JP4856201B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JP4856201B2
JP4856201B2 JP2009055367A JP2009055367A JP4856201B2 JP 4856201 B2 JP4856201 B2 JP 4856201B2 JP 2009055367 A JP2009055367 A JP 2009055367A JP 2009055367 A JP2009055367 A JP 2009055367A JP 4856201 B2 JP4856201 B2 JP 4856201B2
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
floating gate
film
element isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009055367A
Other languages
Japanese (ja)
Other versions
JP2009164624A (en
Inventor
良夫 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009055367A priority Critical patent/JP4856201B2/en
Publication of JP2009164624A publication Critical patent/JP2009164624A/en
Application granted granted Critical
Publication of JP4856201B2 publication Critical patent/JP4856201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

本発明は、浮遊ゲート電極を有する半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device having a floating gate electrode.

図9の(a)は、従来例に係る不揮発性メモリセルの構造を示す図であり、ワード線方向(チャネル幅方向:チャネル電流が流れる方向と直交する方向)の断面図である。シリコン基板1上には、トンネル絶縁膜2を挟んで、複数の浮遊ゲート電極3が、互いに所定距離をおいて隣接している。各浮遊ゲート電極3の下部の間には、素子分離絶縁膜4が埋め込まれている。さらに、各浮遊ゲート電極3の側面の一部と上面、および素子分離絶縁膜4の上面は、電極間絶縁膜5を挟んで、制御ゲート電極6で覆われている。   FIG. 9A is a diagram showing the structure of a nonvolatile memory cell according to a conventional example, and is a cross-sectional view in the word line direction (channel width direction: direction perpendicular to the direction in which channel current flows). A plurality of floating gate electrodes 3 are adjacent to each other at a predetermined distance on the silicon substrate 1 with the tunnel insulating film 2 interposed therebetween. An element isolation insulating film 4 is buried between the lower portions of the floating gate electrodes 3. Further, part of the side surface and the upper surface of each floating gate electrode 3 and the upper surface of the element isolation insulating film 4 are covered with the control gate electrode 6 with the interelectrode insulating film 5 interposed therebetween.

図9の(b)は、上記不揮発性メモリセルの構造を示す図であり、ビット線方向(チャネル長方向:チャネル電流が流れる方向)の断面図である。シリコン基板1表面には複数のセル拡散層7が形成されており、各拡散層7の間の位置に、トンネル絶縁膜2を挟んで、浮遊ゲート電極3、電極間絶縁膜5、および制御ゲート電極6からなる複数の積層型セルCEが、互いに所定距離をおいて隣接している。各積層型セルCEの間には、層間絶縁膜8が埋め込まれている。   FIG. 9B is a diagram showing the structure of the nonvolatile memory cell, and is a cross-sectional view in the bit line direction (channel length direction: direction in which channel current flows). A plurality of cell diffusion layers 7 are formed on the surface of the silicon substrate 1. The floating gate electrode 3, the interelectrode insulating film 5, and the control gate are sandwiched between the diffusion layers 7 with the tunnel insulating film 2 interposed therebetween. A plurality of stacked cells CE composed of electrodes 6 are adjacent to each other at a predetermined distance. An interlayer insulating film 8 is buried between the stacked cells CE.

図9の(b)に示すように、ビット線方向(チャネル長方向)に隣接する浮遊ゲート電極3,3は、層間絶縁膜8を挟んで対向している。メモリセルの微細化とともに、この対向距離は短くなり、隣接する浮遊ゲート電極3,3の対向する面の間の浮遊容量Cが大きくなる。このため、隣接するセルの書込み/消去状態が、着目しているセルの動作特性に影響を与え、いわゆる隣接セル間干渉が生じてメモリ誤動作の原因となる。   As shown in FIG. 9B, the floating gate electrodes 3 and 3 adjacent in the bit line direction (channel length direction) are opposed to each other with the interlayer insulating film 8 interposed therebetween. As the memory cell is miniaturized, the facing distance is shortened, and the stray capacitance C between the facing surfaces of the adjacent floating gate electrodes 3 and 3 is increased. For this reason, the write / erase state of the adjacent cell affects the operation characteristics of the cell of interest, and so-called interference between adjacent cells occurs, causing a memory malfunction.

また、図9の(a)に示すように、ワード線方向(チャネル幅方向)に隣接する浮遊ゲート電極3,3の間に埋め込まれている部分の制御ゲート電極の幅は、メモリセルの微細化とともに狭くなる。通常、制御ゲート電極の埋め込み部分はドーパント不純物を含んだ半導体からなっているので、書込み/消去動作時のような高電界印加時に、埋め込み部分で空乏化が起こる。このため、制御ゲート電極6と浮遊ゲート電極3との間の電気容量の低下が無視できなくなり、メモリセルの誤動作を起こすことになる。また、埋め込み部分で空乏化が起こると、その両側の浮遊ゲート電極3,3間の電気的シールド効果が低下するため、隣接セル間干渉によるメモリ誤動作の発生確率も高くなる。   Further, as shown in FIG. 9A, the width of the control gate electrode embedded between the floating gate electrodes 3 and 3 adjacent in the word line direction (channel width direction) It becomes narrower with the development. Normally, since the buried portion of the control gate electrode is made of a semiconductor containing a dopant impurity, depletion occurs in the buried portion when a high electric field is applied such as during a write / erase operation. For this reason, a decrease in the electric capacity between the control gate electrode 6 and the floating gate electrode 3 cannot be ignored, causing a malfunction of the memory cell. In addition, when depletion occurs in the buried portion, the electrical shielding effect between the floating gate electrodes 3 and 3 on both sides of the buried portion is lowered, so that the probability of memory malfunction due to interference between adjacent cells is increased.

なお、特許文献1には、基板面に分離溝により相互に分離され、かつ上端が丸められた凸状の素子形成領域を設け、その上にトンネル膜、FG電極、容量絶縁膜、GC電極を形成したEEPROMが開示されている。   In Patent Document 1, a convex element formation region is provided on the substrate surface which is separated from each other by a separation groove and whose upper end is rounded, and a tunnel film, an FG electrode, a capacitor insulating film, and a GC electrode are provided thereon. A formed EEPROM is disclosed.

特許文献2には、FG電極に自己整合で分離溝を設け、全面酸化後、前記分離溝を絶縁膜で埋め込み、その表面を後退させてFG電極側面を露出させる。全面に第2の電極間絶縁膜を形成し、さらにCG電極を形成するEEPROMの製造方法が開示されている。   In Patent Document 2, a separation groove is provided in the FG electrode in a self-aligned manner, and after the entire surface is oxidized, the separation groove is filled with an insulating film, and the surface is retreated to expose the side surface of the FG electrode. An EEPROM manufacturing method is disclosed in which a second interelectrode insulating film is formed on the entire surface, and further a CG electrode is formed.

特開平8−88285号公報JP-A-8-88285 特開平11−177066号公報JP-A-11-177066

本発明の目的は、隣接するメモリセル間の干渉に起因するメモリセルの誤動作を回避する半導体装置の製造方法を提供することにある。   An object of the present invention is to provide a method of manufacturing a semiconductor device that avoids a malfunction of a memory cell due to interference between adjacent memory cells.

本発明の一形態の半導体装置の製造方法は、半導体基板上に、トンネル絶縁膜を挟んで、上部領域及びチャネル幅方向の側部を有し、且つ、不純物ドープされた多結晶シリコンからなる複数の浮遊ゲート電極を形成する工程と、互いに対向する前記浮遊ゲート電極間に素子分離絶縁膜を形成し、前記浮遊ゲート電極の前記側部の一部を前記素子分離絶縁膜によって覆う工程と、前記浮遊ゲート電極の露出表層部及び前記素子分離絶縁膜の露出表層部に対して、酸素ラジカルを含む酸化性雰囲気によるラジカル酸化反応を施して、電極間絶縁膜の最下層となる第1の絶縁膜としてのラジカル酸化膜を前記浮遊ゲート電極上に形成するのと同時に、前記浮遊ゲート電極の前記上部領域のチャネル幅方向の幅を、前記浮遊ゲート電極の下部領域のチャネル幅方向の幅より狭くし、且つ、前記浮遊ゲート電極の前記下部領域と前記素子分離絶縁膜との界面の延長線上をまたがるように形成される前記ラジカル酸化膜の下部の一部分を、前記浮遊ゲート電極の前記上部領域の側部と前記素子分離絶縁膜の側部との間に介在させる工程と、前記電極間絶縁膜上に、互いに対向する前記浮遊ゲート電極の間に一部が埋め込まれ、且つ、その埋め込まれた部分がドーパント不純物を含む半導体を有する制御ゲート電極を形成する工程と、を具備する。 According to one embodiment of the present invention, there is provided a method for manufacturing a semiconductor device including a plurality of impurity-doped polycrystalline silicon having an upper region and side portions in a channel width direction on a semiconductor substrate with a tunnel insulating film interposed therebetween. Forming a floating gate electrode, forming an element isolation insulating film between the floating gate electrodes facing each other, and covering a part of the side portion of the floating gate electrode with the element isolation insulating film; The exposed insulating layer portion of the floating gate electrode and the exposed insulating layer portion of the element isolation insulating film are subjected to radical oxidation reaction in an oxidizing atmosphere containing oxygen radicals, so that the first insulating film serving as the lowermost layer of the interelectrode insulating film simultaneously with forming a radical oxidation film on the floating gate electrode as, the channel width direction of the width of the upper region of the floating gate electrode, Ji lower region of said floating gate electrode Narrower than the width of the channel width direction, and, at the bottom of a portion of the radical oxide film formed to straddle over the extension of the interface of the lower region and the device isolation insulation film of the floating gate electrode, the floating a step of interposing between the upper region of the side and the side of the device isolation insulation film of the gate electrode, on the insulating film, partially embedded between the floating gate electrode facing each other And a step of forming a control gate electrode having a semiconductor in which the buried portion contains a dopant impurity .

本発明によれば、隣接するメモリセル間の干渉に起因するメモリセルの誤動作を回避する半導体装置の製造方法を提供できる。   According to the present invention, it is possible to provide a method of manufacturing a semiconductor device that avoids a malfunction of a memory cell due to interference between adjacent memory cells.

第1の実施の形態に係る不揮発性メモリの構成を示す図。The figure which shows the structure of the non-volatile memory which concerns on 1st Embodiment. 第1の実施の形態に係る不揮発性メモリセルの構造を示す図。1 is a diagram showing a structure of a nonvolatile memory cell according to a first embodiment. 第1の実施の形態の不揮発性メモリセルの変形例を示す断面図。Sectional drawing which shows the modification of the non-volatile memory cell of 1st Embodiment. 第1の実施の形態の不揮発性メモリセルの変形例を示す断面図。Sectional drawing which shows the modification of the non-volatile memory cell of 1st Embodiment. 第1の実施の形態に係る不揮発性メモリセルの製造手順を示す図。The figure which shows the manufacture procedure of the non-volatile memory cell which concerns on 1st Embodiment. 第1の実施の形態に係る不揮発性メモリセルの製造手順を示す図。The figure which shows the manufacture procedure of the non-volatile memory cell which concerns on 1st Embodiment. 第2の実施の形態に係る不揮発性メモリセルの製造手順を示す図。The figure which shows the manufacturing procedure of the non-volatile memory cell which concerns on 2nd Embodiment. 第3の実施の形態に係る不揮発性メモリセルの製造手順を示す図。The figure which shows the manufacturing procedure of the non-volatile memory cell which concerns on 3rd Embodiment. 従来例に係る不揮発性メモリセルの構造を示す図。The figure which shows the structure of the non-volatile memory cell which concerns on a prior art example.

(第1の実施の形態)
図1の(a)および(b)は、本発明の第1の実施の形態に係る半導体装置である不揮発性メモリ(NANDフラッシュメモリ)の構成を示す図である。図1の(a)はNAND型フラッシュメモリのメモリセルの平面図、図1の(b)は上記メモリセルの等価回路図である。
(First embodiment)
FIGS. 1A and 1B are diagrams showing a configuration of a nonvolatile memory (NAND flash memory) which is a semiconductor device according to the first embodiment of the present invention. FIG. 1A is a plan view of a memory cell of a NAND flash memory, and FIG. 1B is an equivalent circuit diagram of the memory cell.

図1の(a)および(b)において、M1〜M8は不揮発性メモリセル部、S1およびS2は選択トランジスタ部、CG1〜CG8(ワード線)は制御ゲート、SG1およびSG2は選択ゲート、BL1およびBL2はビット線、Vssはソース電圧を示している。   1A and 1B, M1 to M8 are nonvolatile memory cell portions, S1 and S2 are selection transistor portions, CG1 to CG8 (word lines) are control gates, SG1 and SG2 are selection gates, BL1 and BL2 indicates a bit line, and Vss indicates a source voltage.

図2は、本発明の第1の実施の形態に係る不揮発性メモリセルの構造を示す図であり、ワード線方向(チャネル幅方向)の断面図である。   FIG. 2 is a diagram showing the structure of the nonvolatile memory cell according to the first embodiment of the present invention, and is a cross-sectional view in the word line direction (channel width direction).

シリコン基板1上には、トンネル絶縁膜2を挟んで、複数の浮遊ゲート電極3が、互いに所定距離をおいて隣接している。各浮遊ゲート電極3は、下部の幅よりも上部の幅が狭くなっている。そして、隣接する浮遊ゲート電極3,3の間には、浮遊ゲート電極3下部の幅が広い領域の高さ方向の位置まで、素子分離絶縁膜4が埋め込まれている。さらに、浮遊ゲート電極3上と素子分離絶縁膜4上には、電極間絶縁膜5を挟んで、制御ゲート電極6が覆われている。制御ゲート電極6の一部は、隣接する浮遊ゲート電極3,3の間に埋め込まれている。   A plurality of floating gate electrodes 3 are adjacent to each other at a predetermined distance on the silicon substrate 1 with the tunnel insulating film 2 interposed therebetween. Each floating gate electrode 3 has an upper width narrower than a lower width. The element isolation insulating film 4 is buried between the adjacent floating gate electrodes 3 and 3 up to the position in the height direction of the wide region below the floating gate electrode 3. Further, the control gate electrode 6 is covered on the floating gate electrode 3 and the element isolation insulating film 4 with the interelectrode insulating film 5 interposed therebetween. A part of the control gate electrode 6 is buried between adjacent floating gate electrodes 3 and 3.

このメモリセル構造では、図9の(a)に示した従来の構造に比べて、浮遊ゲート電極3と制御ゲート電極6との対向面積(電極間絶縁膜5の面積)を確保したまま、ビット線方向(チャネル長方向)に直交する浮遊ゲート電極3の側面の面積を縮小できる。このため、メモリセルのカップリング比を確保してセル動作電圧の上昇を抑えつつ、ビット線方向(チャネル長方向)に隣接する浮遊ゲート電極3,3間の寄生容量を低減して、メモリセルの誤動作の発生率を低減できる。   In this memory cell structure, as compared with the conventional structure shown in FIG. 9A, the facing area (the area of the interelectrode insulating film 5) between the floating gate electrode 3 and the control gate electrode 6 is ensured. The area of the side surface of the floating gate electrode 3 orthogonal to the line direction (channel length direction) can be reduced. Therefore, the parasitic capacitance between the floating gate electrodes 3 and 3 adjacent to each other in the bit line direction (channel length direction) is reduced while securing the coupling ratio of the memory cell and suppressing the increase in the cell operating voltage. The occurrence rate of malfunctions can be reduced.

なお、このメモリセル構造では、制御ゲート電極6の埋め込み部分の上部の幅W1は、互いに対向する浮遊ゲート電極3,3の最小間隔W2から電極間絶縁膜5の膜厚W3の2倍を差し引いた幅よりも広くなっている。したがって、制御ゲート電極6の埋め込み部分がドーパント不純物を含んだ半導体からなっている場合、制御ゲート電極6の底面部分まで十分にドーパントが拡散できる。その結果、書込み/消去動作時のような高電界印加時に、埋め込み部分で空乏化が起きにくい。このため、制御ゲート電極6と浮遊ゲート電極3との間の電気容量の低下に起因したメモリセルの誤動作を回避できる。また、隣接する浮遊ゲート電極3,3間の電気的シールド効果の低下に起因したメモリ誤動作も回避できる。   In this memory cell structure, the width W1 of the upper portion of the buried portion of the control gate electrode 6 is subtracted twice the film thickness W3 of the interelectrode insulating film 5 from the minimum interval W2 of the floating gate electrodes 3 and 3 facing each other. It is wider than the width. Therefore, when the buried portion of the control gate electrode 6 is made of a semiconductor containing a dopant impurity, the dopant can be sufficiently diffused to the bottom surface portion of the control gate electrode 6. As a result, depletion is unlikely to occur in the buried portion when a high electric field is applied as in the write / erase operation. For this reason, it is possible to avoid a malfunction of the memory cell due to a decrease in electric capacity between the control gate electrode 6 and the floating gate electrode 3. Further, it is possible to avoid a memory malfunction due to a decrease in the electrical shield effect between the adjacent floating gate electrodes 3 and 3.

図3は、本第1の実施の形態の不揮発性メモリセルの変形例を示す断面図である。この変形例では、隣接する浮遊ゲート電極3,3の間に、浮遊ゲート電極3の幅が狭くなる高さ方向の位置まで、素子分離絶縁膜4が埋め込まれている。このメモリセル構造では、上述した制御ゲート電極6の埋め込み部分の空乏化がさらに起きにくいので、空乏化に起因したメモリ誤動作率をさらに低減できる。   FIG. 3 is a sectional view showing a modification of the nonvolatile memory cell according to the first embodiment. In this modification, the element isolation insulating film 4 is buried between adjacent floating gate electrodes 3 and 3 up to a position in the height direction where the width of the floating gate electrode 3 becomes narrow. In this memory cell structure, depletion of the buried portion of the control gate electrode 6 described above is less likely to occur, so that the memory malfunction rate due to depletion can be further reduced.

なお、図2,図3において、浮遊ゲート電極3の幅が狭くなる高さ方向の位置はどこでもよいが、できるだけトンネル絶縁膜2に近い位置の方が効果は大きくなるので望ましい。また、浮遊ゲート電極3の幅は、図2,図3に示すように1段階の変化に限るものではなく、図4に示すように高さ方向に向けて2段階に変化してもよいし、3段階以上に変化してもよい。   2 and 3, the position in the height direction where the width of the floating gate electrode 3 becomes narrow may be anywhere, but a position as close to the tunnel insulating film 2 as possible is preferable because the effect is greater. Further, the width of the floating gate electrode 3 is not limited to one step as shown in FIGS. 2 and 3, but may be changed in two steps in the height direction as shown in FIG. You may change in three steps or more.

図5の(a)〜(d)および図6の(a) (b)は、本第1の実施の形態に係る不揮発性メモリセルの製造手順を示す図である。以下、図2に示した如きメモリセルの製造手順を、図5の(a)〜(d)および図6の(a) (b)を基に説明する。なお、図5の(a)〜(d)では、不揮発性メモリセルのワード線方向(チャネル幅方向)の断面図を示している。図6の(a) (b)では、左側に不揮発性メモリセルのビット線方向(チャネル長方向)の断面図、右側に不揮発性メモリセルのワード線方向(チャネル幅方向)の断面図を示している。   FIGS. 5A to 5D and FIG. 6A and FIG. 6B are diagrams showing a manufacturing procedure of the nonvolatile memory cell according to the first embodiment. 2 will be described with reference to FIGS. 5A to 5D and FIGS. 6A to 6B. 5A to 5D are cross-sectional views of the nonvolatile memory cell in the word line direction (channel width direction). 6A and 6B, a cross-sectional view in the bit line direction (channel length direction) of the nonvolatile memory cell is shown on the left side, and a cross-sectional view in the word line direction (channel width direction) of the nonvolatile memory cell is shown on the right side. ing.

まず、図5の(a)に示すように、所望の不純物をドーピングしたシリコン基板101の表面に、厚さ10nmのトンネル絶縁膜102を熱酸化法で形成後、浮遊ゲート電極となる厚さ150nmのリンドープの多結晶シリコン層103を減圧CVD(Chemical Vapor Deposition)法で堆積する。その後、CMP(Chemical Mechanical Polish)のストッパー膜104、RIE(Reactive Ion Etching)のマスク膜105を順次減圧CVD法で堆積する。   First, as shown in FIG. 5A, a tunnel insulating film 102 having a thickness of 10 nm is formed on the surface of a silicon substrate 101 doped with a desired impurity by a thermal oxidation method, and then a thickness of 150 nm serving as a floating gate electrode. The phosphorus-doped polycrystalline silicon layer 103 is deposited by a low pressure CVD (Chemical Vapor Deposition) method. Thereafter, a stopper film 104 of CMP (Chemical Mechanical Polish) and a mask film 105 of RIE (Reactive Ion Etching) are sequentially deposited by a low pressure CVD method.

その後、レジストマスク(図示せず)を用いたRIE法により、マスク膜105、ストッパー膜104、リンドープの多結晶シリコン層103の上層部を順次エッチング加工する。これにより、側壁部201が形成される。   Thereafter, the mask film 105, the stopper film 104, and the upper layer portion of the phosphorus-doped polycrystalline silicon layer 103 are sequentially etched by RIE using a resist mask (not shown). Thereby, the side wall part 201 is formed.

次に、図5の(b)に示すように、全面にシリコン酸化膜を減圧CVD法で堆積した後、全面RIEを行う。このとき、側壁部201に側壁マスク膜105aが残るように全面RIEの条件を設定する。次に、図5の(c)に示すように、マスク膜105と側壁マスク膜105aをマスクに、多結晶シリコン層103の露出領域、トンネル絶縁膜102を順次エッチング加工し、さらにシリコン基板101の露出領域をエッチングして、深さ150nmの素子分離溝106を形成する。これにより、下部の幅が広く上部の幅が狭い浮遊ゲート電極の形状が形成された。   Next, as shown in FIG. 5B, a silicon oxide film is deposited on the entire surface by a low pressure CVD method, and then the entire surface RIE is performed. At this time, the conditions for the entire surface RIE are set so that the sidewall mask film 105a remains on the sidewall 201. Next, as shown in FIG. 5C, the exposed region of the polycrystalline silicon layer 103 and the tunnel insulating film 102 are sequentially etched using the mask film 105 and the sidewall mask film 105a as a mask. The exposed region is etched to form an element isolation trench 106 having a depth of 150 nm. As a result, the shape of the floating gate electrode having a lower width and a narrow upper width was formed.

次に、図5の(d)に示すように、全面に厚さ400nmの素子分離用のシリコン酸化膜107aをプラズマCVD法で堆積して、素子分離溝106を完全に埋め込む。その後、表面部分のシリコン酸化膜107aとマスク膜105をCMP法で除去して、表面を平坦化する。その後、露出したストッパー膜104をリン酸溶液でエッチング除去した後、シリコン酸化膜107aの露出表面を希フッ酸溶液でエッチング除去して、シリコン酸化膜107aを浮遊ゲート電極の幅が広い高さ方向の位置まで後退させる。   Next, as shown in FIG. 5D, a device isolation silicon oxide film 107a having a thickness of 400 nm is deposited on the entire surface by plasma CVD to completely fill the device isolation trench 106. Next, as shown in FIG. Thereafter, the silicon oxide film 107a and the mask film 105 on the surface portion are removed by CMP to planarize the surface. Thereafter, the exposed stopper film 104 is removed by etching with a phosphoric acid solution, and then the exposed surface of the silicon oxide film 107a is removed by etching with a dilute hydrofluoric acid solution. Retract to the position.

次に、図6の(a)に示すように、全面にシリコン酸化膜/シリコン窒化膜/シリコン酸化膜からなる3層構造の厚さ15nmの電極間絶縁膜109を減圧CVD法で順次堆積後、制御ゲート電極となる多結晶シリコン層/タングステンシリサイド層からなる2層構造の厚さ100nmの導電層110を減圧CVD法で順次堆積し、さらに、RIEのマスク膜111を減圧CVD法で堆積する。その後、レジストマスク(図示せず)を用いたRIE法により、マスク膜111、導電層110、電極間絶縁膜109、多結晶シリコン層103、トンネル絶縁膜102を順次エッチング加工して、積層型セル間のスリット部112を形成する。これにより、浮遊ゲート電極113および制御ゲート電極114の形状が確定する。   Next, as shown in FIG. 6A, a 15-nm-thick interelectrode insulating film 109 having a three-layer structure composed of a silicon oxide film / silicon nitride film / silicon oxide film is sequentially deposited on the entire surface by a low pressure CVD method. Then, a 100 nm thick conductive layer 110 having a two-layer structure composed of a polycrystalline silicon layer / tungsten silicide layer serving as a control gate electrode is sequentially deposited by a low pressure CVD method, and an RIE mask film 111 is further deposited by a low pressure CVD method. . Thereafter, the mask film 111, the conductive layer 110, the interelectrode insulating film 109, the polycrystalline silicon layer 103, and the tunnel insulating film 102 are sequentially etched by the RIE method using a resist mask (not shown) to form a stacked cell. A slit portion 112 is formed therebetween. Thereby, the shapes of the floating gate electrode 113 and the control gate electrode 114 are determined.

次に、図6の(b)に示すように、露出面に厚さ10nmの電極側壁酸化膜と呼ばれるシリコン酸化膜115を熱酸化法および減圧CVD法を組み合わせて形成後、イオン注入法を用いてセル拡散層116を形成し、さらに、全面を覆うように層間絶縁膜となるBPSG(Boro Phospho silicate Glass)膜117を減圧CVD法で形成する。その後は、周知の方法で配線層等を形成して不揮発性メモリセルを完成させる。   Next, as shown in FIG. 6B, a silicon oxide film 115 called an electrode sidewall oxide film having a thickness of 10 nm is formed on the exposed surface by a combination of a thermal oxidation method and a low pressure CVD method, and then an ion implantation method is used. Then, a cell diffusion layer 116 is formed, and a BPSG (Boro Phosphosilicate Glass) film 117 serving as an interlayer insulating film is formed by a low pressure CVD method so as to cover the entire surface. Thereafter, a wiring layer or the like is formed by a well-known method to complete the nonvolatile memory cell.

(第2の実施の形態)
図7の(a)〜(c)は、本第2の実施の形態に係る半導体装置である不揮発性メモリセルの製造手順を示す図である。以下、図2に示した如きメモリセルの製造手順を、図7の(a)〜(c)を基に説明する。なお、図7の(a)〜(c)では、ワード線方向(チャネル幅方向)の断面図を示している。
(Second Embodiment)
FIGS. 7A to 7C are diagrams showing a manufacturing procedure of a nonvolatile memory cell which is a semiconductor device according to the second embodiment. Hereinafter, the manufacturing procedure of the memory cell as shown in FIG. 2 will be described with reference to FIGS. 7A to 7C are cross-sectional views in the word line direction (channel width direction).

まず、図7の(a)に示すように、所望の不純物をドーピングしたシリコン基板101の表面に、厚さ10nmのトンネル絶縁膜102を熱酸化法で形成後、浮遊ゲート電極となる厚さ150nmのリンドープの多結晶シリコン層103を減圧CVD法で堆積する。その後、レジストマスク(図示せず)を用いたRIE法により、リンドープの多結晶シリコン層103、トンネル絶縁膜102を順次エッチング加工し、さらにシリコン基板101の露出領域をエッチングして、深さ150nmの素子分離溝を形成する。   First, as shown in FIG. 7A, a tunnel insulating film 102 having a thickness of 10 nm is formed on the surface of a silicon substrate 101 doped with a desired impurity by a thermal oxidation method, and then a thickness of 150 nm serving as a floating gate electrode. The phosphorus-doped polycrystalline silicon layer 103 is deposited by a low pressure CVD method. Thereafter, the phosphorus-doped polycrystalline silicon layer 103 and the tunnel insulating film 102 are sequentially etched by RIE using a resist mask (not shown), and the exposed region of the silicon substrate 101 is further etched to a depth of 150 nm. An element isolation trench is formed.

次に、全面に厚さ400nmの素子分離用のシリコン酸化膜107aをプラズマCVD法で堆積して、素子分離溝を完全に埋め込む。その後、CMP法で表面を平坦化し、さらに、シリコン酸化膜107aの露出表面を希フッ酸溶液でエッチング除去して、浮遊ゲート電極103の側壁面を70nm露出させる。   Next, an element isolation silicon oxide film 107a having a thickness of 400 nm is deposited on the entire surface by plasma CVD to completely fill the element isolation trench. Thereafter, the surface is planarized by CMP, and the exposed surface of the silicon oxide film 107a is etched away with a diluted hydrofluoric acid solution to expose the side wall surface of the floating gate electrode 103 by 70 nm.

次に、図7の(b)に示すように、アルカリ溶液による等方性エッチングで、浮遊ゲート電極103aの露出面を30nm後退させる。これにより、浮遊ゲート電極103aの形状は、下部の幅が広く上部の幅が狭くなる。次に、図7の(c)に示すように、シリコン酸化膜107aの露出表面を希フッ酸溶液でエッチング除去して、シリコン酸化膜107aを浮遊ゲート電極の幅が広い高さ位置まで後退させる。   Next, as shown in FIG. 7B, the exposed surface of the floating gate electrode 103a is retreated by 30 nm by isotropic etching with an alkaline solution. As a result, the floating gate electrode 103a has a wide lower portion and a narrow upper portion. Next, as shown in FIG. 7C, the exposed surface of the silicon oxide film 107a is removed by etching with a diluted hydrofluoric acid solution, and the silicon oxide film 107a is retracted to a height position where the width of the floating gate electrode is wide. .

その後は、図6の(a) (b)に示したような方法を用いることにより、図2の如きメモリセル構造を完成させる。   Thereafter, by using the method as shown in FIGS. 6A and 6B, the memory cell structure as shown in FIG. 2 is completed.

(第3の実施の形態)
図8の(a) (b)は、本第3の実施の形態に係る半導体装置である不揮発性メモリセルの製造手順を示す図である。以下、図3に示した如きメモリセルの製造手順を、図8の(a)(b)を基に説明する。なお、図8の(a) (b)では、ワード線方向(チャネル幅方向)の断面図を示している。
(Third embodiment)
(A) and (b) of FIG. 8 are diagrams showing a manufacturing procedure of a nonvolatile memory cell which is a semiconductor device according to the third embodiment. Hereinafter, the manufacturing procedure of the memory cell as shown in FIG. 3 will be described with reference to FIGS. 8A and 8B are cross-sectional views in the word line direction (channel width direction).

まず、図8の(a)に示すように、所望の不純物をドーピングしたシリコン基板101の表面に、厚さ7nmのトンネル絶縁膜102を熱酸化法で形成後、浮遊ゲート電極となる厚さ150nmのリンドープの多結晶シリコン層103を減圧CVD法で堆積する。その後、レジストマスク(図示せず)を用いたRIE法により、リンドープの多結晶シリコン層103、トンネル絶縁膜102を順次エッチング加工し、さらにシリコン基板101の露出領域をエッチングして、深さ150nmの素子分離溝を形成する。   First, as shown in FIG. 8A, a tunnel insulating film 102 having a thickness of 7 nm is formed on the surface of a silicon substrate 101 doped with a desired impurity by a thermal oxidation method, and then a thickness of 150 nm serving as a floating gate electrode. The phosphorus-doped polycrystalline silicon layer 103 is deposited by a low pressure CVD method. Thereafter, the phosphorus-doped polycrystalline silicon layer 103 and the tunnel insulating film 102 are sequentially etched by RIE using a resist mask (not shown), and the exposed region of the silicon substrate 101 is further etched to a depth of 150 nm. An element isolation trench is formed.

次に、全面に厚さ400nmの素子分離用のシリコン酸化膜107aをプラズマCVD法で堆積して、素子分離溝を完全に埋め込む。その後、CMP法で表面を平坦化し、さらに、シリコン酸化膜107aの露出表面を希フッ酸溶液でエッチング除去して、浮遊ゲート電極103の側壁面を70nm露出させる。   Next, an element isolation silicon oxide film 107a having a thickness of 400 nm is deposited on the entire surface by plasma CVD to completely fill the element isolation trench. Thereafter, the surface is planarized by CMP, and the exposed surface of the silicon oxide film 107a is etched away with a diluted hydrofluoric acid solution to expose the side wall surface of the floating gate electrode 103 by 70 nm.

次に、図8の(b)に示すように、酸素ラジカルを10%含む酸素雰囲気(酸化性雰囲気)で800℃、1時間の酸化を行い、厚さ8nmのラジカル酸化膜からなる電極間絶縁膜109aを形成する。これにより、浮遊ゲート電極103aの形状は、下部の幅が広く上部の幅が狭くなる。また、隣接する浮遊ゲート電極103,103の側壁面上に形成される電極間絶縁膜109a,109a間の開口幅は、浮遊ゲート電極103,103間の最小間隔から電極間絶縁膜109aの膜厚の2倍を差し引いた幅よりも広くなる。   Next, as shown in FIG. 8B, oxidation is performed at 800 ° C. for 1 hour in an oxygen atmosphere (oxidizing atmosphere) containing 10% of oxygen radicals, and an inter-electrode insulation formed of a radical oxide film having a thickness of 8 nm. A film 109a is formed. As a result, the floating gate electrode 103a has a wide lower portion and a narrow upper portion. The opening width between the inter-electrode insulating films 109a and 109a formed on the side wall surfaces of the adjacent floating gate electrodes 103 and 103 is the film thickness of the inter-electrode insulating film 109a from the minimum distance between the floating gate electrodes 103 and 103. It is wider than the width minus 2 times.

その後は、図6の(a)(b)に示したような方法を用いることにより、図3の如きメモリセル構造を完成させる。   Thereafter, by using the method as shown in FIGS. 6A and 6B, the memory cell structure as shown in FIG. 3 is completed.

なお、図8の(c)のように、ラジカル酸化膜109aを形成後、CVD酸化膜109bを堆積し、2層の電極間絶縁膜を形成してもよい。その他、最下層をラジカル酸化膜で形成すれば、その上にいかなる絶縁膜を形成してもよく、多層にしてもよい。   As shown in FIG. 8C, a CVD oxide film 109b may be deposited after forming the radical oxide film 109a to form a two-layer interelectrode insulating film. In addition, as long as the lowermost layer is formed of a radical oxide film, any insulating film may be formed thereon, or a multilayer may be formed.

なお、本実施の形態のように、ラジカル酸化で電極間絶縁膜109a、またはその一部を形成すると、比較的低温で電極間絶縁膜109aの形成ができるので、トンネル酸化膜の熱ダメージが軽減されて、トンネル酸化膜の特性劣化を抑制できる。また、露出している素子分離酸化膜の表面膜質を改質する効果もあるため、隣接する浮遊ゲート電極103a,103a間のリーク電流を低減できて、メモリセルの信頼性を向上できる。   Note that when the interelectrode insulating film 109a or a part thereof is formed by radical oxidation as in this embodiment mode, the interelectrode insulating film 109a can be formed at a relatively low temperature, so that thermal damage to the tunnel oxide film is reduced. As a result, deterioration of the characteristics of the tunnel oxide film can be suppressed. Further, since there is an effect of modifying the surface film quality of the exposed element isolation oxide film, the leakage current between the adjacent floating gate electrodes 103a and 103a can be reduced, and the reliability of the memory cell can be improved.

また、図8の(d)に示すように、シリコン酸化膜109a、シリコン窒化膜109c、及びシリコン酸化膜109dからなる3層の電極間絶縁膜を形成する場合、シリコン窒化層109cをアンモニアや一酸化窒化等の窒素を含むガス雰囲気で熱窒化して形成すると、例えば窒化膜厚を1nm程度に薄膜化できるので、制御ゲート電極の埋め込み部分の幅をより広くすることができる。また、ラジカル窒化でシリコン窒化膜109cを形成しても、同様の効果が得られる。   Further, as shown in FIG. 8D, when a three-layer interelectrode insulating film composed of the silicon oxide film 109a, the silicon nitride film 109c, and the silicon oxide film 109d is formed, the silicon nitride layer 109c is made of ammonia or a single layer. When thermal nitridation is performed in a gas atmosphere containing nitrogen such as oxynitridation, for example, the nitride film thickness can be reduced to about 1 nm, so that the width of the buried portion of the control gate electrode can be increased. The same effect can be obtained even if the silicon nitride film 109c is formed by radical nitriding.

また、図8の(d)のシリコン窒化膜109cを、ヘキサクロルジシランとアンモニアを原料ガスとするCVDで形成すると、シリコン窒化膜109cの電子トラップ密度が高いので、例えば窒化膜厚を1nm程度に薄膜化できて、制御ゲート電極の埋め込み部分の幅をより広くすることができる。他の原料ガスの組合せでも、膜の電子トラップ密度が高い成膜方法ならば適用できる。   When the silicon nitride film 109c in FIG. 8D is formed by CVD using hexachlorodisilane and ammonia as source gases, the electron trap density of the silicon nitride film 109c is high. For example, the nitride film thickness is about 1 nm. The thickness can be reduced and the width of the buried portion of the control gate electrode can be increased. Other combinations of source gases can be applied as long as the film forming method has a high electron trap density of the film.

また、図8の(d)のシリコン窒化膜109cを、シリコン窒化膜の代わりにアルミナ膜としてもよい。アルミナ膜とシリコン酸化膜との仕事関数差はアルミナ膜とシリコン窒化膜との仕事関数差よりも大きいので、例えばアルミナ膜厚を1nm程度に薄膜化できて、制御ゲート電極の埋め込み部分の幅をより広くすることができる。他の絶縁膜材料でも、シリコン酸化膜との仕事関数差が大きい膜であればよい。   Further, the silicon nitride film 109c in FIG. 8D may be an alumina film instead of the silicon nitride film. Since the work function difference between the alumina film and the silicon oxide film is larger than the work function difference between the alumina film and the silicon nitride film, for example, the alumina film thickness can be reduced to about 1 nm, and the width of the buried portion of the control gate electrode can be reduced. Can be wider. Any other insulating film material may be used as long as it has a large work function difference from the silicon oxide film.

本発明の実施の形態によれば、メモリセルのカップリング比を確保して動作電圧の上昇を抑えつつ、ビット線方向に隣接する浮遊ゲート電極間の寄生容量を低減してメモリセルの誤動作を回避できる。また、制御ゲート電極の埋め込み部分の空乏化に起因するメモリセルの誤動作を回避できる。   According to the embodiment of the present invention, it is possible to prevent a malfunction of a memory cell by reducing a parasitic capacitance between floating gate electrodes adjacent in the bit line direction while securing a coupling ratio of the memory cell and suppressing an increase in operating voltage. Can be avoided. In addition, a malfunction of the memory cell due to depletion of the buried portion of the control gate electrode can be avoided.

さらに、トンネル絶縁膜の特性劣化を抑制しながら、制御ゲート電極の空乏化に起因するメモリセルの誤動作を回避できる。また、素子分離絶縁膜の表面膜質を改質する効果もあるので、対向する浮遊ゲート電極間のリーク不良を回避できる。また、電極間絶縁膜を薄膜化できるので、制御ゲート電極の空乏化に起因するメモリセルの誤動作を回避できる。   Further, it is possible to avoid malfunction of the memory cell due to depletion of the control gate electrode while suppressing deterioration of the characteristics of the tunnel insulating film. In addition, since there is an effect of modifying the surface film quality of the element isolation insulating film, it is possible to avoid a leak failure between the floating gate electrodes facing each other. In addition, since the interelectrode insulating film can be thinned, a malfunction of the memory cell due to depletion of the control gate electrode can be avoided.

なお、本発明は上記実施の形態のみに限定されず、要旨を変更しない範囲で適宜変形して実施できる。   In addition, this invention is not limited only to the said embodiment, In the range which does not change a summary, it can deform | transform suitably and can be implemented.

1…シリコン基板 2…トンネル絶縁膜 3…浮遊ゲート電極 4…素子分離絶縁膜 5…電極間絶縁膜 6…制御ゲート電極 101…シリコン基板 102…トンネル絶縁膜 103…多結晶シリコン層 103a…浮遊ゲート電極 104…ストッパー膜 105…マスク膜 201…側壁部 105a…側壁マスク膜 106…素子分離溝 107a…シリコン酸化膜 109…電極間絶縁膜 110…導電層 111…マスク膜 112…スリット部 113…浮遊ゲート電極 114…制御ゲート電極 115…シリコン酸化膜 116…セル拡散層 117…BPSG膜 109a…電極間絶縁膜 109b…CVD酸化膜 109c…シリコン窒化膜 109d…シリコン酸化膜   DESCRIPTION OF SYMBOLS 1 ... Silicon substrate 2 ... Tunnel insulating film 3 ... Floating gate electrode 4 ... Element isolation insulating film 5 ... Interelectrode insulating film 6 ... Control gate electrode 101 ... Silicon substrate 102 ... Tunnel insulating film 103 ... Polycrystalline silicon layer 103a ... Floating gate Electrode 104 ... Stopper film 105 ... Mask film 201 ... Side wall part 105a ... Side wall mask film 106 ... Element isolation trench 107a ... Silicon oxide film 109 ... Interelectrode insulating film 110 ... Conductive layer 111 ... Mask film 112 ... Slit part 113 ... Floating gate Electrode 114 ... Control gate electrode 115 ... Silicon oxide film 116 ... Cell diffusion layer 117 ... BPSG film 109a ... Interelectrode insulating film 109b ... CVD oxide film 109c ... Silicon nitride film 109d ... Silicon oxide film

Claims (4)

半導体基板上に、トンネル絶縁膜を挟んで、上部領域及びチャネル幅方向の側部を有し、且つ、不純物ドープされた多結晶シリコンからなる複数の浮遊ゲート電極を形成する工程と、
互いに対向する前記浮遊ゲート電極間に素子分離絶縁膜を形成し、前記浮遊ゲート電極の前記側部の一部を前記素子分離絶縁膜によって覆う工程と、
前記浮遊ゲート電極の露出表層部及び前記素子分離絶縁膜の露出表層部に対して、酸素ラジカルを含む酸化性雰囲気によるラジカル酸化反応を施して、電極間絶縁膜の最下層となる第1の絶縁膜としてのラジカル酸化膜を前記浮遊ゲート電極上に形成するのと同時に、前記浮遊ゲート電極の前記上部領域のチャネル幅方向の幅を、前記浮遊ゲート電極の下部領域のチャネル幅方向の幅より狭くし、且つ、前記浮遊ゲート電極の前記下部領域と前記素子分離絶縁膜との界面の延長線上をまたがるように形成される前記ラジカル酸化膜の下部の一部分を、前記浮遊ゲート電極の前記上部領域の側部と前記素子分離絶縁膜の側部との間に介在させる工程と、
前記電極間絶縁膜上に、互いに対向する前記浮遊ゲート電極の間に一部が埋め込まれ、且つ、その埋め込まれた部分がドーパント不純物を含む半導体を有する制御ゲート電極を形成する工程と、
を具備することを特徴とする半導体装置の製造方法。
Forming a plurality of floating gate electrodes made of impurity-doped polycrystalline silicon having an upper region and side portions in the channel width direction on a semiconductor substrate with a tunnel insulating film interposed therebetween;
Forming an element isolation insulating film between the floating gate electrodes facing each other, and covering a part of the side portion of the floating gate electrode with the element isolation insulating film;
The exposed surface layer portion of the floating gate electrode and the exposed surface layer portion of the element isolation insulating film are subjected to a radical oxidation reaction in an oxidizing atmosphere containing oxygen radicals, so that the first insulation serving as the lowest layer of the interelectrode insulating film At the same time as forming a radical oxide film as a film on the floating gate electrode, the width in the channel width direction of the upper region of the floating gate electrode is narrower than the width in the channel width direction of the lower region of the floating gate electrode. In addition, a part of the lower portion of the radical oxide film formed so as to straddle the extended line of the interface between the lower region of the floating gate electrode and the element isolation insulating film is formed on the upper region of the floating gate electrode. Interposing between the side portion and the side portion of the element isolation insulating film ;
Forming a control gate electrode having a portion of the buried floating gate electrode facing each other on the interelectrode insulating film , and the buried portion having a semiconductor containing a dopant impurity ;
A method for manufacturing a semiconductor device, comprising:
前記第1の絶縁膜の表層部に対して、窒素を含むガスを用いた化学反応を施して、前記電極間絶縁膜を構成する第2の絶縁膜を前記第1の絶縁膜上に形成する工程を、さらに具備することを特徴とする請求項1に記載の半導体記憶装置の製造方法。   A chemical reaction using a gas containing nitrogen is applied to the surface layer portion of the first insulating film to form a second insulating film constituting the interelectrode insulating film on the first insulating film. The method of manufacturing a semiconductor memory device according to claim 1, further comprising a step. 前記第1の絶縁膜上に、前記第1の絶縁膜よりも電子トラップ密度が高い前記電極間絶縁膜を構成する第2の絶縁膜を形成する工程を、さらに具備することを特徴とする請求項1に記載の半導体装置の製造方法。   The method further comprises forming a second insulating film constituting the interelectrode insulating film having an electron trap density higher than that of the first insulating film on the first insulating film. Item 14. A method for manufacturing a semiconductor device according to Item 1. 前記第1の絶縁膜上に、前記第1の絶縁膜との仕事関数差がシリコン窒化膜よりも大きい第2の絶縁膜を形成する工程を、さらに具備することを特徴とする請求項1に記載の半導体装置の製造方法。   2. The method according to claim 1, further comprising forming a second insulating film having a work function difference from the first insulating film larger than that of the silicon nitride film on the first insulating film. The manufacturing method of the semiconductor device of description.
JP2009055367A 2009-03-09 2009-03-09 Manufacturing method of semiconductor device Active JP4856201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009055367A JP4856201B2 (en) 2009-03-09 2009-03-09 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009055367A JP4856201B2 (en) 2009-03-09 2009-03-09 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004275528A Division JP4761747B2 (en) 2004-09-22 2004-09-22 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2009164624A JP2009164624A (en) 2009-07-23
JP4856201B2 true JP4856201B2 (en) 2012-01-18

Family

ID=40966792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009055367A Active JP4856201B2 (en) 2009-03-09 2009-03-09 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4856201B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5823354B2 (en) 2012-06-20 2015-11-25 株式会社東芝 Nonvolatile semiconductor memory device and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936263A (en) * 1995-07-21 1997-02-07 Sony Corp Floating gate nonvolatile semiconductor storage device
JP2000208645A (en) * 1999-01-08 2000-07-28 Sony Corp Forming method for silicon group dielectric film and manufacture of nonvolatile semiconductor storage device
JP2000228509A (en) * 1999-02-05 2000-08-15 Fujitsu Ltd Semiconductor device
JP3983923B2 (en) * 1999-04-28 2007-09-26 株式会社東芝 Manufacturing method of semiconductor device
JP2003168749A (en) * 2001-12-03 2003-06-13 Hitachi Ltd Non-volatile semiconductor memory device and manufacturing method thereof
KR100444603B1 (en) * 2001-12-22 2004-08-16 주식회사 하이닉스반도체 Method of manufacturing a Ta2O5-Al2O3 dielectric film and semiconductor device utilizing thereof
JP3914142B2 (en) * 2002-11-29 2007-05-16 株式会社東芝 Nonvolatile semiconductor memory device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009164624A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
KR100736287B1 (en) Semiconductor device and manufacturing method thereof
US9324725B2 (en) Semiconductor device and a manufacturing method thereof
JP5230274B2 (en) Nonvolatile semiconductor memory device
KR100768982B1 (en) Semiconductor device and manufacturing method thereof
US7679127B2 (en) Semiconductor device and method of manufacturing the same
JP2004281662A (en) Semiconductor memory device and its manufacturing method
JPH10270575A (en) Non-volatile semiconductor memory storage and manufacture thereof
KR20120067634A (en) Methods of manufacturing a semiconductor device
JP2010177279A (en) Nand flash memory and method for manufacturing the same
JP2013045837A (en) Nonvolatile semiconductor storage device and manufacturing method of the same
JP2007005380A (en) Semiconductor device
JP4503627B2 (en) Semiconductor device and manufacturing method thereof
US7514741B2 (en) Nonvolatile semiconductor memory device and related method
JP2006186073A (en) Semiconductor device and its manufacturing method
JP2010147410A (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US8575676B2 (en) Semiconductor storage device and method for manufacturing the same
JP2010147414A (en) Semiconductor device and method of manufacturing the same
US20060006453A1 (en) Nonvolatile semiconductor memory device and method of fabricating the same
JP4856201B2 (en) Manufacturing method of semiconductor device
CN211350659U (en) Unit structure of multiple time programmable memory
JP2014187132A (en) Semiconductor device
KR20120021157A (en) Semiconductor memory device and manufacturing method thereof
CN111430452A (en) Unit structure of multi-time programmable memory and manufacturing method thereof
JP2009283852A (en) Nonvolatile semiconductor storage device
CN114784014A (en) Three-dimensional memory and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4856201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350