JPH0936263A - Floating gate nonvolatile semiconductor storage device - Google Patents

Floating gate nonvolatile semiconductor storage device

Info

Publication number
JPH0936263A
JPH0936263A JP7207421A JP20742195A JPH0936263A JP H0936263 A JPH0936263 A JP H0936263A JP 7207421 A JP7207421 A JP 7207421A JP 20742195 A JP20742195 A JP 20742195A JP H0936263 A JPH0936263 A JP H0936263A
Authority
JP
Japan
Prior art keywords
layer
polycrystalline
film
floating gate
polycrystalline semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7207421A
Other languages
Japanese (ja)
Inventor
Tadahachi Naiki
唯八 内貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7207421A priority Critical patent/JPH0936263A/en
Publication of JPH0936263A publication Critical patent/JPH0936263A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the ununiformity of tunnel current values between memory cells and, at the same time, to reduce the dielectric breakdown of a gate insulating film and a capacitive coupling insulating film. SOLUTION: A floating gate has a polycrystalline Si layer 31 which is in contact with an SiO2 film 12 constituting a gate insulating film and another polycrystalline Si layer 33 which is in contact with an ONO film 17 constituting a capacitive coupling insulating film and the crystal grain size of the Si layer 31 is smaller than that of the Si layer 33, and then, the impurity concentration in the Si layer 31 is lower than that in the Si layer 33, the ununiformity of impurity concentration in the SiO2 film 12 is small and the growth of crystal grains to projecting states in the Si layer 33 is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願の発明は、ゲート絶縁膜
と容量結合用絶縁膜との間に浮遊ゲートを有する浮遊ゲ
ート型不揮発性半導体記憶装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a floating gate type nonvolatile semiconductor memory device having a floating gate between a gate insulating film and a capacitive coupling insulating film.

【0002】[0002]

【従来の技術】図2は、浮遊ゲート型不揮発性半導体記
憶装置の一従来例を示している。この一従来例では、図
2(a)に示す様に、Si基板11の表面のSiO2
12がトンネル電流を流すべきゲート絶縁膜になってお
り、SiO2 膜12上の多結晶Si層13が浮遊ゲート
になっている。
2. Description of the Related Art FIG. 2 shows a conventional example of a floating gate type nonvolatile semiconductor memory device. In this conventional example, as shown in FIG. 2A, the SiO 2 film 12 on the surface of the Si substrate 11 is a gate insulating film through which a tunnel current should flow, and a polycrystalline Si layer on the SiO 2 film 12 is formed. 13 is a floating gate.

【0003】また、多結晶Si層13上に順次に積層さ
れているSiO2 膜14、SiN膜15及びSiO2
16から成るONO膜17が浮遊ゲートと制御ゲートと
の容量結合用絶縁膜になっている。更に、ONO膜17
上に順次に積層されている多結晶Si層21及びWSi
膜22から成るタングステンポリサイド層23が制御ゲ
ートになっており、これらの制御ゲート等の両側のSi
基板11に形成されている拡散層24、25が夫々ソー
ス及びドレインになっている。
Further, the ONO film 17 composed of the SiO 2 film 14, the SiN film 15 and the SiO 2 film 16 which are sequentially laminated on the polycrystalline Si layer 13 serves as an insulating film for capacitive coupling between the floating gate and the control gate. Has become. Furthermore, the ONO film 17
Polycrystalline Si layer 21 and WSi that are sequentially stacked on top
The tungsten polycide layer 23 formed of the film 22 serves as a control gate, and Si on both sides of the control gate and the like is formed.
The diffusion layers 24 and 25 formed on the substrate 11 serve as a source and a drain, respectively.

【0004】ところで、SiO2 膜12に接している部
分における多結晶Si層13の結晶粒界26を図2
(b)に拡大して示す様に、多結晶Si層13中の不純
物27は結晶粒界26に偏析し易く、この結晶粒界26
近傍のSiO2 膜12にも不純物27が偏析している。
By the way, a crystal grain boundary 26 of the polycrystalline Si layer 13 in a portion in contact with the SiO 2 film 12 is shown in FIG.
As enlargedly shown in (b), the impurities 27 in the polycrystalline Si layer 13 easily segregate at the crystal grain boundaries 26, and the crystal grain boundaries 26
Impurities 27 are also segregated in the SiO 2 film 12 in the vicinity.

【0005】このため、多結晶Si層13の結晶粒径が
大きくて結晶粒界26が疎にしか存在しておらず、且つ
多結晶Si層13中における不純物27の濃度が高い
と、結晶粒界26に不純物27が偏析することによる多
結晶Si層13における不純物27の濃度の不均一性が
大きく、この多結晶Si層13に接しているSiO2
12でも不純物27の濃度の不均一性が大きい。
Therefore, if the grain size of the polycrystalline Si layer 13 is large and the grain boundaries 26 are sparsely present, and the concentration of the impurities 27 in the polycrystalline Si layer 13 is high, the grain size of the crystal grains is high. The nonuniformity of the concentration of the impurity 27 in the polycrystalline Si layer 13 due to the segregation of the impurity 27 in the boundary 26 is large, and the nonuniformity of the concentration of the impurity 27 in the SiO 2 film 12 in contact with the polycrystalline Si layer 13 is large. Is big.

【0006】SiO2 膜12のうちで不純物27の濃度
が高い部分ではトンネル電流が流れ易いので、メモリセ
ル間におけるトンネル電流値の不均一性が大きくて動作
特性が劣り、トンネル電流が局所的に大量に流れること
によるSiO2 膜12の絶縁破壊が多いので信頼性も低
下する。
Since a tunnel current easily flows in a portion of the SiO 2 film 12 where the concentration of the impurities 27 is high, the non-uniformity of the tunnel current value between the memory cells is large and the operation characteristics are poor, and the tunnel current is locally generated. Since the dielectric breakdown of the SiO 2 film 12 is large due to a large amount of flowing, the reliability is also lowered.

【0007】従って、逆に、メモリセル間におけるトン
ネル電流値の不均一性を小さくして動作特性を向上さ
せ、トンネル電流が局所的に大量に流れることによるS
iO2膜12の絶縁破壊を少なくして信頼性も高めるた
めには、多結晶Si層13の結晶粒径が小さく且つ多結
晶Si層13中の不純物27の濃度が低い方がよい。
Therefore, conversely, the non-uniformity of the tunnel current value between the memory cells is reduced to improve the operating characteristics, and a large amount of tunnel current locally flows to S.
In order to reduce the dielectric breakdown of the iO 2 film 12 and enhance the reliability, it is preferable that the crystal grain size of the polycrystalline Si layer 13 is small and the concentration of the impurities 27 in the polycrystalline Si layer 13 is low.

【0008】一方、多結晶Si層13の表面を熱酸化し
てONO膜17のうちのSiO2 膜14を形成する際
に、多結晶Si層13の結晶粒径が小さく且つ多結晶S
i層13中の不純物27の濃度が低いと、図2(a)中
に示す様に、多結晶Si層13の表面に突起部28が形
成される。このため、この突起部28に電界が集中する
ことによるONO膜17の絶縁破壊が多くなって信頼性
が低下する。
On the other hand, when the surface of the polycrystalline Si layer 13 is thermally oxidized to form the SiO 2 film 14 of the ONO film 17, the crystal grain size of the polycrystalline Si layer 13 is small and the polycrystalline S layer 13 is small.
When the concentration of the impurities 27 in the i layer 13 is low, a protrusion 28 is formed on the surface of the polycrystalline Si layer 13 as shown in FIG. For this reason, the electric field is concentrated on the protrusion 28, so that the dielectric breakdown of the ONO film 17 increases and the reliability decreases.

【0009】従って、逆に、多結晶Si層13の突起部
28に電界が集中することによるONO膜17の絶縁破
壊を少なくして信頼性を高めるためには、多結晶Si層
13の結晶粒径が大きく且つ多結晶Si層13中の不純
物27の濃度が高い方がよい。
Therefore, conversely, in order to reduce the dielectric breakdown of the ONO film 17 due to the concentration of an electric field on the protrusions 28 of the polycrystalline Si layer 13 and improve the reliability, the crystal grains of the polycrystalline Si layer 13 are reduced. It is better that the diameter is large and the concentration of the impurities 27 in the polycrystalline Si layer 13 is high.

【0010】つまり、メモリセル間におけるトンネル電
流値の不均一性を小さくして動作特性を向上させ且つS
iO2 膜12の絶縁破壊を少なくして信頼性も高めるた
めに浮遊ゲートに必要な条件と、ONO膜17の絶縁破
壊が少なくして信頼性を高めるために浮遊ゲートに必要
な条件とは、互いに相反している。
That is, the non-uniformity of the tunnel current value between the memory cells is reduced to improve the operation characteristics and S
The conditions required for the floating gate in order to reduce the dielectric breakdown of the iO 2 film 12 and improve the reliability and the conditions required for the floating gate in order to reduce the dielectric breakdown of the ONO film 17 and improve the reliability are as follows: They are in conflict with each other.

【0011】[0011]

【発明が解決しようとする課題】ところが、図2に示し
た一従来例では、浮遊ゲートが単一層の多結晶Si層1
3のみから成っているので、互いに相反する上述の条件
を同時に満たすことが不可能であり、優れた動作特性と
高い信頼性とを得ることが困難であった。
However, in the conventional example shown in FIG. 2, the floating gate is a polycrystalline Si layer 1 having a single layer.
Since it is composed of only No. 3, it is impossible to simultaneously satisfy the above-mentioned contradictory conditions, and it is difficult to obtain excellent operating characteristics and high reliability.

【0012】なお、2層の多結晶Si層で浮遊ゲートを
構成して、浮遊ゲート全体の結晶粒径を小さくする提案
がなされている(例えば、95年春季応用物理学会予稿
集(No.2)p.833、31a−H−6)が、上述
の説明からも明らかな様に、容量結合用絶縁膜の絶縁破
壊が多くなって信頼性が低下する。
It has been proposed that the floating gate be composed of two poly-Si layers to reduce the crystal grain size of the entire floating gate (for example, Proceedings of Spring Society of Applied Physics, 1995 (No. 2). ) P.833, 31a-H-6), as is clear from the above description, the dielectric breakdown of the capacitive coupling insulating film increases and the reliability decreases.

【0013】[0013]

【課題を解決するための手段】請求項1の浮遊ゲート型
不揮発性半導体記憶装置は、ゲート絶縁膜に接している
第1の多結晶半導体層と制御ゲートに対する容量結合用
絶縁膜に接している第2の多結晶半導体層とを浮遊ゲー
トが有しており、前記第1の多結晶半導体層の結晶粒径
が前記第2の多結晶半導体層の結晶粒径よりも小さく、
前記第1の多結晶半導体層の不純物濃度が前記第2の多
結晶半導体層の不純物濃度よりも低いことを特徴として
いる。
According to another aspect of the present invention, there is provided a floating gate non-volatile semiconductor memory device in which a first polycrystalline semiconductor layer in contact with a gate insulating film and an insulating film for capacitive coupling to a control gate are in contact with each other. The floating gate has a second polycrystalline semiconductor layer, and the crystal grain size of the first polycrystalline semiconductor layer is smaller than the crystal grain size of the second polycrystalline semiconductor layer,
The impurity concentration of the first polycrystalline semiconductor layer is lower than the impurity concentration of the second polycrystalline semiconductor layer.

【0014】請求項2の浮遊ゲート型不揮発性半導体記
憶装置は、請求項1の浮遊ゲート型不揮発性半導体記憶
装置において、前記第2の多結晶半導体層から前記第1
の多結晶半導体層への不純物の拡散を抑止すると共に非
絶縁性である層間膜が前記第1及び第2の多結晶半導体
層同士の間に設けられていることを特徴としている。
The floating gate non-volatile semiconductor memory device according to a second aspect is the floating gate non-volatile semiconductor memory device according to the first aspect, wherein the second polycrystalline semiconductor layer to the first
Is characterized in that diffusion of impurities into the polycrystalline semiconductor layer is suppressed and an non-insulating interlayer film is provided between the first and second polycrystalline semiconductor layers.

【0015】請求項3の浮遊ゲート型不揮発性半導体記
憶装置は、請求項2の浮遊ゲート型不揮発性半導体記憶
装置において、多結晶Si層が前記第1及び第2の多結
晶半導体層になっており、トンネル電流の流れ得るSi
2 膜が前記層間膜になっていることを特徴としてい
る。
A floating gate non-volatile semiconductor memory device according to a third aspect is the floating gate non-volatile semiconductor memory device according to the second aspect, wherein the polycrystalline Si layer is the first and second polycrystalline semiconductor layers. And Si through which tunnel current can flow
It is characterized in that the O 2 film is the interlayer film.

【0016】請求項1の浮遊ゲート型不揮発性半導体記
憶装置では、浮遊ゲートのうちで第1の多結晶半導体層
においては、結晶粒界が密に存在しており且つ不純物濃
度自体が低いので、結晶粒界に不純物が偏析することに
よる不純物濃度の不均一性が小さい。
In the floating gate type nonvolatile semiconductor memory device according to the first aspect, since the crystal grain boundaries are densely present and the impurity concentration itself is low in the first polycrystalline semiconductor layer of the floating gate, The nonuniformity of the impurity concentration due to the segregation of impurities at the crystal grain boundaries is small.

【0017】このため、第1の多結晶半導体層に接して
いるゲート絶縁膜でも不純物濃度の不均一性が小さく
て、ゲート絶縁膜中の位置によるトンネル電流値の不均
一性が小さい。従って、メモリセル間におけるトンネル
電流値の不均一性が小さく、トンネル電流が局所的に大
量に流れることによる絶縁破壊も少ない。
Therefore, the nonuniformity of the impurity concentration is small even in the gate insulating film in contact with the first polycrystalline semiconductor layer, and the nonuniformity of the tunnel current value depending on the position in the gate insulating film is small. Therefore, the nonuniformity of the tunnel current value between the memory cells is small, and the dielectric breakdown due to the local large amount of tunnel current flowing is small.

【0018】また、浮遊ゲートのうちで第2の多結晶半
導体層においては、結晶粒径が大きく且つ不純物濃度が
高いので、この第2の多結晶半導体層に接する容量結合
用絶縁膜を形成する際に第2の多結晶半導体層で結晶粒
が突起状に成長するのが抑制される。従って、第2の多
結晶半導体層の突起部に電界が集中することによる容量
結合用絶縁膜の絶縁破壊も少ない。
Further, in the second polycrystalline semiconductor layer of the floating gate, since the crystal grain size is large and the impurity concentration is high, an insulating film for capacitive coupling which is in contact with the second polycrystalline semiconductor layer is formed. At this time, the growth of crystal grains in the second polycrystalline semiconductor layer is suppressed. Therefore, the dielectric breakdown of the capacitive coupling insulating film due to the concentration of the electric field on the protrusions of the second polycrystalline semiconductor layer is small.

【0019】請求項2の浮遊ゲート型不揮発性半導体記
憶装置では、不純物の拡散を抑止する層間膜が浮遊ゲー
トの第1及び第2の多結晶半導体層同士の間に設けられ
ているので、浮遊ゲートのうちでゲート絶縁膜側の不純
物濃度を容量結合用絶縁膜側の不純物濃度よりも低い状
態に容易に維持することができる。しかも、層間膜が非
絶縁性であるので、層間膜が動作に対して影響を及ぼさ
ない。
In the floating gate non-volatile semiconductor memory device according to a second aspect of the present invention, the interlayer film for suppressing the diffusion of impurities is provided between the first and second polycrystalline semiconductor layers of the floating gate. It is possible to easily maintain the impurity concentration on the gate insulating film side of the gate lower than the impurity concentration on the capacitive coupling insulating film side. Moreover, since the interlayer film is non-insulating, the interlayer film does not affect the operation.

【0020】請求項3の浮遊ゲート型不揮発性半導体記
憶装置では、第1及び第2の多結晶半導体層並びに層間
膜の何れをも容易に形成することができ、特に、層間膜
は第1の多結晶半導体層の熱酸化やCVD法等によって
容易に形成することができるので、浮遊ゲートを容易に
形成することができる。
In the floating gate type non-volatile semiconductor memory device of the third aspect, both the first and second polycrystalline semiconductor layers and the interlayer film can be easily formed, and in particular, the interlayer film is the first layer. Since the polycrystalline semiconductor layer can be easily formed by thermal oxidation, the CVD method, or the like, the floating gate can be easily formed.

【0021】[0021]

【発明の実施の形態】以下、本願の発明の一具体例を、
図1を参照しながら説明する。本具体例も、ゲート絶縁
膜であるSiO2 膜12上に順次に積層されている多結
晶Si層31、SiO2 膜32及び多結晶Si層33で
浮遊ゲートが構成されていることを除いて、図2に示し
た一従来例と実質的に同様の構成を有している。多結晶
Si層31、33及びSiO2 膜32の膜厚、結晶粒径
及び不純物濃度は下記の通りである。
BEST MODE FOR CARRYING OUT THE INVENTION A specific example of the present invention will be described below.
This will be described with reference to FIG. Also in this example, except that the floating gate is composed of the polycrystalline Si layer 31, the SiO 2 film 32, and the polycrystalline Si layer 33 that are sequentially stacked on the SiO 2 film 12 that is a gate insulating film. 2 has a configuration substantially similar to that of the conventional example shown in FIG. The film thickness, crystal grain size and impurity concentration of the polycrystalline Si layers 31, 33 and the SiO 2 film 32 are as follows.

【0022】多結晶Si層31 膜厚 15nm 結晶粒径 20nm 不純物濃度 リン:5×1019cm-3 Polycrystalline Si layer 31 Film thickness 15 nm Crystal grain size 20 nm Impurity concentration Phosphorus: 5 × 10 19 cm −3

【0023】SiO2 膜32 膜厚 5nmSiO 2 film 32 film thickness 5 nm

【0024】多結晶Si層33 膜厚 20nm 結晶粒径 300nm 不純物濃度 リン:3×1020cm-3 Polycrystalline Si layer 33 Film thickness 20 nm Crystal grain size 300 nm Impurity concentration Phosphorus: 3 × 10 20 cm -3

【0025】多結晶Si層31、33の結晶粒径は、C
VD法でまず非晶質Si層を堆積させ、この非晶質Si
層から結晶粒を固相成長させることによって、制御する
ことができる。また、多結晶Si層31、33の不純物
濃度は、堆積後に不純物を拡散またはイオン注入させた
り、CVD法による堆積時から不純物を添加しておくこ
と等によって、制御する。
The crystal grain size of the polycrystalline Si layers 31 and 33 is C
First, an amorphous Si layer is deposited by the VD method.
It can be controlled by solid phase growth of grains from the layer. Further, the impurity concentration of the polycrystalline Si layers 31 and 33 is controlled by diffusing or ion-implanting the impurities after the deposition, adding the impurities from the time of deposition by the CVD method, or the like.

【0026】SiO2 膜32は多結晶Si層31の表面
を熱酸化したりCVD法で堆積させたりして形成する。
このSiO2 膜32の5nmという膜厚は、リン濃度の
高い多結晶Si層33からリン濃度の低い多結晶Si層
31へリンが拡散するのを抑止することができる膜厚で
あり、しかも、多結晶Si層31と多結晶Si層33と
の間をトンネル電流が流れ得る膜厚である。
The SiO 2 film 32 is formed by thermally oxidizing the surface of the polycrystalline Si layer 31 or depositing it by the CVD method.
The film thickness of 5 nm of the SiO 2 film 32 is a film thickness capable of suppressing the diffusion of phosphorus from the polycrystalline Si layer 33 having a high phosphorus concentration to the polycrystalline Si layer 31 having a low phosphorus concentration. The film thickness is such that a tunnel current can flow between the polycrystalline Si layer 31 and the polycrystalline Si layer 33.

【0027】この様な本具体例では、多結晶Si層31
の結晶粒径が小さく且つ不純物濃度が低いので、メモリ
セル間におけるトンネル電流値の不均一性が小さくて動
作特性が優れており、トンネル電流が局所的に大量に流
れることによるSiO2 膜12の絶縁破壊が少なくて信
頼性も高い。
In this specific example, the polycrystalline Si layer 31 is used.
Has a small crystal grain size and a low impurity concentration, the non-uniformity of the tunnel current value between the memory cells is small and the operating characteristics are excellent, and a large amount of tunnel current locally flows in the SiO 2 film 12. Low dielectric breakdown and high reliability.

【0028】しかも、多結晶Si層33の結晶粒径が大
きく且つ不純物濃度が高いので、多結晶Si層33の表
面を熱酸化してONO膜17のうちのSiO2 膜14を
形成する際に多結晶Si層33の表面に突起部が形成さ
れにくく、この突起部に電界が集中することによるON
O膜17の絶縁破壊が少ないことによっても信頼性が高
い。
Moreover, since the crystal grain size of the polycrystalline Si layer 33 is large and the impurity concentration is high, the surface of the polycrystalline Si layer 33 is thermally oxidized to form the SiO 2 film 14 of the ONO film 17. It is difficult to form a protrusion on the surface of the polycrystalline Si layer 33, and the electric field is concentrated on the protrusion to turn on.
The reliability is high because the dielectric breakdown of the O film 17 is small.

【0029】なお、多結晶Si層31、33及びSiO
2 膜32の膜厚、結晶粒径及び不純物濃度は上記以外の
値でもよく、特に、多結晶Si層31は不純物を全く含
んでいなくてもよい。
The polycrystalline Si layers 31, 33 and SiO
The film thickness, the crystal grain size, and the impurity concentration of the second film 32 may be values other than those described above, and in particular, the polycrystalline Si layer 31 may not contain any impurities.

【0030】[0030]

【発明の効果】請求項1の浮遊ゲート型不揮発性半導体
記憶装置では、メモリセル間におけるトンネル電流値の
不均一性が小さいので動作特性が優れており、しかも、
ゲート絶縁膜及び容量結合用絶縁膜の絶縁破壊が少ない
ので信頼性も高い。
According to the floating gate type nonvolatile semiconductor memory device of the present invention, since the nonuniformity of the tunnel current value between the memory cells is small, the operating characteristics are excellent, and moreover,
Since the gate insulating film and the insulating film for capacitive coupling have a small dielectric breakdown, the reliability is high.

【0031】請求項2の浮遊ゲート型不揮発性半導体記
憶装置では、動作に対して影響を及ぼすことなく、浮遊
ゲートのうちでゲート絶縁膜側の不純物濃度を容量結合
用絶縁膜側の不純物濃度よりも低い状態に容易に維持す
ることができるので、優れた動作特性と高い信頼性とを
容易に維持することができる。
In the floating gate type nonvolatile semiconductor memory device of the present invention, the impurity concentration on the gate insulating film side of the floating gate is higher than the impurity concentration on the capacitive coupling insulating film side without affecting the operation. Since it can be easily maintained in a low state, excellent operating characteristics and high reliability can be easily maintained.

【0032】請求項3の浮遊ゲート型不揮発性半導体記
憶装置では、浮遊ゲートを容易に形成することができる
ので、動作特性が優れており且つ信頼性も高いにも拘ら
ず、低コストで製造することができる。
In the floating gate type non-volatile semiconductor memory device according to the present invention, since the floating gate can be easily formed, the floating gate type nonvolatile semiconductor memory device is manufactured at a low cost in spite of excellent operating characteristics and high reliability. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の発明の一具体例の側断面図である。FIG. 1 is a side sectional view of a specific example of the present invention.

【図2】本願の発明の一従来例を示しており、(a)は
側断面図、(b)は要部の拡大側断面図である。
2A and 2B show a conventional example of the invention of the present application, in which FIG. 2A is a side sectional view and FIG. 2B is an enlarged side sectional view of a main part.

【符号の説明】[Explanation of symbols]

12 SiO2 膜 17 ONO膜 23 タングステンポリサイド層 31 多結晶Si層 32 SiO2 膜 33 多結晶Si層12 SiO 2 film 17 ONO film 23 Tungsten polycide layer 31 Polycrystalline Si layer 32 SiO 2 film 33 Polycrystalline Si layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ゲート絶縁膜に接している第1の多結晶
半導体層と制御ゲートに対する容量結合用絶縁膜に接し
ている第2の多結晶半導体層とを浮遊ゲートが有してお
り、 前記第1の多結晶半導体層の結晶粒径が前記第2の多結
晶半導体層の結晶粒径よりも小さく、 前記第1の多結晶半導体層の不純物濃度が前記第2の多
結晶半導体層の不純物濃度よりも低いことを特徴とする
浮遊ゲート型不揮発性半導体記憶装置。
1. The floating gate has a first polycrystalline semiconductor layer in contact with the gate insulating film and a second polycrystalline semiconductor layer in contact with the capacitive coupling insulating film for the control gate. The crystal grain size of the first polycrystalline semiconductor layer is smaller than the crystal grain size of the second polycrystalline semiconductor layer, and the impurity concentration of the first polycrystalline semiconductor layer is the impurity of the second polycrystalline semiconductor layer. A floating gate type nonvolatile semiconductor memory device characterized by being lower than the concentration.
【請求項2】 前記第2の多結晶半導体層から前記第1
の多結晶半導体層への不純物の拡散を抑止すると共に非
絶縁性である層間膜が前記第1及び第2の多結晶半導体
層同士の間に設けられていることを特徴とする請求項1
記載の浮遊ゲート型不揮発性半導体記憶装置。
2. The first polycrystalline semiconductor layer to the first polycrystalline semiconductor layer
2. A non-insulating interlayer film is provided between the first and second polycrystalline semiconductor layers while suppressing diffusion of impurities into the polycrystalline semiconductor layer.
A floating gate type nonvolatile semiconductor memory device as described.
【請求項3】 多結晶Si層が前記第1及び第2の多結
晶半導体層になっており、 トンネル電流の流れ得るSiO2 膜が前記層間膜になっ
ていることを特徴とする請求項2記載の浮遊ゲート型不
揮発性半導体記憶装置。
3. The polycrystalline Si layer is the first and second polycrystalline semiconductor layers, and the SiO 2 film through which a tunnel current can flow is the interlayer film. A floating gate type nonvolatile semiconductor memory device as described.
JP7207421A 1995-07-21 1995-07-21 Floating gate nonvolatile semiconductor storage device Pending JPH0936263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7207421A JPH0936263A (en) 1995-07-21 1995-07-21 Floating gate nonvolatile semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7207421A JPH0936263A (en) 1995-07-21 1995-07-21 Floating gate nonvolatile semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH0936263A true JPH0936263A (en) 1997-02-07

Family

ID=16539482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7207421A Pending JPH0936263A (en) 1995-07-21 1995-07-21 Floating gate nonvolatile semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH0936263A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287915B1 (en) 1997-11-19 2001-09-11 Nec Corporation Semiconductor device and manufacturing method therefor
US6943074B2 (en) 1999-04-27 2005-09-13 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having a two-layer gate structure and method for manufacturing the same
JP2006093327A (en) * 2004-09-22 2006-04-06 Toshiba Corp Semiconductor device and its manufacturing method
US7238975B2 (en) 2003-06-06 2007-07-03 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method therefor
KR100739953B1 (en) * 2006-01-17 2007-07-16 주식회사 하이닉스반도체 Method of manufacturing a flash memory device
JP2007242896A (en) * 2006-03-08 2007-09-20 Sharp Corp Semiconductor device and method of manufacturing the same
JP2009164624A (en) * 2009-03-09 2009-07-23 Toshiba Corp Method of manufacturing semiconductor device
US7888204B2 (en) 2007-08-16 2011-02-15 Samsung Electronics Co., Ltd. Method of forming nonvolatile memory device having floating gate and related device
KR101038398B1 (en) * 2008-05-21 2011-06-01 주식회사 하이닉스반도체 Manufacturig method of floating gate layer for semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287915B1 (en) 1997-11-19 2001-09-11 Nec Corporation Semiconductor device and manufacturing method therefor
US6943074B2 (en) 1999-04-27 2005-09-13 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having a two-layer gate structure and method for manufacturing the same
US7238975B2 (en) 2003-06-06 2007-07-03 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method therefor
US8318561B2 (en) 2004-09-22 2012-11-27 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JP2006093327A (en) * 2004-09-22 2006-04-06 Toshiba Corp Semiconductor device and its manufacturing method
US7960230B2 (en) 2004-09-22 2011-06-14 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US8076711B2 (en) 2004-09-22 2011-12-13 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
KR100739953B1 (en) * 2006-01-17 2007-07-16 주식회사 하이닉스반도체 Method of manufacturing a flash memory device
JP2007242896A (en) * 2006-03-08 2007-09-20 Sharp Corp Semiconductor device and method of manufacturing the same
JP4654140B2 (en) * 2006-03-08 2011-03-16 シャープ株式会社 Method for forming floating gate of flash memory
US8497545B2 (en) 2007-08-16 2013-07-30 Samsung Electronics Co., Ltd. Method of forming nonvolatile memory device having floating gate and related device
US7888204B2 (en) 2007-08-16 2011-02-15 Samsung Electronics Co., Ltd. Method of forming nonvolatile memory device having floating gate and related device
KR101038398B1 (en) * 2008-05-21 2011-06-01 주식회사 하이닉스반도체 Manufacturig method of floating gate layer for semiconductor device
JP2009164624A (en) * 2009-03-09 2009-07-23 Toshiba Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US7442977B2 (en) Gated field effect devices
US6717202B2 (en) HSG semiconductor capacitor with migration inhibition layer
US7452760B2 (en) Thin film transistors and semiconductor constructions
JPH09116119A (en) Nonvolatile semiconductor storage device
US6417085B1 (en) Methods of forming a field effect transistor gate construction
JP2515715B2 (en) Method for manufacturing semiconductor integrated circuit device
KR20050121174A (en) Semiconductor device and method of manufacturing the same
JPH0936263A (en) Floating gate nonvolatile semiconductor storage device
JPH04326766A (en) Thin film transistor for liquid crystal and its method of manufacturing
TWI278041B (en) Method of manufacturing flash memory device
JP4347479B2 (en) Field effect transistor
JPH06260644A (en) Manufacture of semiconductor device
JPH10173074A (en) Nonvolatile semiconductor device
JP2786041B2 (en) Manufacturing method of nonvolatile semiconductor memory device
KR0170670B1 (en) Thin film transistor for sram
JPH0786532A (en) Semiconductor device and its manufacture
JP2918098B2 (en) Semiconductor nonvolatile memory
JPH06169082A (en) Semiconductor device and manufacture thereof
JPH11284084A (en) Nonvolatile semiconductor storage device and its manufacture
JP2973752B2 (en) Semiconductor storage circuit device
JPH06120453A (en) Production of semiconductor device
JPS59201463A (en) Semiconductor device
JPH022310B2 (en)
JPS63182859A (en) Semiconductor integrated circuit device
JP3127451B2 (en) Method for manufacturing semiconductor memory device