axis and a normal line that passes through the correction point P1 of the generating surface.
[0016]
E = δ · cos θ Equation 1
E: Amount of influence on surface roughness δ: Correction amount θ: Angle between correction reflection axis and normal of generating surface
This calculates the influence amount E on the surface roughness based on how much the locus of the blade obtained from the machining data of the workpiece is shifted before and after the correction. And in process S-7, it determines with the determination formula of Formula 2.
[0018]
IF threshold setting value <E THEN No correction execution Equation 2
[0019]
For example, when the correction target axis is a single axis, when machining is started only by moving the axis that needs to reflect the correction amount, the influence amount E on the surface roughness is determined not to affect the machining surface. If it is, the correction amount is transferred as it is and correction processing is performed.
In the case of machining points P0 to P1 or P2 to P3 where machining is performed with two or more combined axes of the axis reflecting the correction amount and other axes as in the machining from the machining points P0 to P3, XZ It divides | segments into the corrected amount to an axis | shaft, After calculating the influence amount E to a generating surface about each axis | shaft, it is determined whether correction | amendment is reflected. The threshold setting value is determined by the machining operator based on the required machining accuracy and empirical rule of the workpiece, and is input to the influence amount determination unit of the machining control unit before machining. Alternatively, a thermal displacement correction device that stores a correspondence table between the required machining accuracy of a workpiece and a threshold setting value considering empirical rules in a machining control unit and is automatically selected based on machining data may be used.
[0020]
【The invention's effect】
According to the present invention , high- quality machining can be realized because the correction reflection is effectively suppressed in consideration of the influence on the machining surface of the workpiece processed by the machine tool.
That is, in the present invention according to claim 1, the machining control unit of the thermal displacement correction device includes an influence amount calculation unit that calculates an influence amount on the generating surface by the correction command output to the correction target axis, and the calculated amount Since it is a thermal displacement correction device for a machine tool having an influence amount determination unit that compares the influence amount with a preset value and outputs a correction command if the influence on the generating surface is small and outputs a correction command if large. Since it is possible to determine the case where the target axis moving by the correction amount has a large influence on the generating surface by the correction command, it is possible to prevent the occurrence of streaking that deteriorates the quality of the machined surface as in the conventional case.
[0021]
Further, in the present invention according to claim 2, the machining control unit of the thermal displacement correction device outputs a fast feed discriminating unit that outputs a correction command when there is a fast feed command for the correction target axis, and outputs a correction command at the time of cutting feed. The influence amount calculation unit that calculates the influence amount on the created surface from the angle between the correction output target axis and the normal of the machining surface, and the influence that the correction command is output if the calculated influence amount is smaller than a preset value Since this is a thermal displacement correction device for a machine tool that does not output a correction command when the influence amount is larger than a preset value, a streak that deteriorates the quality of the generating surface by the correction command is provided. It enables cutting by accurate positioning while preventing the generation of eyes.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an NC lathe from the axial direction of a main shaft.
FIG. 2 is an explanatory view showing a feed operation of a cutter for performing taper machining on a workpiece.
FIG. 3 is a flowchart showing thermal displacement correction control.
FIG. 4 is an explanatory diagram showing a change with time of a thermal displacement amount and a correction amount.
FIG. 5 is an explanatory diagram showing a change over time in the amount of axial movement for which correction processing is performed.
FIG. 6 is an explanatory diagram showing the trajectory of a cutter that cuts into an XZ plane.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Spindle base 2 Slant bed 3 Tool post 4 Spindle 5-7 Temperature sensor 8 Hydraulic chuck 9 Workpiece 10 Cutting tool 11 Temperature measuring device 12 Thermal displacement estimation calculator 13 Storage device 14 NC device 15 Servo motor

Claims (2)

ワークに創成面を加工する工作機械の熱発生源となる機械各部の温度を測定する温度検出部と、該温度検出部により測定された温度に対応した熱変位補正量を推定する補正量推定部と、該補正量推定部からの熱変位補正量に基づく軸補正座標を演算し補正対象軸に補正指令を出力する加工制御部とを備える熱変位補正装置であって、
該加工制御部は、該補正対象軸に出力された補正指令による創成面への影響量を演算する影響量算出部と、算出された該影響量を予め設定した値と比較し、該影響量が小さければ補正指令を出力し、大きければ補正指令を出力しない影響量判定部とを有することを特徴とする工作機械の熱変位補正装置。
A temperature detection unit that measures the temperature of each part of the machine that is a heat generation source of a machine tool that processes a generating surface on a workpiece, and a correction amount estimation unit that estimates a thermal displacement correction amount corresponding to the temperature measured by the temperature detection unit And a processing control unit that calculates an axis correction coordinate based on the thermal displacement correction amount from the correction amount estimation unit and outputs a correction command to the correction target axis,
The machining control unit compares an influence amount calculating unit for calculating an influence amount on the generating surface by the correction command output to the correction target axis, and compares the calculated influence amount with a preset value . A thermal displacement correction device for a machine tool, comprising: an influence amount determination unit that outputs a correction command if the value is small and does not output a correction command if the value is large.
ワークに創成面を加工する工作機械の熱発生源となる機械各部の温度を測定する温度検出部と、該温度検出部により測定された温度に対応した熱変位補正量を推定する補正量推定部と、該補正量推定部からの熱変位補正量に基づく軸補正座標を演算し補正対象軸に補正指令を出力する加工制御部とを備える熱変位補正装置であって、
該加工制御部は、該補正対象軸に早送り指令があるときは補正指令を出力する早送り判別部と、切削送り時には補正指令を出力することによる創成面への影響量を補正出力対象軸と加工面の法線との角度から算出する影響量演算部と、演算された該影響量が予め設定した値より小さければ補正指令を出力する影響量判定部とを有することにより、該影響量が予め設定した値より大きい場合に補正指令を出力しないことを特徴とする工作機械の熱変位補正装置。
A temperature detection unit that measures the temperature of each part of the machine that is a heat generation source of a machine tool that processes a generating surface on a workpiece, and a correction amount estimation unit that estimates a thermal displacement correction amount corresponding to the temperature measured by the temperature detection unit And a processing control unit that calculates an axis correction coordinate based on the thermal displacement correction amount from the correction amount estimation unit and outputs a correction command to the correction target axis,
The machining control unit outputs a correction command when a fast feed command is issued to the correction target axis, and a correction output target axis and a machining amount by which the correction command is output during cutting feed. By having an influence amount calculation unit that is calculated from an angle with the normal of the surface and an influence amount determination unit that outputs a correction command if the calculated influence amount is smaller than a preset value, the influence amount is determined in advance. A thermal displacement correction device for a machine tool, wherein a correction command is not output when the value is larger than a set value.
JP2001228309A 2001-07-27 2001-07-27 Machine tool thermal displacement compensation device Expired - Fee Related JP3756793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001228309A JP3756793B2 (en) 2001-07-27 2001-07-27 Machine tool thermal displacement compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001228309A JP3756793B2 (en) 2001-07-27 2001-07-27 Machine tool thermal displacement compensation device

Publications (2)

Publication Number Publication Date
JP2003039278A JP2003039278A (en) 2003-02-12
JP3756793B2 true JP3756793B2 (en) 2006-03-15

Family

ID=19060841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228309A Expired - Fee Related JP3756793B2 (en) 2001-07-27 2001-07-27 Machine tool thermal displacement compensation device

Country Status (1)

Country Link
JP (1) JP3756793B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4450722B2 (en) * 2004-11-05 2010-04-14 高松機械工業株式会社 Machine tool and thermal deformation estimation method thereof
JP4498230B2 (en) * 2005-06-27 2010-07-07 日立ビアメカニクス株式会社 Drilling method and drilling device
JP4235210B2 (en) 2006-02-16 2009-03-11 ファナック株式会社 Servo motor control device
WO2014169402A1 (en) * 2013-04-19 2014-10-23 Sumitomo Chemical Company,Limited Cutting method and cutting apparatus
KR102067843B1 (en) * 2013-12-10 2020-02-11 두산공작기계 주식회사 Feed drive system thermal deformation correction device of machine tool and method thereof
JP6382911B2 (en) * 2016-11-01 2018-08-29 ファナック株式会社 Wire electric discharge machine
JP6444959B2 (en) * 2016-11-01 2018-12-26 ファナック株式会社 Wire electric discharge machine
JP2024077457A (en) * 2022-11-28 2024-06-07 スター精密株式会社 MACHINE TOOL SYSTEM AND METHOD FOR CONTROLLING MACHINE TOOL SYSTEM

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221688B2 (en) * 1991-05-14 2001-10-22 株式会社森精機製作所 NC machine with automatic thermal displacement correction means
JP3421256B2 (en) * 1997-10-20 2003-06-30 エンシュウ株式会社 Cutting method of metal materials etc. in nitrogen gas atmosphere
JP2001088024A (en) * 1999-09-20 2001-04-03 Toyoda Mach Works Ltd Taper compensation control method of grinding machine

Also Published As

Publication number Publication date
JP2003039278A (en) 2003-02-12

Similar Documents

Publication Publication Date Title
US7331739B2 (en) Method for machining workpiece
US20100145499A1 (en) Method for processing workpiece in tool machine and behavior measurement device
US11883973B2 (en) Cutting apparatus and contact position specifying program
WO2013073317A1 (en) Machine tool
JP7337664B2 (en) Correction value measurement method and correction value measurement system for position measurement sensor in machine tool
JP2000198047A (en) Machine tool
JP3756793B2 (en) Machine tool thermal displacement compensation device
JPH06143019A (en) Controller of crankshaft mirror
JP4245375B2 (en) Machine tool control method and machine tool
JPH07266194A (en) Tool cutting edge measurement compensator
JP2013255982A (en) Machine tool, and correction method of thermal deformation thereof
JP4857861B2 (en) Cutting device and method thereof, method of calculating cutting radius of cutting blade, and method of manufacturing cut product
JPH1020911A (en) Tool length correcting method for numerical controller, work center position detecting method, and tool wear degree estimating method and numerical controller
JP2022049546A (en) Controller, industrial machine, and method of control
US20230103408A1 (en) Turning method for workpiece, machine tool, and non-transitory computer-readable storage medium storing machining program
JP5846400B2 (en) Machine tool and its thermal deformation correction method
JP2018027599A (en) Method for correcting machining error of machine tool
JP4236483B2 (en) Machine tools with tool wear compensation
CN112775720B (en) Position measuring method and position measuring system for object of machine tool, and computer readable recording medium
JP2019013996A (en) Workpiece machining method in machine tool
JPH11156676A (en) Thermal displacement correcting method for machine tool, and its device
JPH08141883A (en) Method for correcting thermal displacement of machine tool
JPH0895625A (en) Backlash measurement/correction device for machining of spherical or circular arc surface
JP2002052439A (en) Thermal displacement correcting method for lathe
JP2004154907A (en) Thermal displacement correction method and device for multishaft machining tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees