JP4856399B2 - TFT element electrode shape of liquid crystal display device - Google Patents

TFT element electrode shape of liquid crystal display device Download PDF

Info

Publication number
JP4856399B2
JP4856399B2 JP2005192589A JP2005192589A JP4856399B2 JP 4856399 B2 JP4856399 B2 JP 4856399B2 JP 2005192589 A JP2005192589 A JP 2005192589A JP 2005192589 A JP2005192589 A JP 2005192589A JP 4856399 B2 JP4856399 B2 JP 4856399B2
Authority
JP
Japan
Prior art keywords
tft element
gate
width
electrode
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005192589A
Other languages
Japanese (ja)
Other versions
JP2007011056A (en
Inventor
和由 永山
Original Assignee
エルジー ディスプレイ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー ディスプレイ カンパニー リミテッド filed Critical エルジー ディスプレイ カンパニー リミテッド
Priority to JP2005192589A priority Critical patent/JP4856399B2/en
Priority to KR1020050078211A priority patent/KR101166830B1/en
Publication of JP2007011056A publication Critical patent/JP2007011056A/en
Application granted granted Critical
Publication of JP4856399B2 publication Critical patent/JP4856399B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes

Description

本発明は、アクティブマトリックス液晶表示装置に係り、特にTFT素子の電極構造に関する。   The present invention relates to an active matrix liquid crystal display device, and more particularly to an electrode structure of a TFT element.

TFTスイッチング素子を含むアクティブマトリックスLCD(液晶表示装置)構成の各画素において、TFT素子がオンの際に画素電極と共通電極との間に液晶を駆動する電圧が与えられる。画素電極には信号(データ)電圧、共通電極には一定の共通電圧VCOMが印加される。線順次駆動の走査形式では、マトリックスの各行を順次に走査し、走査されている1つの行ライン上の全てのTFT素子を一水平走査期間のVだけオンにするアドレス電圧(ゲート電圧)がアドレス線に印加される。即ち、V期間の間だけ信号電圧が画素電極に印加され、1フレーム期間の残りの期間における信号電圧は、画素電極に並列な蓄積容量に蓄積された電荷により維持される。次のフレームにおいて走査されたとき、その蓄積電荷は次のデータにより更新される。 In each pixel of an active matrix LCD (liquid crystal display device) configuration including a TFT switching element, a voltage for driving the liquid crystal is applied between the pixel electrode and the common electrode when the TFT element is turned on. A signal (data) voltage is applied to the pixel electrode, and a constant common voltage VCOM is applied to the common electrode. In the scanning method of line sequential driving, an address voltage (gate voltage) that sequentially scans each row of the matrix and turns on all TFT elements on one row line being scanned by V H in one horizontal scanning period is used. Applied to the address line. That is, the signal voltage is applied to the pixel electrode only during the V H period, and the signal voltage in the remaining period of one frame period is maintained by the charge accumulated in the storage capacitor parallel to the pixel electrode. When scanned in the next frame, the stored charge is updated with the next data.

液晶は直流電圧で駆動すると寿命が短くなること等から、極性反転駆動方式が一般的に採用され、図1にフレーム反転コモンDC駆動方式での液晶に印加される電圧の波形を示す。即ち、フレーム毎に正と負の極性反転の信号電圧を印加する。フレームFで正極性なら、フレームFi+1で負極性とする。TFT素子がオンであるV期間、信号電圧がTFT素子を介して画素電極に直接印加されると同時に、蓄積容量が信号電圧まで充電される。その後TFT素子がオフになったとき、本来は信号電圧に対応する充電電圧が残りのフレーム期間そのまま維持されるべきであるが、画素電極に結合されているゲート・ソース(又はゲート・ドレイン)間の寄生容量Cgsに対し流れ又は流れ込み、信号電圧が正極性においては充電電圧がΔVgだけ低下し、一方信号電圧が負極性においては、+ΔVgだけ上昇する。このΔVgは突き抜け電圧と称される。信号電圧の極性によってこのΔVgは充電電圧を低下させる方向又は上昇させる方向に作用するから、画素電極の電圧である充電電圧は正と負極性で非対称となり、いわゆる“フリッカ”が生ずる。この非対称性を補うため、共通電極の共通電圧VCOMは、信号電圧の中心レベルから負極性側にΔVCOMだけシフトさせて正と負極性の信号電圧に対称性を取り、フリッカを抑制している。 Since the life of the liquid crystal is shortened when driven by a DC voltage, the polarity inversion driving method is generally adopted. FIG. 1 shows the waveform of the voltage applied to the liquid crystal in the frame inversion common DC driving method. That is, a signal voltage with polarity inversion of positive and negative is applied for each frame. If the frame F i is positive, the frame F i + 1 is negative. During the VH period when the TFT element is on, the signal voltage is directly applied to the pixel electrode via the TFT element, and at the same time, the storage capacitor is charged to the signal voltage. After that, when the TFT element is turned off, the charge voltage corresponding to the signal voltage should be maintained as it is for the remaining frame period, but between the gate and source (or gate and drain) coupled to the pixel electrode. When the signal voltage is positive, the charging voltage decreases by ΔVg, while when the signal voltage is negative, the signal voltage increases by + ΔVg. This ΔVg is called a penetration voltage. Depending on the polarity of the signal voltage, this ΔVg acts in the direction of decreasing or increasing the charging voltage, so that the charging voltage, which is the voltage of the pixel electrode, becomes asymmetrical between positive and negative, and so-called “flicker” occurs. In order to compensate for this asymmetry, the common voltage V COM of the common electrode is shifted by ΔV COM from the center level of the signal voltage to the negative polarity side to obtain symmetry between the positive and negative signal voltages and suppress flicker. Yes.

即ち、信号電圧が正極性、負極性共に充電電圧が突き抜け電圧ΔVgだけ低下する。又、TNの場合、黒表示と白表示で液晶容量が違うので、白表示と黒表示で突き抜け電圧の最適Vcomの値が違う。通常、中間階調表示でフリッカ調整を行うことでフリッカを抑制している。   That is, the charging voltage penetrates both the positive and negative signal voltages, and decreases by the voltage ΔVg. In the case of TN, since the liquid crystal capacity is different between black display and white display, the optimum Vcom value of the penetration voltage differs between white display and black display. Usually, flicker is suppressed by performing flicker adjustment in intermediate gradation display.

一方、各画素のTFT素子のソース電極(又はドレイン電極)はゲート(アドレス)配線と重なって形成され、ゲート配線の寄生容量Cgsを形成する。このCgsは、ゲート線においてゲートドライバ側の近くから遠くになるにつれてゲートパルスを遅延させる原因となる(又はゲートパルスの波形がなまってくる)。これは、突き抜け電圧ΔVgの大きさに影響を与え、ゲートドライバから遠い画素になるにつれてΔVgが小さくなる。前述のように、フリッカをなくすために信号電圧の正・負電極性での対象性を得るようシフトして設定したVCOMは、ΔVgの大きさに依存する。 On the other hand, the source electrode (or drain electrode) of the TFT element of each pixel is formed so as to overlap with the gate (address) wiring, and forms a parasitic capacitance Cgs of the gate wiring. This Cgs becomes a cause of delaying the gate pulse as the distance from the vicinity of the gate driver side in the gate line (or the waveform of the gate pulse becomes distorted). This affects the magnitude of the punch-through voltage ΔVg, and ΔVg decreases as the pixel becomes farther from the gate driver. As described above, V COM that is set by shifting so as to obtain the objectivity of the positive and negative electrode characteristics of the signal voltage in order to eliminate flicker depends on the magnitude of ΔVg.

そうすると、寄生容量Cgsの影響でΔVgがゲート線の位置で変わってくることは、フリッカをなくすためにVCOMが設定すべき値はゲート線の位置で変わってくることを意味する。このように、ゲート線に遅延がある際に、フリッカをなくすためのゲート線の位置に対するVCOM値を図2に示す。フリッカをなくすには、以下の式で示されるΔVgを一定にしてこのVCOM値がフラットであるべきである。 Then, the ΔVg the influence of the parasitic capacitance Cgs is varies with the position of the gate line means that the value to be set is V COM to eliminate the flicker varies in position of the gate line. FIG. 2 shows the V COM value for the position of the gate line for eliminating flicker when there is a delay in the gate line. In order to eliminate flicker, this V COM value should be flat with a constant ΔVg expressed by the following equation.

ΔVg = (Vgh Vgl) x Cgs / (Cgs + Clc + Cs)
Vgh:ゲート電圧のオンレベル
Vgl:ゲート電圧のオフレベル
Cgs:ゲート・ソース間の寄生容量
Clc:画素容量
Cs:蓄積容量
ΔVg = (Vgh Vgl) x Cgs / (Cgs + Clc + Cs)
Vgh: Gate voltage on level
Vgl: Gate voltage off level
Cgs: parasitic capacitance between gate and source
Clc: Pixel capacity
Cs: Storage capacity

このために、ゲートドライバから遠くなる位置のTFT素子について、Cgsを大きくすることでゲート線遅延に伴うΔVgが小さくなることを補償することが提案され、そのためにTFT素子のチャネル幅W/チャネル長を大きくしていくことが採用されている(特開平10−206823号)。   For this reason, it has been proposed to compensate for the decrease in ΔVg associated with the gate line delay by increasing Cgs for TFT elements located far from the gate driver. Is adopted (Japanese Patent Laid-Open No. 10-206823).

一方、ゲート線への負荷容量を減少させるべく、ゲートドライバから遠くなる位置の、ゲート線と画素電極との間に形成される容量Csを徐々に小さくしていくことも提案されている(特開平2002−303882号)。   On the other hand, in order to reduce the load capacitance to the gate line, it has also been proposed to gradually reduce the capacitance Cs formed between the gate line and the pixel electrode at a position far from the gate driver. (Kaihei 2002-303882).

しかしながら、上述のような従来技術では、TFT素子のWとLが変わることによりゲート線の負荷容量が増えたり、TFT素子のターンオン電流Ion、ターンオフ電流Ioffが変わるという副作用を伴い、設計上の困難さがあった。   However, the conventional techniques as described above have difficulty in designing due to the side effect that the load capacity of the gate line is increased by changing W and L of the TFT element, and the turn-on current Ion and the turn-off current Ioff of the TFT element are changed. There was.

本発明の課題は、そのような設計上の困難さが軽減された、フリッカ防止の手法を提供することにある。   An object of the present invention is to provide a flicker prevention technique in which such design difficulties are reduced.

特開平10−206823号JP-A-10-206823 特開2002−303882号JP 2002-303882

第1と第2の基板間に配置された液晶、第1の基板上でマトリックス上に配置された、表示領域を画成しているゲート線とデータ線、第1の基板上で、ゲート線とデータ線の交点各々に規定された画素領域内に形成された画素電極、第1又は第2の基板上で、画素電極との間に液晶駆動電圧を印加するよう形成された共通電極、表示領域の外側に設けられ、ゲート線各々を逐次操作するよう、ゲート線に信号を印加するゲートドライバ、表示領域の外側に設けられ、データ線各々にデータ信号を印加するデータドライバ及び、画素領域各々に設けられたTFT素子であって、ゲート線上のゲート信号によってオンになったとき、データ線上のデータ信号を画素電極に印加するTFT素子とからなるアクティブマトリックス液晶表示装置において、TFT素子は、ゲートライン上に配置されたアモルファス半導体パッチ、パッチ上に配置されたドレイン電極とソース電極とからなり、ゲートドライバの位置から遠くに配置されたTFT素子のゲート−ソース寄生容量Cgs″が、近くに配置されたTFT素子のゲート−ソース寄生容量Cgs′より大きくなるが、TFT素子のチャネル幅Wとチャネルギャップはゲートドライバの位置からの距離に関わらず一定であるようドレイン電極とソース電極の形状・寸法が形成されている。   A liquid crystal disposed between the first and second substrates, a gate line and a data line defining a display region disposed on a matrix on the first substrate, and a gate line on the first substrate; And a pixel electrode formed in a pixel region defined at each intersection of the data line, a common electrode formed on the first or second substrate so as to apply a liquid crystal driving voltage to the pixel electrode, and a display A gate driver for applying a signal to the gate line so as to sequentially operate each of the gate lines provided outside the region, a data driver for applying a data signal to each of the data lines provided outside the display region, and each pixel region In the active matrix liquid crystal display device, the TFT element is provided with a TFT element that, when turned on by a gate signal on the gate line, applies a data signal on the data line to the pixel electrode. The TFT element includes an amorphous semiconductor patch disposed on the gate line, a drain electrode and a source electrode disposed on the patch, and a gate-source parasitic capacitance Cgs of the TFT element disposed far from the position of the gate driver. ″ Is larger than the gate-source parasitic capacitance Cgs ′ of the TFT element disposed in the vicinity, but the channel width W and the channel gap of the TFT element are set to be constant regardless of the distance from the position of the gate driver. The shape and dimensions of the source electrode are formed.

以上述べたように、本発明のアクティブマトリックスLCDでは、寄生容量Cgsがゲートドライバから遠くになるにつれて大きくなるようにし、フリッカ防止のためのVCOMカーブを略一定にしているが、チャネル幅W、チャネルギャップLを一定に維持しているので、TFT素子のターンオン電流Ion、ターンオフ電流Ioffが各TFT素子で一定であり、Cgsを変化させることによる他の設計事項に与える問題が少ない。又、このように変化するTFT素子構造をとっても、ゲート線に与える負荷容量が一定となるようにしているので、VCOMの設定値の選択に困難性がない。 As described above, in the active matrix LCD of the present invention, the parasitic capacitance Cgs is increased as the distance from the gate driver increases, and the V COM curve for preventing flicker is substantially constant. Since the channel gap L is kept constant, the turn-on current Ion and the turn-off current Ioff of the TFT element are constant in each TFT element, and there are few problems given to other design items by changing Cgs. Even if the TFT element structure changes in this way, the load capacitance applied to the gate line is made constant, so there is no difficulty in selecting the V COM set value.

本発明の実施例としてのアクティブマトリックスLCD構成における1画素領域での構造を図3に示す。ゲート線(アドレス線)10とデータ線20が画成する1画素領域に、TFT素子と画素電極が形成される。TFT素子はアモルファス半導体領域(パッチ)30、ドレイン電極40、ソース電極50を含み、ゲート電極はゲート線10から延在する突出部10aで構成される。ドレイン電極40はデータ線20に接続され、ソース電極50はコンタクトホールを介して画素電極50に接続されている。画素電極50の一部は次のゲート線10と重複して領域60で蓄積容量Csを形成している。   FIG. 3 shows a structure in one pixel region in an active matrix LCD configuration as an embodiment of the present invention. A TFT element and a pixel electrode are formed in one pixel region defined by the gate line (address line) 10 and the data line 20. The TFT element includes an amorphous semiconductor region (patch) 30, a drain electrode 40, and a source electrode 50, and the gate electrode includes a protruding portion 10 a extending from the gate line 10. The drain electrode 40 is connected to the data line 20, and the source electrode 50 is connected to the pixel electrode 50 through a contact hole. A part of the pixel electrode 50 overlaps with the next gate line 10 to form a storage capacitor Cs in the region 60.

図4は、TFT素子構造部を含むTN型液晶表示装置の断面を示す。基板a上にゲート配線10とその突出部10aが形成され、絶縁層b上にアモルファス半導体パッチ30が形成され、その左右にドレイン電極40とソース電極30が接触層としてのn + α Si膜cを介して形成される。それらをカバーする保護膜dがつけられ、コンタクトホールeを介して画素電極60がソース電極50に接続されている。液晶fをはさみ、対向基板g上にブラックマトリクスh、カラーフィルタi、対向(共通)電極jが設けられる。   FIG. 4 shows a cross section of a TN liquid crystal display device including a TFT element structure. The gate wiring 10 and the protruding portion 10a are formed on the substrate a, the amorphous semiconductor patch 30 is formed on the insulating layer b, and the drain electrode 40 and the source electrode 30 are formed on the left and right sides of the n + α Si film c as a contact layer. Formed through. A protective film d covering them is attached, and the pixel electrode 60 is connected to the source electrode 50 through the contact hole e. A black matrix h, a color filter i, and a counter (common) electrode j are provided on the counter substrate g with the liquid crystal f interposed therebetween.

発明に従うTFT構造について、ゲートドライバに近い位置にあるTFT構成を図5、遠い位置にあるTFT構成を図6に示す。図5と図6において、30′と30″はアモルファス半導体パッチ、40′と40″はドレイン電極、そして50′と50″はソース電極であり、ゲート電極となるゲート線突出部10a′と10a″上に形成されている。図5において、アモルファス半導体パッチ30′は斜線区域として示されている。TFT素子製造工程でマスク枚数を減らすため、パッチ30′はドレイン電極40′と同一境界線で形成され、ドレイン電極40′の外郭と一致している。   For the TFT structure according to the invention, FIG. 5 shows a TFT configuration at a position close to the gate driver, and FIG. 6 shows a TFT configuration at a distant position. 5 and 6, 30 'and 30 "are amorphous semiconductor patches, 40' and 40" are drain electrodes, and 50 'and 50 "are source electrodes, and gate line protrusions 10a' and 10a which become gate electrodes. ″ It is formed on top. In FIG. 5, the amorphous semiconductor patch 30 'is shown as a shaded area. In order to reduce the number of masks in the TFT element manufacturing process, the patch 30 ′ is formed on the same boundary line as the drain electrode 40 ′ and coincides with the outline of the drain electrode 40 ′.

図5と図6において、ソース電極50′、50″とその周辺の点区域がゲート・ソース寄生容量Cgsを形成する。寄生容量Cgsは図5のものに対し、図6のものが大きくなっている。このため、ソース電極の幅は図6のゲートドライバから遠い位置のTFTのものが広くなっている。一方、TFT素子のチャネル幅は図5においてW′、図6においてW″として示され、TFT素子のチャネルギャップは図5においてL′、図6においてL″として示されている。本発明によると、寄生容量Cgsを変えてもTFT素子のチャネル幅とチャネルギャップは同じに維持される。即ち、W′=W″、L′=L″となるように、ソース電極とドレイン電極が設計される。   5 and 6, the source electrodes 50 ′ and 50 ″ and surrounding dot areas form a gate-source parasitic capacitance Cgs. The parasitic capacitance Cgs is larger in FIG. 6 than in FIG. 5. For this reason, the width of the source electrode is wide for the TFT far from the gate driver in Fig. 6. On the other hand, the channel width of the TFT element is shown as W 'in Fig. 5 and W "in Fig. 6. The channel gap of the TFT element is indicated by L ′ in FIG. 5 and L ″ in FIG. 6. According to the present invention, the channel width and channel gap of the TFT element are kept the same even if the parasitic capacitance Cgs is changed. That is, the source electrode and the drain electrode are designed so that W ′ = W ″ and L ′ = L ″.

図5と図6の実施例では、入れ子状に凹形のドレイン電極の中にソース電極が入っている基本構造をしている。図6で寄生容量Cgsを大きくするためソース電極の幅を広くした分、チャネル長を一定(即ちW′=W″)にすべくドレイン電極の両側の辺は短くなっている。即ちIVの長さを大きくしている。又、チャネルギャップを一定(即ちL′=L″)にすべく、ドレイン電極のへこみ部の横幅は広くしている。又、チャネルギャップLを一定にすべくドレイン電極の下辺の幅を広くしている。このように、寄生容量Cgsを変えて突き抜け電圧ΔVgをゲート線(アドレス線)についてゲートドライバの近端から遠端にわたって一定にし、VCOMをゲート線にわたって一定であってもフリッカが生じないようにしているが、チャネル幅WとギャップLを一定にしているので、TFT素子のターンオン電流Ion、ターンオフ電流Ioffも一定になり、寄生容量Cgsを変化させることによる設計上の弊害がない。 5 and 6 has a basic structure in which a source electrode is contained in a nested drain electrode. In FIG. 6, the width of the source electrode is increased to increase the parasitic capacitance Cgs, so that the sides on both sides of the drain electrode are shortened so that the channel length is constant (ie, W ′ = W ″). In addition, the width of the recessed portion of the drain electrode is increased in order to make the channel gap constant (that is, L ′ = L ″). Further, the width of the lower side of the drain electrode is widened so that the channel gap L is constant. In this way, the parasitic capacitance Cgs is changed to make the punch-through voltage ΔVg constant for the gate line (address line) from the near end to the far end of the gate driver so that flicker does not occur even if V COM is constant across the gate line. However, since the channel width W and the gap L are constant, the turn-on current Ion and the turn-off current Ioff of the TFT element are also constant, and there is no design problem caused by changing the parasitic capacitance Cgs.

具体的には、先ず所望のCgsを得るようソース電極50″の幅を決め、図6に示すI、II、III、IV及びVの幅を適宜選択することで、一定のチャネル長とチャネルギャップを実現している。   Specifically, first, the width of the source electrode 50 ″ is determined so as to obtain a desired Cgs, and the widths of I, II, III, IV, and V shown in FIG. Is realized.

TFT素子構造がゲート線に与える負荷容量は、ゲート線上のアモルファス半導体パッチの面積(図5の斜線領域)による。負荷容量がゲート線の位置で変わると、遅延の量が変化してVCOM部分に影響する。このため、突き抜け電圧ΔVgがCgs/(Cs + Clc + Cgs)だけで決まらず、仮にCgsを適当に変えてもΔVgを精度良く一定にすることが困難になる。つまり、最適改善ポイントとなる寄生容量Cgsの変化の仕方、又VCOMの設定値の選択が困難となる。 The load capacitance given to the gate line by the TFT element structure depends on the area of the amorphous semiconductor patch on the gate line (shaded area in FIG. 5). As the load capacitance changes with the gate line position, the amount of delay changes and affects the V COM portion. For this reason, the punch-through voltage ΔVg is not determined only by Cgs / (Cs + Clc + Cgs), and it becomes difficult to make ΔVg accurate and constant even if Cgs is appropriately changed. In other words, the manner of change of the parasitic capacitance Cgs that the optimum improvement point, also the selection of V COM setting becomes difficult.

図5と図6の実施例では、前述のようにアモルファス半導体パッチは、ドレイン電極外郭と一致している。従って、寄生容量Cgsを変える際にゲート線に与える負荷容量を一定に保つには、ドレイン電極外郭サイズ(特にドレイン電極の横幅)を一定に保ちながら、図6に示すI、II、III、IV、及びVを調節することが必要である。   5 and 6, the amorphous semiconductor patch coincides with the drain electrode outline as described above. Therefore, in order to keep the load capacitance applied to the gate line constant when changing the parasitic capacitance Cgs, the drain electrode outline size (especially the lateral width of the drain electrode) is kept constant while I, II, III, IV shown in FIG. , And V need to be adjusted.

図7に示すTFT素子構造は、アモルファス半導体パッチの露光工程専用のマスクを用いるもので、アモルファス半導体パッチ30(斜線領域)がドレイン電極外郭より大きくなっているタイプである。このタイプでは、アモルファス半導体パッチ30の面積はドレインとソース電極の形状に関わりなく一定であるので、チャネル幅W、チャネルギャップLを維持しながら寄生容量Cgsを変えるようドレインとソース電極の形状を変えても、TFT素子構造がゲート線に与える負荷容量は変わらないことになる。   The TFT element structure shown in FIG. 7 uses a mask dedicated to the exposure process of the amorphous semiconductor patch, and is a type in which the amorphous semiconductor patch 30 (shaded area) is larger than the drain electrode outline. In this type, since the area of the amorphous semiconductor patch 30 is constant regardless of the shape of the drain and source electrodes, the shape of the drain and source electrodes is changed so as to change the parasitic capacitance Cgs while maintaining the channel width W and the channel gap L. However, the load capacitance given to the gate line by the TFT element structure does not change.

従って、本発明の図5と図6の実施例ではドレイン電極の横幅のDを略一定に保つようにしている。このため、本発明実施例ではTFT素子のアモルファス半導体パッチのサイズを一定にしている。即ち、Dを一定に保ちながら図6のI、II、III、IV及びVで示す長さを調節して、寄生容量Cgsを大きくしてもTFT素子各々のゲート線に与える負荷容量が一定になるようにしている。図6の場合では、幅Dを一定にして幅Vを大きくした分、ドレイン電極の両側辺の幅IとIIが細くなっている。   Therefore, in the embodiment of FIGS. 5 and 6 of the present invention, the width D of the drain electrode is kept substantially constant. For this reason, in the embodiment of the present invention, the size of the amorphous semiconductor patch of the TFT element is made constant. That is, while maintaining D constant, the lengths indicated by I, II, III, IV and V in FIG. 6 are adjusted so that the load capacitance applied to the gate line of each TFT element is constant even if the parasitic capacitance Cgs is increased. It is trying to become. In the case of FIG. 6, the widths I and II on both sides of the drain electrode are narrowed by increasing the width V while keeping the width D constant.

本発明の実施例として、画素電極と共通電極が対向する異なる基板上にそれぞれ形成されているTN型液晶表示装置において説明されたが、第1の基板(アレイ基板)上にゲート線、データ線、画素電極と共に共通電極が形成される液晶表示装置のTFT構造にも適用できることは明らかであり、即ち、TN、IPS、FFS、MVA型の液晶表示装置に適用できるものである。   As an embodiment of the present invention, the TN liquid crystal display device in which the pixel electrode and the common electrode are respectively formed on different substrates has been described, but the gate line and the data line are formed on the first substrate (array substrate). It is apparent that the present invention can be applied to a TFT structure of a liquid crystal display device in which a common electrode is formed together with a pixel electrode, that is, it can be applied to a TN, IPS, FFS, or MVA type liquid crystal display device.

画素電極電圧とVCOM電圧を示す図である。It is a figure which shows a pixel electrode voltage and a VCOM voltage. フリッカ防止のためのVCOMレベルを示す図である。It is a figure which shows the V COM level for flicker prevention. 本発明の実施例の画素領域内のTFT素子と画素電極を示す図である。It is a figure which shows the TFT element and pixel electrode in the pixel area | region of the Example of this invention. 本発明の実施例の液晶表示装置の断面を示す図である。It is a figure which shows the cross section of the liquid crystal display device of the Example of this invention. 本発明の実施例のゲート線上におけるゲートドライバに近いTFT素子の構造を示す図である。It is a figure which shows the structure of the TFT element close | similar to the gate driver on the gate line of the Example of this invention. 本発明の実施例のゲート線上におけるゲートドライバに遠いTFT素子の構造を示す図である。It is a figure which shows the structure of a TFT element far from the gate driver on the gate line of the Example of this invention. 本発明の実施例のTFT素子構造のゲート線に与える負荷容量を示す図である。It is a figure which shows the load capacity given to the gate line of the TFT element structure of the Example of this invention.

符号の説明Explanation of symbols

10・・・ゲート線
10a・・ゲート線突出部
20・・・データ線
30・・・アモルファス半導体パッチ
40・・・ドレイン電極
50・・・ソース電極
60・・・画素電極
60a・・蓄積容量部
DESCRIPTION OF SYMBOLS 10 ... Gate line 10a ... Gate line protrusion part 20 ... Data line 30 ... Amorphous semiconductor patch 40 ... Drain electrode 50 ... Source electrode 60 ... Pixel electrode 60a ... Storage capacitor part

Claims (2)

第1と第2の基板間に配置された液晶、
前記第1の基板上でマトリックス状に配置された、表示領域を画成しているゲート線とデータ線、
前記第1の基板上で、前記ゲート線とデータ線の交点各々に規定された画素領域内に形成された画素電極、
前記第1又は第2の基板上で、前記画素電極との間に液晶駆動電圧を印加するよう形成された共通電極、
前記表示領域の外側に設けられ、前記ゲート線各々を順次走査するよう、前記ゲート線にゲート信号を印加するゲートドライバ、
前記表示領域の外側に設けられ、前記データ線各々にデータ信号を印加するデータドライバ、及び
前記画素領域各々に設けられたTFT素子であって、前記ゲート線上のゲート信号によってオンになったとき、前記データ線上のデータ信号を前記画素電極に印加するTFT素子とからなるアクティブマトリックス液晶表示装置において、
前記TFT素子は、前記ゲート線上に配置されたアモルファス半導体パッチ、前記パッチ上に配置されたドレイン電極とソース電極とからなり、
前記ドレイン電極の形状は、互いに向き合う第1及び第2の側面、前記第1及び第2の側面を接続する第3の側面、並びに第1乃至第3の辺によって囲まれたへこみ部分を含む凹形であり、
前記ソース電極の少なくとも一部は、前記ドレイン電極のへこみ部分に入り、
前記TFT素子は、前記ゲートドライバから第1の距離で配置されている第1のTFT素子及び前記ゲートドライバから第1の距離より長い第2の距離で配置されている第2のTFT素子を含み、
前記第2のTFT素子が前記第1のTFT素子より大きいゲート・ソース寄生容量を有するように、前記第2のTFT素子のソース電極の幅は前記第1のTFT素子のソース電極の幅より広く、
前記第2のTFT素子のチャネルギャップL″が前記第1のTFT素子のチャネルギャップL′と同じになるように、前記第2のTFT素子のドレイン電極の第1及び第2の辺の幅は、前記第1のTFT素子のドレイン電極の第1及び第2の辺の幅より狭くて、前記第2のTFT素子のドレイン電極の第3の辺の幅は、前記第1のTFT素子のドレイン電極の第3の辺の幅より狭く、
前記第2のTFT素子のチャネル幅W″が前記第1のTFT素子のチャネル幅W′と同じになるように、前記第2のTFT素子のドレイン電極の第1及び第2の辺の長さは、前記第1のTFT素子のドレイン電極の第1及び第2の辺の長さより短く、
前記第1及び第2のTFT素子のドレイン電極が同じ幅Dを有するように、前記第2のTFT素子のドレイン電極の第1及び第2の辺は、前記第1のTFT素子のドレイン電極の第1及び第2の辺より長い距離互いに離れて配置されているアクティブマトリックス液晶表示装置。
A liquid crystal disposed between the first and second substrates;
The first are arranged in a matrix form on a substrate, a gate line that defines a display area and a data line,
The first on the substrate, the gate line and the data line intersections each defined pixel pixel electrodes formed in the region of,
The first or second substrate, a common electrode formed so as to apply a liquid crystal driving voltage between the pixel electrode,
Wherein provided on the outside of the display area, so as to sequentially scan the gate lines, respectively, a gate driver applying a gate signal to the gate line,
Wherein provided on the outside of the display area, the data driver for applying data signals to the data lines, respectively, and
A TFT element provided in the pixel region respectively, when turned on by the gate signal of the gate line, the active matrix liquid crystal display device comprising a TFT element for applying a data signal of the data line to the pixel electrode In
The TFT element, the amorphous semiconductor patch disposed on the gate line, composed of a drain electrode and a source electrode disposed on said patch,
The drain electrode has a concave shape including a first and second side surfaces facing each other, a third side surface connecting the first and second side surfaces, and a recessed portion surrounded by the first to third sides. Is a shape,
At least a portion of the source electrode enters a recessed portion of the drain electrode;
The TFT element includes a first TFT element disposed at a first distance from the gate driver and a second TFT element disposed at a second distance longer than the first distance from the gate driver. ,
The width of the source electrode of the second TFT element is wider than the width of the source electrode of the first TFT element so that the second TFT element has a larger gate-source parasitic capacitance than the first TFT element. ,
The width of the first and second sides of the drain electrode of the second TFT element is such that the channel gap L ″ of the second TFT element is the same as the channel gap L ′ of the first TFT element. The width of the third side of the drain electrode of the second TFT element is smaller than the width of the first and second sides of the drain electrode of the first TFT element, and the width of the third side of the drain electrode of the second TFT element is the drain of the first TFT element. Narrower than the width of the third side of the electrode,
The lengths of the first and second sides of the drain electrode of the second TFT element so that the channel width W ″ of the second TFT element is the same as the channel width W ′ of the first TFT element. Is shorter than the length of the first and second sides of the drain electrode of the first TFT element,
The first and second sides of the drain electrode of the second TFT element have the same width D so that the drain electrodes of the first and second TFT elements have the same width D. An active matrix liquid crystal display device which is disposed apart from each other by a distance longer than the first and second sides .
請求項1に記載のアクティブマトリックス液晶表示装置において、前記ゲートドライバの位置からの距離に関わらず、前記TFT素子各々の前記ゲート線に与える負荷容量が一定であるアクティブマトリックス液晶表示装置。 In an active matrix liquid crystal display device according to claim 1, wherein regardless of the distance from the position of the gate driver, an active matrix liquid crystal display device load capacity is constant given to the gate line of the TFT elements each.
JP2005192589A 2005-06-30 2005-06-30 TFT element electrode shape of liquid crystal display device Expired - Fee Related JP4856399B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005192589A JP4856399B2 (en) 2005-06-30 2005-06-30 TFT element electrode shape of liquid crystal display device
KR1020050078211A KR101166830B1 (en) 2005-06-30 2005-08-25 active matrix liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192589A JP4856399B2 (en) 2005-06-30 2005-06-30 TFT element electrode shape of liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2007011056A JP2007011056A (en) 2007-01-18
JP4856399B2 true JP4856399B2 (en) 2012-01-18

Family

ID=37749647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192589A Expired - Fee Related JP4856399B2 (en) 2005-06-30 2005-06-30 TFT element electrode shape of liquid crystal display device

Country Status (2)

Country Link
JP (1) JP4856399B2 (en)
KR (1) KR101166830B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090054572A (en) 2007-11-27 2009-06-01 삼성전자주식회사 Display device
CN101750826B (en) * 2009-12-28 2011-09-14 深超光电(深圳)有限公司 Pixel structure
KR102097024B1 (en) 2013-01-04 2020-04-06 삼성디스플레이 주식회사 Thin film transistor array panel
KR102128969B1 (en) 2014-02-17 2020-07-02 삼성디스플레이 주식회사 Liquid crystal display and method of manufacturing the same
TWI545381B (en) * 2014-05-21 2016-08-11 群創光電股份有限公司 Display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232512A (en) * 1992-02-25 1993-09-10 Sanyo Electric Co Ltd Liquid crystal display device
JP2001075127A (en) * 1999-09-03 2001-03-23 Matsushita Electric Ind Co Ltd Active matrix type liquid crystal display element and its manufacturing method
JP2002072250A (en) * 2000-04-24 2002-03-12 Matsushita Electric Ind Co Ltd Display device and driving method thereof
KR20020042898A (en) * 2000-12-01 2002-06-08 구본준, 론 위라하디락사 Liquid crystal display device and method of manufacturing thereof
TWI287132B (en) * 2001-11-23 2007-09-21 Chi Mei Optoelectronics Corp A liquid crystal display having reduced flicker

Also Published As

Publication number Publication date
KR20070003497A (en) 2007-01-05
JP2007011056A (en) 2007-01-18
KR101166830B1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
US10901442B2 (en) Active-matrix substrate, display panel and display device including the same
KR101369587B1 (en) Liquid crystal display device
JP4969568B2 (en) Display device
US8614658B2 (en) Liquid crystal display
US20060066553A1 (en) Active matrix display device with dc voltage compensation based on measurements on a plurality of measurement pixels outside the display area
WO2006098176A1 (en) Active matrix substrate and display device using the same
EP1972989A3 (en) Active matrix display substrate having tailored subpixel auxiliary capacitances according to colour
JP2003075871A (en) Liquid crystal display element
KR20070060757A (en) Display device and driving apparatus thereof
JP4860233B2 (en) Flicker prevention adjustment method for liquid crystal display device
JP4592384B2 (en) Liquid crystal display
JP4856399B2 (en) TFT element electrode shape of liquid crystal display device
KR20170118997A (en) Display apparatus
JP2556253B2 (en) Liquid crystal display
KR101148563B1 (en) Liquid crystal display device
US10928694B2 (en) Active matrix substrate and liquid crystal display device
KR20080040953A (en) Controlling method for preventing flickering of liquid crystal display device
JPH11282014A (en) Active matrix type liquid crystal display device
KR100447225B1 (en) Apparatus of Liquid Crystal Display Device
JPH07175453A (en) Liquid crystal display device
KR20060029101A (en) Thin film transistor array substrate
KR100789089B1 (en) Liquid crystal display device
KR100922296B1 (en) Liquid crystal display device
JPH0829751A (en) Liquid crystal display device
KR101327870B1 (en) A liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4856399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees